
Classically Verifiable NIZK for QMA with Preprocessing

Tomoyuki Morimae1 and Takashi Yamakawa1,2

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan
2NTT Social Informatics Laboratories, Tokyo, Japan

September 6, 2022

Abstract

We propose three constructions of classically verifiable non-interactive zero-knowledge proofs
and arguments (CV-NIZK) for QMA in various preprocessing models.

1. We construct a CV-NIZK for QMA in the quantum secret parameter model where a
trusted setup sends a quantum proving key to the prover and a classical verification key
to the verifier. It is information theoretically sound and zero-knowledge.

2. Assuming the quantum hardness of the learning with errors problem, we construct a CV-
NIZK for QMA in a model where a trusted party generates a CRS and the verifier sends
an instance-independent quantum message to the prover as preprocessing. This model
is the same as one considered in the recent work by Coladangelo, Vidick, and Zhang
(CRYPTO ’20). Our construction has the so-called dual-mode property, which means that
there are two computationally indistinguishable modes of generating CRS, and we have
information theoretical soundness in one mode and information theoretical zero-knowledge
property in the other. This answers an open problem left by Coladangelo et al, which is
to achieve either of soundness or zero-knowledge information theoretically. To the best of
our knowledge, ours is the first dual-mode NIZK for QMA in any kind of model.

3. We construct a CV-NIZK for QMA with quantum preprocessing in the quantum random
oracle model. This quantum preprocessing is the one where the verifier sends a random
Pauli-basis states to the prover. Our construction uses the Fiat-Shamir transformation.
The quantum preprocessing can be replaced with the setup that distributes Bell pairs
among the prover and the verifier, and therefore we solve the open problem by Broadbent
and Grilo (FOCS ’20) about the possibility of NIZK for QMA in the shared Bell pair
model via the Fiat-Shamir transformation.

1 Introduction

1.1 Background

The zero-knowledge [GMR89], which ensures that the verifier learns nothing beyond the statement
proven by the prover, is one of the most central concepts in cryptography. Recently, there have been
many works that constructed non-interactive zero-knowledge (NIZK) [BFM88] proofs or arguments
for QMA, which is the “quantum counterpart” of NP, in various kind of models [ACGH20, CVZ20,
BG20, Shm21, BCKM21, BM21]. We note that we require the honest prover to run in quantum
polynomial-time receiving sufficiently many copies of a witness when we consider NIZK proofs or
arguments for QMA. All known protocols except for the protocol of Broadbent and Grilo [BG20]

1

only satisfy computational soundness. The protocol of [BG20] satisfies information theoretical
soundness and zero-knowledge in the secret parameter (SP) model [Ps05] where a trusted party
generates proving and verification keys and gives them to the corresponding party while keeping
it secret to the other party as setup.1 A drawback of their protocol is that the prover sends a
quantum proof to the verifier, and thus the verifier should be quantum. Therefore it is natural to
ask the following question.

Can we construct a NIZK proof for QMA with classical verification assuming a trusted party that
generates proving and verification keys?

In addition, the SP model is not a very desirable model since it assumes a strong trust in the
setup. In the classical literature, there are constructions of NIZK proofs for NP in the common
reference string (CRS) model [BFM88, FLS99, PS19] where the only trust in the setup is that
a classical string is chosen according to a certain distribution and then published. Compared to
the SP model, we need to put much less trust in the setup in the CRS model. Indeed, several
works [BG20, CVZ20, Shm21] mention it as an open problem to construct a NIZK proofs (or even
arguments) for QMA in the CRS model. Though this is still open, there are several constructions
of NIZKs for QMA in different models that assume less trust in the setup than in the SP model
[CVZ20, Shm21, BCKM21]. However, all of them are arguments. Therefore, we ask the following
question.

Can we construct a NIZK proof for QMA with classical verification in a model that assumes less
trust in the setup than in the SP model?

The Fiat-Shamir transformation [FS87] is one of the most important techniques in cryptography
that have many applications. In particular, NIZK can be constructed from a Σ protocol: the prover
generates the verifier’s challenge β by itself by applying a random oracle H on the prover’s first
message α, and then the prover issues the proof π = (α, γ), where γ is the third message generated
from α and β = H(α). It is known that Fiat-Shamir transform works in the post-quantum setting
where we consider classical protocols secure against quantum adversaries [LZ19, DFMS19, DFM20].
On the other hand, it is often pointed out that (for example, [Shm21, BG20]) this standard technique
cannot be used in the fully quantum setting. In particular, due to the no-cloning, the application of
random oracle on the first message does not work when the first message is quantum like so-called
the Ξ-protocol constructed by Broadbent and Grilo [BG20]. Broadbent and Grilo left the following
open problem:

Is it possible to construct NIZK for QMA in the CRS model (or shared Bell pair model) via the
Fiat-Shamir transformation?

Note that the shared Bell pair model is the setup model where the setup distributes Bell pairs
among the prover and the verifier. It can be considered as a “quantum analogue” of the CRS
[Kob03].

1.2 Our Results

We answer the above questions affirmatively.

1. We construct a classically verifiable NIZK (CV-NIZK) for QMA in the QSP model where
a trusted party generates a quantum proving key and classical verification key and gives

1The SP model is also often referred to as preprocessing model [DMP90].

2

them to the corresponding parties. We do not rely on any computational assumption for this
construction either, and thus both soundness and the zero-knowledge property are satisfied
information theoretically. This answers our first question. Compared with [BG20], ours has
an advantage that verification is classical at the cost of making the proving key quantum.
The proving key is a very simple state, i.e., a tensor product of randomly chosen Pauli X,
Y , or Z basis states. We note that we should not let the verifier play the role of the trusted
party for this construction since that would break the zero-knowledge property.

2. Assuming the quantum hardness of the learning with errors problem (the LWE assump-
tion) [Reg09], we construct a CV-NIZK for QMA in a model where a trusted party generates
a CRS and the verifier sends an instance-independent quantum message to the prover as pre-
processing. We note that the CRS is reusable for generating multiple proofs but the quantum
message in the preprocessing is not reusable. In this model, we only assume a trusted party
that just generates a CRS once, and thus this answers our second question. This model is
the same as one considered in [CVZ20] recently, and we call it the CRS + (V → P) model.
Compared to their work, our construction has the following advantages.

(a) In their protocol, both soundness and the zero-knowledge property hold only against
quantum polynomial-time adversaries, and they left it open to achieve either of them in-
formation theoretically. We answer the open problem. Indeed, our construction has the
so-called dual-mode property [GOS12, PS19], which means that there are two computa-
tionally indistinguishable modes of generating CRS, and we have information theoretical
soundness in one mode and information theoretical zero-knowledge property in the other.
To the best of our knowledge, ours is the first dual-mode NIZK for QMA in any kind
of model.

(b) Our protocol uses underlying cryptographic primitives (which are lossy encryption and
oblivious transfer with certain security) only in a black-box manner whereas their pro-
tocol heavily relies on non-black-box usage of the underlying primitives. Indeed, their
protocol uses fully homomorphic encryption to homomorphically runs the proving algo-
rithm of a NIZK for NP, which would make the protocol extremely inefficient. On the
other hand, our construction uses the underlying primitives only in a black-box manner,
which results in a much more efficient construction. We note that black-box construc-
tions have been considered desirable for both theoretical and practical reasons in the
cryptography community (e.g., see introduction of [IKLP06]).

(c) The verifier’s quantum operation in our preprocessing is simpler than that in theirs: in
the preprocessing of our protocol, the verifier has only to do single-qubit gate operations
(Hadamard, bit-flip or phase gates), while in the preprocessing of their protocol, the
verifier has to do five-qubit (entangled) Clifford operations. In their paper [CVZ20], they
left the following open problem: how far their preprocessing phase could be weakened?
Our construction with the weaker verifier therefore partially answers the open problem.

On the other hand, Coladangelo et al. [CVZ20] proved that their protocol is also an argument
of quantum knowledge (AoQK). We leave it open to study if ours is also a proof/argument of
knowledge.

3. We construct a CV-NIZK for QMA with quantum preprocessing in the quantum random
oracle model. This quantum preprocessing is the one where the verifier sends a random
Pauli-basis states to the prover. Our construction uses the Fiat-Shamir transformation. Im-
portantly, the quantum preprocessing can be replaced with the setup that distributes Bell

3

Table 1: Comparison of NIZKs for QMA.

Reference Soundness ZK Ver. Model Assumption Misc

[ACGH20] comp. comp. C SP LWE + QRO
[CVZ20] comp. comp. Q+C CRS + (V → P) LWE AoQK
[BG20] stat. stat. Q SP None
[Shm21] comp. comp. Q MDV LWE reusable

[BCKM21] comp. comp. Q MDV LWE
reusable and
single-witness

[BM21] comp. stat. C CRS iO + QRO (heuristic)
Section 3 stat. stat. C QSP None

Section 4
stat.
comp.

comp.
stat.

Q+C CRS + (V → P) LWE dual-mode

Section 5
comp.
(query)

comp.
(query)

C V → P/Bell pair QRO

In column “Soundness” (resp. “ZK”), stat., and comp. mean statistical, and computational soundness
(resp. zero-knowledge), respectively. Also, comp.(query) means that only the number of queries should be
polynomial. In column “Ver.”, “Q” and “C” mean that the verification is quantum and classical, respectively,
and “Q+C” means that the verifier needs to send a quantum message in preprocessing but the online phase
of verification is classical. QRO means the quantum random oracle.

pairs among the prover and the verifier. The distribution of Bell pairs by the setup can be
considered as a “quantum analogue” of the CRS. This result gives an answer to our third
question (and the second question as well). (Note that both the soundness and zero-knowledge
property of the construction are computational one, but it does not mean that we use some
computational assumptions: just the oracle query is restricted to be polynomial time.)

Comparison among NIZKs for QMA. We give more comparisons among our and known
constructions of NIZKs for QMA. Since we already discuss comparisons with ours and [BG20,
CVZ20], we discuss comparisons with other works. A summary of the comparisons is given in
Table 1.

Alagic et al. [ACGH20] gave a construction of a NIZK for QMA in the SP model. Their
protocol has an advantage that both the trusted party and verifier are completely classical. On the
other hand, the drawback is that only computational soundness and zero-knowledge are achieved,
whereas our first two constructions achieve (at least) either statistical soundness or zero-knowledge.
Their protocol also uses the Fiat-Shamir transformation with quantum random oracle like our third
result, but their setup is the secret parameter model, whereas ours can be the sharing Bell pair
model, which is a quantum analogue of the CRS model.

Shmueli [Shm21] gave a construction of a NIZK for QMA in the malicious designated-verifier
(MDV) model, where a trusted party generates a CRS and the verifier sends an instance-independent
classical message to the prover as preprocessing. In this model, the preprocessing is reusable, i.e.,
a single preprocessing can be reused to generate arbitrarily many proofs later. This is a crucial
advantage of their construction compared to ours. On the other hand, in their protocol, proofs are
quantum and thus the verifier should perform quantum computations in the online phase whereas
the online phase of the verifier is classical in our constructions. Also, their protocol only satis-
fies computational soundness and zero-knowledge whereas we can achieve (at least) either of them
statistically.

Recently, Bartusek et al. [BCKM21] gave another construction of a NIZK for QMA in the MDV
model that has an advantage that the honest prover only uses a single copy of a witness. (Note
that all other NIZKs for QMA including ours require the honest prover to take multiple copies of

4

a witness if we require neglible completeness and soundness errors.) However, their construction
also requires quantum verifier in the online phase and only achieves computational soundness and
zero-knowledge similarly to [Shm21].

Subsequently to our work, Bartusek and Malavolta [BM21] recently constructed the first CV-
NIZK argument for QMA in the CRS model assuming the LWE assumption and ideal obfuscation
for classical circuits. An obvious drawback is the usage of ideal obfuscation, which has no provably
secure instantiation.2 They also construct a witness encryption scheme for QMA under the same
assumptions. They use the verification protocol of Mahadev [Mah18] and therefore the LWE
assumption is necessary. If our CV-NIZK in the QSP model is used, instead, a witness encryption
for QMA (with quantum ciphertext) would be constructed without the LWE assumption, which
is one interesting application of our results.

1.3 Technical Overview

Classically verifiable NIZK for QMA in the QSP model. Our starting point is the NIZK
for QMA in [BG20], which is based on the fact that a QMA language can be reduced to the 5-
local Hamiltonian problem with locally simulatable history states [BG20, GSY19]. (We will explain
later the meaning of “locally simulatable”.) An instance x corresponds to an N -qubit Hamiltonian
Hx of the form Hx =

∑M
i=1 pi

I+siPi
2 , where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,∑M

i=1 pi = 1, and Pi is a tensor product of Pauli operators (I,X, Y, Z) with at most 5 nontrivial
Pauli operators (X,Y, Z). There are 0 < α < β < 1 with β −α = 1/poly(|x|) such that if x is a yes
instance, then there exists a state ρhist (called the history state) such that Tr(ρhistHx) ≤ α, and if
x is a no instance, then for any state ρ, we have Tr(ρHx) ≥ β.

The completeness and the soundness of the NIZK for QMA in [BG20] is based on the posthoc
verification protocol [FHM18], which is explained as follows. To prove that x is a yes instance, the
prover sends the history state to the verifier. The verifier first chooses Pi with probability pi, and
measures each qubit in the Pauli basis corresponding to Pi. Let mj ∈ {0, 1} be the measurement
result on jth qubit. The verifier accepts if (−1)⊕jmj = −si and rejects otherwise. The probability
that the verifier accepts is 1−Tr(ρHx) when the prover’s quantum message is ρ, and therefore the
verifier accepts with probability at least 1−α if x is a yes instance and the prover is honest whereas
it accepts with probability at most 1−β if x is a no instance. (See Lemma 2.5 and [FHM18].) The
gap between completeness and soundness can be amplified by simple parallel repetitions.

The verifier in the posthoc protocol is, however, not classical, because it has to receive a
quantum state and measure each qubit. Our first idea to make the verifier classical is to use the
quantum teleportation. Suppose that the prover and verifier share sufficiently many Bell pairs at the
beginning. Then the prover can send the history state to the verifier with classical communication
by the quantum teleportation. Though this removes the necessity of quantum communication, the
verifier still needs to be quantum since it has to keep halves of Bell pairs and perform a measurement
after receiving a proof.

To solve the problem, we utilize our observation that the verifier’s measurement and the prover’s
measurement commute with each other, which is our second idea. In other words, we can let the
verifier perform the measurement at the beginning without losing completeness or soundness. In
the above quantum-teleportation-based protocol, when the prover sends its measurement outcomes
{(xj , zj)}j∈[N] to the verifier, the verifier’s state collapses to XxZzρhistZ

zXx where ρhist denotes

the history state and XxZz means
∏N
j=1X

xj
j Z

zj
j . Then the verifier applies the Pauli correction

2In the latest version, they give a candidate instantiation based on indistinguishability obfuscation and random
oracles. However, the instantiation is heuristic since they obfuscate circuits that involve the random oracle, which
cannot be done in the quantum random oracle model.

5

XxZz and then measures each qubit in a Pauli basis. We observe that the Pauli correction can
be applied even after the verifier measures each qubit because X

xj
j Z

zj
j before a Pauli measurement

on the jth qubit has the same effect as XOR by zj or xj after the measurement (see Lemma 2.2).
Therefore, if a trusted party generates Bell pairs and measures half of them in random Pauli basis
and gives the unmeasured halves to the prover as a proving key while the measurement outcomes
to the verifier as a verification key, a completely classical verifier can verify the QMA promise
problem.

The last remaining issue is that the distribution of bases that appear in Pi depends on the
instance x, and thus we cannot sample the distribution at the setup phase where x is not decided
yet. To resolve this issue, we use the following idea (which was also used in [ACGH20]). The
trusted party just chooses random bases, and the verifier just accepts if they are inconsistent to
Pi chosen by the verifier in the online phase. Since there are only 3 possible choices of the bases
and Pi non-trivially acts on at most 5 qubits, the probability that the randomly chosen bases are
consistent to Pi is at least 3−5.3 Therefore we can still achieve inverse-polynomial gap between
completeness and soundness.

The zero-knowledge property of the NIZK for QMA in [BG20] uses the local simulatability of
the history state. It roughly means that a classical description of the reduced density matrix of the
history state for any 5-qubit subsystem can be efficiently computable without knowing the witness.
Broadbent and Grilo [BG20] used this local simulatability to achieve the zero-knowledge property

as follows. A trusted party randomly chooses (x̂, ẑ)
$← {0, 1}N × {0, 1}N , and randomly picks a

random subset SV ⊆ [N] such that 1 ≤ |SV | ≤ 5. Then it gives (x̂, ẑ) to the prover as a proving key
and gives {(x̂j , ẑj)}j∈SV

to the verifier as a verification key where x̂j and ẑj denote the j-th bits of x̂
and ẑ, respectively. The prover generates the history state ρhist and sends ρ′ = X x̂Z ẑρhistZ

ẑX x̂ to
the verifier as a proof. The verifier then measures each qubit as is done in the posthoc verification
protocol. This needs the quantum verifier, but as we have explained, we can make the verifier
classical by using the teleportation technique.

An intuitive explanation of why it is zero-knowledge is that the verifier can access at most
five qubits of the history state, because other qubits are quantum one-time padded. Due to the
local simulatability of the history state, the information that the verifier gets can be classically
simulated without the witness. This results in our classically verifiable NIZK for QMA in the
QSP model. In our QSP model, the trusted setup sends random Pauli basis states to the prover
and their classical description to the verifier. Furthermore, the trusted setup also sends randomly

chosen (x̂, ẑ)
$← {0, 1}N × {0, 1}N to the prover, and {(x̂j , ẑj)}j∈SV

to the verifier with randomly
chosen subset SV .

Classically verifiable NIZK for QMA in the CRS + (V → P) model. We want to reduce
the trust in the setup, so let us first examine what happens if the verifier runs the setup as
preprocessing. Unfortunately, such a construction is not zero-knowledge since the verifier can know
whole bits of (x̂, ẑ) and thus it may obtain information of qubits of ρhist that are outside of SV , in
which case we cannot rely on the local simulatability. Therefore, for ensuring the zero-knowledge
property, we have to make sure that the verifier only knows {(x̂j , ẑj)}j∈SV

. Then suppose that the
prover chooses (x̂, ẑ) whereas other setups are still done by the verifier. Here, the problem is how
to let the verifier know {(x̂j , ẑj)}j∈SV

. A naive solution is that the verifier sends SV to the prover
and then the prover returns {(x̂j , ẑj)}j∈SV

. However, such a construction is not sound since it is
essential that the prover “commits” to a single quantum state independently of SV when reducing

3There is a subtle issue that the probability depends on the number of qubits on which Pi non-trivially acts. We
adjust this by an additional biased coin flipping.

6

soundness to the local Hamiltonian problem. So what we need is a protocol between the prover and
verifier where the verifier only gets {(x̂j , ẑj)}j∈SV

and the prover does not learn SV . We observe
that this is exactly the functionality of 5-out-of-N oblivious transfer [BCR87].

Though it may sound easy to solve the problem by just using a known two-round 5-out-of-
N oblivious transfer, there is still some subtlety. For example, if we use an oblivious transfer
that satisfies only indistinguishability-based notion of receiver’s security (e.g., [NP01, BD18]),4

which just says that the sender cannot know indices chosen by the receiver, we cannot prove
soundness. Intuitively, this is because the indistinguishability-based receiver’s security does not
prevent a malicious sender from generating a malicious message such that the message derived on
the receiver’s side depends on the chosen indices, which does not force the prover to “commit” to
a single state.

If we use a fully-simulatable [Lin08] oblivious transfer, the above problem does not arise and
we can prove both soundness and zero-knowledge. However, the problem is that we are not aware
of any efficient fully-simulatable 5-out-of-N oblivious transfer based on post-quantum assumptions
(in the CRS model). The LWE-based construction of [PVW08] does not suffice for our purpose
since a CRS can be reused only a bounded number of times in their construction. Recently, Quach
[Qua20] resolved this issue, and proposed an efficient fully-simulatable 1-out-of-2 oblivious transfer
based on the LWE assumption.5 We can extend his construction to a fully-simulatable 1-out-of-N
oblivious transfer efficiently. However, we do not know how to convert this into 5-out-of-N one
efficiently without losing the full-simulatability. We note that a conversion from 1-out-of-N to
5-out-of-N oblivious transfer by a simple 5-parallel repetition loses the full-simulatability against
malicious senders since a malicious sender can send different inconsistent messages in different
sessions, which should be considered as an attack against the full-simulatability. One possible
way to prevent such an inconsistent message attack is to let the sender prove that the messages
in all sessions are consistent by using (post-quantum) CRS-NIZK for NP [PS19]. However, such
a construction is very inefficient since it uses the underlying 1-out-of-N oblivious transfer in a
non-black-box manner, which we want to avoid.

We note that the parallel repetition construction preserves indistinguishability-based receiver’s
security and fully-simulatable sender’s security for two-round protocols. Therefore, we have an
efficient (black-box) construction of 5-out-of-N oblivious transfer if we relax the receiver’s security
to the indistinguishability-based one. As already explained, such a security does not suffice for
proving soundness. To resolve this issue, we add an additional mechanism to force the prover to
“commit” to a single state. Specifically, instead of directly sending (x, z) by a 5-out-of-N oblivious
transfer, the prover sends a commitment of (x, z) and then sends (x, z) and the corresponding
randomness used in the commitment by a 5-out-of-N oblivious transfer. When the verifier receives
{xj , zj}j∈SV

and corresponding randomness, it checks if it is consistent to the commitment by
recomputing it, and immediately rejects if not. This additional mechanism prevents a malicious
prover’s inconsistent behavior, which resolves the problem in the proof of soundness.

Finally, our construction satisfies the dual-mode property if we assume appropriate dual-mode
properties for building blocks. A dual-mode oblivious transfer (in the CRS model) has two modes
of generating a CRS and it satisfies statistical (indistinguishability-based) receiver’s security in one
mode and statistical (full-simulation-based) sender’s security in the other mode. The construction
of [Qua20] is an instantiation of a 1-out-of-2 oblivious transfer with such a dual-mode property, and
this can be converted into 5-out-of-N one as explained above. We stress again that it is important
to relax the receiver’s security to the indistinguishability-based one to make the conversion work.

4The indistinguishability-based receiver’s security is also often referred to as half-simulation security [CNs07].
5Actually, his construction satisfies a stronger UC-security [Can20, PVW08].

7

A dual-mode commitment (in the CRS model) has two modes of generating a CRS and it is
statistically binding in one mode and statistically hiding in the other mode. We can use lossy
encryption [BHY09, Reg09] as an instantiation of such a dual-mode commitment. Both of dual-
mode 5-out-of-N oblivious transfer and lossy encryption are based on the LWE assumption (with
super-polynomial modulus for the former) and fairly efficient in the sense that they do not rely
on non-black-box techniques. Putting everything together, we obtain a fairly efficient (black-box)
construction of a dual-mode NIZK for QMA in the CRS + (V → P) model.

NIZK for QMA via Fiat-Shamir transformation. Finally, let us explain our construction
of NIZK for QMA via the Fiat-Shamir transformation. It is based on so-called the Ξ-protocol for
QMA [BG20], which is equal to the standard Σ-protocol except that the first message is quantum.
Because the first message is quantum, the Fiat-Shamir technique cannot be directly applied. Our
idea is again to use the teleportation technique: if we introduce a setup that sends random Pauli
basis states to the prover and their classical description to the verifier, the first message can be
classical. We thus obtain a (classical) Σ-protocol in the QSP model, where the trusted setup sends
random Pauli basis states to the prover and their classical description to the verifier. This task
can be, actually, done by the verifier, not the trusted setup, unlike our first construction. We
therefore obtain a (classical) Σ-protocol with quantum preprocessing (Definition 5.3), where the
verifier sends random Pauli basis states to the prover as the preprocessing.

We then apply the (classical) Fiat-Shamir transformation to the Σ-protocol with quantum
preprocessing, and obtain the CV-NIZK for QMA in the quantum random oracle plus V → P
model (Definition 5.1), where V → P means the communication from the verifier to the prover as
the preprocessing. Note that we are considering a classical Σ-protocol with quantum preprocessing
differently from previous works. By a close inspection, we show that an existing security proof for
classical Σ-protocol in the QROM [DFM20] also works in our setting.

Importantly, in this case, unlike the previous two constructions, the quantum preprocessing
can be replaced with the setup that distributes Bell pairs among the prover and the verifier. As
a corollary, we therefore obtain NIZK for QMA in the shared Bell pair model (plus quantum
random oracle). The distribution of Bell pairs by a trusted setup can be considered as a “quantum
analogue” of the CRS, and therefore we can say that we obtain NIZK for QMA in the “quantum
CRS” model via the Fiat-Sharmir transformation.

1.4 Related Work

More related works on quantum NIZKs. Kobayashi [Kob03] studied (statistically sound
and zero-knowledge) NIZKs in a model where the prover and verifier share Bell pairs, and gave a
complete problem in this setting. It is unlikely that the complete problem contains (even a subclass
of) NP [MW18] and thus even a NIZK for all NP languages is unlikely to exist in this model. Note
that if we consider the prover and verifier sharing Bell pairs in advance like this model, the verifier’s
preprocessing message of our protocols (and the protocol of [CVZ20]) becomes classical. Chailloux
et al. [CCKV08] showed that there exists a (statistically sound and zero-knowledge) NIZK for all
languages in QSZK in the help model where a trusted party generates a pure state depending on
the statement to be proven and gives copies of the state to both prover and verifier.

Interactive zero-knowledge for QMA. There are several works of interactive zero-knowledge
proofs/arguments for QMA. The advantage of these constructions compared to non-interactive
ones is that they do not require any trusted setup. Broadbent, Ji, Song, and Watrous [BJSW20]
gave the first construction of a zero-knowledge proof for QMA. Broadbent and Grilo [BG20] gave

8

an alternative simpler construction. Bitansky and Shmueli [BS20] gave the first constant round
zero-knowledge argument for QMA with negligible soundness error. Brakerski and Yuen [BY20]
gave a construction of 3-round delayed-input zero-knowledge proof for QMA where the prover
needs to know the statement and witness only for generating its last message. By considering the
first two rounds as preprocessing, we can view this construction as a NIZK in a certain kind of
preprocessing model. However, their protocol has a constant soundness error, and it seems difficult
to prove the zero-knowledge property for the parallel repetition version of it.

2 Preliminaries

Notations. We use λ to denote the security parameter throughout the paper. For a positive
integer N , [N] means the set {1, 2, ..., N}. For a probabilistic classical or quantum algorithm A,

we denote by y
$← A(x) to mean A runs on input x and outputs y. For a finite set S of classical

strings, x
$← S means that x is uniformly randomly chosen from S. For a classical string x, xi

denotes the i-th bit of x. For classical strings x and y, x‖y denotes the concatenation of x and
y. We write poly to mean an unspecified polynomial and negl to mean an unspecified negligible
function. We use PPT to stand for (classical) probabilistic polynomial time and QPT to stand for
quantum polynomial time. When we say that an algorithm is non-uniform QPT, it is expressed as
a family of polynomial size quantum circuits with quantum advice.

2.1 Quantum Computation Preliminaries

Here, we briefly review basic notations and facts on quantum computations.
For any quantum state ρ over registers A and B, TrA(ρ) is the partial trace of ρ over A. We use

I to mean the identity operator. (For simplicity, we use the same I for all identity operators with
different dimensions, because the dimension of an identity operator is clear from the context.) We

use X, Y , and Z to mean Pauli operators i.e., X :=

(
0 1
1 0

)
, Z :=

(
1 0
0 −1

)
, and Y := iXZ.

We use H to mean Hadamard operator, i.e., H := 1√
2

(
1 1
1 −1

)
. We also define the T operator

by T :=

(
1 0

0 eiπ/4

)
. The CNOT := |0〉〈0| ⊗ I + |1〉〈1| ⊗X is the controlled-NOT operator.

We define V (Z) := I, V (X) := H, and V (Y) := 1√
2

(
1 1
i −i

)
so that for each W ∈ {X,Y, Z},

V (W) |0〉 and V (W) |1〉 are the eigenvectors of W with eigenvalues +1 and −1, respectively. For
each W ∈ {X,Y, Z}, we call {V (W) |0〉 , V (W) |1〉} the W -basis.

When we consider an N -qubit system, for a Pauli operator Q ∈ {X,Y, Z}, Qj denotes the
operator that acts on j-th qubit as Q and trivially acts on all the other qubits. Similarly, Vj(W)
denotes the operator that acts on j-th qubit as V (W) and trivially acts on all the other qubits.
For any x ∈ {0, 1}N and z ∈ {0, 1}N , XxZz means

∏N
j=1X

xj
j Z

zj
j .

We call the state 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) the Bell pair. We call the set {|φx,z〉}(x,z)∈{0,1}2 the

Bell basis where |φx,z〉 := (XxZz⊗ I) |0〉⊗|0〉+|1〉⊗|1〉√
2

. Let us define U(X) := V (X), U(Y) := V (Y)X,

and U(Z) := V (Z).

Lemma 2.1 (State Collapsing). If we project one qubit of a Bell pair onto V (W)|m〉 with W ∈
{X,Y, Z} and m ∈ {0, 1}, the other qubit collapses to U(W)|m〉.

9

Lemma 2.2 (Effect of XxZz before measurement). For any N -qubit state ρ, (W1, ...,WN) ∈
{X,Y, Z}N , and (x, z) ∈ {0, 1}N ×{0, 1}N , the distributions of (m′1, ...m

′
n) sampled in the following

two ways are identical.

1. For j ∈ [N], measure j-th qubit of ρ in Wj basis, let mj ∈ {0, 1} be the outcome, and set

m′j :=


mj ⊕ xj (Wj = Z),
mj ⊕ zj (Wj = X),

mj ⊕ xj ⊕ zj (Wj = Y).

2. For j ∈ [N], measure j-th qubit of XxZzρZzXx in Wj basis and let m′j ∈ {0, 1} be the
outcome.

The proofs of the above lemmas are straightforward.

Lemma 2.3 (Pauli Mixing). Let ρ be an arbitrary quantum state over registers A and B, and let
N be the number of qubits in A. Then we have

1

22N

∑
x∈{0,1}N ,z∈{0,1}N

(XxZz ⊗ IB) ρ (ZzXx ⊗ IB) =
1

2N
IA ⊗ TrA(ρ).

This is well-known, and one can find a proof in e.g., [Mah18].

Lemma 2.4 (Quantum Teleportation). Suppose that we have N Bell pairs between registers A and
B, i.e., 1

2N/2

∑
s∈{0,1}N |s〉A ⊗ |s〉B, and let ρ be an arbitrary N -qubit quantum state in register C.

Suppose that we measure j-th qubits of C and A in the Bell basis and let (xj , zj) be the measurement
outcome for all j ∈ [N]. Let x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN . Then the (x, z) is uniformly
distributed over {0, 1}N × {0, 1}N . Moreover, conditioned on the measurement outcome (x, z), the
resulting state in B is XxZzρZzXx.

This is also well-known, and one can find a proof in e.g., [NC00].
The following lemma is implicit in previous works e.g., [MNS18, FHM18].

Lemma 2.5. Let

H :=
I + s(

∏
j∈SX

Xj)(
∏
j∈SY

Yj)(
∏
j∈SZ

Zj)

2

be an N -qubit projection operator, where s ∈ {+1,−1}, and SX , SY , and SZ are disjoint subsets
of [N]. For any N -qubit quantum state ρ, suppose that for all j ∈ SW , where W ∈ {X,Y, Z}, we
measure j-th qubit of ρ in the W -basis, and let mj ∈ {0, 1} be the outcome. Then we have

Pr
[
(−1)

⊕
j∈SX∪SY ∪SZ

mj = −s
]

= 1− Tr(ρH).

Proof of Lemma 2.5. Let us define V := (
∏
j∈SX

Vj(X))(
∏
j∈SY

Vj(Y))(
∏
j∈SZ

Vj(Z)), and |m〉 :=

10

⊗N
j=1 |mj〉. Then,

Pr
[
(−1)

⊕
j∈SX∪SY ∪SZ

mj = −s
]

=
∑

m∈{0,1}N
〈m|V †ρV |m〉1− s(−1)

⊕
j∈SX∪SY ∪SZ

mj

2

=
∑

m∈{0,1}N
〈m|V †ρV

I − s
∏
j∈SX∪SY ∪SZ

Zj

2
|m〉

= Tr
[
V †ρV

I − s
∏
j∈SX∪SY ∪SZ

Zj

2

]
= Tr

[
ρV

I − s
∏
j∈SX∪SY ∪SZ

Zj

2
V †
]

= Tr
[
ρ(I −H)

]
= 1− Tr(ρH).

2.2 QMA and Local Hamiltonian Problem

Definition 2.6 (QMA). We say that a promise problem L = (Lyes, Lno) is in QMA if there is a
polynomial ` and a QPT algorithm V such that the following is satisfied:

• For any x ∈ Lyes, there exists a quantum state w of `(|x|)-qubit (called a witness) such that
we have Pr[V (x, w) = 1] ≥ 2/3.

• For any x ∈ Lno and any quantum state w of `(|x|)-qubit, we have Pr[V (x, w) = 1] ≤ 1/3.

For any x ∈ L, we denote by RL(x) to mean the (possibly infinite) set of all quantum states w such
that Pr[V (x, w) = 1] ≥ 2/3.

Recently, Broadbent and Grilo [BG20] showed that any QMA problem can be reduced to a
5-local Hamiltonian problem with local simulatability. (See also [GSY19].) Moreover, it is easy to
see that we can make the Hamiltonian Hx be of the form Hx =

∑M
i=1 pi

I+siPi
2 where si ∈ {+1,−1},

pi ≥ 0,
∑M

i=1 pi = 1, and Pi is a tensor product of Pauli operators (I,X,Z, Y) with at most 5
nontrivial Pauli operators (X,Y, Z). See Appendix A for more details. Then we have the following
lemma.

Lemma 2.7 (QMA-completeness of 5-local Hamiltonian problem with local simulatability [BG20]).
For any QMA promise problem L = (Lyes, Lno), there is a classical polynomial-time computable
deterministic function that maps x ∈ {0, 1}∗ to an N -qubit Hamiltonian Hx of the form Hx =∑M

i=1 pi
I+siPi

2 , where N = poly(|x|), M = poly(|x|), si ∈ {+1,−1}, pi > 0,
∑M

i=1 pi = 1, and Pi is
a tensor product of Pauli operators (I,X, Y, Z) with at most 5 nontrivial Pauli operators (X,Y, Z),
and satisfies the following: There are 0 < α < β < 1 such that β − α = 1/poly(|x|) and

• if x ∈ Lyes, then there exists an N -qubit state ρ such that Tr(ρHx) ≤ α, and

• if x ∈ Lno, then for any N -qubit state ρ, we have Tr(ρHx) ≥ β.

Moreover, for any x ∈ Lyes, we can convert any witness w ∈ RL(x) into a state ρhist, called the
history state, such that Tr(ρhistHx) ≤ α in quantum polynomial time. Moreover, there exists a
classical deterministic polynomial time algorithm Simhist such that for any x ∈ Lyes and any subset

11

S ⊆ [N] with |S| ≤ 5, Simhist(x, S) outputs a classical description of an |S|-qubit density matrix
ρS such that ‖ρS − Tr[N]\Sρhist‖tr = negl(λ) where Tr[N]\Sρhist is the state of ρhist in registers
corresponding to S tracing out all other registers.

2.3 Classically-Verifiable Non-Interactive Zero-knowledge Proofs

Definition 2.8 (CV-NIZK in the QSP model). A classically-verifiable non-interactive zero-knowledge
proof (CV-NIZK) for a QMA promise problem L = (Lyes, Lno) in the quantum secret parameter
(QSP) model consists of algorithms Π = (Setup,Prove,Verify) with the following syntax:

Setup(1λ): This is a QPT algorithm that takes the security parameter 1λ as input and outputs a
quantum proving key kP and a classical verification key kV .

Prove(kP , x, w
⊗k): This is a QPT algorithm that takes the proving key kP , a statement x, and

k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input and outputs a classical proof π.

Verify(kV , x, π): This is a PPT algorithm that takes the verification key kV , a statement x, and a
proof π as input and outputs > indicating acceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties for some 0 < s < c < 1 such that c−s > 1/poly(λ).
Especially, when we do not specify c and s, they are set as c = 1− negl(λ) and s = negl(λ).

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr
[
Verify(kV , x, π) = > : (kP , kV)

$← Setup(1λ), π
$← Prove(kP , x, w

⊗k)
]
≥ c.

(Adaptive Statistical) s-Soundness. For all unbounded-time adversary A, we have

Pr
[
x ∈ Lno ∧ Verify(kV , x, π) = > : (kP , kV)

$← Setup(1λ), (x, π)
$← A(kP)

]
≤ s.

(Adaptive Statistical Single-Theorem) Zero-Knowledge. There exists a PPT simulator
Sim such that for any unbounded-time distinguisher D, we have∣∣∣Pr

[
DOP (kP ,·,·)(kV) = 1

]
− Pr

[
DOS(kV ,·,·)(kV) = 1

]∣∣∣ = negl(λ)

where (kP , kV)
$← Setup(1λ), D can make at most one query, which should be of the form (x, w⊗k)

where w ∈ RL(x) and w⊗k is unentangled with D’s internal registers,6 OP (kP , x, w
⊗k) returns

Prove(kP , x, w
⊗k), and OS(kV , x, w

⊗k) returns Sim(kV , x).

It is easy to see that we can amplify the gap between completeness and soundness thresholds
by a simple parallel repetition. Moreover, we can see that this does not lose the zero-knowledge
property. Therefore, we have the following lemma.

Lemma 2.9 (Gap Amplification for CV-NIZK). If there exists a CV-NIZK for L in the QSP model
that satisfies c-completeness and s-soundness, for some 0 < s < c < 1 such that c− s > 1/poly(λ),
then there exists a CV-NIZK for L in the QSP model (with (1−negl(λ))-completeness and negl(λ)-
soundness).

6Though our protocols are likely to remain secure even if they can be entangled, we assume that they are un-
entangled for simplicity. To the best of our knowledge, none of existing works on interactive or non-interactive
zero-knowledge for QMA [BJSW20, CVZ20, BS20, BG20, Shm21, BCKM21] considered entanglement between a
witness and distinguisher’s internal register.

12

Proof. Let Π = (Setup,Prove,Verify) be a CV-NIZK for L in the SP model that satisfies c-
completeness, s-soundness, and the zero-knowledge property for some 0 < s < c < 1 such that
c − s > 1/poly(λ). Let k be the number of copies of a witness Prove takes as input. For any
polynomial N = poly(λ), ΠN = (SetupN ,ProveN ,VerifyN) be the N -parallel version of Π. That
is, SetupN and ProveN run Setup and Prove N times parallelly and outputs tuples consisting of
outputs of each execution, respectively where ProveN takes Nk copies of the witness as input.
VerifyN takes N -tuple of the verification key and proof, runs Verify to verify each of them sepa-
rately, and outputs > if the number of executions of Verify that outputs > is larger than N(α+β)

2 .

By Hoeffding’s inequality, it is easy to see that we can take N = O
(

log2 λ
(α−β)2

)
so that ΠN satisfies

(1− negl(λ))-completeness and negl(λ)-soundness.
What is left is to prove that ΠN satisfies the zero-knowledge property. This can be reduced

to the zero-knowledge property of Π by a standard hybrid argument. More precisely, for each
i ∈ {0, ..., N}, let Oi be the oracle that works as follows where k′P and k′V denote the proving and
verification keys of ΠN , respectively.

Oi(k′P = (k1
P , ..., k

N
P), k′V = (k1

V , ..., k
N
V), x, w⊗Nk): It works as follows:

• For 1 ≤ j ≤ i, it computes πj
$← Sim(kjV , x).

• For i < j ≤ N , it computes πj
$← Prove(kjP , x, w

⊗k) where it uses the (k(j − 1) + 1)-th
to kj-th copies of w.

• Output π := (π1, ..., πN).

Clearly, we have O0(k′P , k
′
V , ·, ·) = OP (k′P , ·, ·) and ON (k′P , k

′
V , ·, ·) = OS(k′V , ·, ·).7 Therefore, it

suffices to prove that no distinguisher can distinguish Oi(k′P , k′V , ·, ·) and Oi+1(k′P , k
′
V , ·, ·) for any

i ∈ {0, 1, ..., N −1}. For the sake of contradiction, suppose that there exists a distinguisher D′ that
distinguishes Oi(k′P , k′V , ·, ·) and Oi+1(k′P , k

′
V , ·, ·) with a non-negligible advantage by making one

query of the form (x, w⊗Nk). Then we construct a distinguisher D that breaks the zero-knowledge
property of Π as follows:

DO(kV): D takes kV as input and is given a single oracle access to O, which is either OP (kP , ·, ·) or
OS(kV , ·, ·) where kP is the proving key corresponding to kV .8 (Remark that D is not given

kP .) It sets ki+1
V := kV (which implicitly defines ki+1

P := kP) and generates (kjP , k
j
V)

$←
Setup(1λ) for all j ∈ [N] \ {i + 1}. It sets k′V := (k1

V , ..., k
N
V) and runs D′O′(k′V) where when

D′ makes a query (x, w⊗Nk) to O′, D simulates the oracle O′ for D′ as follows:

– For 1 ≤ j ≤ i, D computes πj
$← Sim(kjV , x).

– For j = i + 1, D queries (x, w⊗k) to the external oracle O where it uses the (ki + 1)-th
to k(i+ 1)-th copies of w as part of its query, and lets πi+1 be the oracle’s response.

– For i+1 < j ≤ N , it computes πj
$← Prove(kjP , x, w

⊗k) where it uses the (k(j−1)+1)-th

to kj-th copies of w. We note that this can be simulated by D since it knows kjP for
j 6= i+ 1.

– D returns π′ := (π1, ..., πN) to D′ as a response from the oracle O′.

Finally, when D′ outputs b, D also outputs b.

7OP (k′P , ·, ·) and OS(k′V , ·, ·) mean the corresponding oracles for ΠN .
8OP (kP , ·, ·) and OS(kV , ·, ·) mean the corresponding oracles for Π by abuse of notation.

13

We can see that the oracleO′ simualted byD works similarly toOi(k′P , k′V , ·, ·) whenO isOP (kP , ·, ·)
and works similarly to Oi+1(k′P , k

′
V , ·, ·) when O is OS(kV , ·, ·) where k′P = (k1

P , ..., k
N
P). Therefore,

by the assumption that D′ distinguishes Oi(k′P , k′V , ·, ·) and Oi+1(k′P , k
′
V , ·, ·) with a non-negligible

advantage, D distinguishes OP (kP , ·, ·) and OS(kV , ·, ·) with a non-negligible advantage. However,
this contradicts the zero-knowledge property of Π. Therefore, such D′ does not exist, which com-
pletes the proof of Lemma 2.9.

3 CV-NIZK in the QSP model

In this section, we construct a CV-NIZK in the QSP model (Definition 2.8). Specifically, we prove
the following theorem.

Theorem 3.1. There exists a CV-NIZK for QMA in the QSP model (without any computational
assumption).

Our construction of a CV-NIZK for a QMA promise problem L is given in Figure 1 where Hx,
N , M , pi, si, Pi, α, β, and ρhist are as in Lemma 2.7 for L and Vj(Wj) is as defined in Section 2.1.

We note that there is a slightly simpler construction of CV-NIZK as shown in Figure 8 in
Appendix C. However, we consider the construction given in Figure 1 as our main construction
since this is more convenient to extend to the computationally secure construction given in Section 4.

Moreover, if we require only the completeness and the soundness, there is a much simpler
construction. For details, see Appendix D.

To show Theorem 3.1, we prove the following lemmas.

Lemma 3.2 (Completeness and Soundness). ΠNIZK satisfies
(
1− α

N ′

)
-completeness and

(
1− β

N ′

)
-

soundness where N ′ := 35
∑5

i=1

(
N
i

)
.

Lemma 3.3 (Zero-Knowledge). ΠNIZK satisfies the zero-knowledge property.

Since
(
1− α

N ′

)
−
(

1− β
N ′

)
= β−α

N ′ ≥ 1/poly(λ), by combining Lemmas 2.9, 3.2 and 3.3, Theo-

rem 3.1 follows.
In the following, we give proofs of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. We prove this lemma by considering virtual protocols that do not change
completeness and soundness. For more details, see Appendix B. First, we consider the virtual
protocol 1 described in Figure 2. There are two differences from the original protocol. The first
is that kV includes the whole (x̂, ẑ) instead of {x̂j , ẑj}j∈SV

. This difference does not change the
(possibly malicious) prover’s view since kV is not given to the prover. The second is that the setup
algorithm generates N Bell pairs and gives each halves to the prover and verifier, and the verifier
obtains (m1, ...,mN) by measuring his halves in Pauli basis. Because the verifier’s measurement
and the prover’s measurement commute with each other, in the virtual protocol 1, the verifier’s
acceptance probability does not change even if the verifier chooses (W1, ...,WN) and measures ρV in
the corresponding basis to obtain outcomes (m1, ...,mN) before ρP is given to the prover. Moreover,
conditioned on the above measurement outcomes, the state in P collapses to

⊗N
j=1(U(Wj)|mj〉)

(See Lemma 2.1). Therefore, the virtual protocol 1 is exactly the same as the original protocol
from the prover’s view, and the verifier’s acceptance probability of the virtual protocol 1 is the
same as that of the original protocol ΠNIZK for any possibly malicious prover.

Next, we further modify the protocol to define the virtual protocol 2 described in Figure 3. The
difference from the virtual protocol 1 is that instead of setting m′j , the verification algorithm applies

14

Setup(1λ): The setup algorithm chooses (W1, ...,WN)
$← {X,Y, Z}N , (m1, ...,mN)

$← {0, 1}N ,

(x̂, ẑ)
$← {0, 1}N ×{0, 1}N , and a uniformly random subset SV ⊆ [N] such that 1 ≤ |SV | ≤ 5,

and outputs a proving key kP :=
(
ρP :=

⊗N
j=1(U(Wj)|mj〉), x̂, ẑ

)
and a verification key

kV := (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
).

Prove(kP , x, w): The proving algorithm parses (ρP , x̂, ẑ) ← kP , generates the history state ρhist

for Hx from w, and computes ρ′hist := X x̂Z ẑρhistZ
ẑX x̂. It measures j-th qubits of ρ′hist and

ρP in the Bell basis for j ∈ [N]. Let x := x1‖x2‖...‖xN , and z := z1‖z2‖...‖zN where
(xj , zj) ∈ {0, 1}2 denotes the outcome of j-th measurement. It outputs a proof π := (x, z).

Verify(kV , x, π): The verification algorithm parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
)← kV

and (x, z)← π, chooses i ∈ [M] according to the probability distribution defined by {pi}i∈[M]

(i.e., chooses i with probability pi). Let

Si := {j ∈ [N] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is consistent to
(SV , {Wj}j∈SV

) if and only if Si = SV and the jth Pauli operator of Pi is Wj for all j ∈ Si.
If Pi is not consistent to (SV , {Wj}j∈SV

), it outputs >. If Pi is consistent to (SV , {Wj}j∈SV
),

it flips a biased coin that heads with probability 1 − 3|Si|−5. If heads, it outputs >. If tails,
it defines

m′j :=


mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y)

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Figure 1: CV-NIZK ΠNIZK in the QSP model.

a corresponding Pauli Xx⊕x̂Zz⊕ẑ on ρV , and then measures it to obtain m′j . By Lemma 2.2, this
does not change the distribution of (m′1, ...,m

′
N). Therefore, the verifier’s acceptance probability

of the virtual protocol 2 is the same as that of the virtual protocol 1 for any possibly malicious
prover.

Therefore, it suffices to prove (1 − α
N ′)-completeness and (1 − β

N ′)-soundness for the virtual
protocol 2. When x ∈ Lyes and π is honestly generated, then ρ′V is the history state ρhist, which
satisfies Tr(ρhistHx) ≤ α, by the correctness of quantum teleportation(Lemma 2.4). For any fixed
Pi, the probability that Pi is consistent to (SV , {Wj}j∈SV

) and the coin tails is 1
N ′ . Therefore, by

Lemma 2.5 and Lemma 2.7, the verifier’s acceptance probability is 1− 1
N ′Tr(ρhistHx) ≥ 1− α

N ′ .
Let A be an adaptive adversary against soundness of virtual protocol 2. That is, A is given kP

and outputs (x, π). We say that A wins if x ∈ Lno and Verify(kV , x, π) = >. For any x, let Ex be the
event that the statement output by A is x, and ρ′V,x be the state in V right before the measurement
by Verify conditioned on Ex. Similarly to the analysis for the completeness, by Lemma 2.5 and

15

Setupvir-1(1λ): The setup algorithm generates N Bell-pairs between registers P and V and lets ρP

and ρV be quantum states in registers P and V, respectively. It chooses (x̂, ẑ)
$← {0, 1}N ×

{0, 1}N . It chooses a uniformly random subset SV ⊆ [N] such that 1 ≤ |SV | ≤ 5, and outputs
a proving key kP := (ρP , x̂, ẑ) and a verification key kV := (ρV , SV , x̂, ẑ).

Provevir-1(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.

Verifyvir-1(kV , x, π): The verification algorithm chooses (W1, ...,WN)
$← {X,Y, Z}N , and measures

j-th qubit of ρV in the Wj basis for all j ∈ [N], and lets (m1, ...,mN) be the measurement
outcomes. The rest of this algorithm is the same as Verify(kV , x, π) given in Figure 1.

Figure 2: The virtual protocol 1 for ΠNIZK

Setupvir-2(1λ): This is the same as Setupvir-1(1λ) in Figure 2.

Provevir-2(kP , x, w): This is the same as Prove(kP , x, w) in Figure 1.

Verifyvir-2(kV , x, π): The verification algorithm parses (ρV , SV , x̂, ẑ)← kV and (x, z)← π, computes

ρ′V := Xx⊕x̂Zz⊕ẑρV Z
z⊕ẑXx⊕x̂, chooses (W1, ...,WN)

$← {X,Y, Z}N , measures j-th qubit of
ρ′V in the Wj basis for all j ∈ [N], and lets (m′1, ...,m

′
N) be the measurement outcomes.

It chooses i ∈ [M] and defines Si ⊆ [N] similarly to Verify(kV , x, π) in Figure 1. If Pi is not
consistent to (SV , {Wj}j∈SV

), it outputs >. If Pi is consistent to (SV , {Wj}j∈SV
), it flips a

biased coin that heads with probability 1− 3|Si|−5. If heads, it outputs >. If tails, it outputs

> if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Figure 3: The virtual protocol 2 for ΠNIZK

Lemma 2.7, we have

Pr[A wins] =
∑
x∈Lno

Pr[Ex]

(
1− 1

N ′
Tr(ρ′V,xHx)

)
≤
∑
x∈Lno

Pr[Ex]

(
1− β

N ′

)
≤ 1− β

N ′
.

Proof of Lemma 3.3. We describe the simulator Sim below.

Sim(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
) ← kV and does the

following.

1. Generate the classical description of the density matrix ρSV
:= Simhist(x, SV) where

Simhist is as in Lemma 2.7.

2. Sample {xj , zj}j∈SV
according to the probability distribution of outcomes of the Bell-

basis measurements of the corresponding pairs of qubits of
(∏

j∈SV
X
x̂j
j Z

ẑj
j

)
ρSV

(∏
j∈SV

Z
ẑj
j X

x̂j
j

)

16

and
⊗

j∈SV
(U(Wj) |mj〉). We emphasize that this measurement can be simulated in a

classical probabilistic polynomial time since |SV | ≤ 5.

3. Choose (xj , zj)
$← {0, 1}2 for all j ∈ [N] \ SV .

4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

We prove that the output of this simulator is indistinguishable from the real proof. For proving
this, we consider the following sequences of modified simulators. We note that these simulators
may perform quantum computations unlike the real simulator.

Sim1(kV , x): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
) ← kV and does the

following.

1. Generate the classical description of the density matrix ρSV
:= Simhist(x, SV) where

Simhist is as in Lemma 2.7. (This step is the same as the step 1 of Sim(kV , x).)

2. Generate ρ̃′hist :=
(∏

j∈SV
X
x̂j
j Z

ẑj
j

)
ρSV

(∏
j∈SV

Z
ẑj
j X

x̂j
j

)
⊗ I[N]\SV

2|[N]\SV |
.

3. Measure j-th qubits of ρ̃′hist and ρP :=
⊗N

j=1(U(Wj)|mj〉) in the Bell basis for j ∈ [N],
and let (xj , zj) be the j-th measurement result.

4. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

Clearly, the distributions of {xj , zj}j∈SV
output by Sim(kV , x) and Sim1(kV , x) are the same.

Moreover, the distributions of {xj , zj}j∈[N]\SV
output by Sim(kV , x) and Sim1(kV , x) are both uni-

formly and independently random. Therefore, output distributions of Sim(kV , x) and Sim1(kV , x)
are exactly the same.

Next, we consider the following modified simulator that takes a witness w ∈ RL(x) as input.

Sim2(kV , x, w): The simulator parses (W1, ...,WN ,m1, ...,mN , SV , {x̂j , ẑj}j∈SV
)← kV and does the

following.

1. Generate the history state ρhist for Hx from w.

2. Generate (x̂j , ẑj)
$← {0, 1}2 for j ∈ [N] \ SV and let x̂ := x̂1‖...‖x̂N and ẑ := ẑ1‖...‖ẑN .

3. Compute ρ′hist := X x̂Z ẑρhistZ
ẑX x̂.

4. Measure j-th qubits of ρ′hist and ρP :=
⊗N

j=1(U(Wj)|mj〉) in the Bell basis for j ∈ [N],
and let (xj , zj) be the j-th measurement result.

5. Output π := (x, z) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

By Lemma 2.3, we have ρ′hist =
(∏

j∈SV
X
x̂j
j Z

ẑj
j

)
TrN\SV

[ρhist]
(∏

j∈SV
Z
ẑj
j X

x̂j
j

)
⊗ I[N]\SV

2|[N]\SV |

from the view of a distinguisher that has no information on {x̂j , ẑj}j∈[N]\SV
. By Lemma 2.7,

we have ‖ρSV
− Tr[N]\SV

ρhist‖tr = negl(λ). Therefore, we have ‖ρ̃′hist − ρ′hist‖tr = negl(λ).
This means that Sim1(kV , x) and Sim2(kV , x, w) are statistically indistinguishable from the
view of a distinguisher that makes at most one query.

Finally, noting that the output distribution of Sim2(kV , x, w) is exactly the same as that of
Prove(kP , x, w), the proof of Lemma 3.3 is completed.

17

4 Dual-Mode CV-NIZK with Preprocessing

In this section, we extend the CV-NIZK given in Section 3 to reduce the amount of trust in the setup
at the cost of introducing a quantum preprocessing and relying on a computational assumption.
In the construction in Section 3, we assume that the trusted setup algorithm honestly generates
proving and verification keys, which are correlated with each other, and sends them to the prover
and verifier, respectively, without revealing them to the other party. Here, we give a construction
of CV-NIZK with preprocessing that consists of the generation of common reference string by a
trusted party and a single instance-independent quantum message from the verifier to the prover.
We call such a model the CRS + (V → P) model. We note this is the same model as is considered
in [CVZ20]. Moreover, our construction has a nice feature called the dual-mode property, which has
been considered for NIZKs for NP [GS12, GOS12, PS19]. The dual-mode property requires that
there are two computationally indistinguishable modes of generating a common reference string,
one of which ensures statistical soundness (and computational zero-knowledge) while the other
ensures statistical zero-knowledge (and computational soundness). To the best of our knowledge,
ours is the first construction of a dual-mode NIZK for QMA in any kind of model.

4.1 Definition

We give a formal definition of a dual-mode CV-NIZK in the CRS + (V → P) model.

Definition 4.1 (Dual-Mode CV-NIZK in the CRS + (V → P) Model). A dual-mode CV-NIZK
for a QMA promise problem L = (Lyes, Lno) in the CRS + (V → P) model consists of algorithms
Π = (CRSGen,Preprocess,Prove,Verify) with the following syntax:

CRSGen(1λ,mode): This is a PPT algorithm that takes the security parameter 1λ and a mode
mode ∈ {binding, hiding} as input and outputs a classical common reference string crs. We
note that crs can be reused and thus this algorithm is only needed to run once by a trusted
third party.

Preprocess(crs): This is a QPT algorithm that takes the common reference string crs as input and
outputs a quantum proving key kP and a classical verification key kV . We note that this
algorithm is supposed to be run by the verifier as preprocessing, and kP is supposed to be sent
to the prover while kV is supposed to be kept on verifier’s side in secret. We also note that
they can be used only once and cannot be reused unlike crs.

Prove(crs, kP , x, w
⊗k): This is a QPT algorithm that takes the common reference string crs, the

proving key kP , a statement x, and k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input
and outputs a classical proof π.

Verify(crs, kV , x, π): This is a PPT algorithm that takes the common reference string crs, the veri-
fication key kV , a statement x, and a proof π as input and outputs > indicating acceptance
or ⊥ indicating rejection.

We require Π to satisfy the following properties for some 0 < s < c < 1 such that c−s > 1/poly(λ).
Especially, when we do not specify c and s, they are set as c = 1− negl(λ) and s = negl(λ).

c-Completeness. For all mode ∈ {binding, hiding}, x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

Verify(crs, kV , x, π) = > :

crs
$← CRSGen(1λ,mode)

(kP , kV)
$← Preprocess(crs)

π
$← Prove(crs, kP , x, w

⊗k)

 ≥ c.

18

(Adaptive) Statistical s-Soundness in the Binding Mode For all unbounded-time adver-
sary A, we have

Pr

x ∈ Lno ∧ Verify(crs, kV , x, π) = > :

crs
$← CRSGen(1λ, binding)

(kP , kV)
$← Preprocess(crs)

(x, π)
$← A(crs, kP)

 ≤ s.
(Adaptive Multi-Theorem) Statistical Zero-Knowledge in the Hiding Mode. There ex-

ists a PPT simulator Sim0 and a QPT simulator Sim1 such that for any unbounded-time distin-
guisher D, we have∣∣∣Pr

[
DOP (crs,·,·,·)(crs) = 1 : crs

$← CRSGen(1λ, hiding)
]

− Pr
[
DOS(td,·,·,·)(crs) = 1 : (crs, td)

$← Sim0(1λ)
]∣∣∣ ≤ negl(λ)

where D can make poly(λ) queries, which should be of the form (kP , x, w
⊗k) where w ∈ RL(x) and

w⊗k is unentangled with D’s internal registers,9 OP (crs, kP , x, w
⊗k) returns Prove(crs, kP , x, w

⊗k),
and OS(td, kP , x, w

⊗k) returns Sim1(td, kP , x).

Computational Mode Indistinguishability. For any non-uniform QPT distinguisher D, we
have∣∣∣Pr
[
D(crs) = 1 : crs

$← CRSGen(1λ, binding)
]
− Pr

[
D(crs) = 1 : crs

$← CRSGen(1λ, hiding)
]∣∣∣ ≤ negl(λ).

Remark 1 (On definition of zero-knowledge property). By considering a combination of CRSGen
(for a fixed mode) and Preprocess as a setup algorithm, (dual-mode) CV-NIZK in the CRS +
(V → P) model can be seen as a CV-NIZK in the QSP model in a syntactical sense. However,
it seems difficult to prove that this satisfies (even a computational variant of) the zero-knowledge
property defined in Definition 2.8 due to the following reasons:

1. In Definition 4.1, Sim1 is quantum, whereas a simulator is required to be classical in Defini-
tion 2.8. We observe that this seems unavoidable in the above model: If kP is quantum, then
a classical simulator cannot even take kP as input. On the other hand, if kP is classical, then
that implies L ∈ AM similarly to the final paragraph of Appendix D.

2. A simulator in Definition 4.1 can embed a trapdoor td behind the common reference string
crs whereas a simulator in Definition 2.8 just takes an honestly generated verification key kV
as input. We remark that this also seems unavoidable since kV may be maliciously generated
when the verifier is malicious, in which case just taking kV as input would be useless for the
simulation.

On the other hand, the definition in Definition 4.1 allows a distinguisher (that plays the role of a ma-
licious verifier) to maliciously generate kP , which is a stronger capability than that of a distinguisher
in Definition 2.8. Therefore, the zero-knowledge properties in Definition 4.1 and Definition 2.8 are
incomparable. We believe that the definition of the zero-knowledge property in Definition 4.1 en-
sures meaningful security. It roughly means that any malicious verifier cannot learn anything beyond
what could be computed in quantum polynomial time by itself even if it is allowed to interact with
many sessions of honest provers under maliciously generated proving keys and the reused honestly
generated common reference string. While this does not seem very meaningful when L ∈ BQP,
we can ensure a meaningful privacy of the witness when L ∈ QMA. Finally we remark that our
definition is essentially the same as that in [CVZ20] (except for the dual-mode property).

9We remark that kP is allowed to be entangled with D’s internal registers unlike w⊗k. See also footnote 6.

19

Remark 2 (Comparison to NIZK in the malicious designated verifier model). A CV-NIZK for
QMA in the CRS + (V → P) model as defined above is syntactically very similar to the NIZK
for QMA in the malicious designated verifier model as introduced in [Shm21]. However, a crucial
difference is that the proving key kP is a quantum state in our case and cannot be reused whereas
that is classical and can be reused for proving multiple statements in [Shm21]. On the other hand,
a CV-NIZK in the CRS + (V → P) model has two nice features that the NIZK of [Shm21] does
not have: one is that verification can be done classically in the online phase and the other is the
dual-mode property.

Though Definition 4.1 does not explicitly require anything on soundness in the hiding mode or
the zero-knowledge property in the binding mode, we can easily prove that they are satisfied in a
computational sense. Specifically, we have the following lemma.

Lemma 4.2. If a dual-mode CV-NIZK Π = (CRSGen,Preprocess,Prove,Verify) for a QMA promise
problem L satisfies statistical s-soundness in the binding mode, statistical zero-knowledge property
in the hiding mode, and computational mode indistinguishability, then it also satisfies the following
properties.

(Exclusive-Adaptive) Computational (s+ negl(λ))-Soundness in the Hiding Mode For
all non-uniform QPT adversaries A, we have

Pr

Verify(crs, kV , x, π) = > :

crs
$← CRSGen(1λ, hiding)

(kP , kV)
$← Preprocess(crs)

(x, π)
$← A(crs, kP)

 ≤ s+ negl(λ).

where A’s output must always satisfy x ∈ Lno.

(Adaptive Multi-Theorem) Computational Zero-Knowledge in the Binding Mode. There
exists a PPT simulator Sim0 and QPT simulator Sim1 such that for any non-uniform QPT distin-
guisher D, we have∣∣∣Pr

[
DOP (crs,·,·,·)(crs) = 1 : crs

$← CRSGen(1λ, binding)
]

− Pr
[
DOS(td,·,·,·)(crs) = 1 : (crs, td)

$← Sim0(1λ)
]∣∣∣ ≤ negl(λ)

where D can make poly(λ) queries, which should be of the form (kP , x, w
⊗k) where w ∈ RL(x) and

w⊗k is unentangled with D’s internal registers, OP (crs, kP , x, w
⊗k) returns Prove(crs, kP , x, w

⊗k), and
OS(td, kP , x, w

⊗k) returns Sim1(td, kP , x).

Intuitively, the above lemma holds because soundness and zero-knowledge should transfer from
one mode to the other by the mode indistinguishability since otherwise we can distinguish the two
modes. Here, security degrades to computational ones as the mode indistinguishability only holds
against QPT distinguishers. We omit a formal proof since this is easy and can be proven similarly
to a similar statement for dual-mode NIZKs for NP, which has been folklore and formally proven
recently [AB20].

Remark 3. Remark that soundness in the hiding mode is defined in the “exclusive style” where
A should always output x ∈ Lno. This is weaker than soundness in the “penalizing style” as in
Definition 4.1 where A is allowed to also output x ∈ Lyes and we add x ∈ Lno as part of the
adversary’s winning condition. This is because the adaptive soundness in the penalizing style does
not transfer well through the mode change while the adaptive soundness in the exclusive style does.

20

This was formally proven for NIZK for NP in the common reference string model in [AB20],
and easily extends to CV-NIZK for QMA in the CRS + (V → P) model. This is justified by the
impossibility of penalizing-adaptively (computational) sound and statistically zero-knowledge NIZK
for NP in the classical setting (under falsifiable assumptions) [Pas13]. We leave it open to study
if a similar impossibility holds for dual-mode CV-NIZK for QMA in the CRS + (V → P) model.

Finally, we note that we can amplify the gap between the thresholds for completeness and sound-
ness by parallel repetitions similarly to CV-NIZK in the QSP model as discussed in Section 2.3.
As a result, we obtain the following lemma.

Lemma 4.3 (Gap amplification for dual-mode CV-NIZK in the CRS + (V → P) model). If there
exists a dual-mode CV-NIZK for L in the CRS + (V → P) model that satisfies c-completeness and
s-soundness, for some 0 < s < c < 1 such that c−s > 1/poly(λ), then there exists a dual-mode CV-
NIZK for L in the CRS + (V → P) model (with (1−negl(λ))-completeness and negl(λ)-soundness).

Since this can be proven similarly to Lemma 2.9, we omit a proof.

4.2 Building Blocks

We introduce two cryptographic bulding blocks for our dual-mode CV-NIZK in the CRS + (V → P) model.

Lossy Encryption The first building block is lossy encryption [BHY09]. Intuitively, a lossy
encryption scheme is a public key encryption scheme with a special property that we can generate
a lossy key that is computationally indistinguishable from an honestly generated public key, for
which there is no corresponding decryption key.

Definition 4.4 (Lossy Encryption). A lossy encryption scheme over the message space M and
the randomness space R consists of PPT algorithms ΠLE = (InjGen, LossyGen,Enc,Dec) with the
following syntax.

InjGen(1λ): The injective key generation algorithm takes the security parameter 1λ as input and
ouputs an injective public key pk and a secret key sk.

LossyGen(1λ): The lossy key generation algorithm takes the security parameter 1λ as input and
ouputs a lossy public key pk.

Enc(pk, µ): The encryption algorithm takes the public key pk and a message µ ∈ M as input and
outputs a ciphertext ct. This algorithm uses a randomness R ∈ R. We denote by Enc(pk, µ;R)
to mean that we run Enc on input pk and µ and randomness R when we need to clarify the
randomness.

Dec(sk, ct): The decryption algorithm takes the secret key sk and a ciphertext ct as input and outputs
a message µ.

We require ΠLE to satisfy the following properties.

Correctness on Injective Keys For all µ ∈M, we have

Pr

[
Dec(sk, ct) = µ :

(pk, sk)
$← InjGen(1λ)

ct
$← Enc(pk, µ)

]
= 1.

21

Lossiness on Lossy Keys With overwhelming probability over pk
$← LossyGen(1λ), for all

µ0, µ1 ∈M and all unbounded-time distinguisher D, we have∣∣∣Pr
[
D(ct) = 1 : ct

$← Enc(pk, µ0)
]
− Pr

[
D(ct) = 1 : ct

$← Enc(pk, µ1)
]∣∣∣ ≤ negl(λ).

Computational Mode Indistinguishability For any non-uniform QPT distinguisher D, we
have∣∣∣Pr

[
D(pk) = 1 : (pk, sk)

$← InjGen(1λ)
]
− Pr

[
D(pk) = 1 : pk

$← LossyGen(1λ)
]∣∣∣ ≤ negl(λ).

It is well-known that Regev’s encryption [Reg09] is lossy encryption under the LWE assumption
with a negligible correctness error. We can modify the scheme to achieve perfect correctness by a
standard technique. Then we have the following lemma.

Lemma 4.5. If the LWE assumption holds, then there exists a lossy encryption scheme.

Dual-Mode Oblivious Transfer The second building block is a k-out-of-n dual-mode obliv-
ious transfer. Though this is a newly introduced definition in this paper, 1-out-of-2 case is al-
ready implicit in existing works on universally composable (UC-secure) [Can20] oblivious transfers
[PVW08, Qua20].

Definition 4.6 (Dual-mode oblivious transfer). A (2-round) k-out-of-n dual-mode oblivious trans-
fer with a message space M consists of PPT algorithms ΠOT = (CRSGen,Receiver,Sender,Derive).

CRSGen(1λ,mode): This is an algorithm supposed to be run by a trusted third party that takes the
security parameter 1λ and a mode mode ∈ {binding, hiding} as input and outputs a common
reference string crs.

Receiver(crs, J): This is an algorithm supposed to be run by a receiver that takes the common ref-
erence string crs and an ordered set of k indices J ∈ [n]k as input and outputs a first message
ot1 and a receiver’s state st.

Sender(crs, ot1,µ): This is an algorithm supposed to be run by a sender that takes the common
reference string crs, a first message ot1 sent from a receiver and a tuple of messages µ ∈Mn

as input and outputs a second message ot2.

Derive(crs, st, ot2): This is an algorithm supposed to be run by a receiver that takes a receiver’s state
st and a second message ot2 as input and outputs a tuple of messages µ′ ∈Mk.

We require the following properties.

Correctness For all mode ∈ {binding, hiding}, J = (j1, ..., jk) ∈ [n]k, and µ = (µ1, ..., µn) ∈Mn,
we have

Pr

Derive(crs, st, ot2) = (µj1 , ..., µjk) :

crs
$← CRSGen(1λ,mode)

(ot1, st)
$← Receiver(crs, J)

ot2
$← Sender(crs, ot1,µ)

 ≥ 1− negl(λ).

Statistical Receiver’s Security in the Binding Mode Intuitively, this security requires that
the indices chosen by a receiver are information theoretically hidden from a sender in the binding

22

mode. Formally, we require that there is a PPT algorithm Simrec such that for any unbounded-time
distinguisher D and J ∈ [n]k, we have∣∣∣∣∣Pr

[
D(crs, ot1) = 1 :

crs
$← CRSGen(1λ, binding)

(ot1, st)
$← Receiver(crs, J)

]

−Pr

[
D(crs, ot1) = 1 :

crs
$← CRSGen(1λ, binding)

ot1
$← Simrec(crs)

]∣∣∣∣∣ ≤ negl(λ).

Statistical Sender’s Security in the Hiding Mode Intuitively, this security requires that we
can extract the indices of messages which a (possibly malicious) receiver tries to learn by using
a trapdoor in the hiding mode. Formally, there are PPT algorithms SimCRS and Simsen and a
deterministic classical polynomial-time algorithm Openrec such that the following two properties are
satisfied.

• For any unbounded-time distinguisher D, we have∣∣∣Pr
[
D(crs) = 1 : crs

$← CRSGen(1λ, hiding)
]
− Pr

[
D(crs) = 1 : (crs, td)

$← SimCRS(1λ)
]∣∣∣ ≤ negl(λ).

• For any unbounded-time adversary A = (A0,A1) (that plays the role of a malicious receiver)
and µ = (µ1, ..., µn), we have∣∣∣∣∣∣∣Pr

A1(stA, ot2) = 1 :

(crs, td)
$← SimCRS(1λ)

(ot1, stA)
$← A0(crs, td)

ot2
$← Sender(crs, ot1,µ)



−Pr

A1(stA, ot2) = 1 :

(crs, td)
$← SimCRS(1λ)

(ot1, stA)
$← A0(crs, td)

J := Openrec(td, ot1)

ot2
$← Simsen(crs, ot1, J,µJ)


∣∣∣∣∣∣∣∣∣ ≤ negl(λ)

where the output of Openrec always satisfies J ∈ [n]k and µJ := (µj1 , ..., µjk) for J =
(j1, ..., jk).

Computational Mode Indistinguishability. For any non-uniform QPT distinguisher D, we
have∣∣∣Pr
[
D(crs) = 1 : crs

$← CRSGen(1λ, binding)
]
− Pr

[
D(crs) = 1 : crs

$← CRSGen(1λ, hiding)
]∣∣∣ ≤ negl(λ).

Remark 4 (On security definition of dual-mode oblivious transfer). We remark that security of
a k-out-of-n dual-mode oblivious transfer as defined in Definition 4.6 does not imply UC-security
[Can20, PVW08, Qua20] or even full-simulation security in the standard stand-alone simulation-
based definition [Lin08]. This is because the receiver’s security in Definition 4.6 only ensures privacy
of J and does not prevent a malicious sender from generating ot2 so that he can manipulate the
message derived on the receiver’s side depending on J . The security with such a weaker receiver’s
security is often referred to as half-simulation security [CNs07]. We define the security in this way
due to the following reasons:

1. This definition is sufficient for constructing a dual-mode CV-NIZK in the CRS + (V → P) model
given in Section 4.3 by additionally relying on lossy encryption.

23

2. We are not aware of an efficient construction of a k-out-of-n oblivious transfer that satisfies
full-simulation security under a post-quantum assumption (even if we ignore the dual-mode
property). We note that Quach [Qua20] gave a construction of a 1-out-of-2 oblivious transfer
with full-simulation security based on LWE and we can extend it to 1-out-of-n one.10 However,
we are not aware of an efficient way to convert this into k-out-of-n one without losing the
full-simulation security. We note that a conversion from 1-out-of-n to k-out-of-n oblivious
transfer by a simple k-parallel repetition does not work if we require the full-simulation security
since a malicious sender can send different inconsistent messages in different sessions, which
should be considered as an attack against full-simulation security. One possible way to prevent
such an inconsistent message attack is to let the sender prove that the messages in all sessions
are consistent by using (post-quantum) NIZK for NP in the common reference string model
[PS19]. However, such a construction is very inefficient since it uses the underlying 1-out-of-n
oblivious transfer in a non-black-box manner. On the other hand, the half-simulation security
is preserved under parallel repetitions as shown in Appendix E, and thus we can achieve this
much more efficiently.

Lemma 4.7. If the LWE assumption holds, then there exists k-out-of-n dual-mode oblivious transfer
for arbitrary 0 < k < n that are polynomial in λ.

Proof (sketch). First, we can see that the LWE-based UC-secure OT by Quach [Qua20] can be
seen as a 1-out-of-2 dual-mode oblivious transfer. This construction can be converted into 1-out-
of-n dual-mode oblivious transfer by using the generic conversion for an ordinary oblivious transfer
given in [BCR86] observing that the conversion preserves the dual-mode property.11 By k-parallel
repetition of the 1-out-of-n dual-mode oblivious transfer, we obtain k-out-of-n dual-mode oblivious
transfer. The full proof can be found in Appendix E.

4.3 Construction

In this section, we construct a dual-mode CV-NIZK in the CRS + (V → P) model. As a result,
we obtain the following theorem.

Theorem 4.8. If the LWE assumption holds, then there exists a dual-mode CV-NIZK in the CRS
+ (V → P) model.

Let L be a QMA promise problem, and Hx, N , M , pi, si, Pi, α, β, and ρhist be as in
Lemma 2.7 for the language L. We let N ′ := 35

∑5
i=1

(
N
i

)
similarly to Lemma 3.2. Let ΠLE =

(InjGenLE, LossyGenLE,EncLE,DecLE) be a lossy encryption scheme over the message space MLE =
{0, 1}2 and the randomness spaceRLEas defined in Definition 4.4. Let ΠOT = (CRSGenOT,ReceiverOT,
SenderOT,DeriveOT) be a 5-out-of-N dual-mode oblivious transfer over the message space MOT =
MLE × RLE as defined in Definition 4.6. Then our dual-mode CV-NIZK ΠDM = (CRSGenDM,
PreprocessDM,ProveDM,VerifyDM) for L is described in Figure 4.

Then we prove the following lemmas.

Lemma 4.9. ΠDM satisfies
(
1− α

N ′ − negl(λ)
)
-completeness.

Proof. By the correctness of ΠOT, it is easy to see that the probability that an honestly gener-
ated proof passes the verification differs from that in ΠNIZK in Figure 1 only by negl(λ). Since
ΠNIZK satisfies

(
1− α

N ′

)
-completeness as shown in Lemma 3.2, ΠDM satisfies

(
1− α

N ′ − negl(λ)
)
-

completeness.
10His construction further satisfies UC-security, which is stronger than full-simulation security.
11Alternatively, it may be possible to directly construct 1-out-of-n dual-mode oblivious transfer by appropriately

modifying the construction by Quach [Qua20].

24

CRSGenDM(1λ,mode): The CRS generation algorithm generates crsOT
$← CRSGenOT(1λ,mode).

• If mode = binding, then it generates (pk, sk)
$← InjGenLE(1λ).

• If mode = hiding, then it generates pk
$← LossyGenLE(1λ).

Then it outputs crsDM := (crsOT, pk).

PreprocessDM(crsDM): The preprocessing algorithm parses (crsOT, pk) ← crsDM and chooses

(W1, ...,WN)
$← {X,Y, Z}N , (m1, ...,mN)

$← {0, 1}N , and a uniformly random subset
SV ⊆ [N] such that 1 ≤ |SV | ≤ 5. Let J = (j1, ..., j5) ∈ [N]5 be the elements of SV in the

ascending order where we append arbitrary indices when |SV | < 5. It generates (ot1, st)
$←

ReceiverOT(crsOT, J) and outputs a proving key kP :=
(
ρP :=

⊗N
j=1(U(Wj)|mj〉), ot1

)
and a

verification key kV := (W1, ...,WN ,m1, ...,mN , SV , st).

ProveDM(crsDM, kP , x, w): The proving algorithm parses (crsOT, pk) ← crsDM and (ρP , ot1) ← kP ,

generates (x̂, ẑ)
$← {0, 1}N × {0, 1}N , generates the history state ρhist for Hx from w, and

computes ρ′hist := X x̂Z ẑρhistZ
ẑX x̂. It measures j-th qubits of ρ′hist and ρP in the Bell basis

for j ∈ [N]. Let x := x1‖x2‖...‖xN , and z := z1‖z2‖...‖zN where (xj , zj) denotes the outcome

of j-th measurement. For j ∈ [N], it generates ctj := EncLE(pk, (x̂j , ẑj);Rj) where Rj
$← RLE

and x̂j and ẑj denote the j-th bits of x̂ and ẑ, respectively. It sets µj := ((x̂j , ẑj), Rj) for

j ∈ [N] and generates ot2
$← SenderOT(crsOT, ot1, (µ1, ..., µN)). It outputs a proof π :=

(x, z, {ctj}j∈[N], ot2).

VerifyDM(crsDM, kV , x, π): The verification algorithm parses (crsOT, pk) ← crsDM,
(W1, ...,WN ,m1, ...,mN , SV , st) ← kV , and (x, z, {ctj}j∈[N], ot2) ← π. It runs

µ′
$← DeriveOT(crsOT, st, ot2) and parses (((x̂′1, ẑ

′
1), R′1), ..., ((x̂′5, ẑ

′
5), R′5)) ← µ′. If

EncLE(pk, (x̂′i, ẑ
′
i);R

′
i) 6= ctji for some i ∈ [5], it outputs ⊥. Otherwise, it recovers

{x̂j , ẑj}j∈SV
by setting (x̂ji , ẑji) := (x̂′i, ẑ

′
i) for i ∈ [|SV |]. It chooses i ∈ [M] according to the

probability distribution defined by {pi}i∈[M] (i.e., chooses i with probability pi). Let

Si := {j ∈ [N] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is consistent to
(SV , {Wj}j∈SV

) if and only if Si = SV and the jth Pauli operator of Pi is Wj for all j ∈ Si.
If Pi is not consistent to (SV , {Wj}j∈SV

), it outputs >. If Pi is consistent to (SV , {Wj}j∈SV
),

it flips a biased coin that heads with probability 1 − 3|Si|−5. If heads, it outputs >. If tails,
it defines

m′j :=


mj ⊕ xj ⊕ x̂j (Wj = Z),
mj ⊕ zj ⊕ ẑj (Wj = X),

mj ⊕ xj ⊕ x̂j ⊕ zj ⊕ ẑj (Wj = Y)

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Figure 4: Dual-Mode CV-NIZK ΠDM.

25

Lemma 4.10. ΠDM satisfies the computational mode indistinguishability.

Proof. This can be reduced to the computational mode indistinguishability of ΠOT and ΠLE in a
straightforward manner.

Lemma 4.11. ΠDM satisfies statistical
(

1− β
N ′ + negl(λ)

)
-soundness in the binding mode.

Lemma 4.12. ΠDM satisfies the statistical zero-knowledge property in the hiding mode.

By combining Lemma 4.5,Lemmas 4.3, 4.7 and 4.9 to 4.12 and(
1− α

N ′
− negl(λ)

)
−
(

1− β

N ′
+ negl(λ)

)
=
β − α
N ′

− negl(λ) =
1

poly(λ)
,

we obtain Theorem 4.8.
In the following, we prove Lemmas 4.11 and 4.12.

Proof of Lemma 4.11 (Soundness). For any adversary A, we consider the following sequence of
games between A and the challenger where we denote by Wini the event that the challenger returns
> in Gamei.

Game1: This game is the original soundness game in the binding game. That is, it works as follows:

1. The challenger generates crsOT
$← CRSGenOT(1λ, binding) and (pk, sk)

$← InjGenLE(1λ).

2. The challenger generates (W1, ...,WN)
$← {X,Y, Z}N , (m1, ...,mN)

$← {0, 1}N , and
ρP :=

⊗N
j=1(U(Wj)|mj〉.

3. The challenger generates SV and J = (j1, ..., j5) similarly to PreprocessDM.

4. The challenger generates (ot1, st)
$← ReceiverOT(crsOT, J).

5. The challenger gives crsDM and a proving key kP := (ρP , ot1) to A, and A outputs
(x, π = (x, z, {ctj}j∈[N], ot2)). If x ∈ Lyes, the challenger outputs ⊥ and immediately
halts.

6. The challenger runs µ′
$← DeriveOT(crsOT, st, ot2) and parses (((x̂′1, ẑ

′
1), R′1), ..., ((x̂′5, ẑ

′
5), R′5))←

µ′. If EncLE(pk, (x̂′i, ẑ
′
i);R

′
i) 6= ctji for some i ∈ [5], it outputs ⊥ and immediately halts.

Otherwise, it recovers {x̂j , ẑj}j∈SV
by setting (x̂ji , ẑji) := (x̂′i, ẑ

′
i) for i ∈ [|SV |].

7. The challenger samples i and defines Si and Pi similarly to VerifyDM. If Pi is not
consistent to (SV , {Wj}j∈SV

), it outputs >. If Pi is consistent to (SV , {Wj}j∈SV
), it

flips a biased coin that heads with probability 1−3|Si|−5. If heads, it outputs >. If tails,

it defines m′j for j ∈ Si similarly to VerifyDM and outputs > if (−1)
⊕

j∈Si
m′j = −si and

⊥ otherwise.

Our goal is to prove Pr[Win1] ≤ 1− β
N ′ + negl(λ).

Game2: This game is identical to the previous game except that Step 6 is replaced with Step 6′

described as follows.

6′. The challenger computes (x̂j , ẑj)
$← DecLE(sk, ctj) for j ∈ [N].

If the challenger does not output ⊥ in Step 6, then we have EncLE(pk, (x̂′i, ẑ
′
i);R

′
i) = ctji for

all i ∈ [5]. In this case, we have DecLE(sk, ctji) = (x̂′i, ẑ
′
i) by correctness of ΠLE. Therefore,

the values of {x̂j , ẑj}j∈SV
computed in Step 6 and 6′ are identical conditioned on that the

challenger does not output ⊥ in Step 6. Noting that Step 7 only uses the values of (x̂j , ẑj)
for j ∈ SV , we have Pr[Win1] ≤ Pr[Win2].

26

Game3: This game is identical to the previous game except that Step 4 is replaced with Step 4′

described as follows.

4′ The challenger generates ot1
$← Simrec(crsOT).

By statistical receiver’s security in the binding mode of ΠOT, it is clear that we have |Pr[Win3]−
Pr[Win2]| ≤ negl(λ).

Game4: This game is identical to the previous game except that Step 2 is replaced with Step 2′

described below.

2′. The challenger generates N Bell-pairs between registers P and V and lets ρP and ρV
be quantum states in registers P and V, respectively. Then it chooses (W1, ...,WN)

$←
{X,Y, Z}N , and measures j-th qubit of ρV in the Wj basis for all j ∈ [N], and lets
(m1, ...,mN) be the measurement outcomes.

By Lemma 2.1, the joint distributions of (ρP , (W1, ...,WN ,m1, ...mN)) in Game3 and Game4

are identical, and thus we have Pr[Win4] = Pr[Win3].

Game5: This game is identical to the previous game except that the measurement of ρV in Step 2′

is omitted and the way of generating {m′j}j∈Si in Step 7 is modified as follows.

• The challenger computes ρ′V := Xx⊕x̂Zz⊕ẑρV Z
z⊕ẑXx⊕x̂. For all j ∈ Si, it measures j-th

qubit of ρ′V in Wj basis, and lets m′j be the measurement outcome.

By Lemma 2.2, this does not change the distribution of {m′j}j∈Si . Therefore, we have
Pr[Win5] = Pr[Win4].

Let Ex be the event that the statement output by A is x, and ρ′V,x be the state in V right
before the measurement in the modified Step 7 conditioned on Ex. For any fixed Pi, the
probability that Pi is consistent to (SV , {Wj}j∈SV

) and the coin tails is 1
N ′ . Therefore, by

Lemma 2.5, we have

Pr[Win5|Ex] = 1− 1

N ′
Tr(ρ′V,xHx).

Then we have

Pr[Win5] =
∑
x/∈L

Pr[Ex]

(
1− 1

N ′
Tr(ρ′V,xHx)

)
≤
∑
x/∈L

Pr[Ex]

(
1− β

N ′

)
≤ 1− β

N ′

where the first inequality follows from Lemma 2.7.

By combining the above, we obtain Pr[Win1] ≤ 1− β
N ′ + negl(λ).

This completes the proof of Lemma 4.11.

Proof of Lemma 4.12 (Zero-Knowledge). Let SimCRS, Simsen, and Openrec be the corresponding
algorithms for statistical sender’s security in the hiding mode of ΠOT. The simulator Sim =
(Sim0, Sim1) for ΠDM is described below.

Sim0(1λ): It generates (crsOT, tdOT)
$← SimCRS(1λ) and pk

$← LossyGenLE(1λ) and outputs crsDM :=
(crsOT, pk) and tdDM := (crsOT, tdOT, pk).

27

Sim1(tdDM, kP , x): The simulator parses (crsOT, tdOT, pk)← tdDM and (ρP , ot1)← kP and does the
following.

1. Compute J := Openrec(tdOT, ot1). Let SV := {j1, ..., j5} ⊆ [N] where J = (j1, ..., j5).

2. Generate (x̂, ẑ)
$← {0, 1}N×{0, 1}N , Rj

$← RLE for j ∈ [N], ctj := EncLE(pk, (x̂j , ẑj);Rj)

for all j ∈ [N], and ot2
$← Simsen(crsOT, ot1, J, µJ) where µJ := (µj1 , ..., µj5) and µji :=

((x̂ji , ẑji), Rji) for i ∈ [5].

3. Generate the classical description of the density matrix ρSV
:= Simhist(x, SV) where

Simhist is as in Lemma 2.7.

4. Generate ρ̃′hist :=
(∏

j∈SV
X
x̂j
j Z

ẑj
j

)
ρSV

(∏
j∈SV

Z
ẑj
j X

x̂j
j

)
⊗ I[N]\SV

2|[N]\SV |
.

5. Measure j-th qubits of ρ̃′hist and ρP in the Bell basis for j ∈ [N], and let (xj , zj) be the
j-th measurement result.

6. Output π := (x, z, {ctj}j∈[N], ot2) where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

We consider the following sequence of modified versions of Sim1, which take w ∈ RL(x) as an
additional input.

Sim
(1)
1 (tdDM, kP , x, w): This simulator works similarly to Sim1 except that it generates the history

state ρhist for Hx from w instead of ρSV
in Step 3, defines ρ′hist := X x̂Z ẑρhistZ

ẑX x̂ in Step 4,
and uses ρ′hist instead of ρ̃′hist in Step 5.

Sim
(2)
1 (tdDM, kP , x, w): This simulator works similarly to Sim

(1)
1 except that in Step 2, it generates

ot2
$← SenderOT(crsOT, ot1, (µ1, ..., µN)) instead of ot2

$← Simsen(crsOT, ot1, J,µJ) where µj :=

((x̂j , ẑj), Rj) for j ∈ [N]. We note that Sim
(2)
1 needs not run Step 1 since it does not use J in

later steps and thus it does not use tdOT.

Let OP (crsDM, ·, ·, ·) and OS(tdDM, ·, ·, ·) be as in Definition 4.1 and O(i)
S (tdDM, ·, ·, ·) be the oracle

that works similarly to OS(tdDM, ·, ·, ·) except that it uses Sim
(i)
1 instead of Sim1 for i = 1, 2.

Then we prove the following claims.

Claim 4.13. If ΠLE satisfies lossiness on lossy keys, we have∣∣∣Pr
[
DOS(tdDM,·,·,·)(crsDM) = 1

]
− Pr

[
DO

(1)
S (tdDM,·,·,·)(crsDM) = 1

]∣∣∣ ≤ negl(λ)

where (crsDM, tdDM)
$← Sim0(1λ) for any distinguisher D that makes poly(λ) queries of the form

(kP = (ρP , ot1), x, w) for some w ∈ RL(x).

Proof of Claim 4.13. Let ÕS(tdDM, ·, ·, ·) and Õ(1)
S (tdDM, ·, ·, ·) be oracles that work similarly to

OS(tdDM, ·, ·, ·) and O(1)
S (tdDM, ·, ·, ·) except that they generate ctj := EncLE(pk, (0, 0);Rj) instead

of ctj := EncLE(pk, (x̂j , ẑj);Rj) for j /∈ SV , respectively. By lossiness on lossy keys of ΠLE, D
cannot distinguish ÕS(tdDM, ·, ·, ·) and Õ(1)

S (tdDM, ·, ·, ·) from OS(tdDM, ·, ·, ·) and O(1)
S (tdDM, ·, ·, ·)

with non-negligible advantage, respectively, noting that no information of {Rj}j /∈SV
is given to D.

When D is given either of ÕS(tdDM, ·, ·, ·) or Õ(1)
S (tdDM, ·, ·, ·), it has no information on {x̂j , ẑj}j /∈SV

.
Therefore, by Lemma 2.3, we have

ρ′hist =

 ∏
j∈SV

X
x̂j
j Z

ẑj
j

TrN\SV
[ρhist]

 ∏
j∈SV

Z
ẑj
j X

x̂j
j

⊗ I[N]\SV

2|[N]\SV |

28

from the view of D. By Lemma 2.7, we have ‖ρSV
− Tr[N]\SV

ρhist‖tr ≤ negl(λ). Therefore,

we have ‖ρ̃′hist − ρ′hist‖tr ≤ negl(λ). This means that it cannot distinguish ÕS(tdDM, ·, ·, ·) and

Õ(1)
S (tdDM, ·, ·, ·) with non-negligible advantage. By combining the above, Claim 4.13 follows.

Claim 4.14. If ΠOT satisfies the second item of statistical sender’s security in the hiding mode,
we have ∣∣∣Pr

[
DO

(1)
S (tdDM,·,·,·)(crsDM) = 1

]
− Pr

[
DO

(2)
S (tdDM,·,·,·)(crsDM) = 1

]∣∣∣ ≤ negl(λ)

where (crsDM, tdDM)
$← Sim0(1λ) for any distinguisher D that makes poly(λ) queries.

Proof of Claim 4.14. Let Q = poly(λ) be the maximum number of D’s queries. For i = 0, ..., Q, let

O(1.i)
S (tdDM, ·, ·, ·) be the hybrid oracle that works similarly to O(2)

S (tdDM, ·, ·, ·) for the first i queries

and works similarly to O(1)
S (tdDM, ·, ·, ·) for the rest. By a standard hybrid argument, it suffices to

prove ∣∣∣Pr
[
DO

(1.i)
S (tdDM,·,·,·)(crsDM) = 1

]
− Pr

[
DO

(1.(i+1))
S (tdDM,·,·,·)(crsDM) = 1

]∣∣∣ ≤ negl(λ) (1)

where (crsDM, tdDM)
$← Sim0(1λ) for all i = 0, ..., Q − 1. For proving this, for any fixed (x̂, ẑ) ∈

{0, 1}N × {0, 1}N and {Rj}j∈[N] ∈ RNLE, we consider the following adversary A = (A0,A1) against
the second item of statistical sender’s security in the hiding mode of ΠOT.

A0(crsOT, tdOT): It generates pk
$← LossyGen(1λ), gives crsDM := (crsOT, pk) to D as input and runs

it until it makes (i+ 1)-th query where A0 simulates responses to the first i queries similarly

to O(2)
S (tdDM, ·, ·, ·) where tdDM = (crsOT, tdOT, pk). Let (kP , x, w) be D’s (i+ 1)-th query. A0

parses (ρP , ot1)← kP and computes the history state ρhist for Hx from w. It outputs ot1 and
stA := (ρP , ρhist).

A1(stA = (ρP , ρhist), ot2): It generates ctj := EncLE(pk, (x̂j , ẑj);Rj) for all j ∈ [N] and ρ′hist :=
X x̂Z ẑρhistZ

ẑX x̂, measures j-th qubits of ρ′hist and ρP in the Bell basis for j ∈ [N], lets
(xj , zj) be the j-th measurement result, and returns π := (x, z, {ctj}j∈[N], ot2) to D as the
response of the oracle to the (i+ 1)-th query where x := x1‖x2‖...‖xN and z := z1‖z2‖...‖zN .

A1 runs the rest of the execution of D by simulating the oracle similarly to O(1)
S (tdDM, ·, ·, ·).

Finally, A1 outputs whatever D outputs.

Let µ := (((x̂1, ẑ1), R1), ..., ((x̂N , ẑN), RN)). If ot2 is generated as ot2
$← Sender(crsOT, ot1,µ),

then A perfectly simulates the execution of DO
(1.i)
S (tdDM,·,·,·)(crsDM) conditioned on the fixed (x̂, ẑ)

and {Rj}j∈[N]. On the other hand, if ot2 is generated as J := Openrec(tdOT, ot1) and ot2
$←

Simsen(crsOT, ot1, J,µJ), then A perfectly simulates the execution of DO
(1.(i+1))
S (tdDM,·,·,·)(crsDM) con-

ditioned on the fixed (x̂, ẑ) and {Rj}j∈[N]. Therefore, averaging over the random choice of (x̂, ẑ)
and {Rj}j∈[N], the l.h.s. of Equation (1) can be upper bounded by the average of the advantage of
A to distinguish the two cases, which is negligible by the assumption. This completes the proof of
Claim 4.14.

Claim 4.15. If ΠOT satisfies the first item of statistical sender’s security in the hiding mode, We
have ∣∣∣Pr

[
DO

(2)
S (tdDM,·,·,·)(crsDM) = 1 : (crsDM, tdDM)

$← Sim0(1λ)
]

− Pr
[
DOP (crsDM,·,·,·)(crsDM) = 1 : crsDM

$← CRSGenDM(1λ, hiding)
]∣∣∣ ≤ negl(λ)

29

Proof of Claim 4.15. For any (crsDM, tdDM)
$← Sim0(1λ), kP , x, and w, we have

O(2)
S (tdDM, kP , x, w) = OP (crsDM, kP , x, w)

observing that Sim
(2)
1 works in the exactly the same way as the honest proving algorithm. Moreover,

we can see that the distributions of crsDM generated by Sim0(1λ) and CRSGenDM(1λ, hiding) are
statistically indistinguishable by the first item of statistical sender’s security in the hiding mode of
ΠOT. Therefore Claim 4.15 follows.

By combining Claims 4.13 to 4.15, We can complete the proof of Lemma 4.12.

5 CV-NIZK via Fiat-Shamir Transformation

In this section, we construct CV-NIZK in the quantum random oracle model via the Fiat-Shamir
transformation.

5.1 Definition

We give a formal definition of CV-NIZK in the QRO + (V → P) model.

Definition 5.1 (CV-NIZK in the QRO + (V → P) Model). A CV-NIZK for a QMA promise
problem L = (Lyes, Lno) in the QRO + (V → P) model w.r.t. a random oracle distribution ROdist
consists of algorithms Π = (Preprocess,Prove,Verify) with the following syntax:

Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ as input, and outputs
a quantum proving key kP and a classical verification key kV . We note that this algorithm
is supposed to be run by the verifier as preprocessing, and kP is supposed to be sent to the
prover while kV is supposed to be kept on verifier’s side in secret. We also note that they can
be used only once and cannot be reused.

ProveH(kP , x, w
⊗k): This is a QPT algorithm that is given quantum oracle access to the random

oracle H. It takes the proving key kP , a statement x, and k = poly(λ) copies w⊗k of a witness
w ∈ RL(x) as input, and outputs a classical proof π.

VerifyH(kV , x, π): This is a PPT algorithm that is given classical oracle access to the random oracle
H. It takes the verification key kV , a statement x, and a proof π as input, and outputs >
indicating acceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties.

Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV)
$← Preprocess(1λ)

π
$← ProveH(kP , x, w

⊗k)

 ≥ 1− negl(λ).

Adaptive Statistical Soundness. For all adversaries A that make at most poly(λ) quantum
random oracle queries, we have

Pr

x ∈ Lno ∧ VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV)
$← Preprocess(1λ)

(x, π)
$← AH(kP)

 ≤ negl(λ).

30

Adaptive Multi-Theorem Zero-Knowledge. For defining the zero-knowledge property in the
QROM, we define the syntax of a simulator in the QROM following [Unr15]. A simulator is given
quantum access to the random oracle H and classical access to reprogramming oracle Reprogram.
When the simulator queries (x, y) to Reprogram, the random oracle H is reprogrammed so that
H(x) := y while keeping the values on other inputs unchanged. Then the adaptive multi-theorem
zero-knowledge property is defined as follows:

There exists a QPT simulator Sim with the above syntax such that for any QPT distinguisher
D, we have ∣∣∣Pr

[
DH,OH

P (·,·,·)(1λ) = 1 : H
$← ROdist

]
− Pr

[
DH,O

H,Reprogram
S (·,·,·)(1λ) = 1 : H

$← ROdist
]∣∣∣ ≤ negl(λ)

where D’s queries to the second oracle should be of the form (kP , x, w
⊗k) where w ∈ RL(x) and

w⊗k is unentangled with D’s internal registers, 12 OHP (kP , x, w
⊗k) returns ProveH(kP , x, w

⊗k), and

OH,ReprogramS (kP , x, w
⊗k) returns SimH,Reprogram(kP , x).

Remark 5. Remark that the “multi-theorem” zero-knowledge does not mean that a preprocessing
can be reused many times. It rather means that a single random oracle can be reused as long
as a fresh preprocessing is run every time. This is consistent to the definition in the CRS +
(V → P) model (Definition 4.1) if we think of the random oracle as replacement of CRS.

5.2 Building Blocks

We use the two cryptographic primitives, a non-interactive commitment scheme and a Σ-protocol
with quantum preprocessing, for our construction.

Definition 5.2 (Non-interactive commitment scheme). A non-interactive commitment scheme with
the message space M is a tuple of PPT algorithms (Commit,Verify) with the following syntax:

Commit(1λ,m) : It takes the security parameter 1λ and a message m ∈M as input, and outputs a
commitment com and a decommitment d.

Verify(1λ,m, com, d) : It takes the security parameter 1λ, a message m ∈M, commitment com, and
decommitment d as input, and outputs > indicating acceptance or ⊥ indicating rejection.

We require a non-interactive commitment scheme to satisfy the following properties:

Perfect Correctness. For any λ ∈ N and m ∈M, we have

Pr[Verify(1λ,m, com, d) = > : (com, d)
$← Commit(1λ,m)] = 1.

Perfect Binding. For all λ ∈ N, there do not exist m,m′, com, d, d′ such that m 6= m′ and

Verify(1λ,m, com, d) = Verify(1λ,m′, com, d′) = >.
Computational Hiding. For any QPT adversary A and messages m0,m1, we have∣∣∣∣∣ Pr[A(com) = 1 : (com, d)

$← Commit(1λ,m0)]

−Pr[A(com) = 1 : (com, d)
$← Commit(1λ,m1)]

∣∣∣∣∣ = negl(λ).

12We remark that kP is allowed to be entangled with D’s internal registers unlike w⊗k. See also footnote 6.

31

It is known that a non-interactive commitment scheme exists assuming the existence of injective
one-way functions or perfectly correct public key encryption (or more generally key exchange proto-
cols) [LS19]. In the QROM, a non-interactive commitment scheme exists without any assumption
since a random oracle with a sufficiently large range is injective with overwhelming probability
over the choice of the random oracle and hard to invert even with quantum access to the oracle
[BBBV97]. In our constructions and security proofs, we use a non-interactive commitment scheme
in the standard model. This is for notational simplicity and also for clarifying that the full power of
random oracles is not needed for this component. We stress that this does not mean that we assume
an additional assumption for our construction of NIZK since a non-interactive commitment scheme
unconditionally exists in the QROM as mentioned above and all security proofs work similarly with
a non-interactive commitment scheme in the QROM.

Definition 5.3 (Σ-protocol with Quantum Preprocessing). A Σ-protocol with quantum preprocess-
ing for a QMA promise problem L = (Lyes, Lno) consists of algorithms Π = (Preprocess,Prove1,
Verify1,Prove2,Verify2) with the following syntax:

Preprocess(1λ): This is a QPT algorithm that takes the security parameter 1λ as input, and outputs
a quantum proving key kP and a classical verification key kV . We note that this algorithm
is supposed to be run by the verifier as preprocessing, and kP is supposed to be sent to the
prover while kV is supposed to be kept on verifier’s side in secret. We also note that they can
be used only once and cannot be reused.

Prove1(kP , x, w
⊗k): This is a QPT algorithm that takes the proving key kP , a statement x, and

k = poly(λ) copies w⊗k of a witness w ∈ RL(x) as input, and outputs a classical message msg1

and a state st.

Verify1(1λ): This is a PPT algorithm that takes the security parameter 1λ, and outputs a classical
message msg2, which is uniformly sampled from a certain set.

Prove2(st,msg2): This is a QPT algorithm that takes the state st and the message msg2 as input,
and outputs a classical message msg3.

Verify2(kV , x,msg1,msg2,msg3): This is a PPT algorithm that takes the verification key kV , the
statement x, and classical messages msg1,msg2,msg3 as input, and outputs > indicating ac-
ceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties.

c-Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

Verify2(kV , x,msg1,msg2,msg3) = > :

(kP , kV)
$← Preprocess(1λ)

(msg1, st)
$← Prove1(kP , x, w

⊗k)

msg2
$← Verify1(1λ)

msg3
$← Prove2(st,msg2)

 ≥ c.
(Adaptive Statistical) s-soundness. For all adversary (A1,A2), we have

Pr

x ∈ Lno ∧ Σ.Verify2(kV , x,msg1,msg2,msg3) = > :

(kP , kV)
$← Preprocess(1λ)

(x, st,msg1)
$← A1(kP)

msg2
$← Verify1(1λ)

msg3
$← A2(st,msg2)

 ≤ s.

32

Special Zero-Knowledge. There exists a QPT algorithm Sim such that for any x ∈ Lyes, w ∈
RL(x), msg2, and QPT adversary (A1,A2), we have∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1, st)
$← Prove1(kP , x, w

⊗k)

msg3
$← Prove2(st,msg2)


− Pr

[
A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1,msg3)
$← Sim(kP , x,msg2)

]
∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

High Min-Entropy. Prove1 can be divided into the “quantum part” and “classical part” as fol-
lows:

ProveQ1 (kP , x, w
⊗k): This is a QPT algorithm that outputs a classical string st′.

ProveC1 (st′): This is a PPT algorithm that outputs msg1 and st.

Moreover, for any st′ generated by ProveQ1 , we have

max
msg∗1

Pr[ProveC1 (st′) = msg∗1] = negl(λ).

Remark 6 (On Soundness). Some existing works require a Σ-protocol to satisfy special soundness,
which means that one can extract a witness from two accepting transcripts whose first messages are
idential and the second messages are different. This property is often useful for achieving proof of
knowledge. We do not require special soundness since we do not consider proof of knowledge in this
paper and our construction does not seem to satisfy special soundness.

Remark 7 (On Zero-Knowledge). Our definition of the zero-knowledge property is based on the
special honest-verifier zero-knowledge often required for classical Σ-protocol without preprocessing.
However, our definition considers a partially malicious verifier that maliciously runs the preprocess-
ing, which is a crucial difference from the classical case. This is why we call this property as special
zero-knowledge rather than special honest-verifier zero-knowledge. Note that special zero-knowledge
property is weaker than the standard zero-knowledge property for general interactive protocols since
the standard zero-knowledge considers malicious verifiers that adaptively choose msg2 rather than
fixing it.

Remark 8 (On High Min-Entropy). We require the high min-entropy property because this property
is needed in the proof of adaptive multi-theorem zero-knowledge property of the NIZK obtained by
the Fiat-Shamir transform in Section 5.3. The property requires two requirements: the first is about
the structure of Prove1 and the second is that msg1 has a high min-entropy. The latter is needed
even for Fiat-Shamir transform for Σ-protocols for NP (e.g., see [Unr15]). On the other hand,
the former is unique to our work, and we do not know if this is inherent. However, since this
requirement makes the security proof of our NIZK easier and our construction of Σ-protocol with
quantum preprocessing satisfies this property, we include this as a default requirement.

Lemma 5.4 (Gap Amplification for Σ-protocol with quantum preprocessing). If there exists a
Σ-protocol with quantum preprocessing for a promise problem L that satisfies c-completeness, s-
soundness, special zero-knowledge, and high min-entropy for some 0 < s < c < 1 such that c− s >
1/poly(λ), then there exists a Σ-protocol with quantum preprocessing for L with (1 − negl(λ))-
completeness, negl(λ)-soundness, special zero-knowledge, and high min-entropy.

33

Proof. It is clear that the parallel repetition can amplify the completeness-soundness gap, and that
the high min-entropy is preserved under the parallel repetition. We can also show that parallel
repetition preserves the special zero-knowledge property by a standard hybrid argument.

Theorem 5.5. If a non-interactive commitment scheme exists, then there exists a Σ-protocol with
quantum preprocessing for QMA.

As mentioned in Section 5.1, a non-interactive commitment scheme unconditionally exists in
the QROM. Therefore, the above theorem implies the following corollary.

Corollary 5.6. There exists a Σ-protocol with quantum preprocessing for QMA in the QROM.

Proof of Theorem 5.5. Let L = (Lyes, Lno) be a QMA promise problem, and Hx, N , M , pi, si, Pi,
α, β, and ρhist be as in Lemma 2.7 for the promise problem L. We let N ′ := 35

∑5
i=1

(
N
i

)
similarly

to Lemma 3.2. Let Πcomm = (Commitcomm,Verifycomm) be a non-interactive commitment scheme as
defined in Definition 5.2. Then our Σ-protocol with quantum preprocessing ΠΣ = (Σ.Preprocess,
Σ.Prove1,Σ.Verify1,Σ.Prove2,Σ.Verify2) for L is described in Figure 5.

Lemma 5.7. ΠΣ satisfies
(
1− α

N ′

)
-completeness and

(
1− β

N ′ + negl(λ)
)

-soundness.

Proof. Let us consider the virtual protocol Π′Σ given in Fig. 6. Due to Lemma 2.2 and the fact
that the measurements by the prover and the verifier are commute with each other, the acceptance
probability in Π′Σ is equal to that in ΠΣ. We therefore have only to show the

(
1− α

N ′

)
-completeness

and and
(

1− β
N ′ + negl(λ)

)
-soundness for the virtual protocol Π′Σ.

First let us show the completeness. If the prover is honest, it is clear that the history state
with Pauli byproducts, (

∏
j∈[N]X

xj
j Z

zj
j)ρhist(

∏
j∈[N]X

xj
j Z

zj
j), is teleported to the verifier, and the

verifier can correct the byproducts on S (with probability one from the prefect completeness of the
commitment scheme). From Lemma 2.5 and Lemma 2.7, and the fact that the probability that Pi
is consistent to (S, {Wj}j∈S) and the coin tails is 1/N ′, we obtain the acceptance probability in Π′Σ
when x ∈ Lyes to be (

1− 1

N ′

)
+

1

N ′

[
1− Tr(Hxρhist)

]
≥ 1− α

N ′
.

We have therefore shown the
(
1− α

N ′

)
-completeness.

Next let us show the soundness. The malicious prover first does any POVM measurement on ρP
to get msg1 = {comj}j∈[N], and sends it to the verifier. After receiving S from the verifier, the prover
does another POVM measurement on the remaining state st to get msg3, and sends it to the verifier.
The verifier therefore measures all qubits of the N -qubit state (

∏
j∈S X

xj
j Z

zj
j)ρ(

∏
j∈S X

xj
j Z

zj
j),

where ρ is the state of the register V after the prover does the first POVM measurement, and
{xj , zj}j∈S is that in msg3. Note that ρ is independent of S, because the first POVM measurement
is done before S is given to the prover. Due to the binding of the commitment scheme, each comj

can be opened to a unique value (x̂j , ẑj) or rejected by Verifycomm. We can assume that the prover
always sends correct msg3 so that all {comj}j∈[S] are accepted by Verifycomm, because otherwise the
prover is rejected. Therefore, it is equivalent that the verifier measures the energy of Hx on the

N -qubit state ρ̂ := (
∏
j∈[N]X

x̂j
j Z

ẑj
j)ρ(

∏
j∈[N]X

x̂j
j Z

ẑj
j). Because {x̂j , ẑj}j∈[N] is fixed before S is

chosen, ρ̂ is independent of S. Then due to Lemma 2.5 and Lemma 2.7, the acceptance probability
in Π′Σ when x ∈ Lno is at most(

1− 1

N ′

)
+

1

N ′

[
1− Tr(Hxρ̂)

]
+ negl(λ) ≤ 1− β

N ′
+ negl(λ).

34

Σ.Preprocess(1λ): It chooses (W1, ...,WN)
$← {X,Y, Z}N and (m1, ...,mN)

$← {0, 1}N , and
outputs a proving key kP := ρP :=

⊗N
j=1(U(Wj)|mj〉) and a verification key kV :=

(W1, ...,WN ,m1, ...,mN).

Σ.Prove1(kP , x, w): It parses ρP ← kP , and generates the history state ρhist for Hx from w. It
measures j-th qubits of ρhist and ρP in the Bell basis for j ∈ [N]. Let x := x1‖x2‖...‖xN ,
and z := z1‖z2‖...‖zN where (xj , zj) ∈ {0, 1}2 denotes the outcome of j-th measurement.
It computes Commitcomm(1λ, (xj , zj)) → (comj , dj) for each j ∈ [N]. It outputs a classical
message msg1 := {comj}j∈[N] and the state st, which is its entire final state.

Σ.Verify1(1λ): It chooses a subset S ⊂ [N] such that 1 ≤ |S| ≤ 5 uniformly at random, and outputs
msg2 := S.

Σ.Prove2(st,msg2): It parses st as the final entire state of Σ.Prove1 and msg2 ← S. It outputs
msg3 := ({dj}j∈S , {xj , zj}j∈S).

Σ.Verify2(kV , x,msg1,msg2,msg3): It parses (W1, ...,WN ,m1, ...,mN) ← kV , {comj}j∈[N] ← msg1,

S ← msg2, and ({dj}j∈S , {xj , zj}j∈S) ← msg3. It computes Verifycomm(1λ, (xj , zj), comj , dj)
for all j ∈ S. If not all outputs are >, it outputs ⊥ and aborts. It chooses i ∈ [M] according
to the probability distribution defined by {pi}i∈[M] (i.e., chooses i with probability pi). Let

Si := {j ∈ [N] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is consistent to
(S, {Wj}j∈S) if and only if Si = S and the jth Pauli operator of Pi is Wj for all j ∈ Si. If Pi
is not consistent to (S, {Wj}j∈S), it outputs >. If Pi is consistent to (S, {Wj}j∈S), it flips a
biased coin that heads with probability 1− 3|Si|−5. If heads, it outputs >. If tails, it defines

m′j :=


mj ⊕ xj (Wj = Z),
mj ⊕ zj (Wj = X),

mj ⊕ xj ⊕ zj (Wj = Y)

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Figure 5: Σ-protocol with quantum preprocessing ΠΣ.

35

Σ.Preprocess(1λ): It generates N Bell-pairs between registers P and V . Let ρP and ρV be quantum
states in registers P and V , respectively. It outputs a proving key kP := ρP and a verification
key kV := ρV .

Σ.Prove1(kP , x, w): The same as that of ΠΣ.

Σ.Verify1(1λ): The same as that of ΠΣ.

Σ.Prove2(st,msg2): The same as that of ΠΣ.

Σ.Verify2(kV , x,msg1,msg2,msg3): It parses ρV ← kV , {comj}j∈[N] ← msg1, S ← msg2, and

({dj}j∈S , {xj , zj}j∈S) ← msg3. It computes Verifycomm(1λ, (xj , zj), comj , dj) for all j ∈ S.

If not all outputs are >, it outputs ⊥ and aborts. It chooses (W1, ...,WN)
$← {X,Y, Z}N .

It generates (
∏
j∈S X

xj
j Z

zj
j)ρV (

∏
j∈S X

xj
j Z

zj
j), and measures its jth qubit in the Wj-basis for

every j ∈ [N]. Let mj ∈ {0, 1} be the measurement result for the jth qubit. It chooses
i ∈ [M] according to the probability distribution defined by {pi}i∈[M] (i.e., chooses i with
probability pi). Let

Si := {j ∈ [N] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is consistent to
(S, {Wj}j∈S) if and only if Si = S and the jth Pauli operator of Pi is Wj for all j ∈ Si. If
Pi is not consistent to (S, {Wj}j∈S), it outputs >. If Pi is consistent to (S, {Wj}j∈S), it flips
a biased coin that heads with probability 1 − 3|Si|−5. If heads, it outputs > and aborts. If

tails, it outputs > if (−1)
⊕

j∈Si
mj = −si and ⊥ otherwise.

Figure 6: The virtual protocol Π′Σ for Σ-protocol with quantum preprocessing ΠΣ.

For any x, let Ex be the event that the statement output by A1 is x. Then,

Pr[x ∈ Lno ∧ verifier outputs >] ≤
∑
x∈Lno

Pr[Ex]

(
1− β

N ′
+ negl(λ)

)
≤
(

1− β

N ′
+ negl(λ)

)
.

We have therefore shown the
(

1− β
N ′ + negl(λ)

)
-soundness.

Lemma 5.8. ΠΣ satisfies special zero-knowledge property.

Proof. We construct the simulator SimΣ as follows.

SimΣ(kP , x,msg2): It parses msg2 = S and generates a quantum state ρS := Simhist(x, S) using
Simhist in Lemma 2.7. Then it measures the corresponding qubits of ρS and ρP in the Bell
basis. Let {xj , zj}j∈S be the measurement outcomes. It computes Commitcomm(1λ, (xj , zj))→
(comj , dj) for each j ∈ S and Commitcomm(1λ, (0, 0)) → (comj , dj) for each j ∈ [N] \ S. It
outputs msg1 := {comj}j∈[N] and msg3 = ({dj}j∈S , {xj , zj}j∈S).

In the following, we prove that the above simulator satisfies the requirement of the special zero-
knowledge. For proving this, we consider the following sequence of modified versions of SimΣ, which
take w ∈ RL(x) as an additional input.

36

Sim
(1)
Σ (kP , x, w,msg2): This simulator works similarly to SimΣ except that it first generates the

history state ρhist and then uses the corresponding part of ρhist instead of ρS . Note that this
simulator can generate the history state since it takes w as input.

Sim
(2)
Σ (kP , x, w,msg2): This simulator works similarly to Sim

(1)
Σ except that it measures j-th qubits

of ρhist and ρP for all j ∈ [N] (rather than only for j ∈ S) and gets the measurement outcomes

{xj , zj}j∈[N]. Note that this simulator generates the commitments in the same way as Sim
(1)
Σ .

Sim
(3)
Σ (kP , x, w,msg2): This simulator works similarly to Sim

(2)
Σ except that it generates

Commitcomm(1λ, (xj , zj))→ (comj , dj) for all j ∈ [N].

Let A = (A1,A2) be a QPT adversary. For notational simplicity, we let Sim
(0)
Σ := SimΣ,

p0 := Pr

[
A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1,msg3)
$← SimΣ(kP , x,msg2)

]
,

pi := Pr

[
A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1,msg3)
$← Sim

(i)
Σ (kP , x, w,msg2)

]

for i = 1, 2, 3, and

preal := Pr

A2(stA, x,msg1,msg2,msg3) = 1 :

(kP , stA)
$← A1(1λ)

(msg1, st)
$← Prove1(kP , x, w)

msg3
$← Prove2(st,msg2)

 .
What we have to prove is |preal − p0| = negl(λ). We prove this by the following claims.

Claim 5.9. |p0 − p1| ≤ negl(λ).

Proof. By Lemma 2.7, ‖ρS−Tr[N]\Sρhist‖tr = negl(λ). The claim immediately follows from this.

Claim 5.10. p1 = p2.

Proof. This immediately follows from the fact that the measurement results corresponding to j ∈
[N] \ S are not used, which is equivalent to tracing out all qubits of ρhist in [N] \ S.

Claim 5.11. |p2 − p3| ≤ negl(λ).

Proof. This follows from a straightforward reduction to the computational hiding property of the
commitment scheme.

Claim 5.12. p3 = preal.

Proof. This claim clearly holds since Sim
(3)
Σ generates msg1 and msg3 in exactly the same way as

by the real proving algorithm.

By combining the above claims, we have |preal − p0| ≤ negl(λ). This completes the proof of
Lemma 5.8.

Lemma 5.13. ΠΣ satisfies high min-entropy property.

37

PreprocessQRO(1λ): It runs Σ.Preprocess(1λ) → (Σ.kV ,Σ.kP), and outputs kV := Σ.kV and kP :=
Σ.kP .

ProveHQRO(kP , x, w
⊗k): It parses Σ.kP ← kP , and runs Σ.Prove1(kP , x, w

⊗k) → (msg1, st). It com-
putes msg2 := H(x,msg1). It runs Σ.Prove2(st,msg2)→ msg3. It outputs π := (msg1,msg3).

VerifyHQRO(kV , x, π): It parses Σ.kV ← kV and (msg1,msg3) ← π. It computes
Σ.Verify2(kV , x,msg1, H(x,msg1),msg3). If the output is ⊥, it outputs ⊥. If the output
is >, it outputs >.

Figure 7: CV-NIZK in the QRO + (V → P) model ΠQRO.

Proof. We define Σ.ProveQ1 to be the part of Σ.Prove1 that generates {xj , zj}j∈[N] by the Bell basis

measurements and Σ.ProveC1 to be the rest of Σ.Prove1. By the computational hiding property of
the commitment, a commitment does not take a fixed value with non-negligible probability. Then
it is clear that msg1 = {comj}j∈[N] does not take a fixed value with non-negligible probability.

5.3 Construction

In this section, we construct a CV-NIZK in the QRO + (V → P) model. As a result, we obtain
the following theorem.

Theorem 5.14. There exists a CV-NIZK for QMA in the QRO + (V → P) model.

Let L = (Lyes, Lno) be a QMA promise problem, H be a random oracle, and ΠΣ = (Σ.Preprocess,
Σ.Prove1,Σ.Verify1,Σ.Prove2,Σ.Verify2) be a Σ-protocol with quantum preprocessing (with (1 −
negl(λ))-completeness and negl(λ)-soundness). Then our CV-NIZK in the QRO + (V → P) model
ΠQRO = (PreprocessQRO,ProveQRO,VerifyQRO) for L is described in Figure 7.

Lemma 5.15. ΠQRO satisfies (1− negl(λ))-completeness and adaptive negl(λ)-soundness.

Proof of Lemma 5.15. The completeness is clear. For proving soundness, we rely on the following
lemma shown in [DFM20].

Lemma 5.16 ([DFM20, Theorem 2]). Let X and Y be non-empty sets and A be an arbitrary oracle
quantum algorithm that takes as input a quantum state ρ, makes q queries to a uniformly random
H : X → Y , and outputs some x ∈ X and a (possibly quantum) output z. There exist black-box
quantum algorithms SA1 and SA2 such that for any quantum input ρ, x∗ ∈ X, and any predicate V :

Pr
H

[
x = x∗ ∧ V (x,H(x), z) : (x, z)← AH(ρ)

]
≤ (2q + 1)2 Pr

y

[
x = x∗ ∧ V (x, y, z) :

(x, st)← SA1 (ρ)
z ← SA2 (st, y)

]
Furthermore, SA1 and SA2 run in time polynomial in q, log |X|, and log |Y |.

38

Based on the above lemma, we prove the soundness of ΠΣ as follows:

Pr
H,(kP ,kV)

[
x ∈ Lno ∧ VerifyHQRO(kV , x, π) = > : (x, π)← AH(kP)

]
= Pr

H,(kP ,kV)

 x ∈ Lno

∧
Σ.Verify2(kV , x,msg1, H(msg1),msg3) = >

: (x, (msg1,msg3))← AH(kP)


= E(k∗P ,k

∗
V) Pr

H

 x ∈ Lno

∧
Σ.Verify2(k∗V , x,msg1, H(msg1),msg3) = >

: (x, (msg1,msg3))← AH(k∗P)


= E(k∗P ,k

∗
V)

∑
x∗∈Lno,msg∗1

Pr
H

 (x,msg1) = (x∗,msg∗1)
∧

Σ.Verify2(k∗V , x,msg1, H(msg1),msg3) = >
: (x, (msg1,msg3))← AH(k∗P)


≤ (2q + 1)2E(k∗P ,k

∗
V)

∑
x∗∈Lno,msg∗1

Pr
msg2

 (x,msg1) = (x∗,msg∗1)
∧

Σ.Verify2(k∗V , x,msg1,msg2,msg3) = >
:

(x,msg1, st)
$← SA1 (k∗P)

msg3
$← SA2 (st,msg2)


= (2q + 1)2 Pr

msg2,(kP ,kV)

 x ∈ Lno

∧
Σ.Verify2(kV , x,msg1,msg2,msg3) = >

:
(x,msg1, st)

$← SA1 (kP)

msg3
$← SA2 (st,msg2)


≤ (2q + 1)2negl(λ)

= negl(λ)

where the first inequality is obtained by applying Lemma 5.16 for each fixed (k∗P , k
∗
V) with ρ := k∗P ,

x := (x,msg1), y := msg2, z := msg3, and V ((x,msg1),msg2,msg3) := (Σ.Verify2(k∗V , x,msg1,msg2,

msg3)
?
= >) and the second inequality follows from the soundness of ΠΣ.

Lemma 5.17. ΠQRO satisfies adaptive multi-theorem zero-knowledge property.

Proof of Lemma 5.17. For proving the zero-knowledge property, we use the following lemma.

Lemma 5.18 (Adaptive Reprogramming [GHHM20]). Let X1, X2, X
′, Y be some finite sets. For

an algorithm A, we consider the following experiment for b ∈ {0, 1}:

ExpAb : The experiment first uniformly chooses a function H : X1×X2 → Y , which may be updated
during the execution of the experiment. A can make the following two types of queries:

Random Oracle Query: When A queries (x1, x2) ∈ X1 × X2, the oracle returns H(x).
This oracle can be accessed quantumly (i.e., upon a query

∑
x1,x2,y

|x1, x2〉 |y〉, the oracle
returns

∑
x1,x2,y

|x1, x2〉 |y ⊕H(x1, x2)〉).

Reprogramming Query: A reprogramming query should consist of x1 ∈ X1 and a descrip-
tion of a probabilistic distribution D over X2 ×X ′. On input (x1, D), the oracle works

as follows. First, the oracle takes (x2, x
′)

$← D and y
$← Y . Then it does either of the

following depending of the value of b.

39

1. If b = 0, it does nothing.

2. If b = 1, it reprograms H so that H(x1, x2) = y. Note that the reprogrammed H is
used for answering random queries hereafter.

Finally, it returns (x2, x
′) to A. Note that this algorithm is only classically accessed.

After making an arbitrary number of queries to the above oracles, A finally outputs a bit b′,
which is treated as the output of the experiment.

Suppose that A makes at most qH random oracle queries and at most qR reprogramming queries

and let pmax := maxD,x∗2 Pr[x2 = x∗2 : (x2, x
′)

$← D] where the maximum is taken over all D queried
by A as part of a reprogramming query and x∗2 ∈ X2. Then we have∣∣Pr[ExpA0 = 1]− Pr[ExpA1 = 1]

∣∣ ≤ 3qR
2

√
qHpmax

Remark 9. The above lemma is a special case of [GHHM20, Theorem 1]. We note that the
roles of X1 and X2 are swapped from the original one, but this is just for convenience in later
use and does not make any essential difference. We also note that a similar special case is stated
in [GHHM20, Proposition 2], but the above lemma is slightly more general than that since their
proposition assumes that A uses the same D for all reprogramming queries.

Proof. Let SimΣ be the simulator for ΠΣ. We construct a simulator SimQRO for ΠQRO as follows
where C is the set from which msg2 is uniformly chosen.

SimH,Reprogram
QRO (kP , x): It randomly chooses msg2

$← C, generates (msg1,msg3)
$← SimΣ(kP , x,msg2),

queries ((x,msg1),msg2) to Reprogram, which reprograms H so that H(x,msg1) = msg2, and
outputs (msg1,msg3).

In the following, we prove that the above simulator satisfies the requirement for adaptive multi-
theorem zero-knowledge. For proving this, we consider the following sequence of modified versions
of SimQRO, which take k copies of a witness w ∈ RL(x) as an additional input.

Sim
(1)
QRO

H,Reprogram
(kP , x, w

⊗k): This simulator uses the real proving algorithm instead of the sim-

ulator to generate msg1 and msg3. That is, it generates (msg1, st)
$← Σ.Prove1(kP , x, w

⊗k),

randomly chooses msg2
$← C, generates msg3

$← Σ.Prove2(st,msg2), queries ((x,msg1),msg2)
to Reprogram, which reprograms H so that H(x,msg1) = msg2, and outputs (msg1,msg3).

Sim
(2)
QRO

H,Reprogram
(kP , x, w

⊗k): This simulator derives msg2 by querying to the random oracle in-
stead of randomly choosing msg2 and then reprogramming the random oracle to be consistent.

That is, it generates (msg1, st)
$← Σ.Prove1(kP , x, w

⊗k), sets msg2 := H(x,msg1), generates

msg3
$← Σ.Prove2(st,msg2), and outputs (msg1,msg3). Note that this simulator no longer

makes a query to Reprogram.

Let D be a QPT distinguisher. For notational simplicity, let OS(0) := OS , OS(i) be the oracle that

works similarly to OS except that Sim
(i)
QRO is used instead of SimQRO for i = 1, 2,

pi := Pr

[
DH,O

H,Reprogram
S(i)

(·,·,·)
(1λ) = 1 : H

$← ROdist

]

40

for i = 0, 1, 2, and

preal := Pr
[
DH,OH

P (·,·,·)(1λ) = 1 : H
$← ROdist

]
.

What we have to prove is |preal − p0| = negl(λ). We prove this by the following claims.

Claim 5.19. |p0 − p1| ≤ poly(λ).

Proof. This claim can be proven by a straightforward reduction to the special zero-knowledge
property of ΠΣ and a standard hybrid argument.

Claim 5.20. |p1 − p2| ≤ poly(λ).

Proof. This claim can be proven by a straightforward reduction to Lemma 5.18 where x, msg1, st,
and msg2 play the roles of x1, x2, x′, and y, respectively, and the output distribution of Σ.ProveC1 (st′)

where st′
$← Σ.ProveQ1 (kP , x, w

⊗k) plays the role of the distribution D. (See Definition 5.3 for the

definitions of Σ.ProveC1 and Σ.ProveQ1). Since the number of D’s queries is poly(λ) and msg1 sampled
by Σ.ProveC1 (st′) does not take any fixed value with non-negligible probability as required by the
high min-entropy property of ΠΣ, pmax in Lemma 5.18 is negligible. Then Lemma 5.18 directly
gives the above claim.

Claim 5.21. p2 = preal.

Proof. This is clear since Sim
(2)
QRO works similarly to the real proving algorithm ProveQRO.

By combining the above claims, we obtain |preal − p0| ≤ negl(λ). This completes the proof of
Lemma 5.17.

Shared Bell-pair model. Remark that the verifier of ΠQRO just sends a state ρP :=
⊗N

j=1(U(Wj)|mj〉)
for (W1, ...,WN)

$← {X,Y, Z}N and (m1, ...,mN)
$← {0, 1}N while keeping (W1, ...,WN ,m1, ...,mN)

as a verification key. This step can be done in a non-interactive way if N Bell-pairs are a priori
shared between the prover and verifier. That is, the verifier can measure his halves of Bell pairs
in a randomly chosen bases (W1, ...,WN) to get measurement outcomes (m1, ...,mN). Apparently,
this does not harm either of soundness or zero-knowledge since the protocol is the same as ΠQRO

from the view of the prover and the malicious verifier’s power is just weaker than that in ΠQRO in
the sense that it cannot control the quantum state to be sent to the prover. Thus, we obtain the
following theorem.

Theorem 5.22. There exists a CV-NIZK for QMA in the QRO + shared Bell pair model.

See Appendix F for the formal definition of CV-NIZK for QMA in the QRO + shared Bell pair
model.

41

References

[AB20] V. Arte and M. Bellare. Dual-Mode NIZKs: Possibility and Impossibility Results for
Property Transfer. In INDOCRYPT 2020, pages 859–881. 2020.

[ACGH20] G. Alagic, A. M. Childs, A. B. Grilo, and S.-H. Hung. Non-interactive Classical Veri-
fication of Quantum Computation. In TCC 2020, Part III, pages 153–180. 2020.

[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and Weaknesses
of Quantum Computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

[BCKM21] J. Bartusek, A. Coladangelo, D. Khurana, and F. Ma. On the Round Complexity
of Secure Quantum Computation. In CRYPTO 2021, Part I, pages 406–435, Virtual
Event, 2021.

[BCR86] G. Brassard, C. Crépeau, and J.-M. Robert. Information Theoretic Reductions among
Disclosure Problems. In 27th FOCS, pages 168–173. 1986.

[BCR87] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-Nothing Disclosure of Secrets. In
CRYPTO’86, pages 234–238. 1987.

[BD18] Z. Brakerski and N. Döttling. Two-Message Statistically Sender-Private OT from LWE.
In TCC 2018, Part II, pages 370–390. 2018.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and Its Appli-
cations (Extended Abstract). In 20th ACM STOC, pages 103–112. 1988.

[BG20] A. Broadbent and A. B. Grilo. QMA-hardness of Consistency of Local Density Matrices
with Applications to Quantum Zero-Knowledge. In 61st FOCS, pages 196–205. 2020.

[BHY09] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and Impossibility Results for En-
cryption and Commitment Secure under Selective Opening. In EUROCRYPT 2009,
pages 1–35. 2009.

[BJSW20] A. Broadbent, Z. Ji, F. Song, and J. Watrous. Zero-Knowledge Proof Systems for
QMA. SIAM J. Comput., 49(2):245–283, 2020.

[BM21] J. Bartusek and G. Malavolta. Candidate Obfuscation of Null Quantum Circuits and
Witness Encryption for QMA. IACR Cryptology ePrint Archive, 2021:421, 2021.

[BS20] N. Bitansky and O. Shmueli. Post-quantum zero knowledge in constant rounds. In
52nd ACM STOC, pages 269–279. 2020.

[BY20] Z. Brakerski and H. Yuen. Quantum Garbled Circuits, arXiv:2006.01085, 2020.

[Can20] R. Canetti. Universally Composable Security. J. ACM, 67(5):28:1–28:94, 2020.

[CCKV08] A. Chailloux, D. F. Ciocan, I. Kerenidis, and S. P. Vadhan. Interactive and Noninter-
active Zero Knowledge are Equivalent in the Help Model. In TCC 2008, pages 501–534.
2008.

[CM16] T. S. Cubitt and A. Montanaro. Complexity Classification of Local Hamiltonian Prob-
lems. SIAM J. Comput., 45(2):268–316, 2016.

42

[CNs07] J. Camenisch, G. Neven, and a. shelat. Simulatable Adaptive Oblivious Transfer. In
EUROCRYPT 2007, pages 573–590. 2007.

[CVZ20] A. Coladangelo, T. Vidick, and T. Zhang. Non-interactive Zero-Knowledge Arguments
for QMA, with Preprocessing. In CRYPTO 2020, Part III, pages 799–828. 2020.

[DFM20] J. Don, S. Fehr, and C. Majenz. The Measure-and-Reprogram Technique 2.0: Multi-
round Fiat-Shamir and More. In CRYPTO 2020, Part III, pages 602–631. 2020.

[DFMS19] J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir Transfor-
mation in the Quantum Random-Oracle Model. In CRYPTO 2019, Part II, pages
356–383. 2019.

[DMP90] A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge with Pre-
processing. In CRYPTO’88, pages 269–282. 1990.

[FHM18] J. F. Fitzsimons, M. Hajdušek, and T. Morimae. Post hoc verification with a single
prover. Phys. Rev. Lett., 120:040501, 2018.

[FLS99] U. Feige, D. Lapidot, and A. Shamir. Multiple NonInteractive Zero Knowledge Proofs
Under General Assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS87] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO’86, pages 186–194. 1987.

[GHHM20] A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adaptive reprogramming
in the QROM, arXiv:2010.15103, 2020.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[GOS12] J. Groth, R. Ostrovsky, and A. Sahai. New Techniques for Noninteractive Zero-
Knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[GS12] J. Groth and A. Sahai. Efficient Noninteractive Proof Systems for Bilinear Groups.
SIAM J. Comput., 41(5):1193–1232, 2012.

[GSY19] A. B. Grilo, W. Slofstra, and H. Yuen. Perfect Zero Knowledge for Quantum Multi-
prover Interactive Proofs. In 60th FOCS, pages 611–635. 2019.

[IKLP06] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank. Black-box constructions for secure
computation. In 38th ACM STOC, pages 99–108. 2006.

[Kob03] H. Kobayashi. Non-interactive Quantum Perfect and Statistical Zero-Knowledge. In
Algorithms and Computation, 14th International Symposium, ISAAC 2003, Kyoto,
Japan, December 15-17, 2003, Proceedings, pages 178–188. 2003.

[Lin08] A. Y. Lindell. Efficient Fully-Simulatable Oblivious Transfer. In CT-RSA 2008, pages
52–70. 2008.

[LS19] A. Lombardi and L. Schaeffer. A Note on Key Agreement and Non-Interactive Com-
mitments. Cryptology ePrint Archive, Report 2019/279, 2019. https://eprint.iacr.
org/2019/279.

43

https://eprint.iacr.org/2019/279
https://eprint.iacr.org/2019/279

[LZ19] Q. Liu and M. Zhandry. Revisiting Post-quantum Fiat-Shamir. In CRYPTO 2019,
Part II, pages 326–355. 2019.

[Mah18] U. Mahadev. Classical Homomorphic Encryption for Quantum Circuits. In 59th FOCS,
pages 332–338. 2018.

[MNS18] T. Morimae, D. Nagaj, and N. Schuch. Quantum proofs can be verified using only
single-qubit measurements. Phys. Rev. A, 93:022326, 2018.

[MW18] S. Menda and J. Watrous. Oracle Separations for Quantum Statistical Zero-Knowledge,
arXiv:1801.08967, 2018.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[NP01] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington,
DC, USA, pages 448–457. 2001.

[Pas13] R. Pass. Unprovable Security of Perfect NIZK and Non-interactive Non-malleable
Commitments. In TCC 2013, pages 334–354. 2013.

[Ps05] R. Pass and A. shelat. Unconditional Characterizations of Non-interactive Zero-
Knowledge. In CRYPTO 2005, pages 118–134. 2005.

[PS19] C. Peikert and S. Shiehian. Noninteractive Zero Knowledge for NP from (Plain) Learn-
ing with Errors. In CRYPTO 2019, Part I, pages 89–114. 2019.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. A Framework for Efficient and Com-
posable Oblivious Transfer. In CRYPTO 2008, pages 554–571. 2008.

[Qua20] W. Quach. UC-Secure OT from LWE, Revisited. In SCN 20, pages 192–211. 2020.

[Reg09] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009.

[RT19] R. Raz and A. Tal. Oracle separation of BQP and PH. In 51st ACM STOC, pages
13–23. 2019.

[Shm21] O. Shmueli. Multi-theorem Designated-Verifier NIZK for QMA. In CRYPTO 2021,
Part I, pages 375–405, Virtual Event, 2021.

[Unr15] D. Unruh. Non-Interactive Zero-Knowledge Proofs in the Quantum Random Oracle
Model. In EUROCRYPT 2015, Part II, pages 755–784. 2015.

A More Explanation on Lemma 2.7

Here, we explain how to obtain Lemma 2.7 based on [BG20]. Let L = (Lyes, Lno) be any QMA
promise problem, and V = UT ...U1 be its verification circuit, where each Ui is an elementary gate
taken from a universal gate set. For x ∈ Lyes, there exists a witness state |ψ〉 such that V accepts
with probability exponentially close to 1, whereas for x ∈ Lno, any state makes V accept with
probability exponentially small.

44

As is explained in [BG20], we consider the encoded version of the verification circuit V ′ with a
certain quantum error correcting code. The circuit V ′ consists of gates from the universal gate set
{CNOT, T,H,X,Z}. From the standard circuit-to-Hamiltonian construction technique, we can
construct a local Hamiltonian Hx :=

∑
iHi corresponding to V ′. If there is a witness state |ψ〉 that

makes V ′ accept with probability 1− negl(|x|), then the history state

1√
T + 1

∑
t∈[T+1]

|0T−t1t〉 ⊗ Ut...U1(Enc(|ψ〉)⊗ |0A〉)

has exponentially small energy. Due to the local simulatability, there is an efficient deterministic
algorithm that outputs the classical description of a state that is close to the reduced density matrix
of the history state on at most five qubits [BG20, GSY19]. If every quantum state |ψ〉 makes V ′

reject with probability at least ε, then the groundenergy of H is at least Ω(ε
T 3).

Let Hx =
∑M

i=1 ciPi be the local Hamiltonian, where M = poly(|x|), ci is real, and Pi is a tensor
product of Pauli operators (I,X, Y, Z). In the standard circuit-to-Hamiltonian construction, each
Pi is a tensor product of at most five non-trivial Pauli operators (X,Y, Z). As is shown in [MNS18],
this Hamiltonian can be changed to the form of

∑M
i=1 pi

I+siPi
2 with M = poly(|x|), si ∈ {+1,−1},

pi > 0,
∑M

i=1 pi = 1, and Pi is a tensor product of Pauli operators (I,X, Y, Z) with at most five
non-trivial Pauli operators (X,Y, Z). In fact, define the normalized Hamiltonian

H′x :=
1

2

(
I +

Hx∑M
i=1 |ci|

)
=

M∑
i=1

|ci|∑M
i=1 |ci|

I + sign(ci)Pi
2

,

and we have only to take pi := |ci|∑M
i=1 |ci|

and si := sign(ci).

B More details for the proof of Lemma 3.2

Here we give more details of the completeness and the soundness of the virtual protocol 2. In the
virtual protocol 2, i ∈ [M] is chosen after SV and (W1, ...,WN) are chosen, but we can assume that
i is chosen before SV and (W1, ...,WN) are chosen, because they are independent. When Pi is not
consistent to (SV , {Wj}j∈SV

) or the coin heads, the measurement result on ρ′V is not used. The
probability that such cases happen is

M∑
i=1

pi

(
Pr[not consistent|i] + Pr[consistent|i](1− 3|Si|−5)

)
=

M∑
i=1

pi

(3N
∑5

j=1

(
N
j

)
− 3N−|Si|

3N
∑5

j=1

(
N
j

) +
3N−|Si|

3N
∑5

j=1

(
N
j

)(1− 3|Si|−5)
)

=
M∑
i=1

pi

(
1− 1

35
∑5

j=1

(
N
j

))
= 1− 1

35
∑5

j=1

(
N
j

)
= 1− 1

N ′
.

The probability that it is consistent and the coin tails is therefore 1
N ′ . In this case, the measurement

result on ρ′V is used. The probability that the measurement result satisfies (−1)
⊕

j∈Si
m′j = −si is

45

from Lemma 2.5,

M∑
i=1

piTr
[(
I − I + siPi

2

)
ρ′V

]
= 1− Tr(Hxρ

′
V).

The total acceptance probability is therefore

1− 1

N ′
+

1

N ′

[
1− Tr(Hxρ

′
V)
]

= 1−
Tr(Hxρ

′
V)

N ′
.

C Alternative Simpler Construction of CV-NIZK in the QSP Model.

Here, we give an alternative construction of a CV-NIZK in the QSP model, which is slightly simpler
than the construction given in Section 3.

Our construction of a CV-NIZK for a QMA promise problem L is given in Figure 8 where Hx,
N , M , pi, si, Pi, α, β, and ρhist are as in Lemma 2.7 for L.

Setup(1λ): The setup algorithm chooses (W1, ...,WN ,m1, ...,mN)
$← {X,Y, Z}N × {0, 1}N and a

uniformly random subset SV ⊆ [N] such that 1 ≤ |SV | ≤ 5, and outputs a proving key
kP :=

⊗N
j=1(U(Wj)|mj〉) and a verification key kV := (SV , {Wj ,mj}j∈SV

).

Prove(kP , x, w): The proving algorithm generates the history state ρhist for Hx from w and measures
j-th qubits of ρhist and kP in the Bell basis for j ∈ [N]. Let x := x1‖x2‖...‖xN , and z :=
z1‖z2‖...‖zN where (xj , zj) denotes the outcome of j-th measurement. It outputs a proof
π := (x, z).

Verify(kV , x, π): The verification algorithm parses (SV , {Wj ,mj}j∈SV
) ← kV and (x, z) ← π,

chooses i ∈ [M] according to the probability distribution defined by {pi}i∈[M] (i.e., chooses i
with probability pi). Let

Si := {j ∈ [N] | jth Pauli operator of Pi is not I}.

We note that we have 1 ≤ |Si| ≤ 5 by the 5-locality of Hx. We say that Pi is consistent to
(SV , {Wj}j∈SV

) if and only if Si = SV and the jth Pauli operator of Pi is Wj for all j ∈ Si.
If Pi is not consistent to (SV , {Wj}j∈SV

), it outputs >. If Pi is consistent to (SV , {Wj}j∈SV
),

it flips a biased coin that heads with probability 1 − 3|Si|−5. If heads, it outputs >. If tails,
it defines

m′j :=


mj ⊕ xj (Wj = Z),
mj ⊕ zj (Wj = X),

mj ⊕ xj ⊕ zj (Wj = Y)

for j ∈ Si, and outputs > if (−1)
⊕

j∈Si
m′j = −si and ⊥ otherwise.

Figure 8: CV-NIZK in the QSP model Π′NIZK.

We have the following lemmas.

46

Lemma C.1 (Completeness and Soundness). Π′NIZK satisfies (1− α
N ′)-completeness and (1− β

N ′)-

soundness where N ′ := 35
∑5

i=1

(
N
i

)
.

Lemma C.2 (Zero-Knowledge). Π′NIZK satisfies the zero-knowledge property.

They can be proven similarly to Lemmas 3.2 and 3.3, respectively.

D CV-NIP in the QSP model

We call a CV-NIZK in the QSP model a CV-NIP (classically-verifiable non-interactive proof) in the
QSP model if the zero-knowledge is not satisfied. Here we give a construction of an information-
theoretically sound CV-NIP for QMA in the QSP model. Specifically, we prove the following
theorem.

Theorem D.1. There exists a CV-NIP for QMA in the QSP model (without any computational
assumption).

We note that this theorem is subsumed by Theorem 3.1. Nonetheless, we give a proof of the
theorem because the CV-NIP given here is much simpler.

Its proof is based on the fact that the 2-local {ZZ,XX}-local Hamiltonian problem is QMA-
complete. That is, we have the following lemma.

Lemma D.2 (QMA-completeness of 2-local {ZZ,XX}-Hamiltonian problem [CM16]). For any
QMA promise problem L = (Lyes, Lno), there is a classical polynomial-time computable determin-
istic function that maps x ∈ {0, 1}∗ to an N -qubit Hamiltonian Hx of the form

Hx =
∑
j1<j2

pj1,j2
2

(I + sj1,j2Xj1Xj2

2
+
I + sj1,j2Zj1Zj2

2

)
where N = poly(|x|), pj1,j2 > 0,

∑
j1<j2

pj1,j2 = 1, and sj1,j2 ∈ {+1,−1}, and satisfies the following:
There are 0 < α < β < 1 such that β − α = 1/poly(|x|) and

• if x ∈ Lyes, then there exists an N -qubit state ρ such that Tr(ρHx) ≤ α, and

• if x ∈ Lno, then for any N -qubit state ρ, we have Tr(ρHx) ≥ β.

Moreover, for any x ∈ Lyes, we can convert any witness w ∈ RL(x) into a state ρhist, called the
history state, such that Tr(ρhistHx) ≤ α in quantum polynomial time.

Remark 10. It might be possible to prove QMA-completeness of 2-local {ZZ,XX}-Hamiltonian
problem with local simulatability by combining the techniques of [BG20, GSY19] and [CM16]. How-
ever, this is not clear, and indeed, this is mentioned as an open problem in [BG20]. Therefore we
consider the 5-local Hamiltonian problem whenever we need local simulatability.

Our construction of a CV-NIP for a QMA promise problem L is given in Figure 9 where Hx,
N , pj1,j2 , sj1,j2 , α, β, and ρhist are as in Lemma D.2 for L. We remark that the proving algorithm
uses only one witness, and thus we have k = 1 in Definition 2.8 for this protocol. Multiple copies
of the witness are needed only when we do the gap amplification (Lemma 2.9). A similar remark
applies to all protocols proposed in this paper.

We prove the following lemma.

47

Setup(1λ): The setup algorithm chooses (h,m1, ...,mN)
$← {0, 1}N+1, and outputs a proving key

kP :=
⊗N

j=1(Hh|mj〉) and a verification key kV := (h,m1, ...,mN).

Prove(kP , x, w): The proving algorithm generates the history state ρhist for Hx from w and measures
j-th qubits of ρhist and kP in the Bell basis for j ∈ [N]. Let x := x1‖x2‖...‖xN , and z :=
z1‖z2‖...‖zN where (xj , zj) ∈ {0, 1}2 denotes the outcome of j-th measurement. It outputs a
proof π := (x, z).

Verify(kV , x, π): The verification algorithm parses (h,m1, ...,mN) ← kV and (x, z) ← π, chooses
(j1, j2) ∈ [N]2 according to the probability distribution defined by {pj1,j2}j1<j2 (i.e., chooses
(j1, j2) with probability pj1,j2), defines m′jb := mjb ⊕ (hzjb ⊕ (1 − h)xjb) for b ∈ {1, 2}, and

outputs > if (−1)
m′j1
⊕m′j2 = −sj1,j2 and ⊥ otherwise.

Figure 9: CV-NIP ΠNIP.

Setupvir-1(1λ): The setup algorithm generates N Bell-pairs between registers P and V and lets kP
and kV be quantum states in registers P and V, respectively. Then it outputs (kP , kV).

Provevir-1(kP , x, w): This is the same as Prove(kP , x, w) in Figure 9.

Verifyvir-1(kV , x, π): The verification algorithm chooses h
$← {0, 1}, and measures each qubit of kV

in basis {Hh |0〉 , Hh |1〉}, and lets (m1, ...,mN) ∈ {0, 1}N be the measurement outcomes. The
rest of this algorithm is the same as Verify(kV , x, π) given in Figure 9.

Figure 10: The virtual protocol 1 for ΠNIP

Lemma D.3 (Completeness and Soundness). ΠNIP satisfies (1 − α)-completeness and (1 − β)-
soundness.

Since (1 − α) − (1 − β) = β − α ≥ 1/poly(λ), by combining Lemma 2.9 and Lemma D.3,
Theorem D.1 follows.

In the following, we give a proof of Lemma D.3.

Proof of Lemma D.3. We prove this lemma by considering virtual protocols that do not change
completeness and soundness. An alternative direct proof is given later. First, we consider the
virtual protocol 1 described in Figure 10. The difference from the original protocol is that the
setup algorithm generates N Bell pairs and gives each halves to the prover and verifier, and the
verifier obtains (m1, ...,mn) by measuring his halves in either standard or Hadamard basis.

Because verifier’s measurement and the prover’s measurement commute with each other, in the
virtual protocol 1, verifier’s acceptance probability does not change even if the verifier chooses h and
measures kV (i.e., the V register of the N Bell-pairs) in the corresponding basis to obtain outcomes
(m1, ...,mN) before kP (i.e, the P register of the N Bell-pairs) is given to the prover. Moreover,
conditioned on the above measurement outcomes, the state in P collapses to

⊗N
j=1(Hh|mj〉). (See

Lemma 2.1.) Therefore, the virtual protocol 1 is exactly the same as the original protocol from the

48

Setupvir-2(1λ): This is the same as Setupvir-1(1λ) in Figure 10.

Provevir-2(kP , x, w): This is the same as Prove(kP , x, w) in Figure 9.

Verifyvir-2(kV , x, π): The verification algorithm parses (x, z) ← π, computes k′V := XxZzkV Z
zXx,

chooses h
$← {0, 1}, measures each qubit of k′V in basis {Hh |0〉 , Hh |1〉}, and lets (m′1, ...,m

′
N)

be the measurement outcomes. It chooses (j1, j2) ∈ [N]2 according to the probability distri-
bution defined by {pj1,j2}j1<j2 (i.e., chooses (j1, j2) with probability pj1,j2) and outputs > if

(−1)
m′j1
⊕m′j2 = −sj1,j2 and ⊥ otherwise.

Figure 11: The virtual protocol 2 for ΠNIP

prover’s view, and verifier’s acceptance probability of the virtual protocol 1 is the same as that of
the original protocol ΠNIP for any possibly malicious prover.

Next, we further modify the protocol to define the virtual protocol 2 described in Figure 11.
The difference from the virtual protocol 1 is that instead of setting m′j := mj⊕(hzj+(1−h)xj), the
verification algorithm applies a corresponding Pauli operator to (x, z) on kV , and then measures it
to obtain m′j . Since X and Z before the measurement has the effect of flipping the measurement
outcome for Z and X basis measurements, respectively, this does not change the distribution of
(m′1, ...,m

′
N). (See Lemma 2.2.) Therefore, verifier’s acceptance probability of the virtual protocol

2 is the same as that of the virtual protocol 1 for any possibly malicious prover.
Therefore, it suffices to prove (1 − α)-completeness and (1 − β)-soundness for the virtual pro-

tocol 2. When x ∈ Lyes and π is honestly generated, then k′V is the history state ρhist, which
satisfies Tr(ρhistHx) ≤ α, by the correctness of quantum teleportation (Lemma 2.4). Therefore, by
Lemma 2.5 and Lemma D.2, verifier’s acceptance probability is 1− Tr(ρhistHx) ≥ 1− α.

Let A be an adaptive adversary against soundness of virtual protocol 2. That is, A is given kP
and outputs (x, π). We say that A wins if x ∈ Lno and Verify(kV , x, π) = >. For any x, let Ex be the
event that the statement output by A is x, and k′V,x be the state in V right before the measurement
by Verify conditioned on Ex. Similarly to the analysis for the completeness, by Lemma 2.5 and
Lemma D.2, we have

Pr[A wins] =
∑
x∈Lno

Pr[Ex]
(
1− Tr(k′V,xHx)

)
≤
∑
x∈Lno

Pr[Ex] (1− β) ≤ 1− β.

Another proof of Lemma D.3. We first show the soundness. Let us define Hh :=
∏N
j=1H

h
j and

49

|m〉 :=
⊗N

j=1 |mj〉. Let {Λx,z,x}x,z,x be the POVM that the adversary A does on kP . Then,

Pr
[
x ∈ Lno ∧ Verify(kV , x, π) = > : (kP , kV)

$← Setup(1λ), (x, π)
$← A(kP)

]
=

1

2

∑
h∈{0,1}

1

2N

∑
m∈{0,1}N

∑
x,z

∑
x/∈L

〈m|HhΛx,z,xH
h|m〉

∑
j1,j2

pxj1,j2
1− sxj1,j2(−1)

m′j1
⊕m′j2

2

=
1

2

∑
h∈{0,1}

1

2N

∑
m∈{0,1}N

∑
x,z

∑
x/∈L

∑
j1,j2

pxj1,j2〈m|H
hΛx,z,xH

hHhXxZzHh
I − sxj1,j2Zj1Zj2

2
HhZzXxHh|m〉

=
1

2

∑
h∈{0,1}

1

2N

∑
x,z

∑
x/∈L

∑
j1,j2

pxj1,j2Tr
[
HhΛx,z,xH

hHhXxZzHh
I − sxj1,j2Zj1Zj2

2
HhZzXxHh

]
=

1

2N

∑
x,z

∑
x/∈L

Tr
[
ZzXxΛx,z,xX

xZz(I −Hx)
]

= Tr[σ(I −Hx)]

≤ Tr
[σ

Trσ
(I −Hx)

]
= 1− Tr

[σ

Trσ
Hx

]
≤ 1− β,

where σ := 1
2N

∑
x,z

∑
x/∈L Z

zXxΛx,z,xX
xZz. Note that σ

Trσ is a quantum state for any POVM
{Λx,z,x}x,z,x.

Next we show the completeness. The POVM corresponding to Prove is {Λx,z = 1
2N
ZzXxρhistX

xZz}x,z.
Note that this is a POVM, because Λx,z ≥ 0, and∑

x,z

Λx,z = 2N × 1

22N

∑
x,z

ZzXxρhistX
xZz = 2N

I

2N
= I.

The reason why such {Λx,z}x,z is the POVM done by Prove algorithm is as follows. The Prove
algorithm first prepares ρhist⊗Hh|m〉〈m|Hh, and then measures jth qubit of the history state and
the jth qubit of Hh|m〉 in the Bell basis for all j = 1, 2, ..., N . Then,(N⊗

j=1

〈φxj ,zj |
)(
ρhist ⊗Hh|m〉〈m|Hh

)(N⊗
j=1

|φxj ,zj 〉
)

= Tr
[1

2N
ZzXxρhistX

xZz ×Hh|m〉〈m|Hh
]
.

Hence

Pr
[
Verify(kV , x, π) = > : (kP , kV)

$← Setup(1λ), π
$← Prove(kP , x, w

⊗k)
]

=
1

2N

∑
x,z

Tr
[
ZzXx

(1

2N
ZzXxρhistX

xZz
)
XxZz(I −Hx)

]
= Tr

[
ρhist(I −Hx)

]
= 1− Tr

[
ρhistHx

]
≥ 1− α.

50

Impossibility of classical setup. In our protocol, the setup algorithm sends a quantum proving
key to the prover. Can it be classical? It is easy to see that such a protocol can exist only for
languages in AM.13 In fact, assume that we have a CV-NIP for L in the SP model where the
proving key is classical. Then, we can construct a 2-round interactive proof for L where the verifier
runs the setup by itself and sends the proving key to the prover, and then the prover replies as in
the original protocol. Since IP(2) = AM, the above implies L ∈ AM. Since it is believed that
BQP is not contained in AM [RT19], it is highly unlikely that there is a CV-NIP even for BQP
in the SP model with classical setup.

E Construction of Dual-Mode k-out-of-n Oblivious Transfer

In this section, we prove Lemma 4.7. That is, we give a construction of a dual-mode k-out-of-n
oblivious transfer defined in Definition 4.6 based on the LWE assumption.

E.1 Building Block

We introduce dual-mode encryption that is used as a building block for our construction. We refer
to [PVW08] for the intuition of this primitive.

Definition E.1 (Dual-Mode Encryption [PVW08, Qua20]14). A dual-mode encryption scheme over
the message spaceM consists of PPT algorithms ΠDEnc = (Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen)
with the following syntax.

Setup(1λ,mode): The setup algorithm takes the security parameter 1λ and a mode mode ∈ {messy, dec}
as input, and outputs a common refernece string crs and a trapdoor tdmode.

KeyGen(crs, σ): The key generation algorithm takes the common reference string crs and a branch
value σ ∈ {0, 1} as input, and outputs a public key pk and a secret key sk.

Enc(crs, pk, b, µ): The encryption algorithm takes the common reference string crs, a public key pk,
a branch value b ∈ {0, 1}, and a message µ ∈M as input, and outputs a ciphertext ct.

Dec(crs, sk, ct): The decryption algorithm takes the common reference string crs, a secret key sk,
and a ciphertext ct as input, and outputs a message µ ∈M

FindMessy(crs, tdmessy, pk): The messy branch finding algorithm takes the common reference string
crs, trapdoor tdmessy in the messy mode, and a public key pk as input, and outputs a branch
value b ∈ {0, 1}.

TrapKeyGen(crs, tddec): The trapdoor key generation algorithm takes the common reference string
crs and a trapdoor tddec in the decryption mode as input, and outputs a public key pk0 and
two secret keys sk0 and sk1 that correspond to branches 0 and 1, respectively.

We require ΠDEnc to satisfy the following properties.

Correctness for Decryptable Branch For all mode ∈ {messy, dec}, σ ∈ {0, 1}, and µ ∈ M,
we have

Pr

Dec(crs, skσ, ct, µ) = µ :

(crs, tdmode)
$← Setup(1λ,mode)

(pk, skσ)
$← KeyGen(crs, σ)

ct
$← Enc(crs, pk, σ, µ)

 ≥ 1− negl(λ).

13A similar observation is also made in [Ps05].
14This definition is based on the definition in [Qua20], which has several minor differences from that in [PVW08].

51

Statistical Security in the Messy Mode With overwhelming probability over (crs, tdmessy)
$←

Setup(1λ,messy), for all possibly malformed pk, all messages µ0, µ1 ∈ {0, 1}`, and all unbounded-
time distinguisher D, we have∣∣∣∣∣Pr

[
D(ct) = 1 :

b
$← FindMessy(crs, tdmessy, pk)

ct
$← Enc(crs, pk, b, µ0)

]

−Pr

[
D(ct) = 1 :

b
$← FindMessy(crs, tdmessy, pk)

ct
$← Enc(crs, pk, b, µ1)

]∣∣∣∣∣ ≤ negl(λ).

Statistical Security in the Decryption Mode With overwhelming probability over (crs, tddec)
$←

Setup(1λ, dec), for all σ ∈ {0, 1} and all unbounded-time distinguisher D, we have∣∣∣Pr
[
D(pk, skσ) = 1 : (pk, skσ)

$← KeyGen(crs, σ)
]

−Pr
[
D(pk, skσ) = 1 : (pk, sk0, sk1)

$← TrapKeyGen(crs, tddec)
]∣∣∣ ≤ negl(λ).

Computational Mode Indistinguishability For any non-uniform QPT distinguisher D, we
have ∣∣∣Pr

[
D(crs) = 1 : (crs, tdmessy)

$← CRSGen(1λ,messy)
]

−Pr
[
D(crs) = 1 : (crs, tddec)

$← CRSGen(1λ, dec)
]∣∣∣ ≤ negl(λ).

Quach [Qua20] gave a construction of a dual-mode encryption scheme based on the LWE as-
sumption.

Lemma E.2 ([Qua20]). If the LWE assumption holds, then there exists a dual-mode encryption
scheme.

Remark 11. Peikert, Vaikuntanathan, and Waters [PVW08] gave a construction of a relaxed
variant of dual-mode encrytption scheme based on the LWE assumption. Their construction is
more efficient than that of Quach [Qua20] since they only rely on LWE with polynomial size modulus
whereas Quach’s construction relies on LWE with super-polynomial modulus. However, their scheme
does not suffice for our purpose due to the following two reasons.

1. The security in the decryption mode holds only against computationally bounded adversaries.

2. crs can be reused only for bounded number of times.

E.2 1-out-of-n Oblivious Transfer

In this section, we construct a dual-mode 1-out-of-n oblivious transfer based on dual-mode encryp-
tion. That is, we prove the following lemma.

Lemma E.3. If there exists a dual-mode encryption scheme, then there exists a dual-mode 1-out-
of-n oblivious transfer.

52

CRSGen1-n(1λ,mode): Let mode′ := dec if mode = binding and mode′ := messy if mode = hiding.

Then it generates (crs, tdmode′)
$← Setup(1λ,mode′) and outputs crs.

Receiver1-n(crs, j): It generates (pki, ski,σi)
$← KeyGen(crs, σi) for all i ∈ [N] where σj := 1 and

σi := 0 for all i ∈ [n] \ {j}. It outputs ot1 := {pki}i∈[n] and st :=
(
j, {σi, ski,σi}i∈[n]

)
.

Sender1-n(crs, ot1,µ): It parses {pki}i∈[n] ← ot1 and (µ1, ..., µn) ← µ, generates (r1, ..., rN−1)
$←

{0, 1}`×(N−1), sets µ′i,0 := µi ⊕ ri−1 and µ′i,1 := ri ⊕ ri−1 for all i ∈ [n] where r0 is defined

to be 0`. Then it generates cti,b
$← Enc(pki, b, µ

′
i,b) for all i ∈ [n] and b ∈ {0, 1}, and outputs

ot2 := {cti,b}i∈[n],b∈{0,1}.

Derive1-n(st, ot2): It parses
(
j, {σi, ski,σi}i∈[n]

)
← st and {cti,b}i∈[n],b∈{0,1} ← ot2, computes µ′i,σi

$←
Dec(ski,σi , cti,σi) for all i ∈ [j] and outputs µj :=

⊕j
i=1 µ

′
i,σi

.

Figure 12: Our 1-out-of-n oblivious transfer Π1-n

Let ΠDEnc = (Setup,KeyGen,Enc,Dec,FindMessy,TrapKeyGen) be a dual-mode encryption scheme
over the message space M = {0, 1}`. Then our construction of a dual-mode 1-out-of-n oblivious
transfer OT1-n = (CRSGen1-n,Receiver1-n, Sender1-n,Derive1-n) over the message space M is given
in Figure 12. This can be seen as a protocol obtained by applying the conversion of [BCR86] to
the dual-mode 1-out-of-2 oblivious transfer of [Qua20].

Then we prove the following lemmas.

Lemma E.4. Π1-n satisfies correctness

Proof. This easily follows from correctnes of ΠDEnc.

Lemma E.5. Π1-n satisfies the computational mode indistinguishability.

Proof. This can be reduced to the computational mode indistinguishability of ΠDEnc in a straight-
forward manner.

Lemma E.6. Π1-n satisfies statistical receiver’s security in the binding mode.

Proof. We construct Simrec as follows.

Simrec(crs): It generates (pki, ski,0)
$← KeyGen(crs, 0) for all i ∈ [n], and outputs ot1 := {pki}i∈[n].

By statistical security in the decryption mode of ΠDEnc, with overwhelming probability over (crs, tddec)
$←

Setup(1λ, dec), the distribution of pk generated as (pk, skσ)
$← KeyGen(crs, σ) for any fixed σ ∈ {0, 1}

is statistically close to that generated as (pk, sk0, sk1)
$← TrapKeyGen(crs, tddec), which does not de-

pend on σ. Therefore, the distributions of pki generated by Simrec(crs) and Receiver(crs, j) are
statistically close for any j ∈ [n]. Then statistical receiver’s security in the binding mode of Π1-n

follows by a standard hybrid argument.

Lemma E.7. Π1-n satisfies the statistical sender’s security in the hiding mode.

Proof. We construct SimCRS, Openrec, and Simsen as follows.

53

SimCRS(1λ): It generates (crs, tdmessy)
$← Setup(1λ,messy) and outputs crs and td := tdmessy.

Openrec(td, ot1): It parses tdmessy ← td and {pki}i∈[n] ← ot1, computes σi
$← FindMessy(tdmessy, pki)

for all i ∈ [n], and outputs the minimal j ∈ [n] such that σj = 1.

Simsen(crs, ot1, j, µj): It generates µi
$←M for i ∈ [n]\{j}, and outputs ot2

$← Sender1-n(crs, ot1, (µ1, ..., µn)).

The first item of statistical sender’s security in the hiding mode is clear because SimCRS(1λ) gener-
ates crs in exactly the same manner as CRSGen(1λ, hiding). In the following, we prove the second
item is also satisfied. For any unbounded-time adversary A = (A0,A1) and fixed µ = (µ1, ..., µn),
we consider the following sequence of games between A and the challenger. We denote by Ei the
event that A1 returns 1 in Gamei.

Game1: This game works as follows.

1. The challenger generates (crs, tdmessy)
$← Setup(1λ,messy) and sets td := tdmessy.

2. A0 takes (crs, td) as input and outputs ot1 = {pki}i∈[n] and stA.

3. The challenger computes j := Openrec(td, ot1). That is, it computes σi
$← FindMessy(tdmessy, pki)

for all i ∈ [n] and let j be the minimal value such that σj = 1.

4. The challenger sets µ̃j := µj , generates µ̃i
$← M for i ∈ [n] \ {j} and (r1, ..., rN−1)

$←
{0, 1}`×(N−1), and sets µ′i,0 := µ̃i ⊕ ri−1 and µ′i,1 := ri ⊕ ri−1 for all i ∈ [n] where r0 is

defined to be 0`. Then it generates cti,b := Enc(pki, b, µ
′
i,b) for all i ∈ [n] and b ∈ {0, 1}

and sets ot2 := {cti,b}i∈[n],b∈{0,1}.

5. A1 takes stA and ot2 as input and outputs a bit β.

Game2: This game is identical to the previous game except that µ′i,σi is replaced with 0` for all
i ∈ [n].

By the statistical security in the messy mode of ΠDEnc, it is easy to see that we have |Pr[E2]−
Pr[E1]| ≤ negl(λ).

Game3: This game is identical to the previous game except that µ′i,0 is replaced with an indepen-
dently and uniformly random element of M for all i > j. We note that this game does not
use {µ̃i}i 6=j at all.

By an easy information theoretical argument, we can see that the distribution of {µ′i,b}i∈[n],b∈{0,1}
does not change from the previous game, and thus we have Pr[E3] = Pr[E2].

Game4: This game is identical to the Game1 except that the challenger uses µ instead of µ̃.

By considering similar game hops to those from Game1 to Game3 in the reversed order, by
the statistical security in the messy mode of ΠDEnc, we have |Pr[E4]− Pr[E3]| ≤ negl(λ).

Combining the above, we have |Pr[E4] − Pr[E1]| ≤ negl(λ). This is exactly the second item of
statistical sender’s security in the hiding mode.

By combining Lemmas E.4 to E.7, we obtain Lemma E.3.

54

CRSGenk-n(1λ,mode): It generates crs
$← CRSGen1-n(1λ,mode) and outputs crs.

Receiverk-n(crs, J): It parses (j1, ..., jk) ← J , generates (ot1,i, sti)
$← Receiver1-n(crs, ji) for all i ∈

[k], and outputs ot1 := {ot1,i}i∈[k] and st := {sti}i∈[k].

Senderk-n(crs, ot1,µ): It parses {ot1,i}i∈[k] ← ot1, generates ot2,i
$← Sender1-n(crs, ot1,i,µ) for all

i ∈ [k], and outputs ot2 := {ot2,i}i∈[k].

Derivek-n(crs, st, ot2): It parses {sti}i∈[k] ← st, computes µji
$← Derive1-n(crs, sti, ot2,i) for i ∈ [k],

and outputs (µj1 , ..., µjk).

Figure 13: Our k-out-of-n oblivious transfer Πk-n

E.3 k-out-of-n Oblivious Transfer

In this section, we construct a dual-mode k-out-of-n oblivious transfer based on dual-mode 1-out-
of-n oblivious transfer by k parallel repetitions. That is, we prove the following lemma.

Lemma E.8. If there exists a dual-mode 1-out-of-n oblivious transfer, then there exists a dual-mode
k-out-of-n oblivious transfer.

By combining Lemmas E.2, E.3 and E.8, we obtain Lemma 4.7.
What is left is to prove Lemma E.8. Let Π1-n = (CRSGen1-n,Receiver1-n, Sender1-n,Derive1-n)

be a dual-mode 1-out-of-n oblivious transfer over the message space M. Then our dual-mode
k-out-of-n oblivious transfer Πk-n = (CRSGenk-n,Receiverk-n,Senderk-n,Derivek-n) is described in
Figure 13.

Then we prove the following lemmas.

Lemma E.9. Πk-n satisfies correctness.

Proof. This can be reduced to correctness of Π1-n in a straightforward manner.

Lemma E.10. Πk-n satisfies the computational mode indistinguishability.

Proof. This can be reduced to the computational mode indistinguishability of Π1-n in a straight-
forward manner.

Lemma E.11. Πk-n satisfies statistical receiver’s security in the binding mode.

Proof. Let Simrec,1-n be the corresponding algorithm for statistical receiver’s security in the binding
mode of Π1-n. Then We construct Simrec,k-n for Πk-n as follows.

Simrec,k-n(crs): It parses (crs, pk)← crs, computes ot1,i
$← Simrec,1-n(crs) for all i ∈ [k], and outputs

ot1 := {ot1,i}i∈[k].

Statistical receiver’s security in the binding mode of Πk-n follows from that of Π1-n by a straight-
forward hybrid argument.

Lemma E.12. Let Πk-n satisfies the statistical sender’s security in the hiding mode.

55

Proof. Let SimCRS,1-n, Openrec,1-n, and Simsen,1-n be the corresponding algorithms for statistical
sender’s security in the hiding mode of Π1-n. Then We construct SimCRS,k-n, Openrec,k-n, and
Simsen,k-n for Πk-n as follows.

SimCRS,k-n(1λ): This is exactly the same as SimCRS,1-n(1λ).

Openrec(td, ot1): It parses {ot1,i}i∈[k] ← ot1, computes ji := Open(td, ot1,i) for all i ∈ [k], and
outputs J = (j1, ..., jk).

Simsen(crs, ot1, J,µJ): It parses (j1, ..., jk) ← J and (µj1 , ..., µjk) ← µJ , generates µi
$← M for

i ∈ [n] \ {j1, ..., jk}, and outputs ot2
$← Senderk-n(crs, ot1, (µ1, ..., µn)).

The first item of statistical sender’s security in the hiding mode of Πk-n immediately follows from
that of Π1-n. In the following, we prove the second item. For any unbounded-time adversary
A = (A0,A1) and fixed µ = (µ1, ..., µn), we consider the following sequence of games between A
and the challenger. We denote by Ei the event that A1 returns 1 in Gamei.

Game1: This game works as follows.

1. The challenger generates (crs, td)
$← SimCRS,k-n(1λ).

2. A0 takes (crs, td) as input and outputs ot1 = {ot1,i}i∈[k] and stA.

3. The challenger computes J := Openrec,k-n(td, ot1). That is, it computes ji := Openrec,1-n(td, ot1,i)
for all i ∈ [k] and lets J := (j1, ..., jk).

4. The challenger generates ot2,i
$← Simsen,1-n(crs, ot1,i, ji, µji) for i ∈ [k] and sets ot2 :=

{ot2,i}i∈[k].

5. A1 takes stA and ot2 as input and outputs a bit β.

Game2: This game is identical to the previous game except that ot2,i is generated as ot2,i
$←

Sender(crs, ot1,i,µ) for i ∈ [k].

By the second item of statistical sender’s security in the hiding mode of Π1-n, we have |Pr[E2]−
Pr[E1]| ≤ negl(λ) by a standard hybrid argument. This is exactly the second item of statistical
sender’s security in the hiding mode.

By combining Lemmas E.9 to E.12, we obtain Lemma E.8.

F QRO + Shared Bell pair model

Definition F.1 (CV-NIZK in the QRO + Shared Bell pair Model). A CV-NIZK for a QMA
promise problem L = (Lyes, Lno) in the QRO + shared Bell pair model w.r.t. a random oracle
distribution ROdist consists of algorithms Π = (Setup,Prove,Verify) with the following syntax:

Setup(1λ): This algorithm generates poly(λ) Bell pairs (a state 1√
2

(|0〉 |0〉+ |1〉 |1〉)) and sends the

first and second halves to the prover and verifier as proving key kP and verification key kV ,
respectively.

ProveH(kP , x, w
⊗k): This is a QPT algorithm that is given quantum oracle access to the random

oracle H. It takes the proving key kP , a statement x, and k = poly(λ) copies w⊗k of a witness
w ∈ RL(x) as input, and outputs a classical proof π.

56

VerifyH(kV , x, π): This is a QPT algorithm that is given quantum oracle access to the random oracle
H. It takes the verification key kV , a statement x, and a proof π as input, and outputs >
indicating acceptance or ⊥ indicating rejection.

We require Π to satisfy the following properties.

Completeness. For all x ∈ Lyes ∩ {0, 1}λ, and w ∈ RL(x), we have

Pr

VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV)
$← Setup(1λ)

π
$← ProveH(kP , x, w

⊗k)

 ≥ 1− negl(λ).

Adaptive Statistical Soundness. For all adversaries A that make at most poly(λ) quantum
random oracle queries, we have

Pr

x ∈ Lno ∧ VerifyH(kV , x, π) = > :

H
$← ROdist

(kP , kV)
$← Setup(1λ)

(x, π)
$← AH(kP)

 ≤ negl(λ).

Adaptive Multi-Theorem Zero-Knowledge. For defining the zero-knowledge property in the
QROM, we define the syntax of a simulator in the QROM following [Unr15]. A simulator is given
quantum access to the random oracle H and classical access to reprogramming oracle Reprogram.
When the simulator queries (x, y) to Reprogram, the random oracle H is reprogrammed so that
H(x) := y while keeping the values on other inputs unchanged. Then the adaptive multi-theorem
zero-knowledge property is defined as follows:

There exists a QPT simulator Sim with the above syntax such that for any QPT distinguisher
D, we have ∣∣∣Pr

[
DH,OH

P (·,·)(1λ) = 1 : H
$← ROdist

]
− Pr

[
DH,O

H,Reprogram
S (·,·)(1λ) = 1 : H

$← ROdist
]∣∣∣ ≤ negl(λ)

where D’s queries to the second oracle should be of the form (x, w⊗k) where w ∈ RL(x) and w⊗k

is unentangled with D’s internal registers, OHP (x, w⊗k) generates (kP , kV)
$← Setup(1λ) and re-

turns (kV ,Prove
H(kP , x, w

⊗k)), and OH,ReprogramS (x, w⊗k) generates (kP , kV)
$← Setup(1λ) and re-

turns SimH,Reprogram(kP , x).

Remark 12. The difference from the zero-knowledge property in the QRO + (V → P) model is
that the malicious verifier is not allowed to maliciously generate kP . This is because the setup is
supposed to be run by a trusted third party in this model.

57

Contents

1 Introduction 1
1.1 Background . 1
1.2 Our Results . 2
1.3 Technical Overview . 5
1.4 Related Work . 8

2 Preliminaries 9
2.1 Quantum Computation Preliminaries . 9
2.2 QMA and Local Hamiltonian Problem . 11
2.3 Classically-Verifiable Non-Interactive Zero-knowledge Proofs 12

3 CV-NIZK in the QSP model 14

4 Dual-Mode CV-NIZK with Preprocessing 18
4.1 Definition . 18
4.2 Building Blocks . 21
4.3 Construction . 24

5 CV-NIZK via Fiat-Shamir Transformation 30
5.1 Definition . 30
5.2 Building Blocks . 31
5.3 Construction . 38

A More Explanation on Lemma 2.7 44

B More details for the proof of Lemma 3.2 45

C Alternative Simpler Construction of CV-NIZK in the QSP Model. 46

D CV-NIP in the QSP model 47

E Construction of Dual-Mode k-out-of-n Oblivious Transfer 51
E.1 Building Block . 51
E.2 1-out-of-n Oblivious Transfer . 52
E.3 k-out-of-n Oblivious Transfer . 55

F QRO + Shared Bell pair model 56

	Introduction
	Background
	Our Results
	Technical Overview
	Related Work

	Preliminaries
	Quantum Computation Preliminaries
	QMA and Local Hamiltonian Problem
	Classically-Verifiable Non-Interactive Zero-knowledge Proofs

	CV-NIZK in the QSP model
	Dual-Mode CV-NIZK with Preprocessing
	Definition
	Building Blocks
	Construction

	CV-NIZK via Fiat-Shamir Transformation
	Definition
	Building Blocks
	Construction

	More Explanation on lem:fivelocalHamiltonian
	More details for the proof of lem:NIZKcompletenesssoundness
	Alternative Simpler Construction of CV-NIZK in the QSP Model.
	CV-NIP in the QSP model
	Construction of Dual-Mode k-out-of-n Oblivious Transfer
	Building Block
	1-out-of-n Oblivious Transfer
	k-out-of-n Oblivious Transfer

	QRO + Shared Bell pair model

