
Decomposing Linear Layers
Christof Beierle1, Patrick Felke2, Gregor Leander1 and Sondre Rønjom3,4

1 Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany,
firstname.lastname@rub.de

2 University of Applied Sciences Emden/Leer, Emden, Germany,
patrick.felke@hs-emden-leer.de

3 Nasjonal Sikkerhetsmyndighet (NSM), Oslo, Norway
4 University of Bergen, Bergen, Norway, sondre.ronjom@uib.no

Abstract. There are many recent results on reverse-engineering (potentially hidden)
structure in cryptographic S-boxes. The problem of recovering structure in the other
main building block of symmetric cryptographic primitives, namely, the linear layer,
has not been paid that much attention so far. To fill this gap, in this work, we develop
a systematic approach to decomposing structure in the linear layer of a substitution-
permutation network (SPN), covering the case in which the specification of the linear
layer is obfuscated by applying secret linear transformations to the S-boxes. We first
present algorithms to decide whether an ms × ms matrix with entries in a prime field
Fp can be represented as an m×m matrix over the extension field Fps . We then study
the case of recovering structure in MDS matrices by investigating whether a given
MDS matrix follows a Cauchy construction. As an application, for the first time, we
show that the 8 × 8 MDS matrix over F28 used in the hash function Streebog is a
Cauchy matrix.
Keywords: finite field · matrix · substitution-permutation network · MDS ·
Cauchy

1 Introduction
Different from the naive expectation, quite often and for various reasons, a cryptanalyst or
user of a (symmetric) cryptographic primitive is not aware of the full documentation of its
design. In some cases, the designers do publish the specification, but miss out documenting
the design rationale explaining the reason for choosing each building block. The most
prominent example is the Data Encryption Standard (DES) [PUB77], standardized in
1977, for which the S-boxes have been (secretly) designed to resist differential cryptanaly-
sis [Cop94], a cryptanalytic technique that became known to the public only several years
later [BS90]. As more recent examples, we mention the block cipher families Simon and
Speck designed by the US National Security Agency (NSA) [BSS+13] and the Russian
hash function standard Streebog [Fed12]. In the latter, the 8-bit S-box π is just given as
a plain look-up table and the linear layer employs a 64×64 matrix L with entries in F2 and
it is not explained in any more detail in the specification. In more severe cases, even the
specification of the cryptographic algorithm is not made public and (in the best case) the
user or cryptanalyist only has access to a device or software in which the algorithm is im-
plemented. Examples include the stream cipher A5/1 used for GSM encryption [BGW99]
and the stream ciphers GEA/1 and GEA/2 for GPRS encryption [BDL+21], but there are
also block ciphers of that kind, e.g., Skipjack [Nat98, BBD+98] or Chiasmus [STW13].1
Another example is ransomware. Via obfuscation techniques, the cryptographic algorithms

1Those algorithms became public through reverse-engineering, declassification, or anonymous sources.
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are hidden to bypass virus scanners. Hence, the analyst has to deal with the problem
of figuring out the original specification of the employed cryptographic algorithm, once
identified with techniques as in, e.g., [KPK+20], with the goal to break it and recover the
data without paying the ransom.

In the case where the specification is secret or otherwise obfuscated, before any
cryptanalysis could be made, the whole cryptographic algorithm has to first be reverse-
engineered from the device or software. What results after such a process is not a
well-written design specification, but rather some more or less complicated program code,
which does not reveal the precise specifications of the cryptographic building blocks that
the designers chose.

While this is true for all designs, we are focusing on substitution-permutation networks
(SPNs) and are interesed in particular to find structure that is induced by defining linear
layers over extension fields. In the case of SPNs, a natural limitation is that the S-box
within an SPN can only be recovered up to some linear transformations in the input and
the output and for each such S-box one obtains a different linear layer. In Figure 1 we
depict the original design, and two variants of obfuscated linear layers that might occur.
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Figure 1: A keyed round function of an SPN with one additional S-box layer (left), an
alternative representation of the round with S′ = P −1◦S◦Q−1 (middle), and an alternative
representation of the round with S′

i = P −1
i ◦ S ◦Q−1

i (right).

This obfuscation makes the above task of recovering structure harder, not only compu-
tationally, but also as we are not sure what the “correct” representation should be.2

In the case of S-boxes, there are lots of recent results on this problem, see [BP15, BPU16,
PUB16, PU16, BPT19]. To name one specific result in this area, Perrin [Per19] has shown
that the S-box π of Streebog has the interesting property of mapping multiplicative
cosets to additive cosets of F∗

24 . Although no attack has been found exploiting this fact,
such a result negatively affects the trust in the algorithm: Why did the designers intend
to have such a property in the first place without making it public? Obviously, to fully
understand the cryptographic strength of an algorithm, analyzing only the S-box is not
enough and one has to study the interaction with the linear layer (see also the discussion
in [Per19] for the case of Streebog). For reverse-engineering structure in linear layers, not
much previous work has been done. In [KK13], Kazymyrov and Kazymyrova have shown
that the transpose of the 64× 64 binary matrix L used in Streebog can be represented
as an 8× 8 MDS matrix with entries in the extension field F28 . In their method, they only
focused on representing F28 as a quotient F2[X]/(p) for p being an irreducible polynomial
in F2[X] of degree 8. More precisely, for all such irreducible polynomials p, they converted

2This could also be the case if the specification was made public by the designers, namely when they
chose to obfuscate a (potentially hidden) structure by applying linear transformations to the input and
output of the S-boxes.
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all 8× 8 submatrices to an element of the finite field and finally checked the MDS property
of the resulting matrix.

In this work, we develop a systematic approach to decomposing structure in the linear
layer of a block cipher or cryptographic permutation, also covering the case in which the
specification of the linear layer is obfuscated by applying linear transformations to the
S-boxes.
Remark 1. Note that from a designer’s point of view, hiding structure of linear layers
induced by extension fields seems counterintuitive, as the existence of such structure might
allow for easier security arguments, e.g., by applying the wide-trail strategy [Dae95].

1.1 Our Contribution and Results
Let p be a prime and m, s be positive integers, s > 1. In Section 3, we start by investigating
whether a given (non-obfuscated) ms×ms matrix with entries in the prime field Fp can be
represented as an m×m matrix over the extension field Fps (Theorem 1 and Algorithm 2).
Compared to the case where Fps is represented as the polynomial ring Fp[X] modulo an
irreducible polynomial of degree s, we work with matrix representations of Fps , which
allows for a much more general choice of basis. Being of independent interest, at the core of
our method is an algorithm that runs in time complexity of O(n log ps +ns4 log p log log ps)
elementary field operations (assuming the prime factorization of ps − 1 is known) and
decides whether the matrix algebra Fp[A1, . . . , An] with A1, . . . , An ∈ GL(s,Fp) is a field
isomorphic to (a subfield of) Fps (Theorem 2). Since the algorithm needs to compute
multiplicative orders of elements in GL(s,Fp) as a subroutine, we need an oracle for
the prime factorization of ps − 1. However, that requirement is not a limitation for the
parameters we consider in practice.

In Sections 4.1 and 4.2, we then study the case in which the specification of the linear
layer (i.e., the ms × ms matrix under consideration) is obfuscated by applying secret
linear transformations to the S-boxes (i.e., applying block-diagonal matrices with entries
in GL(s,Fp) in the input and the output). Interestingly, the complexity for recovering a
matrix representation over Fps (if it exists) is comparable to the complexity of doing so in
the non-obfuscated case (Theorems 3 and 5 and Algorithms 3 and 4).

In Section 5, we then study the problem of decomposing structure in a given MDS
matrix; more precisely, we decide whether an MDS matrix over a finite field follows a
Cauchy construction. As an application, we show in Section 6 how our methods can be
applied to the linear layer of Streebog. For the first time, we show that the MDS matrix
used in Streebog follows such a Cauchy construction.

2 Preliminaries
We recall some properties and relations about finite fields and matrix spaces and we fix
the notation used in the remainder of this article. Thereby, we assume that the reader is
familiar with basic facts about these objects. We denote by Mat(n,Fp) the set of n× n
matrices with coefficients in Fp. A block diagonal matrix of the form

M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mk


will be denoted by M1 ⊕M2 ⊕ · · · ⊕Mk. If M1 = M2 = · · · = Mk, we will also write M⊕k.
By N we denote the natural numbers with 0 included.
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Throughout this work, let p be a prime. For a positive integer s, it is well known
that there exists exactly one finite field with ps elements up to isomorphism, and we
usually denote it by Fps and talk about the finite field with ps elements. There are
two typical representations of this field. The first, and most common, way is to fix
an irreducible polynomial q ∈ Fp[X] of degree s and represent the elements in Fps as
elements in Fp[X]/(q). The second way is to use a matrix representation. Thereby a matrix
A ∈ Mat(s,Fp) is chosen with irreducible minimal polynomial q of degree s. The matrix
algebra Fp[A] := {

∑m
i=0 riA

i|ri ∈ Fp, m ≥ 0} is isomorphic to Fp[X]/(q) and therefore a
representation of Fps (see [War94]). In this way, the multiplicative group of the field can
be represented as a subgroup of GL(s,Fp), i.e., the group of all invertible s× s matrices
with coefficients in Fp. Together with the zero-matrix, this then defines a field with the
addition being the usual matrix addition. Below, we briefly give a specific construction
based on this second approach. For more details, we refer to [War94], Section 2.5 of [LN94],
Section 7.2 of [HJ20], and also to [BKL16].

Let α ∈ Fps be a non-zero element of the finite field (using an arbitrary field repre-
sentation). Then, multiplication by α is an invertible linear mapping in Fps . As Fps is
isomorphic as a vector space to Fs

p by choosing an Fp-basis, there exist an isomorphism by
Φ: Fps → Fs

p.
Using this, multiplication by α can be written as the mapping Φ−1 ◦ Aα ◦ Φ, where

Aα ∈ GL(s,Fp), as the following commutative diagram illustrates. Here, by abuse of
notation, Aα denotes the mapping x 7→ Aαx.

Fps Fps

·α

Fs
p Fs

p

Φ Φ−1

Aα ∈ GL(s,Fp)

Note that the matrix Aα depends on the choice of basis. In the same way, the
multiplication by 0 in the finite field can be written as Φ−1 ◦ 0 ◦ Φ with 0 being the
s× s zero-matrix. It becomes obvious that the set {Aα | α ∈ F∗

ps} ⊆ GL(s,Fp), together
with the zero-matrix defines a field with ps elements by using the usual multiplication
and addition of matrices. Changing the choice-of-basis transformation Φ corresponds to
changing the matrices Aα up to similarity. In other words, for each matrix M ∈ GL(s,Fp),
the field {Aα | α ∈ F∗

ps} ∪ {0} is isomorphic to {MAαM−1 | α ∈ F∗
ps} ∪ {0}. As we will

heavily use this wording in the remainder of the work, we explicitly define it.

Definition 1. Any set of matrices M⊆ GL(s,Fp) ∪ {0} that, together with the natural
matrix operations, forms the field Fps is called a matrix representation of Fps .

The most simple matrix representation of Fps can be given as ⟨Tq⟩ ∪ {0} = {T i
q |

i = 0, . . . , ps − 2} ∪ {0}, where Tq is the companion matrix of a primitive polynomial
q = Xs +

∑s−1
i=0 qiX

i ∈ Fp[X] of degree s, defined as

Tq :=


0 0 . . . 0 −q0
1 0 . . . 0 −q1
0 1 . . . 0 −q2
...

...
. . .

...
...

0 0 . . . 1 −qs−1

 .

Indeed, Tq corresponds to multiplication with a field element with minimal polynomial
q. We are going to use the following, more general, lemma which gives a criterion when a
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matrix algebra is a field. It is a well known result, see also [War94] or [BKL16, Theorem
1]. We still provide a proof for completeness.

Lemma 1. Let A ∈ GL(s,Fp). Then, the matrix algebra Fp[A] is a field of order pt with
t | s if and only if the minimal polynomial of A is irreducible.

Proof. Let us denote by mA the minimal polynomial of A with t := deg(mA). If mA is
reducible, it can be easily seen that Fp[A] is not a field. Indeed, we could write mA as a
product of two non-constant polynomials P =

∑dP

i=0 piX
i ∈ Fp[X] and Q =

∑dQ

i=0 qiX
i ∈

Fp[X] with dP + dQ = t. If Fp[A] would be a field, then mA(A) = P (A) ·Q(A) = 0 implies
P (A) = 0 or Q(A) = 0, contradicting to the fact that mA is the non-constant monic
polynomial of least degree with mA(A) = 0.

If mA is irreducible, the ideal (mA) is a maximal ideal in Fp[X]. Moreover by definition
of the minimal polynomial, the ideal (mA) is the kernel of the surjective ring homomorphism
f : Fp[X] → Fp[A],

∑m
i=0 riX

i 7→
∑m

i=0 riA
i. Hence, we have Fp[X]/(mA) ∼= Im(f) =

Fp[A] by the isomorphism theorem for rings and thus Fp[A] is a field.

Remark 2. Note that we did not impose any restriction on the degree of mA. If the degree
of mA is strictly smaller than s, then A is an element of a proper subfield of Fps .

Clearly, if the matrix algebra generated by A ∈ GL(s,Fp) is a field, the cyclic group
⟨A⟩ := {Ai | i ≥ 0} is isomorphic to a subgroup of F∗

ps . A matrix representation of a finite
field of characteristic p is more general than the representation of the field as Fp[X]/(q),
where q is an irreducible polynomial. Indeed, not every matrix representation is of the
form ⟨Tq⟩ ∪ {0}. A counterexample is the matrix representation

M =
〈

1 1 1 1
0 1 0 1
1 1 1 0
0 0 1 0


〉
∪ {0}

of F24 , which does not contain any companion matrix (or a transpose of it). To summarize,
any matrix A which is similar to Tq yields a field isomorphic to Fp[X]/(q) and vice versa.

3 Decomposing Matrices
In this section, the problem we are studying is how to algorithmically decide whether a
given ms×ms matrix over Fp can be represented as a matrix over the extension field Fps .
Let us first formally define our terminology.

Definition 2. Let s, m be positive integers and let n = s ·m. Let A ∈ Mat(n,Fp) and
Ai,j ∈ Mat(s,Fp), 1 ≤ i, j ≤ m such that A = [Ai,j ]1≤i,j≤m. We say that A can be
represented as a matrix over Fps , if there exists a matrix representation M of Fps such
that {Ai,j | 1 ≤ i, j ≤ m} ⊆ M.

We then have the following result. Note that we exclude the case of A = 0 in the
statement of the theorem. Clearly, the zero-matrix can trivially be represented over an
extension field.

Theorem 1. Let s, m be positive integers and let n = s ·m. Let A ∈ Mat(n,Fp) \ {0}
with A = [Ai,j ]1≤i,j≤m for Ai,j ∈ Mat(s,Fp). Then, A can be represented as a matrix over
Fps if and only if the following two conditions hold:

1. For each i, j ∈ {1, . . . , m}, we have Ai,j ∈ GL(s,Fp) ∪ {0}.

2. The multiplicative group generated by {Ai,j | 1 ≤ i, j ≤ m} \ {0} is cyclic and
generated by an element α ∈ GL(s,Fp) with irreducible minimal polynomial.
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Proof. We define S := {Ai,j | 1 ≤ i, j ≤ m} \ {0}. Since we have A ≠ 0, the set S is not
empty. Let us assume that A can be represented as a matrix over Fps . By definition, there
exists a matrix representation M of Fps such that S ⊆M \ {0}. Since M is a field, we
have M \ {0} being a cyclic group, hence each element in S is invertible and ⟨S⟩ is a
cyclic subgroup of M\ {0}. Let α be a generator of ⟨S⟩. Since Fp[α] ⊆M and M is a
finite field, Fp[α] is a finite integral domain and therefore a field (see, e.g., [LN94]). By
Lemma 1, the element α has an irreducible minimal polynomial.

Let us now assume that ⟨S⟩ = ⟨α⟩ for α ∈ GL(s,Fp) with irreducible minimal poly-
nomial. By Lemma 1, the matrix algebra generated by α is a field, so the group ⟨α⟩ is a
subgroup of F∗

ps .

On deciding whether a subgroup of GL(s, Fp) is a subgroup of F∗
ps . The problem

we face now is to algorithmically decide whether a subgroup G of GL(s,Fp) generates a
subgroup of the multiplicative group of Fps , i.e., to decide whether G is cyclic and generated
by an element with irreducible minimal polynomial (see Condition 2 of Theorem 1). If
this is the case, we also want to find the generator of G. This problem can be solved by
using only elementary group theory. We first recall the following fundamental lemma on
cyclic groups.

Lemma 2 (See, e.g., Thm. 1.6.17 of [HJ20]). Let G = ⟨α⟩ be a finite cyclic group of order
n and let d be a divisor of n. Then, there exists a unique subgroup of G of order d, i.e.,
⟨α n

d ⟩.

Another well-known group-theoretic result is that, if G is an Abelian group containing
elements of finite orders k1 and k2, then G contains an element of order lcm(k1, k2) (see, e.g.,
Thm. 1.6.21 of [HJ20]). For the special case of cyclic groups (which are always Abelian),
this result allows to give a generator quite easily, as we formulate below. Lemma 3 and
the corresponding lines 8–15 in Algorithm 1 are mathematical folklore, we still provide a
proof for completeness.

Lemma 3. Let G = ⟨A1, A2⟩ be a finite cyclic group with k1 and k2 being the multiplicative
order of A1 and A2, respectively. Let h1, h2 be coprime positive integers such that h1h2 =
lcm(k1, k2) and, for i ∈ {1, 2}, hi divides ki. Then, G = ⟨Ak1/h1

1 ·Ak2/h2
2 ⟩.

Proof. Let G′ := ⟨Ak1/h1
1 ·Ak2/h2

2 ⟩. Since A
k1/h1
1 ·Ak2/h2

2 is an element of order h1h2 (Lem.
1.6.19 of [HJ20]), the order of G′ is equal to lcm(k1, k2). Hence, by Lemma 2, G′ contains
unique subgroups S1, S2 of order k1 and k2, respectively. Since G′ is a subgroup of G and
G is cyclic, S1 (resp., S2) is also the unique subgroup of G of order k1 (resp., k2). Hence,
both A1 and A2 must be in G′.

Note that from the prime factorizations of k1 and k2, it is easy to compute elements
h1 and h2 that fulfill the conditions of Lemma 3, see ll. 8–15 in Algorithm 1. Applying
Lemma 3 iteratively allows to find a generator of a cyclic group G = ⟨A1, . . . , An⟩.

Theorem 2. Let A1, A2, . . . , An ∈ GL(s,Fp) and let G = ⟨A1, A2, . . . , An⟩. Algorithm 1
returns a generator α ∈ GL(s,Fp) of G with irreducible minimal polynomial if and only if
G is cyclic and generated by an element with irreducible minimal polynomial. Otherwise, it
returns ⊥. If we know the prime factorization of ps− 1, the time complexity of Algorithm 1
is in O(n log ps + ns4 log p log log ps) elementary field operations.

Proof. If G is cyclic and generated by an element with irreducible minimal polynomial, G
is a subgroup of F∗

ps , hence the order of G divides ps − 1 and the minimal polynomial of
each generator is irreducible. In particular, it suffices to compute an arbitrary generator of
G. By Lemma 3, the element α computed in Algorithm 1 is a generator of G. Because its
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minimal polynomial is irreducible, the matrix algebra Fp[α] is a field of extension degree
at most s over Fp. Hence, A1, . . . , An are all in the linear span of {1, α, α2, . . . , αs−1}.

If G is not cyclic, the elements A1, . . . , An do not lie all in a finite field, so clearly
Algorithm 1 would return ⊥ when checking whether A1, . . . , An ∈ Fp[α] in line 21 (if it
did not return ⊥ already before). If G is cyclic, but not generated by an element with
irreducible minimal polynomial, Algorithm 1 returns ⊥ in line 19.

Let us now analyze the time complexity. In each of the n− 1 iterations of the main
loop (ll. 2–17), we need to perform one multiplication, four exponentiations, and two
computations of the multiplicative order of elements in GL(s,Fp). Further, we need to
compute two prime factorizations of integers dividing ps−1. Let pc1

1 pc2
2 · · · pcr

r be the prime
factorization of ps−1. The two prime factorizations in line 7 can be obtained by computing
gcd(pci

i , kj) for i ∈ {1, . . . , r} and j ∈ {1, 2}. Note that the number of prime factors r is
in O(log ps). The time complexity of a matrix multiplication and exponentiation is in
O(s3) and O(s3 log s) elementary field operations, respectively. Let A ∈ GL(s,Fp) have
multiplicative order dividing ps − 1. By knowing the factorization of ps − 1, computing
ord(A) can be done in time complexity of O(s4 log p log log ps) elementary field operations,
see [O’B11, Theorem 2.2] and [CL95]. Hence, the time complexity of the main loop is in
O(n log ps + ns4 log p log log ps) elementary field operations. The complexity of the steps
outside of the main loop can be neglected. More precisely, the computation of the minimal
polynomial of α can be done with O(s3) elementary field operations (see [Sto98]) and for
checking whether A1, . . . , An ∈ Fp[α], we need to solve n linear systems of s2 equations
and s unknowns over Fp.

There are various ways to optimize the implementation of Algorithm 1 further. For
instance, we could add a step at the beginning which checks whether the degrees of
all minimal polynomials mAi , i = 1, . . . , n divide s. If we know beforehand that G =
⟨A1, A2, . . . , An⟩ is cyclic, we could use a probabilistic algorithm (e.g., Algorithm 4.80
in [VOMV96]) to find a generator of G.
Remark 3. Algorithm 1 is general enough to even work if all of the A1, . . . , An lie in different
proper subfields of Fps . Note that, once we encounter one element with multiplicative
order ps−1 in line 6 of Algorithm 1, we could skip the rest of the computation and directly
perform the check in line 21 for that particular element. In particular, constructing a
potential generator by means of Lemma 3 is not needed if one of the Ai has multiplicative
order ps − 1. Further, if one of the matrices A1, . . . , An ∈ GL(s,Fp) (say A1) has an
irreducible minimal polynomial of degree s and if we are not interested in finding the
generator α, but just want to know whether A1, . . . , An are contained in a field Fp[α], we
could take α := A1 and directly perform the check in line 21 for α. However, we would not
necessarily have G = ⟨α⟩.

Algorithm 2 takes as input a non-zero matrix A ∈ Mat(n,Fp) and positive integers
m, s with n = s ·m and outputs (if it exists) a representation of A as

[
αN(i,j)

]
1≤i,j≤m

:=


αN(1,1) αN(1,2) . . . αN(1,m)

αN(2,1) αN(2,2) . . . αN(2,m)

...
...

. . .
...

αN(m,1) αN(m,2) . . . αN(m,m)

 (1)

with α ∈ M \ {0} for a matrix representation M of Fps and, for each i, j ∈ {1, . . . , m},
N(i, j) ∈ N ∪ {∞}. We define α∞ := 0.

The running time of this algorithm is dominated by solving m2 discrete logarithms
over F∗

ps in order to recover the exponents N(i, j) for i, j ∈ {1, . . . , m} (this step could be
omitted if the exponents are not needed). For the parameters s = m = 8 and p = 2, our
implementation recovers the field representation within less than a second when running
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Algorithm 1 ComputeGenerator
Input: Matrices A1, A2, . . . , An ∈ GL(s,Fp).
Output: A generator α of G := ⟨A1, A2, . . . , An⟩ if G is cyclic and generated by an

element of irreducible minimal polynomial, ⊥ otherwise.
1: α← A1
2: for i = 2, . . . , n do
3: if αps−1 ̸= 1 or Aps−1

i ̸= 1 then ▷ One of the orders of α, Ai does not divide ps− 1
4: Return ⊥
5: end if
6: k1 ← ord(α), k2 ← ord(Ai)
7: Compute the prime factorizations k1 = pd1

1 · p
d2
2 · · · · pdr

r and k2 = pe1
1 · p

e2
2 · · · · per

r

8: h1 ← 1, h2 ← 1
9: for j = 1, . . . , r do

10: if dj ≥ ej then
11: h1 ← h1 · p

dj

j

12: else
13: h2 ← h2 · p

ej

j

14: end if
15: end for ▷ h1 and h2 fulfill the conditions of Lemma 3
16: α← αk1/h1 ·Ak2/h2

i

17: end for
18: if the minimal polynomial of α is not irreducible then
19: Return ⊥
20: end if
21: for i = 1, . . . , n do ▷ We check whether A1, . . . , An are elements of the field Fp[α]
22: if Ai /∈ Span(1, α, α2, . . . , αs−1) then
23: Return ⊥
24: end if
25: end for
26: Return α

Algorithm 2 MatrixDecomposition
Input: Positive integers m, s and a matrix A ∈ Mat(m · s,Fp) \ {0}.
Output: A representation of A as

[
αN(i,j)]

1≤i,j≤m
∈ Mat(m,Fps) if it exists, ⊥ otherwise.

1: S ← []
2: for each s× s block Ai,j in A do
3: if Ai,j is non-zero then
4: if Ai,j is not invertible then
5: Return ⊥ ▷ Non-zero field elements need to be invertible
6: end if
7: Append Ai,j to S
8: end if
9: end for

10: α← ComputeGenerator(S)
11: if α = ⊥ then ▷ The group generated by S is not a subgroup of F∗

ps

12: Return ⊥
13: end if
14: Return A as

[
αN(i,j)]

1≤i,j≤m
▷ We need to solve m2 dlogs over F∗

ps to recover the
exponents
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on a PC. Applying the algorithm to the linear layer used in Streebog, we directly obtain
the representation given in Section 6.

4 Decomposing an Obfuscated Matrix
A designer of an SPN using an S-box S (m times in parallel) and a linear layer L for its
round function (as depicted in Figure 1 (left)) could try to hide the structure of the linear
layer L, most importantly the property whether L has a representation over an extension
field Fps , by publishing a different representation of the round. In particular, the designer
could select a linear layer L′ = Q⊕m ◦ L ◦ P ⊕m for some invertible linear mappings P, Q
aligned with the S-boxes and then cancel the application of those mappings P and Q
by selecting an S-box S′ which is linear equivalent to S, see Figure 1 (middle). If one
allows to represent a round function with multiple distinct S-boxes, instead of restricting
to a single pair (P, Q) a designer could even choose P1, . . . , Pm, Q1, . . . , Qm and define
L′ = (Q1 ⊕ · · · ⊕Qm) ◦L ◦ (P1 ⊕ · · · ⊕ Pm), see Figure 1 (right). The resulting ciphers are
the same as the original one, up to linear permutations in the input and output, and up
to the addition of different round keys. It is worth remarking that the most important
cryptographic properties of L are not affected by changing to L′. In particular, if L is MDS,
so is L′ (see [WLTZ21, Prop. 6]). However, what is affected is the property whether the
linear layer can or cannot be represented over an extension field Fps . The same situation
is often encountered when reverse engineering some proprietary cipher on hardware or
included in binaries of a software, e.g., in ransomware. Therefore, we study the problem
how to decide whether such obfuscated linear layers can be represented over an extension
field Fps , and if they can, how to recover such a representation. Section 4.1 deals with
the case of hiding the structure of L by using a single pair of invertible linear mappings
(P, Q) (as depicted in Figure 1 (middle)), and Section 4.2 analyzes the case where L is
hidden as depicted in Figure 1 (right). In both cases, it turns out that the recovery of
a representation over an extension field is not more complex than the recovery of such a
representation in the non-obfuscated case.

4.1 Simple Obfuscation
Let s, m be positive integers and let n = s ·m. The problem we are studying now is, given
a matrix B ∈ Mat(n,Fp), decide whether there exists matrices P, Q ∈ GL(s,Fp) and a
matrix A ∈ Mat(n,Fp) which can be represented as a matrix over Fps such that

B =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . Q

 ·A ·


P 0 . . . 0
0 P . . . 0
...

...
. . .

...
0 0 . . . P

 . (2)

If such a representation as given in (2) exists, our goal is to recover P, Q, a matrix
representationM of Fps , and to find α ∈M\{0} and exponents N(i, j), i, j = 1, . . . , m with
N(i, j) ∈ N∪{∞} such that A can be represented as in (1). Note that such a representation
(if it exists) is not unique. For instance, up to a change of basis transformation of the
coefficients in A, we can without loss of generality assume that Q is the identity matrix.
In the following, let us denote by Ai,j and Bi,j , i, j = 1, . . . , m the s× s blocks of A and B,
respectively, i.e., A = [Ai,j ]1≤i,j≤m and B = [Bi,j ]1≤i,j≤m. We have the following result.

Theorem 3. Let s, m be positive integers and let n = s · m. For a matrix B =
[Bi,j ]1≤i,j≤m ∈ Mat(n,Fp) \ {0}, Relation (2) holds for some P, Q ∈ GL(s,Fp) and
A = [Ai,j ]1≤i,j≤m ∈ Mat(n,Fp) that can be represented as a matrix over Fps if and only if
the following conditions hold:
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1. For each i, j ∈ {1, . . . , m}, we have Bi,j ∈ GL(s,Fp) ∪ {0}.

2. There exists a block Bk′,ℓ′ ∈ GL(s,Fp) of B such that the group

⟨Bi,jB−1
k′,ℓ′ | i, j = 1, . . . , m and Bi,j ∈ GL(s,Fp)⟩ (3)

is cyclic and generated by an element α ∈ GL(s,Fp) with irreducible minimal polyno-
mial.

Proof. We first show that if one of the two conditions does not hold, a representation as
given in (2) does not exist. Indeed, if Condition 1 does not hold, there exists a block Ai,j

of A such that Ai,j is neither invertible nor zero, which is a contradiction to the fact that
A can be represented as a matrix over Fps . If Condition 1 holds and Condition 2 does not
hold, then by Lemma 1 there is a group G as defined in (3) such that the matrix algebra
generated by G is not a field (note that a block Bk′,ℓ′ ∈ GL(s,Fp) exists as we assume
that B ̸= 0). Indeed, if G is not cyclic, it is not isomorphic to a subgroup of F∗

ps . If G
is cyclic, but not generated by an element with irreducible minimal polynomial, we can
directly apply Lemma 1. Hence, there exists a non-zero non-invertible element H of Fp[G].
Suppose that such an element H does not exist, Fp[G] would be a finite division ring and
therefore a field due to Wedderburn’s theorem (see [Wit31]). Having a representation of B
as

B = Q⊕m ·A · P ⊕m

with A = [Ai.j ]1≤i,j≤m, we have Bi,j = Q · Ai,j · P for any i, j ∈ {1, . . . , m}, hence any
element Bi,jB−1

k′,ℓ′ is of the form Q ·Ai,jA−1
k′,ℓ′ ·Q−1, and we can write H = Q ·H ′ ·Q−1 with

H ′ being an element from Fp[Ai,jA−1
k′,ℓ′ | i, j = 1, . . . , m] \ {0}. But if H is not invertible,

also H ′ is not invertible, a contradiction to the fact that A can be represented as a matrix
over Fps .

Let now both of the Conditions 1 and 2 hold. Let Bk′,ℓ′ be an invertible block of B
such that

⟨Bi,jB−1
k′,ℓ′ | i, j = 1, . . . , m and Bi,j ∈ GL(s,Fp)⟩ = ⟨α⟩

with α having an irreducible minimal polynomial. By Lemma 1, we have that ⟨α⟩ ⊆ M\{0}
for a matrix representation M of Fps . Let now A ∈ Mat(n,Fp) be such that

B = A ·B⊕m
k′,ℓ′ ,

which is a representation as in Relation (2) with Q being the identity and P = Bk′,ℓ′ . For
any i, j ∈ {1, . . . , m}, we now have Bi,jB−1

k′,ℓ′ = Ai,j = αN(i,j) with N(i, j) ∈ N if Bi,j is
invertible and N(i, j) =∞ if Bi,j = 0.

Algorithm 3 recovers α, P and N(i, j) ∈ N ∪ {∞} for 1 ≤ i, j ≤ m such that A =
[αN(i,j)]1≤i,j≤m (if it exists) and outputs ⊥ otherwise (note that we assume without loss
of generality Q to be the identity). Again, the running time is dominated by solving m2

discrete logarithms over F∗
ps for recovering the exponents N(i, j) for i, j ∈ {1, . . . , m}. For

the parameters s = m = 8 and p = 2, our implementation recovers the field representation
within a few seconds when running on a PC.

4.1.1 On the Degrees of Freedom by the Designer

Algorithm 3 recovers a simply-obfuscated matrix A with entries from a finite field Fps

up to the simplification that, without loss of generality, it is assumed that Q is the
identity matrix. In other words, it outputs only one of several possible solutions of the
decomposition. When it comes to cryptanalysis or studying implementation properties of
the whole primitive, it might be crucial to recover the original matrix A chosen by designer
or at least a matrix A′ which is “as close as possible” to A. In this section we will deal
with this problem. The next lemma is crucial to settle it.
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Algorithm 3 SimplyObfuscatedMatrixDecomposition
Input: Positive integers m, s and a matrix B ∈ Mat(m · s,Fp) \ {0}.
Output: A matrix P ∈ GL(s,Fp) and A ∈ Mat(m · s,Fp) represented over Fps as

A =
[
αN(i,j)]

1≤i,j≤m
∈ Mat(m,Fps) such that B = A · P ⊕m if it exists, ⊥ otherwise.

1: S ← []
2: for each s× s block Bi,j in B do
3: if Bi,j is non-zero then
4: if Bi,j is not invertible then
5: Return ⊥ ▷ Non-zero field elements need to be invertible
6: end if
7: Append Bi,j to S
8: end if
9: end for

10: Choose P as the first element in S ▷ An arbitrary element in S can be chosen
11: α← ComputeGenerator({C · P −1 | C ∈ S})
12: if α = ⊥ then ▷ The group generated by SP −1 is not a subgroup of F∗

ps

13: Return ⊥
14: end if
15: Return P and A := B · (P −1)⊕m as

[
αN(i,j)]

1≤i,j≤m
▷ We need to solve m2 dlogs

over F∗
ps

Lemma 4. Let M be a matrix representation of Fps and let α ∈M such that Fp[α] = Fps ,
i.e., 1, α, . . . , αs−1 defines a polynomial basis. If Q1αQ−1

1 = Q2αpk

Q−1
2 with Q1, Q2 ∈

GL(s,Fp) and 0 ≤ k ≤ s − 1, then Q1 = Q2βFk with β ∈ M \ {0} and Fk being the
representation matrix of the Frobenius automorphism x 7→ xpk with respect to the basis
1, . . . , αs−1.

Proof. First note that α is similar to a companion matrix with an irreducible minimal
polynomial and the statement is true if and only if it is true for the corresponding
companion matrix. Hence w.l.o.g., α is a companion matrix with minimal polynomial
mα(x). Let a be a zero of mα(x) in the standard representation of Fps . We get Fs

p =
Fp[a]. Moreover 1, a, . . . , as−1 is an Fp-basis of Fp[a] but also 1, α, . . . , αs−1 an Fp-basis
of M. The embedding Φ: Fs

p → Fps is defined by virtue ei 7→ ai. Thereby ei =
(0, . . . , 0, 1, 0, . . . 0︸ ︷︷ ︸

i−th position

)T , i = 1, . . . , n denotes the i-th canonical unit vector. Note that this

way α becomes the representation matrix of the multiplication mapping x 7→ ax with
respect to 1, a, . . . , as−1. Let Fk denote the matrix representation of the Frobenius
automorphism x 7→ xpk with respect to 1, a, . . . , as−1. For v ∈ Fs

p and A ∈ Mat(s,Fp) we
denote by A(v) the matrix-vector multiplication. The equation Q1αQ−1

1 = Q2αpk

Q−1
2

is equivalent to α = Q−1
1 Q2αpk

Q−1
2 Q1. We will now show that, for L ∈ GL(s,Fp), the

equation α = Lαpk

L−1 holds if and only if L = β′Fs−k for an element β′ ∈ M \ {0}.
The equation α = Lαpk

L−1 is equivalent to αL = Lαpk . α(e1) corresponds to a. By
abuse of notation but for the sake of clarity we use αj(e1) and aj synonymously. Hence,
L(αpk (e1)) = LFkα(e1) corresponds to LFk(a). It follows that α(L(e1)) = L(apk ). Note
that L(e1) corresponds to an element b′ ∈ Fps . So α(L(e1)) is identical to a(b′) = b′(a).
With α = Lαpk

L−1, we also have αi = Lαipk

L−1, i = 0, . . . , s − 1. In the same vein it
follows that αi(L(e1)) = b′(ai) = L(aipk ) = LFk(ai) for i = 0, . . . , s− 1. As 1, a, . . . , as−1

forms a polynomial basis, it follows that representation matrix β′ of the multiplication with
b′ is equal to LFk and by composing with Fs−k from the right we finally have L = β′Fs−k.
Thus Q−1

1 Q2 = β′Fs−k. It follows that Q2Fkβ′−1 = Q1. We have Fkβ′−1 = β′−pk

Fk. By
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setting β := β′−pk the result follows.

The next theorem shows how close one can get to the original matrix A, given the
simply-obfuscated matrix B.
Theorem 4. Let us be given a simply-obfuscated matrix B = Q⊕m · A · P ⊕m ≠ 0 with
P, Q ∈ GL(s,Fp), A =

[
γN(i,j)]

1≤i,j≤m
, s > 1. Thereby γ is the representation matrix

for the multiplication with a primitive element of F∗
ps with respect to a basis B. Let

Bk′,ℓ′ ∈ GL(s,Fp) and

G := ⟨Bi,jB−1
k′,ℓ′ | 1 ≤ i, j ≤ m and Bi,j ∈ GL(s,Fp)⟩ = ⟨ζ⟩

as in Equation (3) be such that Fp[ζ] is a matrix representation of Fps , i.e., 1, ζ, . . . , ζs−1

defines a polynomial basis. Then, for any primitive element g ∈ F∗
ps , a companion matrix

α of g and matrices Q′ = QLβ1Fk, P ′ = P −1Lβ2Fk can be computed from B, ζ such that3

((Q
′−1)⊕m ·B · P

′⊕m) =
[
αps−k(dN(i,j)+c)

]
1≤i,j≤m

,

where c is such that αc = β−1
1 β2 and d such that LαdL−1 = γ. The complexity for this

computation is O(s2·3) elementary field operations, and the computation of one discrete
logarithm with respect to g or α.
Proof. Let us choose a primitive element g of F∗

ps and let α be its companion matrix. Let
L denote the transition matrix from 1, g, . . . , gs−1 to B. As g and γ are primitive elements
there exists an exponent d with gcd(d, ps − 1) = 1 such that LαdL−1 = γ. We have
ζ = Qγe′pk1

Q−1. It follows that αe′pk = L−1γd−1e′pk

L, where d−1 is the multiplicative
inverse of d mod (ps − 1), and ζ can be re-written as QLαepk

L−1Q−1 (where e := de′).
The exponent e is determined by considering the characteristic polynomial χζ of ζ, which
is identical to χγe′ and computing a discrete logarithm with respect to g or α respectively.
Moreover, pk cannot be determined uniquely as a characteristic polynomial determines a
zero only up to application of the Frobenius automorphism. By Lemma 4, the equation
ζ = Q′αeQ

′−1 has the solutions Q′ = QLβ1Fk, where β1 is the representation matrix of the
multiplication with a field element β1 and Fk the representation matrix of the Frobenius
automorphism x 7→ xpk with respect to 1, . . . , gs−1. By solving the equation ζQ′ = Q′αe

the matrices Q′ can be computed with s2·3 arithmetic field operations.
Let ζ ′ := B−1

k′,ℓ′ · ζ · Bk′,ℓ′ . Then, ζ ′ = P −1γe′pk

P and thus we can compute P ′ =
P −1Lβ2Fk in the same vein. It follows that (Q′−1)⊕m · B · P ′⊕ = A′, where A′

i,j =
Fs−kβ−1

1 L−1Ai,jLβ2Fk. Thereby L−1Ai,jL is the representation matrix of Ai,j = γN(i,j)

with respect to the basis 1, g, . . . , gs−1. Since LαdL−1 = γ, we have

Fs−kβ−1
1 L−1γN(i,j)Lβ2Fk = Fs−kL−1γN(i,j)Lβ−1

1 β2Fk

= Fs−kαdN(i,j) (
β−1

1 β2
)

Fk = αps−k(dN(i,j)+c).

Note that with Algorithm 3 one can check if Theorem 4 is applicable and determine
s. The element ζ can be found by using Algorithm 1. Then, Theorem 4 shows that one
is able to recover a representation based on companion matrices, which might deal as a
good enough substitute for the original matrix chosen by the designer to conduct, e.g.,
cryptanalysis or implementation optimization. However, if we are not interested in deriving
such a representation based on companion matrices, we can omit the computation step
of complexity O(s2·3) and the computation of the discrete logarithm given in Theorem 4.
Indeed, we can formulate the following corollary, which shows that, up to similarity, we
can find A up to (ps − 1)2 possibilities.

3For an integer a, we define a · ∞ = ∞ + a = ∞.
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Corollary 1. Let s > 1. Given a simply-obfuscated matrix B = Q⊕m ·A · P ⊕m ≠ 0 with
P, Q ∈ GL(s,Fp) and where A =

[
γN(i,j)]

1≤i,j≤m
for a primitive element γ ∈ F∗

ps . Let α

be an arbitrary primitive element of F∗
ps . Let Bk′,ℓ′ ∈ GL(s,Fp) and

G := ⟨Bi,jB−1
k′,ℓ′ | 1 ≤ i, j ≤ m and Bi,j ∈ GL(s,Fp)⟩ = ⟨ζ⟩

as in Equation (3) be such that 1, ζ, . . . , ζs−1 defines a polynomial basis of Fps . Then there
exists L ∈ GL(s,Fp) and c, d ∈ {0, 1, . . . , ps − 2} such that A =

[
LαdN(i,j)+cL−1]

1≤i,j≤m
.

4.2 Heavy Obfuscation
Again, let s, m be positive integers and let n = s · m. The problem we are studying
in this section is, given a matrix B ∈ Mat(n,Fp), decide whether there exists matrices
P1, P2, . . . , Pm ∈ GL(s,Fp) and Q1, Q2, . . . , Qm ∈ GL(s,Fp), and a matrix A ∈ Mat(n,Fp)
which can be represented as a matrix over Fps such that

B =


Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...
0 0 . . . Qm

 ·A ·


P1 0 . . . 0
0 P2 . . . 0
...

...
. . .

...
0 0 . . . Pm

 . (4)

In the following, we restrict to the simpler case in which B (and therefore also A) does not
contain a zero block, i.e., 0 /∈ {Ai,j | 1 ≤ i, j ≤ m}. This might be a reasonable assumption
when having B as a linear layer of a block cipher or cryptographic permutation. For
instance, in an MDS matrix, all square submatrices are invertible [MS77].

Again, a representation as in (4) (if it exists) is not unique. For instance, without loss
of generality, we can assume that Q1 is the identity matrix as changing Q1 only applies
a change-of-basis transformation to the elements of A. Our goal is to recover a matrix
representation M of Fps and to find α ∈ M \ {0} and exponents N(i, j), i, j = 1, . . . , m
with N(i, j) ∈ N such that A is given as in (1). Let us again denote by Ai,j and
Bi,j , i, j = 1, . . . , m the s× s blocks of A and B, respectively, i.e., A = [Ai,j ]1≤i,j≤m and
B = [Bi,j ]1≤i,j≤m. We have the following result.

Theorem 5. Let s, m be positive integers and let n = s · m. For a matrix B =
[Bi,j ]1≤i,j≤m ∈ Mat(n,Fp) with Bi,j ̸= 0 for all i, j ∈ {1, . . . , m}, Relation (4) holds
for some P1, P2, . . . , Pm, Q1, Q2, . . . , Qm ∈ GL(s,Fp) and A = [Ai,j ]1≤i,j≤m ∈ Mat(n,Fp)
that can be represented as a matrix over Fps if and only if the following conditions hold:

1. For each i, j ∈ {1, . . . , m}, we have Bi,j ∈ GL(s,Fp).

2. The group
⟨B1,1B−1

i,1 Bi,jB−1
1,j | i, j = 1, . . . , m⟩ (5)

is cyclic and generated by an element α ∈ GL(s,Fp) with irreducible minimal polyno-
mial.

Proof. Having any representation of B as

B = (Q1 ⊕Q2 · · · ⊕Qm) ·A · (P1 ⊕ P2 · · · ⊕ Pm) (6)

with A = [Ai.j ]1≤i,j≤m, we have Bi,j = Qi ·Ai,j ·Pj for any i, j ∈ {1, . . . , m}. If Condition
1 does not hold, there exists a block Ai,j of A such that Ai,j is neither invertible nor zero,
which is a contradiction to the fact that A can be represented as a matrix over Fps . If
Condition 1 holds and Condition 2 does not hold, then by Lemma 1 the matrix algebra
generated by the group G defined in (5) is not a field. Hence, there exists a non-zero
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non-invertible element H of Fp[G]. Having a representation of B as given in Equation (6),
any element B1,1B−1

i,1 Bi,jB−1
1,j is of the form Q1 ·A1,1A−1

i,1 Ai,jA−1
1,j ·Q

−1
1 . In particular, we

have H = Q1 · H ′ · Q−1
1 with H ′ ∈ Fp[A1,1A−1

i,1 Ai,jA−1
1,j | i, j = 1, . . . , m] \ {0}. But if

H is not invertible, also H ′ is not invertible, a contradiction to the fact that A can be
represented as a matrix over Fps .

Let now both of the Conditions 1 and 2 hold. Let

⟨B1,1B−1
i,1 Bi,jB−1

1,j | i, j = 1, . . . , m⟩ = ⟨α⟩

with α having an irreducible minimal polynomial. By Lemma 1, we have that ⟨α⟩ ⊆ M\{0}
for a matrix representation M of Fps . Let now A ∈ Mat(n,Fp) be such that

B = (B1,1B−1
1,1 ⊕B2,1B−1

1,1 · · · ⊕Bm,1B−1
1,1) ·A · (B1,1 ⊕B1,2 ⊕ · · · ⊕B1,m),

i.e., for each i, j ∈ {1, . . . , m}, we define Ai,j := B1,1 ·B−1
i,1 ·Bi,j ·B−1

1,j . We now have that
Ai,j = αN(i,j) with N(i, j) ∈ N.

Algorithm 4 recovers α, Q2, . . . , Qm, P1, P2, . . . , Pm and N(i, j) ∈ N for 1 ≤ i, j ≤ m
such that A = [αN(i,j)]1≤i,j≤m (if it exists) and outputs ⊥ otherwise (note that we assume
without loss of generality Q1 to be the identity, denoted Is). Again, the running time is
dominated by solving m2 discrete logarithms over F∗

ps for recovering the exponents N(i, j)
for i, j ∈ {1, . . . , m}.

Algorithm 4 HeavyObfuscatedMatrixDecomposition
Input: Positive integers m, s and a matrix B ∈ Mat(m · s,Fp) with Bi,j ̸= 0 for all

i, j ∈ {1, . . . , m}.
Output: Matrices P1, . . . , Pm, Q2, . . . , Qm ∈ GL(s,Fp) and A ∈ Mat(m·s,Fp) represented

over Fps as A =
[
αN(i,j)]

1≤i,j≤m
∈ Mat(m,Fps) such that B = (Is ⊕ Q2 ⊕ . . . Qm) ·

A · (P1 ⊕ · · · ⊕ Pm) if it exists, ⊥ otherwise.
1: for each s× s block Bi,j in B do
2: if Bi,j is not invertible then
3: Return ⊥ ▷ Non-zero field elements need to be invertible
4: end if
5: end for
6: for i = 1, . . . , m do
7: Pi ← B1,i, Qi ← Bi,1B−1

1,1
8: end for
9: α← ComputeGenerator({Q−1

i Bi,jP −1
j | 1 ≤ i, j ≤ m})

10: if α = ⊥ then
11: Return ⊥
12: end if
13: Return P1, . . . , Pm, Q2, . . . , Qm and

A := (Q−1
1 ⊕Q−1

2 ⊕ · · · ⊕Q−1
m ) ·B · (P −1

1 ⊕ P −1
2 ⊕ · · · ⊕ P −1

m ) as
[
αN(i,j)

]
1≤i,j≤m

▷ We need to solve m2 dlogs over F∗
ps

4.2.1 On the Degrees of Freedom by the Designer

Again, as we already saw in the case of simple obfuscation, the decomposition of a heavy-
obfuscated matrix B into P1, . . . , Pm, Q1, . . . , Qm and A is not unique. To precisely reveal
the possible degrees of freedom, one can proceed in the same vein as in Theorem 4. Doing
so yields the following theorem, which we state without proof.
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Theorem 6. Let us be given a heavily-obfuscated matrix B as in Relation (4) with
P1, P2, . . . , Pm, Q1, Q2, . . . , Qm ∈ GL(s,Fp) and A = [Ai,j ]1≤i,j≤m ∈ Mat(n,Fp) that
can be represented as a matrix over Fps and not containing a zero block, i.e. A =[
γN(i,j)]

1≤i,j≤m
, s > 1 and N(i, j) ∈ N for i, j ∈ {1, . . . , m}. Thereby γ is the representa-

tion matrix for the multiplication with a primitive element of F∗
ps with respect to a basis B.

Let
G := ⟨B1,1B−1

i,1 Bi,jB−1
1,j | i, j = 1, . . . m⟩ = ⟨ζ⟩

be as in Equation (5) such that Fp[ζ] is a matrix representation of Fps , i.e., 1, ζ, . . . , ζs−1

defines a polynomial basis. Then, for any primitive element g ∈ F∗
ps , a companion matrix

α of g and matrices Q′
i = QiLβiFki

, P ′
i = P −1

i Lβ′
iFki

for i = 1, . . . , m can be computed
from B, ζ such that

(Q
′−1
1 ⊕ · · · ⊕Q

′−1
m ) ·B · (P ′

1 ⊕ · · · ⊕ P ′
m) =

[
αps−ki (dN(i,j)+ci+c′

j)
]

1≤i,j≤m
,

where ci, c′
j are such that αci = β−1

i , αc′
j = β′

j and d is such that LαdL−1 = γ. The com-
plexity for this computation is O(ms2·3) elementary field operations, and the computation
of m discrete logarithms with respect to g or α.

Again, if we are not interested in deriving a representation based on companion matrices,
we can omit the computation step of complexity O(ms2·3) and the computation of the
discrete logarithms. Indeed, we can formulate the following corollary.

Corollary 2. Let s > 1. Given a heavily-obfuscated matrix B = (Q1 ⊕ · · · ⊕ Qm) · A ·
(P1 ⊕ · · · ⊕ Pm) with Pi, Qj ∈ GL(s,Fp) and where A =

[
γN(i,j)]

1≤i,j≤m
with N(i, j) ∈ N

for a primitive element γ ∈ F∗
ps , i, j = 1, . . . , m. Let α be an arbitrary primitive element

of F∗
ps . Let

G := ⟨B1,1B−1
i,1 Bi,jB−1

1,j | i, j = 1, . . . m⟩ = ⟨ζ⟩

be as in Equation (5) such that 1, ζ, . . . , ζs−1 defines a polynomial basis of Fps . Then there
exists L ∈ GL(s,Fp) and c1, . . . , cm, c′

1, . . . , c′
m, d ∈ {0, 1, . . . , ps − 2} and k1, . . . , km ∈

{0, . . . , s− 1} such that A =
[
Lαpki (dN(i,j)+ci+c′

j)L−1
]

1≤i,j≤m
.

5 Recovering MDS Constructions – The Case of Cauchy
Matrices

There are several ways to construct MDS matrices. If we are given an arbitrary MDS
matrix over a finite field, e.g., by applying the decomposition methods described earlier,
as a next step, it would be interesting to reveal how the actual matrix was constructed. In
the following, we explain methods to algorithmically decide whether an (obfuscated) MDS
matrix follows a Cauchy construction and to decompose the underlying structure.

5.1 Deciding Whether an MDS Matrix Is Cauchy
Cauchy matrices are of interest in symmetric cryptography as they yield MDS matrices in
a very simple manner (see [RS85]). Cauchy matrices can be used to construct maximum
distance separable (MDS) codes and are often used as linear layers in block cipher and
hash function designs due to their optimal diffusion properties. Thus, given an MDS
matrix recovered by one of our approaches, it is very natural to check if it is a Cauchy
matrix and thereby revealing more structure of the possible design criteria. In this section
we give an algorithm to do so.
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Definition 3 (See, e.g., [RS85]). A matrix A = [Ai,j ]1≤i,j≤m ∈ Mat(m,Fps) is called a
Cauchy matrix if there exist two tuples (u1, . . . , um), (v1, . . . , vm), ui, vi ∈ Fps such that,
u1, . . . , um, v1, . . . , vm are pairwise distinct and Ai,j = 1

ui−vj
.

Remark 4. Obviously if (u1, . . . , um), (v1, . . . , vm) defines a Cauchy matrix A, so does
(u1 + b, . . . , um + b), (v1 + b, . . . , vm + b) for every b ∈ Fps . We will see that this way all
possibilities to represent A are covered.

Let A =
[
αN(i,j)]

1≤i,j≤m
be an MDS matrix, where α ∈ F∗

ps and N(i, j) ∈ N. If
A is a Cauchy matrix, by definition there exist N(i) ∈ N ∪ {∞}, i = 1, . . . , m and
N ′(j) ∈ N ∪ {∞}, j = 1, . . . , m such that α−N(i,j) = αN(i) − αN ′(j) for all i, j = 1, . . . , m.

To detect whether A is a Cauchy matrix, we could derive a linear system with the
2m unknowns αN(i) and αN ′(j) and m2 equations. If the system has a solutions, we can
afterwards (if needed)4 reveal the exponents by computing 2m discrete logarithms.

The system of equations is of the form li,j := xi − yj − ai,j = 0 with unknowns xi, yj ,
1 ≤ i, j ≤ m. The case m = 1 is trivial. Thus, we assume m ≥ 2 in the following.
Subtracting successively l1,j − l1,j+1, j = 1, . . . , m− 1 yields

−y1 + y2 − a1,1 + a1,2 = 0
−y2 + y3 − a1,2 + a1,3 = 0

...
. . .

... = 0
...

... = 0
. . . −ym−1 + ym − a1,m−1 + a1,m = 0

.

(7)
Obviously ym can be chosen as a free parameter. Once a value b ∈ F∗

ps is assigned to ym, the
whole system is uniquely determined. Hence, if the system is solvable, the solution space is
a 1-dimensional affine subspace, which can be split into xi = ui+b, yi = vi+b, ui, vi, b ∈ F∗

ps

and vm = 0. The matrix A is a Cauchy matrix if and only if the system (li,j)1≤i,j≤m has
a solution, where u1 + b, . . . , um + b, v1 + b, . . . , vm + b are pairwise distinct for a fixed and
consequently all b ∈ F∗

ps .
We conclude the following result, which implies that writing an m×m MDS matrix

as a Cauchy matrix, or showing that it is impossible, can be done with a complexity of
O(m2) arithmetic operations in Fps .

Theorem 7. Let A =
[
αN(i,j)]

1≤i,j≤m
be an MDS matrix, where α ∈ F∗

ps and N(i, j) ∈
N. Then, A is a Cauchy matrix if and only if, for all i, j ∈ {1, . . . , m}, we can write
α−N(i,j) = ui − vj with

1. ui = α−N(i,m), i = 1, . . . , m and

2. vm = 0 and vj = vj+1 + α−N(1,j+1) − α−N(1,j), j = 1, . . . , m− 1.

Proof. From System (7), by setting ym = 0, we obtain all the relations for vm as described
in 2. From the condition α−N(i,j) = ui − vj , for j = m, we obtain α−N(i,m) = ui.

Using those method, we show in Section 6 that the matrix used in the linear layer of
Streebog is indeed a Cauchy matrix. To the best of our knowledge, this was not pointed
out previously in the literature.
Remark 5. As we discussed in Sections 4.1 and 4.2, a recovered matrix A with entries from
a finite field from a (simply- or heavily-) obfuscated matrix is not unique. Unfortunately,
it might well be possible that the matrix chosen by the designer is of a Cauchy form,
while the one recovered by our methods is not. In the case of having a simply-obfuscated

4If we are not interested in finding structure in the exponents, we could omit this step and just write
the field elements in their matrix representation.
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MDS matrix B = Q⊕m ·A · P ⊕m with A being a matrix with entries in Fps , Corollary 1
gives all (ps − 1)2 possible solutions (up to applying the same similarity transformation
to the entries of A) for A. Since applying the same similarity transformations to the
entries of a Cauchy matrix does not affect the property of being a Cauchy matrix, we
could decide whether there exist a solution for a Cauchy matrix A by simply brute-forcing
all (ps − 1)2 possible choices for the tuple (c, d) given in Corollary 1. This is feasible for
usual parameters in block cipher constructions, i.e., p = 2, s ≤ 8.

In the case of heavy obfuscation, we have (ps − 1)2m+1sm possible solutions for A,
where m denotes the number of rows of A (see Corollary 2). The naive approach of brute
forcing all those choices and check the Cauchy property quickly becomes infeasible, even
for the parameters usually used in practice. For instance, in the case of p = 2, s = 8, m = 4
(the parameters corresponding to an AES MixColumns operation), we would need to brute
force roughly 284 possibilities. In the next section, we will consider an alternative approach
to solving that problem based on so-called generalized Cauchy matrices.

5.2 Detecting and Recovering Generalized Cauchy Matrices
In order to ease notation, in the following we use lower-case letters for matrices corre-
sponding to field elements to distinguish them from general matrices. We need the notion
of a generalized Cauchy matrix, defined as follows. Similarly to the notion of a Cauchy
matrix as given in Definition 3, generalized Cauchy matrices are MDS.

Definition 4. [RS85] A matrix A over a field Fps with entries

Ai,j = uivj

xi − yj

with xi, yj ∈ Fps , ui, vj ∈ F∗
ps , xi − yj ̸= 0 is called a generalized Cauchy matrix.

In Section 4.2 we introduced Algorithm 4 that tests if a heavily-obfuscated matrix can
be represented over a field extension. The algorithm takes as input a matrix B and, if it
is indeed representable over an extension field, computes a matrix representation for the
field together with a decomposition of the matrix into a form

B = (Q′
1 ⊕ · · · ⊕Q′

m) ·G · (P ′
1 ⊕ · · · ⊕ P ′

m),

where G is over an extension field Fps . Fortunately, if we want to test whether a matrix B
corresponds to a heavily-obfuscated generalized Cauchy matrix, the matrix G determined
by the algorithm is in fact also generalized Cauchy if the obfuscated matrix A is.

Theorem 8. If B = (Q1 ⊕ · · · ⊕Qm) ·A · (P1 ⊕ · · · ⊕ Pm) is a heavily-obfuscated matrix
representation of a generalized Cauchy matrix A over Fps with Q1, . . . , Qm, P1, . . . , Pm ∈
GL(s,Fp), then the matrix G returned by Algorithm 4 with entries

Gi,j = B1,1B−1
i,1 Bi,jB−1

1,j

is also a generalized Cauchy matrix over Fps .

Proof. By assumption, for i, j ∈ {1, . . . , m}, we have Ai,j = uivj(xi − yj)−1 for elements
xi, yj ∈ Fps , ui, vj ∈ F∗

ps , thus B1,1B−1
i,1 Bi,jB−1

1,j = Q1(x1 − y1)−1(xi − y1)(xi − yj)−1(x1 −
yj)Q−1

1 where the ui, vj cancel each other out in the product. Now if we let u′
i =

Q1(x1 − y1)−1(xi − y1)Q−1
1 and v′

j = Q1(x1 − yj)Q−1
1 , x′

i = Q1xiQ
−1
1 and y′

j = Q1yjQ−1
1

it follows that the entries of G are of the form

Gi,j =
u′

iv
′
j

(x′
i − y′

j)

and thus is a generalized Cauchy matrix over the field Fps .
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Theorem 8 above shows the strength of Algorithm 4 described earlier. Not only does
the algorithm discover a conjugate matrix representation of the field of the obfuscated
matrix, it also directly provides a matrix for us which is generalized Cauchy if and only if
the matrix that has been obfuscated was originally generalized Cauchy. Thus, in order to
check whether a matrix is a heavily-obfuscated generalized Cauchy matrix, we can apply
Algorithm 4 to determine a de-obfuscated matrix which then must be a generalized Cauchy
matrix only involving field elements. Thus, the matrix G over Fps which is returned by
Algorithm 4 will have entries of the form Gi,j = uivj

xi−yj
where xi, yj ∈ Fps , ui, vj ∈ F∗

ps .
From the definition of generalized Cauchy matrices there are (ps−1)2m−1 ∏2m−1

i=0 (ps−i)
parameters to choose from. However, not all of those matrices will be unique. There
are many sets of choices of tuples u, u′, v, v′, x, x′, y, y′ ∈ Fm

ps leading to the same fixed
generalized Cauchy matrix. These equivalences provide some freedom when we want to
determine whether a matrix G is indeed a generalized Cauchy. For instance, for any
h ∈ Fps and g1, g2, g ∈ F∗

ps with g1g2 = g such that u′
i = uig1, v′

j = vjg2, x′
i = g1g2(xi + h)

and y′
j = g1g2(yj + h), we have that

u′
iv

′
j

(x′
i − y′

j) = uivj

(xi − yj)

for all 1 ≤ i, j ≤ m. Since an element g ∈ F∗
ps can be expressed as a product g1g2 = g in

(ps − 1) ways, while the number of shifts h ∈ Fps is exactly pk, the above equivalences
define (ps − 1)2ps equivalent generalized Cauchy constructions.

5.3 Algorithm for Testing Generalized Cauchy
In this section we present an algorithm (Algorithm 5) that, given the output of Algorithm 4,
tests whether a matrix over a field is generalized Cauchy by either returning a valid set of
Cauchy-defining parameters u, v, x, y ∈ Fm

ps or decides that it is not a generalized Cauchy
matrix. The matrix G returned by Algorithm 4 has an especially nice form. Since the first
row and first column are all ones, the entries of the generalized Cauchy matrix satisfy

ui(xi − y1)−1v1 = u1(x1 − yj)−1vj = 1

for all 0 < i, j ≤ m. Now, from G1,t = u1vt(x1− yt)−1 and G2,t = u2vt(x2− yt)−1 we may
derive a general relation

vt = (G−1
1,t u1 −G−1

2,t u2)−1(x1 − x2) = (u1 −G−1
2,t u2)−1(x1 − x2), (8)

which is related to yt via

yt = x1 − vtG
−1
1,t u1 = x1 − vtu1.

Similarly, from Gt,1 = utv1(xt− y1)−1 and Gt,2 = utv2(xt− y2)−1 we can derive a relation

ut = (v2G−1
t,2 − v1G−1

t,1 )−1(y1 − y2) = (v2G−1
t,2 − v1)−1(y1 − y2), (9)

which is related to xt by

xt = v1G−1
t,1 ut + y1 = v1ut + y1.

Notice in particular that the values (ut, xt) or (vt, yt) only depend on the values of the
matrix G together with a valid decomposition of the initial upper leftmost 2× 2 square
matrix. Thus consider the first upper leftmost 2× 2 sub-matrix with entries

u1v1(x1 − y1)−1 =1
u1v2(x1 − y2)−1 =1
u2v1(x2 − y1)−1 =1
u2v2(x2 − y2)−1 =G2,2.
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The equivalences explained in the previous subsection allows us to fix u1 = v1 = 1 and
x1 = 0. From the first equation we find that y1 = −1. By simplifying (8) and (9) to

vt =(1−G−1
2,t (x2 + 1))−1(−x2) yt = −vt

ut =(−y2G−1
t,2 − 1)−1(−(1 + y2)) xt = ut − 1,

we guess x2 in the above and get u2 = x2 + 1, v2 and y2 = −v2. In the case we guess
x2 such that x2 = G2,t − 1 or y2 = −Gt,2 for any t, the algorithm fails. Thus, if we let
A = {G2,t − 1 | 0 < t ≤ m} and B = {−Gt,2 | 0 < t ≤ m}, we pick x2 such that x2 is
not in A (nor among x1, y1) and such that the corresponding y2 is not in B (nor among
x1, y1, x2). If this condition holds, we proceed and compute the rest of the ui, vi, xi, yi.
The number of possible wrong choices for x2 is exactly 2m− 1 out of ps. The complete
procedure is presented in Algorithm 5 and requires first to use Algorithm 4 to recover a
field representation and a matrix G.

Algorithm 5 ReverseGeneralizedCauchy
Input: An m×m matrix G over a field Fps returned by Algorithm 4.
Output: Return ⊥ if G is not a generalized Cauchy matrix, or tuples U, V, X, Y ∈ Fm

ps

defining the generalized Cauchy matrix G

1: x1 = 0, y1 = −1, u1 = 1, v1 = 1
2: A ← {G2,1 − 1, G2,2 − 1, . . . , G2,m − 1}
3: B ← {−G1,2,−G2,2, . . . ,−Gm,2}
4: for x2 ∈ Fps do
5: if x2 /∈ A ∪ {x1, y1} then
6: y2 = (1−G−1

2,2(x2 + 1))−1(x2)
7: if y2 /∈ B ∪ {x1, x2, y1} then
8: X = {x1, x2}
9: Y = {y1, y2}

10: for t = 3, . . . , m do
11: yt = x2(1−G−1

2,t (x2 + 1))−1

12: Y = Y ∪ {yt}
13: xt = (−1− y2)(−y2G−1

t,2 − 1)−1 − 1
14: X = X ∪ {xt}
15: end for
16: U = {}
17: V = {}
18: for t = 1, . . . , m do
19: U = U ∪ {Xt + 1}
20: V = V ∪ {−Yt}
21: end for
22: Return U, V, X, Y
23: end if
24: end if
25: end for
26: Return ⊥
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6 Application to Streebog
Applying Algorithm 2 to the matrix used in Streebog yields

A :=



γ1 γ64 γ66 γ39 γ133 γ249 γ94 γ135

γ249 γ84 γ150 γ0 γ210 γ1 γ221 γ32

γ100 γ16 γ155 γ15 γ167 γ36 γ182 γ57

γ220 γ174 γ246 γ217 γ216 γ17 γ90 γ198

γ116 γ188 γ217 γ246 γ124 γ127 γ237 γ206

γ37 γ129 γ147 γ243 γ36 γ167 γ154 γ89

γ77 γ66 γ64 γ238 γ206 γ3 γ136 γ124

γ135 γ230 γ73 γ137 γ164 γ32 γ134 γ1


, (10)

where

γ =



1 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1
1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 0 0 1 1 0 1 1
1 0 0 0 0 0 1 1


,

which has minimal polynomial q = X8 +X6 +X5 +X4 +1 ∈ F2[X]. Note that (γ32)⊤ = Tq,
so by substituting γ by γ32 (and adapting the exponents accordingly) and transposing,
we obtain the representation as recovered in [KK13]. Note that this is a consequence
of Theorem 4, where we choose α = Tq. Recall that by Theorem 4 there exist Q′, P ′

such that Q
′−1γN(i,j)P ′ = αdN(i,j)+c. Indeed, 32 = 25 is the application of the Frobenius

automorphism x 7→ x25 and transposing a matrix is a similarity operation, i.e. AT
i,j =

L−1Ai,jL for a proper chosen matrix L ∈ GL(s,Fp). Hence AT
i,j = L−1γN(i,j)L =

T
28−5N(i,j)
q = α23N(i,j) which gives as requested the above identity with P ′ = Q′ = L, d =

23 and c = 0. It was remarked in [KK13], the decomposition method of Kazymyrov and
Kazymyrova only worked if the matrix used in Streebog is transposed first.

6.1 Decomposition as a Cauchy Matrix
By applying the ideas described in Section 5.1, we can observe that Matrix (10) is a Cauchy
matrix. Indeed, with

(u1, u2, u3, u4, u5, u6, u7, u8) = (γ120, γ223, γ198, γ57, γ49, γ166, γ131, γ254)
(v1, v2, v3, v4, v5, v6, v7, v8) = (γ77, γ82, γ59, γ220, γ72, γ209, γ4, 0),

we have γ−N(i,j) = ui − vj for all i, j ∈ {1, . . . , 8}.

7 Conclusion
We presented algorithms to detect and recover the existence of structure induced by
extension fields in matrices over finite fields. Surprisingly, while being a natural question
in algorithmic algebra, even outside of cryptographic applications, we are not aware of
previous solutions to this question.

Structure induced by extension fields is certainly most prominent in current designs and
we exhaustively handled that case in our work. In case our algorithms fail to detect any
structure coming from extension fields, there might of course exist other, so far unknown,
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types of structure or design ideas. Here, our work raises many questions on how to detect
such types of structure in linear layers that we feel are worth being investigated in future
works.
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