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Abstract—K-Cipher is an ultra low latency block cipher with
variable-length parameters designed by Intel Labs. In this work,
we analyze the security of K-Cipher and propose a differential
cryptanalysis attack with the complexity of 229.7 for a variant of
K-Cipher with state size n = 24 bits state and block size m = 8
bits. Our attack recovers the secret key and secret randomizer
values with a total length of 240 bits in ∼ 30 minutes on a
standard desktop machine. We show that it is possible to extend
the same attack for an arbitrary set of parameters.

I. INTRODUCTION

K-Cipher [1] is a low latency parametrizable block cipher
proposed by researchers from Intel Labs at IEEE ISCC 2020.
The motivation for designing K-Cipher is that current low
latency ciphers such as PRINCE [2], PRINCEv2 [3], MANTIS
[4], QARMA [5] and SPEEDY [6], as well as the proposed
ciphers at the NIST Lightweight competition, do not offer a
wide range of values for the state size and block size or are not
efficient enough. Despite the fact that it is published recently,
K-Cipher attracted a lot of attention and is being used in other
works because of its resistance to known ciphertext attacks,
its small block size, and extremely low latency. An instance of
such works is a new memory safety mechanism called C3 [7]
which is proposed in 2021 and uses K-Cipher as its underlying
block cipher to encrypt the pointers to the memory blocks.

In this work, we analyze the security of K-Cipher against
differential cryptanalysis - an attack that the authors claim the
cipher is secure against. We propose a full key-recovery attack
on the 24-bit input with the 8-bit SBox version and the 128-
bit input and 16-bit SBox version, as well as an evaluation
of some other possible parameters. Our attack is a chosen-
plaintext attack and needs the corresponding encryption of 214

pairs of chosen plaintexts. The complexity of our attack is
229.7 encryptions/decryptions for all variants of K-Cipher with
block size m = 8 and can fully recover all the secret values.
We run our attack on a standard desktop machine and recover
all 240 secret bits in ∼ 30 minutes.

The paper is structured as follows. In Section II, we intro-
duce notations, differential cryptanalysis, and the description
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of K-Cipher. In Section III we describe the attack. We first
explain in Section III-A a technique to construct characteristics
independently of the random values added in the SBox layer.
Further, in Section III-B we extend the characteristics to a key-
recovery attack and recover the secret data. In Section III-C
we analyze the complexity of our attack. Finally, we write our
conclusion in Section IV.

II. PRELIMINARIES

A. Notation

We denote a binary string B with length n by B =
bn−1bn−2 . . . b0 where each bi ∈ {0, 1}. Binary strings are
used to describe the states of the K-Cipher. Each state B is
the concatenation of several consecutive blocks B[i]1≤i≤ n

m

of size m. In other words, B = B[1]‖B[2]‖ . . . ‖B[m] =
bn−1bn−2 . . . b0. If the state size n is not the multiple of the
block size m, the size of the last block is equal to the n
mod m. The SBoxes of K-Cipher are indexed from left to
right as S[1], S[2], . . . , S[m] and the input of S[i] is the block
B[i]. A binary sequence with zeros in all positions except for
the ith position is denoted by ei = [000 . . . 1 . . . 000].

In the rest of this paper, P is the input, C is the output,
and Xi’s are the intermediate states. The binary operations
≪ and ≫ are used to show circular left shift and circular
right shift. We define +m as block-wise modular addition over
GF (2m). For two binary strings B1 and B2 with length km,
B1 +m B2 divides both B1 and B2 into k blocks of size m,
then adds corresponding blocks modulo 2m, and concatenates
the resulting blocks in the same order. We define −m the same
way as +m but for subtraction.

B. Differential cryptanalysis

Differential cryptanalysis is one of the most powerful and
used cryptanalysis techniques against symmetric primitives.
It is proposed by Biham and Shamir and is the first attack
that fully breaks the DES algorithm [8]. This technique has
been largely analyzed and further developed, leading to attacks
like truncated differentials [9], the boomerang attack [10] or
impossible differentials [11]. Differential cryptanalysis is a
statistical chosen-plaintext attack that follows the difference
a = m ⊕ m′ between two plaintexts m and m′, usually
differing in only a few bits. Here we look only into XOR



difference, however other group operations can also be an-
alyzed. The corresponding difference between the ciphertext
can be exploited to reveal information about the secret key.

A differential characteristic over n rounds of an iterated
cipher is defined as the sequence of intermediate differences
(a = a1, a2 . . . an = b), where each (ai, ai+1) represents
the input and output difference of one round. In order to
calculate the probability of a one-round transition (ai, ai+1),
we look into the non-linear round operation, typically an
SBox. A Difference Distribution Table (DDT) over a given
SBox contains the information of how many times each input
difference leads to each output difference and is calculated
over all possible inputs. The more probable transformations
from a DDT table are used to construct differential charac-
teristics over more rounds. Then, assuming that the rounds
are independent and the keys are uniformly distributed, the
Expected Differential Probability (EDP) of a characteristic is
computed by multiplying the probabilities of each individual
round:

EDP (a1, a2, . . . an) =

n∏
i

DP (ai−1, ai) (1)

where DP represents the probability differential characteris-
tics for one round.

In practice, only the input and output differences can be
observed without considering the intermediate differences. We
define the set of all differential characteristics with input
difference a and output difference b as a differential (a, b). The
probability of a differential (a, b) is the sum of the probabilities
of all differential characteristics having input difference a and
output difference b.

a) Key-recovery: To recover the secret values used in
round r, we use an r − 1 round differential characteristic
(distinguisher) with probability p. First, we select N = 4

p
random pair plaintexts with the expected input difference and
their corresponding ciphertexts. The constant 4 is chosen to
guarantee the discarding of wrong candidate keys and ensure
the success of the attack. The next step is to guess the
secret values and verify the guess using the distinguisher.
For each key guess, a counter is kept and incremented if the
expected difference is satisfied after partial decryption using
the candidate values. The set of keys with the largest counter
is potential candidates for the secret values.

C. Rotational property

Word rotation is a commonly used operation for symmetric-
key algorithms. The rotational property is linear with respect
to cyclic rotation and XOR, but is not linear with respect to
modular addition. While we have

Pr [(x ≪ l)⊕ (y ≪ l) = (x⊕ y) ≪ l] = 1 (2)

and

Pr [(x ≪ l1) ≪ l2 = (x ≪ l2) ≪ l1] = 1 (3)

For modular addition we have the following probability [12]:

Pr[(x+m y) ≪ l = (x ≪ l) +m (y ≪ l)]

=
1

4
(1 + 2l−n + 2−l + 2−n)

(4)

where l is the rotation constant and n is the size of the word.

D. Specifications of K-Cipher

K-Cipher is a low latency parameterizable block cipher
proposed by Intel Research Labs [1], [13] in 2020. The original
design of K-Cipher, called Flex flow, uses a deterministic
SBox layer in its design. However, the authors suggested that
Flex flow is insecure and proposed a new version, called CPA
flow, with a nondeterministic SBox layer. We will omit the
analysis of the Flex flow and focus on analyzing the CPA
flow which is believed to be secure. We analyze the variant of
K-Cipher with state size n = 24. A discussion on the different
choices of parameters is presented in Section III-E after the
key-recovery attack is explained.

a) Parameters selection.: K-Cipher has a state size of
24 ≤ n ≤ 1024 and computes other parameters such as length
of the keys, randomizers, and SBoxes using the state size n.
The function GetSBoxLengths(n) is used to compute the
length of the SBox m which we also refer to as block size.
For our case of analysis with n = 24, the block size is m = 8.
The length of the secret values is computed using the function
GetKeyLength(n, _). The length of the secret for a state
of length n is l+6n where l is a constant computed using the
function GetFlexKeyLength(n). For n = 24, we have
l = 96 and the key length is 96 + 6 · 24 = 240 bits.

b) Key and Randomizers.: The secret values used in K-
Cipher are the master key K, and the randomizers R. The
master key is used to generate round keys and the goal of
the randomizers is to randomize the SBox layer so that each
SBox behaves differently. The round keys are denoted by
k0, k1, k2, k3 where k0, k1, k2 are derived from a key schedule
and k3 is a known permutation of k2. The randomizers are
indexed by rj0, r

j
1 0 ≤ j ≤ 2. For the state size n ≤ 32,

k0, k1, k2 are substrings of K and are independent random
values while for n > 32, the key schedule is the Flex flow. The
idea of the key schedule algorithm for states of size n > 32 is
described in Section III-E. For the more detailed description
of the key schedule, we refer to [1].

c) Algorithm.: The encryption algorithm is depicted in
Figure 1. The main component is called aggressive adder
which is the modular addition of the round key over GF (2m)
with the state followed by a permutation layer. The result of
the aggressive adder function then goes to the SBox layer.
The SBox layer of the jth round XORs the m-bit block with
the randomizer r0[j], then the multiplicative inverse of each
resulted block in GF (2m) is added to randomizer r1[j] using
modular addition. Finally, each block is cyclically rotated by
2. In the case where n is not a multiple of m, the last z bits are
treated as a block of size z, and all operations are performed
in GF (2z).
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Fig. 1. The encryption algorithm of K-Cipher. First, the constant c is added
to the input P using modular addition. Then 3 rounds are performed, each
consisting of modular addition with the round key followed by a randomized
SBox layer. Finally, another key value is XORed to the state and the ciphertext
C is returned.

d) Security claims.: The authors claim that the security is
independent of the size of the input and perform experiments
over 24-bit state. The security over all other input sizes is
then bounded by these results. They report the existence of
differentials with a maximum probability of 2−17.61 over 3
rounds and 2−20.54 over 4 rounds and suggested that r ≥ 2 is
enough to resist differential cryptanalysis attack.

III. DIFFERENTIAL CRYPTANALYSIS OF K-CIPHER

In this section, we analyze the security of K-Cipher against
differential cryptanalysis. First, we explain how to find dif-
ferential characteristics of secret SBoxes used in K-Cipher.
Next, we describe how to recover the secret key and the
secret randomizers. Finally, we analyze the complexity and
the running time of the attack.

A. Generating differential characteristics

The SBox transformation used in K-Cipher is the following
function mapping 3m bits to m bits.

S(x, ri0[j], r
i
1[j]) =

[
(x⊕ ri0[j]) +m ri1[j]

]
≪ 2 (5)

The use of so much randomness is motivated by improving
the resistance of the SBox layer towards differential cryptanal-
ysis by adding extra entropy. However, it is easy to see that for
each y ∈ GF (2m), there are 22m tuples of (x, r0, r1) such that

S(x, r0, r1) = y. Therefore, the construction of SBox leads to
duplicate equivalent keys.

Our goal is to find differential characteristics such that the
pair of inputs differ at exactly one bit, and their corresponding
2-round encryptions also differ at exactly one bit. Since xor
with r0 does not change the difference, we create DDT tables
for x−1 +m r1. For each 8-bit possible value r1, we create a
256 DDT table. Then all DDTs are combined into one General
DDT, where the position (i, j) in GDDT will be non-zero if
and only if it is non-zero for each of the 256 DDT tables. To
ensure that our characteristic is valid for any choice of ri1 we
use the GDDT to create the needed characteristics. All 1-bit
transitions of the GDDT are summarized in Table I, where
the minimum probability is 2−7. The characteristics used in
attacking each round of the key-recovery attack are shown in
Table II. The expected probability of a characteristic depends
on the SBox and the modular addition and is calculated as
the product of the one-round probabilities. The probability of
1-bit transition for modular addition over GF (28) is 2−0.83.
Therefore, A two-round characteristic has the probability Pr ≤
2−7 · 2−0.83 · 2−7 · 2−0.83 = 2−15.66. All probabilities in the
tables are verified empirically.

TABLE I
A PART OF THE GDDT CONSISTING ONLY OF THE DIFFERENCES THAT
SATISFY OUR REQUIREMENTS FOR ONE ACTIVE BIT IN THE INPUT AND

THE OUTPUT DIFFERENCE. THE ENTRY (i, j) GIVES THE AVERAGE
NUMBER OF TIMES THE INPUT DIFFERENCE HOLDS OVER ALL POSSIBLE

VALUES OF THE RANDOMIZER FOR AN INPUT DIFFERENCE i AND AN
OUTPUT DIFFERENCE j . THE PROBABILITY IS THEN THE NUMBER

DIVIDED BY 256. FOR SIMPLICITY THE UNFILLED VALUES OF THE TABLE
ARE ZEROES.

1 2 4 8 16 32 64 128
1 2
2 5
4 3 3
8 2 2

32 2
64 2
128 3

B. Description of the attack

We divide the attack into three phases for simplicity and
in each phase, we recover additional bits of the unknown
parameters. Each phase can also be seen as an individual attack
over a similar primitive. The first phase targets the last round
of the algorithm and obtains 23 indistinguishable candidates
for k3, k2 and r21 . Phase two extends to the second round
of the algorithm and recovers the randomizer values r20 and
r11 . Next phase repeats the same attack and recovers r10 and
(r01 ≪ 2)+m k1, where the exact values of r01 and k1 are not
needed. Finally, the values of r00 and k0 are guessed.The details
of each phase of the attack are described in Sections III-B1
to III-B3.

1) Phase 1:Recovering k3, k2 and r21 .: We construct 3
characteristics, each having a different active output block



after Bit-reordering(2). For each characteristics i, i = 0, 1, 2,
we iterate over all possible 8-bit values of k3[i] and r21[i]
and partially decrypt until the xor addition of r20 of the
SBox layer. The empirical difference is then verified with
the difference of the corresponding characteristic in order to
filter the correct values. If the partial decryption results in
the expected difference, a counter associated with the current
values of k3[i] and r21[i] is incremented. The counter with
the highest value is the most likely assignment. The partial
decryption is described in Algorithm 2 and the full recovery
can be seen in Algorithm 1. The mathematical structure of K-
Cipher implies that there are two pairs with the same highest
counter value, and these are indistinguishable. The existence
of such equivalent candidates is proven in Lemma III.1. This
results in 23 candidate pairs of k3 and r20 and the choice of any
of them will result in the same ciphertext. This is possible only
because for n ≤ 32 the round keys are directly obtained from
the master key and there is no key schedule, therefore the keys
and randomizers are independent. In the case of n > 32, keys
are derived from a key schedule, which is bijective and hence
invertible. By deriving 2m candidate last round keys leads
to 2m different candidate master keys, the correct value of
which can be guessed with probability 2−m. After recovering
k3, we can recover the value of k2 using the inverse of the
BitReordering(k2, 3) permutation.

Lemma III.1. The size of the set of candidates returned by
the Algorithm 1 is always 2.

Proof. The proof contains two parts. The first part is when
t = 3 and the second part when t ≤ 2. When t = 3, the
set of candidates has the form {(k, r), (k +m 2, r +m 128)}
due the structure of the function. If k ≡ 0 mod 4, then
k = k7k6k5k4k300 and k +m 2 = k7k6k5k4k310. The first
step in the Algorithm 2 is xored with the input. Let us
denote the input with x = x7x6x5x4x3x2x1x0. We have
y = x ⊕ k = y7y6y5y4y3y2x1x0 and y′ = x ⊕ (k +m

2) = y7y6y5y4y3y2(¬x1)x0. Let r = r7r6r5r4r3r2r1r0 and
r +m 128 = (¬r7)r6r5r4r3r2r1r0. We have the following:

(y ≫ 2)−m r

= x1x0y7y6y5y4y3y2 −m r7r6r5r4r3r2r1r0
(6)

(y′ ≫ 2)−m (r +m 128)

= (¬x1)x0y7y6y5y4y3y2 −m (¬r7)r6r5r4r3r2r1r0
(7)

Since the most significant bit of the both operands is com-
plemented, the result of the modular subtraction will be the
same. In the case of k ≡ 1 mod 4 the same argument applies
because only the value of x0 is complemented after the xor and
does not affect the rest of the computations. When t ≤ 2, the
set of candidates has the form {(k, r), (k+m 128, r+m 128)}
because of the structure of the function. Let us define k =
k7k6k5k4k3k2k1k0 and k +m 128 = (¬k7)k6k5k4k3k2k1k0.
Like the previous part of the proof, we denote the input with
x = x7x6x5x4x3x2x1x0. Let y = x⊕ k = y7y6y5y4y3y2y1y0
and y′ = x ⊕ (k +m 128) = (¬y7)y6y5y4y3y2y1y0. Let

Algorithm 1: Algorithm of the differential cryptanal-
ysis attack, the return value for phase 1 is k3[j], r

2
1[j],

for phase 2 is r20[j], (r
1
1 ≫ 2)+m k2, and for phase 3

is r10[j], (r
0
1 ≫ 2) +m k1

Input: Characteristic C and the target round
1 ≤ R ≤ 3.

Output: Set of all candidates for the secret of round
R.

S := {[(Pi,1, Ci,1), (Pi,2, Ci,2)] | i ≤

216 and Pi,1 ⊕ Pi,2 = einput difference}.

t := R− 1

for 0 ≤ i ≤ |S| do

for each 8-bit strings k and r do

if R ≤ 2 then
Ci,1 := Decryption of Ci,1 until rt0.

Ci,2 := Decryption of Ci,2 until rt0.

end

X1 := PartialDecryption(k, r, Ci,1, t)

X2 := PartialDecryption(k, r, Ci,2, t)

if X1 ⊕X2 = eoutput difference then
Tk,r := Tk,r + 1

end

end

end

return {(k, r) | Tk,r is maximum}

Algorithm 2: One round partial decryption using can-
didate values k and r for a block ct of length m. The
t is the target round
PartialDecryption(k, r, ct, t)
ct := ct⊕ k
if t ≤ 2 then

ct := ct−m r
ct := ct ≫ 2

else
if t = 3 then

ct := ct ≫ 2
ct := ct−m r

end
end
ct := ct−1

return ct



r = r7r6r5r4r3r2r1r0 and r+m 128 = (¬r7)r6r5r4r3r2r1r0.
We have the following:

(y −m r)

= y7y6y5y4y3y2y1y0 −m r7r6r5r4r3r2r1r0
(8)

(y′ −m (r +m 128)

= (¬y7)y6y5y4y3y2y1y0 −m (¬r7)r6r5r4r3r2r1r0
(9)

Since the most significant bit of both operands is comple-
mented, the result of the modular subtraction will be the same.
In both cases, the number of candidate pairs is 2.

TABLE II
DIFFERENTIAL CHARACTERISTICS USED IN THE ATTACK. EACH COLUMN

SHOWS THE POSITION OF THE DIFFERENCE IN THE CHARACTERISTIC.
RE(t) COLUMNS SHOW THE POSITION OF THE DIFFERENCE AFTER
BITREORDERING(t). PrRe(t) SHOWS THE PROBABILITY OF THE

CHARACTERSTIC AFTER BITREORDERING(t). THE PROBABILITIES ARE IN
THE BASE 2 LOGARITHM OF THE CHARACTERISTIC PROBABILITY. THE

ELEMENTS x ARE NOT IMPORTANT BECAUSE THEY ARE NOT USED IN THE
ATTACK.

Input Re(0) Re(1) Re(2) PrRe(0) PrRe(1) PrRe(2)

22 17 11 16 -1.1 -6.3 -11.1
15 8 18 13 -0.28 -6.5 -10.9
19 19 0 2 -0.96 -10 -11.8
4 0 x x -0.29 x x

2) Phase 2: Recovering r20 and r11 .: Recovering r20 and r11
is simpler since we already recovered k3, k2, r

2
1 and we can

partially decrypt any ciphertext for one round. Then for every
r20[j] and every k2[j] + (r11[j] ≪ 2) we partially decrypt the
second round until the XOR addition with r10 and compare the
intermediate difference with the expected difference from the
corresponding characteristic. The attack starts from the SBox
transformations from round 2 until the xor addition of r20 . We
define the function F2 : {0, 1}24 → {0, 1}24 as follow.

F2(X) = P (((S(X) + r11) ≪ 2) +m k2)⊕ r20 (10)

Where P and S represent the BitReordering and SBox func-
tion respectively. Since xor and the permutation are both linear
and commutative, we can swap their positions. Additionally,
the permutation is known, so we can exclude it from the
equation because the state after the permutation is known.
Therefore, we have

F2(X) = ((S(X) + r11) ≪ 2) +m k2 ⊕ r20. (11)

We underline that aim at recovering the value of k2+(r11 ≫ 2)
instead of the exact values of k2 and r1. In fact, knowing only
the sum is enough to encrypt/decrypt messages. However, this
value can not be recovered directly, because the rotation is
applied over the state after the SBox transformations and the
modular addition of the randomizer. To overcome this, we use
the rotational property for modular addition and can say that

(S(X) + r11) ≪ 2 = (S(X) ≪ 2) +m (r11 ≪ 2) (12)

holds with probability 0.4 for rotation constant l = 2 and size
of the word n = 8 bits (see Equation 4). Then

F2(X) = (S(X) ≪ 2) +m (r11 ≪ 2) +m k2 ⊕ r20 (13)

holds with probability p = 0.4 = 2−1.32. Therefore our
characteristic will hold with probability 2−7×2−1.32 = 2−8.32.
The partial decryption function associated to Algorithm 2 is

F−1(Y ) = S−1(((Y ⊕ r20 −m k2 −m (r11 ≫ 2)) ≫ 2)
(14)

where Y represents the ciphertext after 2 rounds, recovered
by the previous phase. Then we guess the value of k2 +m

(r11 ≫ 2) and as we already recovered k2 in Section III-B1,
we can recover r11 .

3) Phase 3: Recovering r10, r
0
1 and k1.: We apply the same

attack as in Section III-B2, but this time over the first round.
The function we partially decrypt over is defined as follow.

F3(X) = (S(X) ≪ 2) + (r01 ≪ 2) +m k1 ⊕ r10 (15)

and the inverse is

F−13 (Y )

= S−1(Y ⊕ r10 −m k−(r
0
1 ≫ 2))

(16)

The algorithm of recovering r10 and r01 ≫ 2 +m k1 is
described in the Algorithm 1.

4) Phase 4: Recovery of r00 and k0.: Recovering r00 and
k0 is straightforward since we can decrypt any ciphertext for
three rounds. We can guess the values for r00[j] and k0[j]
and verify the guess using 216 different pairs. Let P be the
first permutation BitReordering 0, for each pair 8-bit values
(X,Y ), there are 28 possible values of r00 and k0 such that
P (X +m k0)⊕ r00 = Y .

C. Complexity of the attack

The data complexity is computed as the number of times we
call the encryption/decryption function. In the first phase of the
attack, the probability of each characteristic is lower bounded
by p = 2−12 hence exploiting each differential characteristic
requires encrypting at least 1

p pairs of chosen plaintexts. In
our attack, we use 4

p pairs of chosen plaintext to guarantee
a successful attack. The partial decryption in the last round
involves one SBox out of the total 9 SBoxes that are computed
in one encryption/decryption, which can be estimated to a
total of 215 · 19 decryptions. Furthermore, we search the whole
space of two 8-bit values to compute the respective key and
randomizer values. Therefore the total complexity of the first
phase is 3 · 216 · 215 · 19 ≈ 229.4. The second phase has less
complexity since the used characteristics are over 1 round and
have a larger probability. The complexity of the second phase
is 227.4 and the complexity of the third phase is 221.4. The
total complexity of the attack is 229.7.

The complexity of the attack depends on the probability
of the characteristics, which depends on the GDDT of the
SBoxes. Thus, we can say that all versions of the K-Cipher
that have the same size SBoxes have the same theoretical



complexity. However, in practice, the execution of the attack
will have different measured times. This happens because the
time required for one run of the algorithm is proportional to the
number of SBoxes in one encryption. Hence, the smaller the
state, the faster the attack. One way to compare the practical
time is to look at the complexity as the number of SBox look-
ups instead of the number of encryptions. For example, a 24-
bit state with an 8-bit SBox would take 229.4 ·9 table look-ups,
while a 64-bit state with an 8-bit SBox will require 229.4 · 24
table look-ups. We expect the second version to be around 2.5
times slower.

D. Experimental verification of the attack

We implemented our attack in C++ and run it on a 5.13.0-
35-generic x86 64 Linux machine with 32 GiB of memory
and Intel Core i7 processor. Our implementation terminates
after 1812s and recovers all the secret data. The implementa-
tion of the attack is available on Github1.

E. Other parameters for K-Cipher

The main reason for the choice of parameters in this paper is
that K-Cipher is mostly intended to be used for small states [1].
However, the same attack can be applied to any other choice
of parameters. There are three main parameters that affect
the overall security of the system: The state size, the block
size, and the number of rounds. The block size determines the
order of the underlying binary field and for larger orders, the
probability of the differential characteristics is smaller and the
DDTs are different. For the same block size, the larger state
does not increase the complexity of the attack but increases the
running time of the algorithm. The larger number of rounds
results in characteristics with smaller probability and hence
increases the complexity of the attack.

The other main difference for states of size n > 32, is that
the round keys are derived from a key schedule algorithm and
they are not independent. The dependence of round keys needs
two adjustments in the attack we described in this paper. First,
after recovering k3, we can recover all other round keys using
the Algorithm 3. Second, we can not choose any member of
an equivalence class of the candidates and we need to guess
the correct one. This can be done efficiently using exhaustive
search and verification of each guess.

IV. CONCLUSION

The main motivation of designing K-Cipher was to have a
low latency cipher that is efficient in different use cases. The
original design with deterministic SBox layers was claimed
to be vulnerable to differential cryptanalysis. Therefore, to
improve its security, the designers suggested increasing the key
length and using additional randomness in the SBox layer. The
attack presented here showed that not only the increase of the
key length does not result in a secure cipher but it also creates
duplicate keys which is not a desirable property for a block
cipher. Apart from the existence of the GDDTs, the attack

1https://github.com/KULeuven-COSIC/K-Cipher.

Algorithm 3: Recovering all the round keys. Re-
verseBitReordering functions are reversing the permu-
tations specified in K-Cipher paper. The subtraction
ki −m cj is a modular subtraction.
Input: k3
k2 = ReverseBitReordering(k3, 3)
k1 = ReverseBitReordering(k2, 7)
k1 = S−1(k1)
k1 = ReverseBitReordering(k1, 6)
k1 = k1 −m c2
k0 = ReverseBitReordering(k1, 5)
k0 = S−1(k0)
k0 = ReverseBitReordering(k0, 4)
k0 = k0 −m c1
return k

exploited the low number of rounds of the cipher. Although the
number of rounds improves the latency, it jeopardizes security.
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