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1 Introduction

1 Today’s digital infrastructure relies on cryptogra-
phy in order to ensure the confidentiality and in-
tegrity of digital transactions. At the heart of these
techniques is public key cryptography, which provides
a method for two parties to communicate privately,
despite the lack of any pre-arranged security keys.
These protocols mainly rely on the fact that de-

ciphering encoded communications is tantamount
to solving mathematical problems which are widely
thought to be infeasible (two such examples are the
factoring problem and the discrete logarithm prob-
lem). Yet we know that in the advent of large-scale
quantum computers (devices that compute according
to the laws of quantum mechanics), both the factor-
ing and discrete logarithm problems are completely
broken, meaning that our existing public-key cryp-
tography infrastructure has become insecure.
We are thus at a crossroads in terms of security:

Is the security of our digital infrastructure ready for
the advent of quantum computers? While security is
the common goal, the mathematical theory of group
theory is the common methodology. Group theory
is a broad and rich theory that models the technical
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tools used for the design and analysis in this research.

Some of the candidates for post-quantum cryptog-
raphy (PQC) have been known for years, while others
are still emerging.

Group theory, and in particular non-abelian
groups, offers a rich supply of complex and varied
problems for cryptography; reciprocally, the study of
cryptographic algorithms built from these problems
has contributed results to computational group the-
ory.

In 2015, NSA and NIST made an announcement
for post-quantum cryptosystems. In July 5, 2022,
the round 4 finalists were announced [NIS22]. Among
them, the following were short-listed: lattice-based,
code-based, isogeny-based and hash-based primitives.
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In 2016 Anshel, Atkins, Goldfeld, and Gunnells,
submitted a proposal to the NIST competition which
faced several attacks by Petit et al (PKC 2017),
Blackburn et al (ASIACRYPT 2018), Ushakov et
al (DCC 2019). Recently in [AAGG21], the same
authors have proposed a group-based digital signa-
ture WalnutDSATM which the authors claim is safe
against all those attacks and quantum-resistant.

In 1999, Anshel, Anshel, and Goldfeld [AAG99]
proposed the commutator key-exchange protocol
based on braid groups. Ko, Lee et al. proposed
a non-commutative version of Diffie-Hellman using
braid groups in 2000 [KLC+00].

Though braid groups were the suggested plat-
form for both protocols, researchers have been mo-
tivated to find other suitable classes of groups for
non-commutative group-based cryptography. On the
other hand, in the last couple of decades, the com-
plexity of some group-theoretic problems have been
studied.

We now present a brief history of the proposed
platform groups and algorithmic group theoretic
problems for cryptography.

In 2004, Eick and Kahrobaei proposed polycyclic
groups as a new platform for cryptography. These
groups are a natural generalizations of cyclic groups
with more complex algorithmic theory (see Section
3.1 for more details). Grigoriev and Ponomarenko in
2004 suggested groups of matrices for a homomorphic
encryption scheme. In 2008, Ostrovsky and Skeith
determined sufficient and necessary conditions for the
existence of a fully homomorphic encryption scheme
(FHE) over a non-zero ring if and only if there exists
a FHE over a finite non-abelian simple group. Simple
groups have also been proposed for hash functions by
Petit and Quisquater in 2016.

In 2017, Chatterji, Kahrobaei et al studied the
subgroup distortion problem in hyperbolic groups.
Kahrobaei and Mallahi-Karai proposed arithmetic
groups as a new platform for the same protocol
in 2019. Since 2016 graph groups have been pro-
posed for various cryptographic protocols by Flores,
Kahrobaei, and Koberda, since several of the algo-
rithmic problems in these groups are NP-complete
which provides quantum-resistant cryptosystems (see

[FKK19, Section 7]). We extensively address this in
section 2.2. In 2019, Kahrobaei, Tortora and Tota
proposed nilpotent groups for making multi-linear
maps. We conclude by mentioning that several other
classes of groups were proposed in the last couple of
decades for platforms for group-based cryptography.
This list includes automata groups (1991 by Garzon
and Zalcstein, in 2019 by Grigorchuk and Grigoriev),
Thompson group (Shpilrain and Ushakov, 2006), free
metabelian groups (Shpilrain and Zapata in 2006,
and Kahrobaei and Habeeb in 2012), small cancel-
lation groups (Habeeb, Kahrobaei, Shpilrain 2012),
free nilpotent p-groups (Kahrobaei and Shpilrain,
2016), Engel groups (Kahrobaei and Noce, 2020), and
infinite pro-p groups (Kahrobaei and Stanojkovski,
2021).

Next we discuss aspects that should be considered
for post-quantum group-based primitive.

The security of classical cryptographic schemes
such as RSA, and Diffie-Hellman are based on the
difficulty of factoring large integers and of finding
discrete logarithms in finite cyclic groups, respec-
tively. A quantum computer is able to solve the afore-
mentioned problems attacking the security of these
cryptographic algorithms. More precisely, Shor’s
algorithm factors discrete logarithm problems and
Grover’s algorithm can improve brute force attacks
by significantly reducing search spaces for private
keys. As a result, researchers are now interested in
cryptography that is secure in a post-quantum world.

We recall that a subgroup H of a group G is hidden
by a function f from G to a set S if it is constant over
all cosets of H, and takes distinct values on distinct
cosets.

H ≤ G X

f constant on gH
for any g ∈ G

2



In other words, for any g1, g2 ∈ G, f(g1) = f(g2)
if and only if g1H = g2H. This problem asks then
whether, given a finitely generated group G and an
efficiently computable function f from G to some fi-
nite set S such that f is constant and distinct on
left-cosets of a subgroup H of finite index, we can
find a finite generating set for H. Given a hidden
subgroup H, the hidden subgroup problem (HSP for
short) asks to find a generating set for H using infor-
mation from evaluations of f via an oracle. From a
group theoretic point of view, Shor’s algorithm solves
the hidden subgroup problem in finite cyclic groups.
Kahrobaei et al [HK18], provide a survey of results
regarding the complexity of quantum algorithms for
solving HSP in various groups together with some
connections between the HSP and other computa-
tional problems. Furthermore, it has been pointed
out that, despite the fact that Shor’s algorithm was
considered over the integers, in practice, the groups
that can be used by a quantum computer should be
finite. The obstacle with infinite groups is that the
quantum computer assumes the following super posi-
tion state: |G⟩ = 1√

|G|

∑
g∈G |g⟩, which clearly can-

not be done in the case of infinite groups. Therefore,
the cryptosystems based on infinite groups remain to
be good candidates for post-quantum proposals.

In summary, to analyse whether group-based cryp-
tosystems are post-quantum one studies the relation-
ship between the proposed algorithmic problems and
the HSP, as well as the efficiency of Shor’s algorithm
and Grover’s search algorithm in the proposed plat-
form groups. Note that cryptosystems based on NP-
complete problems are not vulnerable at this time to
quantum cryptanalysis.

In this paper, we present the current status and
the approach of post-quantum group-based cryptog-
raphy. In particular, we focus our attention to two
classes of groups as platform groups for possible cryp-
tographic protocols: polycyclic and graph groups.
About the former, the complexity of algorithmic
problems made polycyclic groups suitable platforms
for cryptography. Likewise, graph groups are good
post-quantum systems since many of the algorithmic
problems presented are NP-complete.

We remark that our treatment of the algorithmic

problem in graph groups in Section 2.2 is more de-
tailed, because these groups are defined more con-
cretely and possess a very useful normal form, so their
behaviour with respect to these problems is better
understood than that of polycyclic groups.

We address this paper to survey several classical
and novel algorithmic problems for both polycyclic
and graph groups with a view towards applications
to cryptography. Finally, we present a real life im-
plementation of a combinatorial algebraic fully ho-
momorphic encryption scheme which has been used
for data analysis of encrypted medical data. We also
include a list of open problems, which we hope will
guide researchers who wish to work in this field.

2 Platform Groups

The study of groups mostly as combinatorial objects
(using group presentation with generators and rela-
tors) is the area of group theory known as combinato-
rial group theory, which has been developed in order
to find solutions to the so-called decision problems
(i.e. problems with “yes” or “no” answers).

More precisely, let X = {x1, . . . , xn} and X−1 =
{x−1

1 , . . . , x−1
n }, where the latter is called the set of

formal inverses. The elements of X and its formal
inverses are called letters, and a word in X ∪X−1 is
a finite (possibly empty) sequence of letters of X ∪
X−1. A word w in the set X ∪X−1 is freely reduced
over X if it contains no adjacent symbols xx−1 or
x−1x. The group G is a free group with basis X if X
is a set of generators for G and no nonempty freely
reduced word over X ∪X−1 represents, as a product,
the identity element of G (note that the empty string
represents the identity element). As an example, one
can consider the group of the integers, which is the
free group with a single generator.

The following three decision problems were intro-
duced by Dehn in 1911, and are usually called the
“Dehn problems”. They are defined as follows:
Word Problem: For any g ∈ G, determine if g is
the identity element of G.
Conjugacy Problem: For any x, y ∈ G, determine
if x and y are conjugate, that is, if it exists an
element c ∈ G (a conjugator) such that c−1xc = y.
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Isomorphism Problem: Let G and G′ be groups
given by finite presentations, determine if G is
isomorphic to G′.

In general decision problems are problems of the
following nature: given a property P and an objectO,
find out whether or not the object O has the property
P. Search problems are of the following nature: given
a property P and an object O with the property P,
find something “material” establishing the property
P; for example, given two conjugate elements of a
group, find a conjugator. In other words, given a
group G and a, b ∈ G where a is a conjugate of b, the
conjugacy search problem is the problem to find an
element c ∈ G such that c−1ac = b. The conjugation
c−1ac is usually denoted by ac.

There are many other algorithmic problems which
have been used in group-based cryptography, see Sec-
tion 2.2 for more examples in graph groups.

2.1 Polycyclic groups

We start this section by stating the main definitions
we need. A series of a group G is a chain of sub-
groups {1} = G0 ≤ G1 ≤ · · · ≤ Gn−1 ≤ Gn = G
such that each Gi is normal in Gi+1. A group G
is said to be polycyclic if it has a subnormal series
{1} = G0 ≤ G1 ≤ · · · ≤ Gn−1 ≤ Gn = G such that
the quotient groups Gi+1/Gi are cyclic. This series
is called a polycyclic series. The Hirsch length of a
polycyclic group G is the number of infinite factors in
its polycyclic series. Though a polycyclic group can
have more than one polycyclic series, it is a conse-
quence of the Schreier Refinement Theorem that its
Hirsch length is independent of the choice of series.
Every polycyclic group can be described by a poly-

cyclic presentation of the following form:

⟨g1, . . . , gn | ggij = uij for 1 ≤ i < j ≤ n,

g
g−1
i

j = vij for 1 ≤ i < j ≤ n,

grii = wii for i ∈ I⟩,

where uij , vij , wii are words in the generators
gi+1, . . . , gn and I is the set of indices i ∈ {1, . . . , n}
such that [Gi+1 : Gi] is finite.

A group G is said to be nilpotent if and only if
G possess a central series, that is, if there exists a
chain of subgroups H0, . . . ,Hn of G: {1} = H0 ≤
H1 ≤ · · · ≤ Hn = G such that for any i ∈ {0, . . . , n},
Hi normal in G and Hi+1/Hi ≤ Z(G/Hi), where
Z(G/Hi) is the center of G/Hi.
If a group G is nilpotent, the minimal length of a

central series is said to be the nilpotency class of G
and it is denoted by cl(G).

Finally, given a prime number p, a group G is a
p-group if the order of every element is a power of p.
Nilpotent groups of class 1 are abelian groups, and
finite p-groups of order pa are nilpotent of class at
most (a− 1).

Polycyclic groups have been always of the inter-
est in the classical cryptography. Cyclic groups are
obviously polycyclic and they have been used in the
classical crytosystems such as RSA and DH.

Polycyclic groups are natural generalizations of
cyclic groups with more complex algorithmic prob-
lems which provide suitable platforms for cryptogra-
phy. Finitely generated nilpotent groups are poly-
cyclic and p-groups are nilpotent. We discuss both
applications of finite and infinite polycyclic groups
here.

Regarding the Dehn problems in polycyclic groups,
the word problem can be solved efficiently, while the
solution of the conjugacy problem is conjectured to
be exponential time, and in particular seems not effi-
cient. Many experiments have been run by Eick and
Kahrobaei in 2004, as well as by Garber, Kahrobaei
and Lam in 2013, which back up this conjecture for
some classes of polycyclic groups.

There are polycyclic groups that are metabelian,
as for example the group Σ3 of permutations of three
elements. Recall that a group is metabelian if it
is an extension of abelian groups. In [GKMP19]
Gryak, Kahrobaei and Mart́ınez-Pérez analyzed the
computational complexity of an algorithm to solve
the conjugacy search problem in a certain family
of metabelian groups. They proved that in general
the time complexity of the conjugacy search prob-
lem for these groups is at most exponential. They
also showed that for a different subfamily, namely
the generalized metabelian Baumslag-Solitar groups
the conjugacy search problem reduces to the discrete
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logarithm problem.
In [GHK20] Gryak, Kahrobaei and Haralick solved

the conjugacy problem in certain groups via ma-
chine learning methods. These methods, improving
the pre-existent machine learning and pattern recog-
nition techniques for algorithmic problems in free
groups, allow to find heuristically the conjugate of a
pair of random elements of some groups. The groups
considered are Baumslag-Solitar group B(1, 2) =
⟨a, b | bab−1 = a2⟩ and some non-metabelian gener-
alisation of it, and non-virtually nilpotent polycyclic
groups.

2.1.1 Cryptographic Applications

Polycyclic groups have many applications in group-
based cryptography, see [GK16] for a complete sur-
vey. Such applications include the Commutators
Key-Exchange Protocol based on the simultaneous
conjugacy search problem and the subgroup mem-
bership search problem; the non-commutative Diffie-
Hellman Key Exchange Protocol based on the conju-
gacy search problem; the Non-Commutative ElGa-
mal Key-Exchange based on the power conjugacy
search problem proposed by Kahrobaei and Khan;
a Key Exchange using the Subgroup Membership
Search Problem; an Authentication Scheme based
on the twisted conjugacy problem; authentication
schemes based on semigroup actions (such as the en-
domorphism and the isomorphism problem) and a
secret sharing scheme using the fact that there is an
efficient solution for the word problem.
Below we describe a non-commutative digital sig-

nature which was proposed in 2012 by Kahrobaei and
Koupparis [KK12] based on polycylcic groups.
Non-Commutative Digital Signature. Let G

be an infinite polycyclic group, and consider two
functions f and H as follows f : G → {0, 1}∗, which
encodes elements of the group as binary strings, and
H : {0, 1}∗ → G, known as the collision-resistant
hash function.
The functions f and H, and the group G are public

and the message is signed and verified as follows:
Key Generation: The signer first chooses an ele-
ment g ∈ G, whose centralizer (the set of elements
that commute with g) contains only the identity of G

and powers of g. The private key is an element s ∈ G
and n ∈ N, where n is chosen to be highly composite.
The public key is x = gns.
Signing Algorithm: To sign a message m, the
signer chooses a random element t ∈ G and a random
factorization ninj of n, and computes the following,
where || denotes concatenation:

y = gnit h = H(m||f(y)) α = t−1shy.

The signature σ = ⟨y, α, nj⟩ and the message m are
then send to the message recipient.
Verification: To verify, the recipient computes h′ =
H(m||f(y)), and accepts the message as authentic if
and only if the following equality holds: ynjα = xh′y.

The security of the signature scheme is based on
the collision resistance of the hash function and the
hardness of the conjugacy search problem in G in the
platform group.

Multilinear maps. In the last decades, multilin-
ear maps have attracted attention in cryptography.
In 2003, Boneh and Silverberg proposed multilinear
maps in cryptography, exploring in particular how to
build these maps. In 2017 Mahalanobis and Shinde
presented a novel bilinear cryptosystem in groups of
nilpotency class 2. In order to explore more deeply
these maps, Kahrobaei, Tortora and Tota proposed
multilinear cryptosystem using identities in nilpotent
groups in 2019. Recently, Kahrobaei and Stano-
jkovski proposed pro-p groups in general form for
such maps and analyzed the security [KS21].

In order to explain the aforementioned results, we
give a couple of useful definitions. We first recall
that given a group G and x1, . . . , xn ∈ G a simple
commutator of weight n > 1 is defined recursively by
the rules [x1, x2] = x−1

1 x−1
2 x1x2, and

[x1, x2, . . . , xn] = [[x1, . . . , xn−1], xn]

if n > 2. Sometimes we will use the following short-
hand notation

[x,n y] = [x, y, n. . ., y].

Let now n be a positive integer and G an arbitrary
group. A map e : Gn → G is said to be a multilinear
map if for any g1, . . . , gn,∈ G and any a1, . . . , an ∈ Z
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we have

e(ga1
1 , . . . , gan

n ) = e(g1, . . . , gn)
a1···an .

Moreover, we say that the map e is non-degenerate if
there exists g ∈ G such that e(g, . . . , g) ̸= 1.
If furthermore G is a nilpotent group, there are

additional properties for multilinear maps. So let G
be a nilpotent group of class n > 1 and g1, . . . , gn
elements of G. One can easily prove by induction on
n that for any a1, . . . , an ∈ Z the following identity
holds:

[ga1
1 , . . . , gan

n ] = [g1, . . . , gn]
∏n

i=1 ai . (1)

Hence if G is nilpotent, the map e

e : Gn → G

(g1, . . . , gn) 7→ [g1, . . . , gn]

is a multilinear map. In addition, if we fix x ∈ G, we
can construct another multilinear map f given by

f : G(n−1) → G

(g1, . . . , gn−1) 7→ [x, g1, . . . , gn−1].

If the multilinear map is non-degenerate, then one
can propose multilinear cryptosystems using identi-
ties in nilpotent groups in multiparty key-exchange
protocols, in which the security is based on the dis-
crete logarithm problem. The protocol presented by
Kahrobaei, Tortora and Tota reads as follows.
Let n be a positive integer, and suppose that the

public group G is nilpotent of class n + 1, but not
n-Engel. We recall that a group G is an n-Engel
group if there exists n ≥ 1 such that [x, ny] = 1, for
all x, y ∈ G. Consider then n + 1 users A1, . . . An+1

that wish to agree on a shared secret key. Each user
Aj selects a private integer aj ̸= 0, computes gaj ,
and sends it to the other users. Then we are in the
following situation:

• The user A1 computes [xa1 , ga2 , . . . gan+1 ].

• For j = 2, . . . , n, the user Aj computes
[xaj , ga1 , . . . , gaj−1 , gaj+1 , . . . , gan+1 ].

• The user An+1 computes [xan+1 , ga1 , . . . gan ].

Since the identity (1) holds in all nilpotent groups,
all elements computed by the users are equal to

k = [x,n g]
∏n+1

j=1 aj ,

where k is the shared key.
In [KS21], Kahrobaei and Stanojkovski propose a

new protocol employing multilinear maps for an ar-
bitrary number of users.
This protocol is a Non-Interactive Key Exchange

in which the users agree on a symmetric shared key
without any interaction, and for this reason is said to
be non-interactive. Note that one of the most known
Non-Interactive Key Exchange schemes (NIKE, in
what follows, for short) is the Diffie and Hellman key-
exchange protocol over cyclic groups.
Let n be an integer greater than 2, and let G be a

nilpotent group of nilpotency class n. We set:

• Public: g1, . . . , gn ∈ G

• Users: A1, . . . An+1, who choose an integer ai ∈
Z.

• Private keys: a1, . . . an+1

• Public shared data: g
aj

i with 1 ≤ i ≤ n and
1 ≤ j ≤ n+ 1

• Shared secret key: [g
an+1

1 , ga2
2 , . . . , gan

n ]a1 =

[g1, . . . , gn]
∏n+1

i=1 ai , which can be computed from
the shared data since the commutator is a mul-
tilinear map.

The security of the above protocol is based on the
difficulty to recover the shared key. For a finite p-
group this can be reduced to solve the Discrete Log-
arithm Problem in a cyclic group of order pa, which
is known to be classically hard. We observe that the
case n = 2 already was analyzed by Mahalanobis and
Schinde in 2017.
Motivated by the use of the protocol above in a

more general context and for an arbitrary number of
users, Kahrobaei and Stanojkovski in 2021 employed
infinite pro-p groups. More precisely, consider a non-
nilpotent profinite p-group G with n ≥ 2 an integer.
It is known that then G has a finite quotient of nilpo-
tency class n and so, over G, one can construct a key

6



exchange protocol between n + 1 users. Kahrobaei
and Stanojkovski proved that such a group G exists
and it can be used as a platform for an arbitrary
number of users.
It is worth mention here the definition of the Gen-

eralised Discrete Logarithm Problem, as it is
connected to the security of the above mentioned
multilinear maps. Let G be a finite group. Given
x, y ∈ G, the Discrete Logarithm Problem (in the
remainder DLP for short) is the problem to find
whether there exists a positive integer a such that
xa = y. Notice that this is usually defined in the set-
ting of cyclic groups because the Discrete Logarithm
exists for all elements and all nontrivial bases. The
DLP can be generalized to several components as fol-
lows. Let x = (x1, . . . , xn) be a tuple of elements such
that G = ⟨x1, . . . , xn⟩. Given y ∈ G, the Generalised
Discrete Logarithm Problem of y with respect to x is
to find ai such that y can be written uniquely as

xa = xa1
1 . . . xan

n = y,

where 0 < ai < |xi| for any i.
In 2011 Sutherland presented a generic algorithm

to compute Generalised Discrete Logarithms in every
finite abelian p-group G by using some direct meth-
ods to compute a basis for G [Sut11]. It is an inter-
esting problem to find the complexity of this problem
for any finite p-group.
Semidirect Product Key-exchange Protocol.

Habeeb, Kahrobaei, Koupparis, Shpilrain in 2013
proposed a key-exchange protocol using semidirect
product [HKKS13]. A few platforms have been pro-
posed, for example, in [KS16], free nilpotent p-groups
were proposed, while in [BKS21] different character-
istics of other proposed algebraic structures (such as
rings) were analyzed.
Here we give general ideas of this protocol. Let

G be a (semi)group. An element g ∈ G is cho-
sen and made public as well as an arbitrary auto-
morphism ϕ ∈ Aut(G) (or an arbitrary endomor-
phism ϕ ∈ End(G)). Bob chooses a private n ∈ N,
while Alice chooses a private m ∈ N. Both Al-
ice and Bob are going to work with elements of
the form (g, ϕr), where g ∈ G, r ∈ N. Note that
two elements of this form are multiplied as follows:
(g, ϕr) · (h, ϕs) = (ϕs(g) · h, ϕr+s).

• Alice computes (g, ϕ)m = (ϕm−1(g) · · ·ϕ2(g) ·
ϕ(g) · g, ϕm) and sends only the first compo-
nent of this pair to Bob. Thus, she sends to Bob
only the element a = ϕm−1(g) · · ·ϕ2(g) · ϕ(g) · g
of the (semi)group G.

• Bob computes (g, ϕ)n = (ϕn−1(g) · · ·ϕ2(g)·ϕ(g)·
g, ϕn) and sends only the first component of
this pair to Alice. Thus, he sends to Alice only
the element b = ϕn−1(g) · · ·ϕ2(g) · ϕ(g) · g of the
(semi)group G.

• Alice computes (b, x)·(a, ϕm) = (ϕm(b)·a, x·ϕm).
Her key is now KA = ϕm(b) · a. Note that she
does not actually “compute” x · ϕm because she
does not know the automorphism x = ϕn, and
also recall that it was not transmitted to her, but
she does not need it to compute KA.

• Bob computes (a, y) · (b, ϕn) = (ϕn(a) · b, y · ϕn).
His key is now KB = ϕn(a) · b. Again, Bob does
not actually “compute” y · ϕn because he does
not know the automorphism y = ϕm.

• Since (b, x)·(a, ϕm) = (a, y)·(b, ϕn) = (g, ϕ)m+n,
we should haveKA = KB = K, the shared secret
key.

The proposed algorithmic problem on which the
security of this scheme is based is a cousin of the
Computational Diffie-Hellman problem. There is no
known reduction from this problem to the DLP.

2.2 Graph Groups

Graph groups (also called partially commutative
groups, semifree groups, right-angled Artin groups,
or simply RAAGs in the literature), were defined by
Baudisch (1977), as a kind of interpolation between
free groups and and free abelian groups. They admit
a presentation where the only relations are commuta-
tivity relations which are codified in a finite simplicial
graph, see the definition below. The fact that these
groups are defined by means of a graph implies that
there is a tight connection between algorithmic graph
theoretic problems and group theoretic problems for
graph groups. Since the graph theoretic problems
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have been of central importance in Complexity The-
ory, it is natural to consider some of these graph the-
oretic problems via their equivalent formulation as
group theoretic problems about graph groups.
In general, given a property of a graph, it is easy

to figure out the corresponding group-theoretic prop-
erty of the associated graph group, via the graph that
defines it. However, given an intrinsic property of the
graph group (i.e. not depending on any particular set
of generators), it is usually hard to characterize the
corresponding graph property, and not always pos-
sible. For example, if a graph is not connected it is
nearly immediate that the associated graph group de-
composes as a free product, but the reciprocal result
is a highly non-trivial theorem. Since the eighties,
an important line of research has been developed in
order to model group-theoretic properties of graph
groups in the terms of properties of the graph.
The previous approach permits in particular to

convert graph theoretic problems for finite graphs
into group theoretic ones for graph groups. Moti-
vated by the fact that some of these group theo-
retic problems can be used for cryptographic pur-
poses, such as authentication schemes, secret shar-
ing schemes, zero-knowledge proofs, hash functions
and key exchange protocols, Flores, Kahrobaei and
Koberda have considered these groups as a promis-
ing platform for several cryptographic schemes (see
[FKK19], [FKK21a], [FKK21b], [FKK22]). It is im-
portant, in this sense, that the good knowledge of
the group-theoretic structure of these groups (normal
forms, centralizers, automorphisms, subgroups, etc.)
make their algorithmic properties very tractable.
Next we will define rigorously graph groups and

describe some of their main features from the cryp-
tographic point of view.

2.2.1 Main definitions

Here we define graph groups: Let Γ be a finite sim-
plicial graph. We write V = V (Γ) for the finite set of
vertices and E(Γ) ⊂ V ×V for the set of edges, viewed
as unordered pairs of vertices. The graph group on Γ
is the group

A(Γ) = ⟨V |[vi, vj ] = 1 whenever (vi, vj) ∈ E⟩.

In other words, A(Γ) is generated by the vertices of
Γ, and the only relations are given by commutation of
adjacent vertices. For example, if Γ is just an edge,
then A(Γ) is Z × Z, the free abelian group in two
generators.

The previous presentation is frequently called a
standard presentation of the graph group, and the
generators the standard generators or Artin gener-
ators. The number of vertices of the graph is the
rank of the group. It is clear by the definition that
the graph determines the group, and by the work of
Droms (1987), the converse is also true. In the fol-
lowing, given a graph Γ, we will denote by A(Γ) is
the associated graph group, and conversely, given a
graph group A, we will denote by Γ(A) its associated
graph. We will always assume that the graphs that
appear in this section are finite.

2.2.2 Algorithmic problems

Next we will comment on the main algorithmic prob-
lems in the context of graph groups, and the different
solutions that have been given to them throughout
the years.

Word problem. Servatius, using normal forms,
gave in 1987 a first solution of the word problem for
graph groups, although he paid no attention to the
complexity of the construction of the normal forms.
A bit later, Wrathall (1988) used good properties of a
presentation of the monoid of positive words to prove
that the word problem is solvable for graph groups in
linear time. Expanding these methods, Liu-Wrathall-
Zeger (1990) established that the generalised word
problem (i.e. given two words x and y in the group,
check if some power of x is equal to some power of y)
is also solvable in linear time, where the argument of
linearity is the length of the product.

Conjugacy problem. The approaches just de-
scribed by Servatius and Liu, Wrathall, and Zeger
were also useful to prove respectively that the con-
jugacy problem for graph groups is solvable in lin-
ear time. More recently (2009), Crisp, Godelle, and
Wiest use a version of the Viennot and pyramidal pil-
ings for graph groups to construct a new normal form.
In this way, they are able to prove that in fact the
complexity of the conjugacy problem in this context
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is linear in terms of the sum of the lengths of the ele-
ments involved. The technique consists in construct-
ing the normal forms out of the corresponding pil-
ings, and comparing them. In this way these authors
also prove the linearity of the conjugacy problem for
an important family of subgroups of graph groups,
namely fundamental groups of Haglund-Wise special
(or virtually special) cube complexes. It is worth
mentioning here that the richness of the subgroup
structure of graph groups gives rise to finitely pre-
sented examples. In general, the corresponding prob-
lem is not solvable for subgroups of graph groups, not
even if they are finitely generated. Bridson (2013)
found a finite index subgroup P of a graph group A
and a finitely generated free group F such that the
Isomorphism problem is not solvable for the finitely
presented subgroups of P ×P ×F , and then for sub-
groups of A×A× F , which is a graph group.
Subgroup Isomorphism problem. Recall that

the Subgroup Isomorphism problem asks if given two
groups G and H by presentations, can G be embed-
ded as a subgroup of H or not. If G and H are graph
groups given by standard presentations, a sufficient
condition for G to be a subgroup of H is that the
graph associated to G is an induced subgraph of the
graph associated to H (i.e. a subgraph such that if
v and w are vertices of G and the edge vw belongs
to H, then it also belongs to G). It is known that
this problem is NP-complete in general. However, in
principle it would be possible to always find an em-
bedding G < H that does not involve the graph, as
for example a classical embedding Fn < F2 for n > 2.
But this is not possible: using the techniques of the
previous paragraph, Bridson also proved that there
is no general solution for the Subgroup Isomorphism
problem in graph groups.
Group Homomorphism problem. The general

version of the Group Homomorphism problem asks if
given two groupsG andH, is there a nontrivial homo-
morphism G → H. For example, if G is simple and
H does not contain a copy of G, the answer is clearly
negative. In turn, recall that given two graphs Γ1 and
Γ2, a homomorphism f : Γ1 → Γ2 is an assignation
that takes vertices to vertices and edges to edges. It
is easy to see that not every homomorphism between
graph groups can be realized as a homomorphism be-

tween the associated graphs, even if it takes standard
generators to standard generators. For example, the
first projection Z2 → Z should be given by a homo-
morphism K2 → K1, which does not exist. Here Kn

denotes the complete graph in n vertices, also called
n-clique.

Hence, from the point of view of cryptography, it
is very useful to consider only the homomorphisms
between two graph groups G1 and G2 with standard
presentations that take standard generators of the
first to standard generators of the second, and such
that two commuting standard generators are taken
to two different standard generators that commute.
Now if we are restricted to this case, the problem of
finding such a homomorphism between G1 and G2

is equivalent to the Graph Homomorphism problem
for the associated graph, which is known to be an
NP -complete coloring problem (Johnson, 1979).

The Membership problem. Given a group H
and a subgroup K < H and presentations of H and
K, the Membership problem consists in deciding if
an element of H belongs to K. Recall that given a
presentation of a group G, the norm |g| of an element
of G is defined as the minimal length of a word (in
the given generators and their inverses) that repre-
sents g. Then, given two elements g and h in the
group, the distance between g and h is defined as
the norm of g−1h. In this way a metric on G is de-
fined, called the word metric. For example, in the
free group F2 = ⟨a, b⟩, the distance between ab and
ab−1a2 is |b−1a−1ab−1a2| = |b−2a2| = 4. Now con-
sider presentations of groupsK andH, the associated
word metrics dK and dH associated to the presenta-
tions and a monomorphism i : K ↪→ H. Then K is
undistorted inH if the embedding is a quasi-isometry,
i.e. there exist constants A ≥ 1, B ≥ 0 such that for
every x, y ∈ K we have

1

A
dK(x, y)−B ≤ dH(i(x), i(y)) ≤ AdK(x, y) +B.

Otherwise K is said to be distorted in H. For every
h ∈ K, we can define the distortion function D : N →
N as D(n) = max{|h| such that|i(h)| ≤ n}.
It was proved by Flores, Kahrobaei and Koberda

[FKK19] that if G is a group where the word problem
is solvable in at most exponential time, the Member-
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ship problem is so for every finitely generated undis-
torted subgroup. In particular, we have seen above
that the word problem is in fact linear for graph
groups, so they fit in this framework. Moreover, in
that paper it is shown that there exists a graph group
G and a subgroup H < G isomorphic to the funda-
mental group of a compact surface such that a) its
distortion function has exponential growth, and b)
its Membership problem is also solvable in at most
exponential time (it could be even polynomial). On
the contrary, Bridson have described examples of dis-
torted subgroups of graph groups for which the Mem-
bership problem remains unsolvable.
The Geodesic problem. For a given presenta-

tion of a group G, a word in the generators is said to
be geodesic if its number of letters coincides with the
length of the element of the group that it represents;
in other words, it is a shortest word in these genera-
tors representing the element. There are several clas-
sical algorithmic problems involving geodesics and
length. The Geodesic problem is, given an element g
in a group G, to find a geodesic word that represents
the elements. The Geodesic length problem consists
in computing the length of an element in the group.
There is a bounded version of the latter, where it is
intended to determine for a natural k if the length of
an element is smaller or equal to k. It is known that
these three problems have the same complexity (as
each of them is reducible to each other), and in the
case of graph groups this complexity is polynomial rk
of Holt and Rees (2013).
The Decomposition problem. Recall that

given two graphs Γ1 = (V1, E1) and Γ1 = (V2, E2),
their join is the graph whose vertex set is V1∪V2 and
whose edges set is given by E1∪E2 and all the possible
edges that start in V1 and end at V2. Then it is known
(Servatius, 1989) that a graph Γ can be decomposed
as a nontrivial join if and only if the graph group
A(Γ) decomposes as a nontrivial direct product. In
[FKK19] is described an algorithm (probably known
previously) which decomposes any graph as a join of
graphs which in turn cannot be further decomposed.
This algorithm stops in polynomial time, and this
proves that decomposing a group as a direct prod-
uct of indecomposable subgroups can be also solved
in polynomial time, provided we have an standard

presentation of the group.
Hamiltonicity. Flores, Kahrobaei and Koberda

defined in [FKK21b] the concept of Hamiltonian vec-
tor space. Consider a triple (V,W, q) where V and
W are vector spaces over a field F , q : V × V → W
an (anti-)symmetric bilinear pairing on V . It is said
that (V,W, q) is a Hamiltonian vector space if when-
ever (w1, . . . , wn) is a basis for V then there is a per-
mutation σ of n elements such that for all 1 ≤ i < n,
we have q(wσ(i), wσ(i+1)) ̸= 0, q(wσ(n), wσ(1)) ̸= 0.
Given a graph group A, the Hamiltonicity of the
triple (H1(A,F ), H2(A,F ),∪), where ∪ denotes the
cup product, is an invariant of the isomorphism type
of the group. Then it is proved in the aforementioned
paper that the fact that this vector space is Hamilto-
nian is equivalent to the Hamiltonicity (in the classi-
cal sense) of Γ(A). Then, given a graph group A, the
problem of determining if (H1(A,F ), H2(A,F ),∪)
is Hamiltonian is NP-complete. Observe that the
definition of Hamiltonian vector space models alge-
braically the property of possessing a Hamiltonian
cycle; an analogous result is valid, mutatis mutan-
dis, when considering Hamiltonian paths instead of
cycles.

2.2.3 Cryptographic applications

In this section we review several cryptographic appli-
cations of graph groups and protocols that have been
developed out of them.

Secret sharing schemes. Basing on previ-
ous work by Habeeb, Kahrobaei and Shpilrain and
Shamir, Flores and Kahrobaei proposed in 2016 se-
cret sharing schemes using graph groups, which rely
on the fact that the word problem in these groups is
solvable in linear time. To illustrate the ideas that are
used, we describe one scheme of each type. We start
with a sharing scheme, which uses decisively that the
word problem can be solved in linear time in graph
groups. The idea of the scheme is that the dealer dis-
tributes a k-vector C = (c1, c2, . . . , ck) of 0’s and 1’s
among n participants, making sure that the vector
can only be totally reconstructed if all participants
share their information.

So let us describe the scheme. First, a set
{x1, . . . , xm} of public generators is selected.
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• Each participant receives secretly from the
dealer a set of commutators Rj of the genera-
tors in X (and their inverses), so the participant
Pj possesses the graph group Gj = ⟨X | Rj⟩

• The vector C is written by the dealer as a mod
2 sum C =

∑n
i=1 Ci of n k-vectors. We denote

by cij the i-th entry of Cj . The vector Cj will
be the secret of the participant Pj .

• In turn, the participant Pj also receives publicly
a set of words {w1j , . . . , wkj}, selected in such a
way that the element represented by wij = 1 in
Gj if cij = 1 and wij ̸= 1 otherwise.

• Using that the word problem in graph groups can
be solved efficiently, each participant Pj checks
the triviality or not of the words {w1j , . . . , wkj},
and in this way he gets the vector Cj .

• Finally, the sum of the vectors Cj reconstructs
the original message.

Another protocol developed in [FKK19] uses the
Decomposition problem. For each of n participants
{P1, . . . , Pn}, the dealer distributes through a secure
channel a right-angled Artin group A(Γi). As the De-
composition problem is efficiently solvable, the par-
ticipant Pi can compute a bit bi such that bi = 0
decomposes as a non-trivial join, and bi = 1 other-
wise. Let now f(x) be the only monic polynomial
of degree n such that f(i) = mi. Then the polyno-
mial can be reconstructed out of these values, and
the secret key is f(0).

Authentication schemes. Flores and Kahrobaei
in 2016 proposed authentication schemes using graph
groups as platforms. The authentication protocols
depend on the complexity of the Group Homomor-
phism problem (which is NP-complete) and the Sub-
group Isomorphism problem (which is NP-complete
for certain classes of graph groups).
Let us now describe the authentication protocol.

• Alice’s public key is given by two graph groups
G1 = ⟨S1 | R1⟩ and G2 = ⟨S2 | R2⟩, where the
given presentations are standard. The private
key is a homomorphism α of groups that sends

generators in S1 to generators in S2, and (com-
mutativity) relations from R1 to relations in R2.

• Alice selects another graph group G with stan-
dard presentation G = ⟨S | R⟩ and a homomor-
phism β : G → G1 sending S to S1 and R to R1.
The group G is sent to Bob, and β is kept secret
by Alice.

• Now Bob picks a random bit c and sends it to
Alice. If c = 0, Alice sends β to Bob, who checks
if it takes S to S1 and R to R1. In turn, if c = 1,
Alice sends the composite α ◦ β : G → G2 to
Bob, who performs the analogous verification.

Observe that, as explained above, the security of
this scheme relies in the fact that the Graph Homo-
morphism problem is NP-complete if the graph in the
right has more than two vertices. It is enough to se-
lect the graph groups in the scheme with a sufficient
number of generators.

Zero-knowledge proofs. Motivated by the paper
by Goldreich, Micali, and Wigderson in 1991, proofs
that yield nothing but their validity, or all languages
in NP have zero-knowledge proof systems, we present
a ZKP scheme based on NP-completeness of graph
group Hamiltonicity in the sense of [FKK21b].

As commented above in the Hamiltonicity sec-
tion, in Flores, Kahrobaei and Koberda [FKK21b]
prove that Hamiltonicity in graphs is equivalent to
Hamiltonicity in the cohomology algebra over the as-
sociated right-angled group. Using this result, the
authors formulate a zero-knowledge proof protocol
based on linear algebra, which we define now in a
sketchy way. More details can be found in that pa-
per.

The protocol starts with a finite graph Γ that has
exactly one Hamiltonian cycle which is supposed to
be very difficult to compute, for example when the
graph is large and then a greedy algorithm can be
very inefficient. The public data is the triple given by
V = H1(A(Γ),F2), W = H2(A(Γ),F2) and the cup
product q = ∪, which is a Hamiltonian vector space.
Note that the coefficients are taken in the field of two
elements, in order to make the computations easier.
We assume that the generators of the cohomology are
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given in terms of duals of standard generators of the
group (for H1) and their cup products (for H2).
Alice is supposed to have a list {v∗1 , . . . , v∗n} of stan-

dard basis vectors for V such that q(v∗i , v
∗
i+1) ̸= 0 for

all i and q(v∗n, v
∗
1) ̸= 0, and a subset Y ⊂ GLn(F2) of

reasonable size (say polynomial in n). Moreover, for
each A ∈ Y , she knows a Hamiltonian cycle in the
complement of the 2-row graph Gc(A) (see definition
in [FKK21b]). The set Y may be public. In turn,
Bob may generate unbiased random bits. Now we
can define the protocol.

• Alice chooses in a random way an element A ∈
Y , obtaining a new basis {x1, . . . , xn} from
{v∗1 , . . . , v∗n} using A. Now the knowledge of
Hamiltonian cycles in Γ and in Gc(A) makes
her able to find in an efficient way a permu-
tation σ ∈ Sn such that q(xσ(i), xσ(i+1)) ̸= 0
for 1 ≤ i ≤ n, where the indices are consid-
ered cyclically. Alice then creates locked boxes
{Bi}1≤i≤n for the basis vectors. For each pair
{i, j} with i < j, she creates two boxes Ni,j and
Si,j , where she respectively records the pairing
q(xi, xj) ∈ W , and 1 if the entry in Ni,j is non-
zero and and 0 otherwise. In another box T , she
hides the linear map A.

• Now Bob takes a random bit and shares it with
Alice. If it is 1, then Alice unlocks the boxes
{Bi}1≤i≤n and the boxes {Sσ(i),σ(i+1)}1≤i≤n,
where again the indices are considered cyclically.
Now Bob checks that Alice has produced a cycle
in this way. On the other hand, if the bit is 0
then Alice opens

{Bi}1≤i≤n, {Ni,j}1≤i<j≤n, T,

and Bob recovers the triple (V,W, q).

Observe that this protocol may be repeated multi-
ple times, and that it succeeds if Alice correctly com-
plies with all of Bob’s requests, and does not succeed
if she fails to comply at least once. It can be seen in
turn that the protocol is zero-knowledge, and a sim-
ulator can be constructed in the same way as Blum
in 1987 does.
Prospective work. As said above, the defini-

tion of a graph group out of a graph provides an

interesting correspondence between algorithmic prob-
lems for graphs and groups. In particular, different
well-known problems in Graph Theory admit natu-
ral counterparts in groups that have not been inves-
tigated so far. They may provide in the future new
crypto applications, else by using the graph group
and a standard presentation as data, and/or defining
the group property that models the corresponding
math property. Due to limitations of space we only
offer here a small list that such problems, more in-
formation can be found in [FKK19]. These problems
include the vertex cover problem, the clique problem,
the independent set problem, the snake-in-the-box
problem, the arboricity problem, and the subdivision
problem.

From a different point of view, it is worth men-
tioning work of Chatterji, Kahrobaei et al in 2017,
who define different versions of two cryptographic
protocols out of the existence of a distorted sub-
group H < G inside of a finitely generated group.
In the construction of the first of these protocols it
is required that the Geodesic Length problem is solv-
able for H and G in polynomial time, and the Mem-
bership problem is also solvable for H. In that pa-
per hyperbolic and free-by-cyclic groups are proposed
as platforms for the protocol, while in subsequent
work of Kahrobaei and Mallahi-Karai in 2019 arith-
metic groups are proposed. Following work of Flo-
res, Kahrobaei and Koberda [FKK19], it is possible
to construct distorted subgroups inside graph groups
such that the Geodesic Length Problem is solvable for
them in polynomial time. Moreover, as said above,
these authors prove that the Membership problem is
solvable for this group in exponential time, and they
conjecture that it is likely that the complexity is in
fact polynomial. If this happened, then graph groups
would become a good platform for this protocol.

3 Combinatorial Algebra

There are other combinatorial algebraic problems
used for cryptography. Among them, we focus partic-
ularly, on one fully homomorphic encryption (FHE)
scheme proposal which has been patented [KLS19]
and is currently being used for real life applications,
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including data analysis over encrypted medical and
bioinformatics data [WNK20]. Broadly, homomor-
phic encryption enables computation over encrypted
data. A scheme is called additively (or multiplica-
tively) homomorphic if an encryption scheme is ad-
ditively homomorphic, then encryption followed by
homomorphic addition is equal to addition followed
by encryption.

3.1 Homomorphic Machine Learning

Machine learning and statistical techniques are pow-
erful tools for analyzing large amounts of medical
and genomic data. On the other hand, ethical con-
cerns and privacy regulations prevent free sharing of
this data. Encryption techniques such as fully ho-
momorphic encryption (FHE) enable evaluation over
encrypted data. Using FHE, machine learning mod-
els such as deep learning, decision trees, and naive
Bayes have been implemented for privacy-preserving
applications using medical data. These applications
include classifying encrypted data and training mod-
els on encrypted data. FHE has also been shown to
enable secure genomic algorithms, such as paternity
and ancestry testing and privacy-preserving applica-
tions of genome-wide association studies, [WNK20]
Homomorphic encryption is a form of encryption

which allows various types of computations to be car-
ried out on ciphertext and generate an encrypted re-
sult which, when decrypted, matches the result of
operations performed on the plaintext. Homomor-
phic encryption allows, in particular, chaining to-
gether different services without exposing the data
to each of those services; this property is important
to blockchain technology.
There are several known cryptosystems (e.g. un-

padded RSA, ElGamal, Goldwasser-Micali) that al-
low homomorphic computation of only one operation
(either addition or multiplication) on plaintexts. A
cryptosystem that supports both addition and mul-
tiplication (thereby preserving the ring structure of
the plaintexts) is known as fully homomorphic en-
cryption (FHE) and is far more powerful. Using such
a scheme, any circuit can be homomorphically eval-
uated, effectively allowing the construction of pro-
grams which may be run on encryptions of their in-

puts to produce an encryption of their output. A
fully homomorphic encryption function E encrypts
elements of a ring and respects both ring opera-
tions: E(g1g2) = E(g1)E(g2) and E(g1 + g2) =
E(g1) +E(g2) for any two elements g1, g2 of the ring
in question. Alternatively, one can encrypt boolean
circuits, and then a fully homomorphic encryption
function E should respect both AND and OR oper-
ations. The most widely known existing solution to
the homomorphic encryption problem appeared orig-
inally in the thesis of Craig Gentry, was subsequently
improved, and the relevant software is currently be-
ing developed by IBM. The security of this solution
relies on variants of the “bounded-distance decod-
ing” problem that has the property of “random self-
reducibility”, which basically means that it is about
as hard on average as it is in the worst case. While
this property is indeed a good evidence of security,
the resulting homomorphic encryption algorithm is
too inefficient to be practical. Very informally, the
reason is that, to provide semantic security, encryp-
tion has to be randomized, but on the other hand, a
homomorphism should map zero to zero. To resolve
this conflict, the ciphertext zero is “masked by noise”.
The problem now is that during any computation on
encrypted data, this “noise” tends to accumulate and
has to be occasionally reduced by recryption (also
known as bootstrapping), a process that produces the
equivalent ciphertext but with less noise. Recryption
is an expensive procedure, and its results in real-life
computation with this method (or a similar one) are
prohibitively slow.

3.2 An efficient and secure FHE
scheme

Kahrobaei, Shpilrain, Grigov and Lam [KLS19], pro-
posed an efficient FHE scheme using combinatorial
algebra. Here we give some ideas about the scheme.

We emphasize that this FHE is private-key.

1. Plaintexts are elements of a (private) ring R.

2. Ciphertexts are elements of a public ring S, such
that R ⊂ S is a subring of S. The ring S also
has a (private) ideal I such that S/I = R′, where
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the ring R′ is isomorphic to R. (The ring R′ may
be just equal to R, in which case R is called a
retract of S.)

3. Given u ∈ R,the encryption is E(u) = u+E(0),
where E(0) is a random element of the private
ideal I of the ring S.

This encryption function is a homomorphism; it
obviously respects addition, and for multiplica-
tion we have: E(u)E(v) = (u + j1)(v + j2) =
uv + j1u+ uj2 + j1j2 = uv + j3 = E(uv), where
j1, j2, j3 ∈ I.

4. Private decryption key is a map ρ from S to R′

that takes every element of I to 0, followed by
an isomorphism φ : R′ → R.

Here is a diagram to “visualize” this general
scheme:

R
E−→ S

ρ−→ R′ φ−→ R.

Note that when we say “a public ring S”, this means
that we give to the public a collection of rules for
adding and multiplying elements of S. Typically, this
can be a (finite) set of elements that span S as a
linear vector space over some ZN , together with the
multiplication table for S with respect to this set of
elements.

Below is a diagram of the whole encryption process
starting with a real-life database D,

D
α−→ R

E−→ S
ρ−→ R′ φ−→ R

β−→ D,

where β(α(x)) = x for any x ∈ D.

4 Open problems

To finish our exposition and at the same time moti-
vate the interested reader, we review several impor-
tant algorithmic group-theoretic problems motivated
by cryptography:

• Solving the Hidden Subgroup Problem for var-
ious classes of groups. Different instances of

groups, mainly finite, have already been consid-
ered in this context, namely abelian groups, di-
hedral groups, symmetric groups, wreath prod-
ucts or the Heisenberg group.

• Complexity analysis of various algorithmic group
theoretic problems used in cryptography. Ac-
cording to above, both efficiency and non-
efficiency results can be useful in the context, as
depending on the situation we may be interested
in quick or very difficult decryption.

• Designing machine learning algorithms to solve
the algorithmic problems in group theory. This
gives rise to heuristic algorithms for the crypt-
analysis.

• Cryptographic security analysis for the proposed
group-based cryptosystems, including study,
simulation and prevention of the possible attacks
that the cryptosystem can suffer.

• Searching for more group-based cryptosystems.

• Implementation of the proposed group-theoretic
cryptosystems for the real life applications.
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