
Efficient Constant-Time Implementation of SM4
with Intel GFNI instruction set extension and Arm NEON coprocessor

Weiji Guo

bilibili, Shanghai, China, guoweiji@bilibili.com

Abstract. The efficiency of constant-time SM4 implementation has been lagging
behind that of AES for most internet traffic and applicable data encryption scenarios.
The best performance before our works was 3.77 cpb for x86 platform (AESNI +
AVX2), and 8.62 cpb for Arm platform (NEON). Meanwhile the state of art constant-
time AES implementation could reach 0.63 cpb. Dedicated SM4 instruction set
extensions like those optionally available in Armv8.2, could achieve comparable cpb
to AES. But they are only available in limited processors, therefore does not impact
much to real-world uses. To fill the gap we explored some novel techniques with Intel
GFNI instruction set extension and Arm NEON coprocessor. We achieved 1.51 cpb
with GFNI + AVX512 and 2.62 cpb with GFNI + AVX2 for Intel processors; we also
achieved 6.74 cpb with NEON. In addition, we simplified the algebraic expression of
SM4 S-Box. And our technique to exploit L1 cache could also be applied to other
applications and hardware platforms if the circumstances apply.
Keywords: Constant-Time · SM4 · S-Box · SIMD · Intel GFNI · Arm NEON ·
Cache

1 Introduction
SM4 is the block cipher of the Chinese commercial cipher standard (GB/T 32907-2016),
and has been standardized internationally (ISO/IEC 18033-3:2010/AMD 1:2021). It also
serves as the block cipher for two informal cipher suites of TLS 1.3 [Yan21], which are
expected to be widely used in China.

SM4 shares a similar S-Box construct with AES, which is known to be vulnerable to
timing attacks [Ber05]. Unlike AES, which has been supported with its own Instruction
Set Extension (ISE) in various hardware platforms, options for constant-time SM4 are
rather limited.

1.1 Previous works
For x86 platforms, Saarinen had proposed the sm4ni method [Saa19] to use the AESNI
ISE to achieve both constant-timeness and efficiency for SM4 by leveraging the isomorphism
between the GF (28) field of SM4 and that of AES. It had been implemented in libgcrypt
by Kivilinna [Kiv20] and ported to a few other projects. Our tests suggested 3.77 cycles
per byte (cpb) with AVX2 in Intel i5-1038NG7 in ECB mode. This is several times better
than variable time software implementations. However, it still costs at least 14 instructions
to compute the S-Box 1.

For Arm platforms, there is a solution to lookup S-Box within NEON for AES [Bie17].
It loads the S-Box into 16 continuous NEON registers, then looks up with 1 tbl instruction

1there are totally 14 computation steps in the original project [Saa19]. Most of the instructions have
latency of 1. The latency of the aesenclast instruction varies with microarchitectures, and is mostly 3
cycles or more.

mailto:guoweiji@bilibili.com

2 Efficient Constant-Time Implementation of SM4

call followed by 3 tbx instruction calls. 2x or 4x interleaving could be adopted to hide
the latency from tbl and tbx instructions. Porting the solution to SM4 is straightforward
for up to 2x interleaving. Kwon etc. even achieved 8.62 cpb by managing 3x interleav-
ing [KKE+21]. A naive expansion to 4x interleaving is infeasible due to the lack of sufficient
NEON registers, as we will show in Subsection 4.1.

As comparison, constant-time AES could reach 0.63 cpb with AESNI [BLT16] 2.

1.2 Our contributions
To deliver highly efficient and constant-time SM4 implementations for mainstream server,
desktop and mobile platforms so that most SM4 traffic and usage could be secured, we
strived further optimizations. This is part of our efforts to develop an efficient constant-time
library for Chinese commercial ciphers.

Our contributions are:
First, we achieved 1.51 cpb in Intel platform with GFNI + AVX512, and 6.74 cpb

in Arm platform with NEON. For the latter, the optional SM4 ISE can perform much
better, for example [Hu22] reported 0.62 cpb 3. However this ISE is not widely available,
especially not in desktop and mobile platforms where our technique could be deployed.

Second, we exploited the L1 cache to boost performance in case there are insufficient
registers to hide the latency from certain instructions. We believe we are the first to develop
such a technique. Despite the costs of cache, we achieved 61% performance improvements
with twice the parallel blocks. Further, this technique could also be applied to other data
intensive computations, within or outside of cryptology.

Third, we simplified the algebraic expression of SM4 S-Box. The expression initially
provided by Liu etc. [LJH+07] uses matrix left-multiply and the values calculated don’t
equal to the lookup results. The fixing to that in [EDC10] correctly adopts matrix
right-multiply, however with four parameters while we only need two.

1.3 Overview of this paper
The rest of this paper is organized as follows: Section 2 briefly introduces SM4. Section 3
gives background information and then detailed descriptions of our works with GFNI. Sec-
tion 4 details our works on Arm NEON coprocessors without the SM4 ISE. Section 5
concludes this paper.

2 Preliminary
This section briefly introduces the SM4 algorithm following notation of [SCA12]. SM4 has
32 rounds of iteration with both block size and key size in 128 bits. Accordingly the key is
expanded to 32 round keys, each of which has 32 bits: (rk0, rk1, ..., rk31), rki ∈ Z32

2 .
For ith round, as illustrated in Figure 1, let input data be: (Xi

0, Xi
1, Xi

2, Xi
3) ∈ (Z32

2)4,
and round key be rki ∈ Z32

2 , then the round function is:

F (Xi
0, Xi

1, Xi
2, Xi

3) = Xi
0 ⊕ L(τ(Xi

1 ⊕ Xi
2 ⊕ Xi

3 ⊕ rki))

⊕ is addition over GF (2), equivalent to bit-wise exclusive-or. The non-linear transformation
τ is where the S-Box lookup is performed:

τ(a0, a1, a2, a3) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3)), ai ∈ Z8
2

Full SM4 S-Box is provided in Table 4 of Appendix A.
2data excerpted from Table 1, with fixed data length of 2KB, in ECB mode
3translated from 4459181.40kBps@2.75 GHz for ECB mode and block size of 8KB.

Weiji Guo 3

Xi
0, Xi

1, Xi
2, Xi

3 ∈ Z32
2 are inputs to ith round, rki ∈ Z32

2 is ith round key, τ and L are
SM4-defined transformations.

Figure 1: SM4 round function

The linear transformation L simply adds together several left rotations of the input
data, which is the output of the τ transformation. Let B ∈ Z32

2 , and <<< be left rotation,
then:

L(B) = B ⊕ (B <<< 2) ⊕ (B <<< 10) ⊕ (B <<< 18) ⊕ (B <<< 24)

We note that although the block size and key size for SM4 are both 128 bits, the
calculations are usually carried out on 32 bits data for each round. Therefore a SIMD
instruction of 128-bit data width could calculate 4 data blocks in parallel, and 256-bit for
8, 512-bit for 16.

For simplicity we omitted the key expansion, which also involves S-Box lookup and
should be subject to similar vulnerabilities. We note that our implementation does calculate
the key expansion in constant-time as well.

3 Intel GFNI implementation of SM4 S-Box
This section shows how Intel GFNI ISE could be leveraged to implement SM4 S-Box. We
first introduce the algebraic expression of the S-Box, and then the expressions for the two
GFNI instructions to be used. Next we combine these expressions together and simplify
them by merging adjacent matrixes. Finally we give our implementation results with
further discussion.

3.1 Algebraic expression of SM4 S-Box
The algebraic expression of SM4 S-Box had been discovered in [LJH+07], in the form
of row vector left-multiply matrix as affine transformation. However it does not derive
values consistent with table lookup, as shown in Appendix A. We fixed the expression
by rewriting it in matrix right-multiply column vector as in (1). The multiplication · and
addition ⊕ are over GF (2). (·)−1 is the multiplicative inverse over FS , the SM4 field of
GF (28) as defined in (2).

Sbox(X) = A · (A · X ⊕ C)−1 ⊕ C (1)

FS = GF (2)[x]/(x8 + x7 + x6 + x5 + x4 + x2 + 1) (2)

The parameters, 8 × 8 matrix A and column vector C over GF (2) are given in (3).
We follow the little-endian encoding scheme, with the least significant bit in the top left.

4 Efficient Constant-Time Implementation of SM4

Therefore C encodes (1 + x + x4 + x6 + x7), and the circulant matrix A encodes 64 bits
with the least significant byte on the top and the least significant bit of each byte on the
left.

A =

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

C =

1
1
0
0
1
0
1
1

(3)

3.2 the Intel GFNI instruction set extension
The Intel Galois Field New Instructions or GFNI for short, was introduced in the 3rd Gen
Intel Xeon Scalable processors. GFNI instructions are designed for computing over Galois
fields. For our purposes here we need two instructions from GFNI, namely vgf2p8affineqb
for affine transformation as (4), and vgf2p8affineinvqb for affine-inverse transformation
as (5), which is byte inversion over FA and then fused affine transformation. The caller-
provided parameter M should be a 8 × 8 matrix and B should be a column vector, both
over GF (2). FA as the AES field of GF (28), is shown in (6).

affine (X, M, B) = M · X ⊕ B (4)

affineInv (X, M, B) = M · X−1 ⊕ B (5)

FA = GF (2)[x]/(x8 + x4 + x3 + x + 1) (6)

GFNI instructions are capable of computing affine or affine-inverse transformation for
multiple inputs, up to 64 input bytes with AVX512, or 32 with AVX2, 16 with AVX. For
example, X could be some AVX512 register containing 64 bytes, while M and B remain
the same for all these input bytes.

3.3 Combining expressions together
Let TS2A := FS → FA be one of the isomorphic mappings from FS to FA, represented by
matrix SA, and TA2S = T −1

S2A its inverse mapping, represented by matrix AS . (7) gives one
such pair among 8 possibilities.

SA =

1 1 1 0 0 0 1 1
0 1 0 0 1 1 1 0
0 0 0 1 1 0 1 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 1
0 1 1 1 0 1 1 1
0 0 1 0 0 1 1 1
0 0 0 0 1 1 0 1

AS =

1 0 1 1 0 1 1 1
0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0
0 1 1 0 1 1 1 0
0 1 1 0 0 1 1 1
0 1 0 1 1 1 0 1
0 0 0 1 0 0 1 0
0 0 1 1 1 0 1 1

(7)

Since (5) accepts inputs from FA, elements of FS must be transformed to FA before
calling vgf2p8affineinvqb, and then back to FS for further affine transformation as
required by (1). Let X ∈ FS and Y ∈ FA, rewrite the SM4 S-Box expression (1) as two
formulas: (8) followed by (9) in a successive call, with Y as output of (8) and then input
to (9).

Y = SA · (A · X ⊕ C) (8)

Sbox(X) = A · (AS · Y −1) ⊕ C (9)

Weiji Guo 5

Further, let A1 = SA · A, C1 = SA · C, A2 = A · AS , rewrite (8) as (10) and (9) as (11),
where values of A1, C1, A2 are listed in (12).

Y = A1 · X ⊕ C1 (10)

Sbox(X) = A2 · Y −1 ⊕ C (11)

A1 =

0 0 1 1 0 0 1 0
0 0 0 1 0 1 0 0
1 0 1 1 1 1 1 0
1 0 0 1 1 1 0 1
0 1 0 1 1 0 0 0
0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0
1 0 1 1 1 0 1 0

C1 =

0
1
1
1
1
1
0
0

A2 =

1 1 0 0 1 1 1 1
1 1 0 1 0 1 0 1
0 0 1 0 1 1 0 0
1 0 0 1 0 1 0 1
0 0 1 0 1 1 1 0
0 1 1 0 0 1 0 1
1 0 1 0 1 1 0 1
1 0 0 1 0 0 0 1

(12)

It then follows that the affine transformation of (10) could be computed with the
vgf2p8affineqb instruction:

Y = affine (X, A1, C1)

and the affine-inverse transformation of (11) could be computed with the vgf2p8affineinvqb
instruction:

Sbox(X) = affineInv (Y, A2, C)

3.4 Implementation results and discussion
We implemented SM4 S-Box with these two GFNI instructions. With 16 parallel data
blocks we achieved 1.51 cpb in macOS 12.5 running over Intel Core i5-1038NG7 CPU (Ice
Lake).

For comparable settings, we also ported the libgcrypt implementation [Kiv20] of the
sm4ni method [Saa19] to Go Assembly, then tested and compared the performance on the
same computer. Implementation of both methods only differ in S-Box handling, and the
sm4ni method needing to load a few more parameters. Table 1 lists the results.

Table 1: GFNI vs sm4ni

AVX AVX2 AVX512
sm4ni (baseline) 6.99 3.77 1.92
GFNI (this work) 5.28 2.62 1.51
cpb gain 1.71 1.15 0.41
speedup 1.32× 1.44× 1.27×

Benchmarking results with Intel Core i5-1038NG (Ice Lake). All data were measured with
minimal parallel blocks in order not to amortize the setup costs. Numbers are in cpb except for

the speedup.

According to Intel Intrinsics Guide [Int22], the latency for both GFNI instructions is 3
and the reciprocal throughput is 0.5 to 1 with Ice Lake. Therefore the S-Box computation
finishes in 6 clock cycles. Further optimization could calculate 32 or more parallel data
blocks and interleave the GFNI instructions to hide the latency, and potentially to leverage
the multi-issuing of GFNI instructions.

We note that we only benchmarked ECB mode with minimal data size (256 bytes
for AVX512, 128 bytes for AVX2 and 64 for AVX). This reflects the actual performance
benefits of our method. Handling larger or arbitrary data size could amortize some setup
costs and result in better numbers. We plan to do so for production release.

6 Efficient Constant-Time Implementation of SM4

We also note that GFNI requires newer processors and is not available in AMD
processors by the time we wrote this paper.

4 Arm NEON implementation
This section first briefly introduces how to lookup S-Box within NEON, then shows the
difficulties applying it to SM4 fully, and how to resolve these issues. Finally we give our
implementation details and results, with further discussion.

4.1 Table look-up within NEON
Biesheuvel implemented S-Box lookup for AES with the tbl and tbx instructions of the
Arm NEON vector coprocessor [Bie17]. This technique works as the following: 1) load the
256 elements of S-Box into 16 continuous NEON registers (V16−31) once; 2) for each round
of iteration, use tbl once then tbx three times to lookup the table, each time querying
from 64 elements in 4 continuous registers.

A tbx instruction with 4 registers to lookup from comes with a high latency, which
is 6 for Arm Cortex-X1 [Arm21], and 8 in some other implementations including both
icestorm and firestorm of Apple M1 [Joh21]. tbl is slightly better but only used one third
of times of tbx.

[Bie17] hides the latency by interleaving 4 different AES states. However for SM4, 4x
naive interleaving does not work. Figure 2 shows how 4x interleaving could have worked in
an altered round function should there be sufficient NEON registers. Each of the inputs
(Uj , Wj , Xj , Yj ∈ (Z32

2)4, j = 0, 1, 2, 3) holds four 32-bit data sub-blocks, so 16 NEON
registers are required for the states of 16 data blocks in a would-be 4x interleaving. On
the other hand we show that the 4x interleaved lookup per se needs 29 NEON registers
in Appendix B. The total requirement is therefore 45 registers, obviously exceeding 32.

We solved this insufficiency by exploiting L1 cache to hold the states during lookup.

4.2 Exploiting L1 cache
Lookup happens in the τ transformation. A close examination to Figure 1 reveals that Xi

1,
Xi

2 and Xi
3 are not needed for lookup after they have been added with the round key rki.

And Xi
0 is read/written only after the L transformation. Therefore after calculating the

input to τ transformation from the states, we could save away these states, load another
set of states to the earlier occupied registers, and calculate more inputs for parallel τ
transformation to hide the latency of tbl and tbx. By saving away states and carefully
orchestrating all the registers, we managed 4x interleaving.

To save away the states, we simply store them into designated memory locations, and
load them back later when data is needed again. In 32 rounds of iteration, the same
memory locations will be accessed frequently enough so that the data content will be
kept in L1 data cache, therefore loading them again could take as quickly as in 3 clock
cycles, subject to microarchitecture implementations. Table 2 gives latency data for more
processors, covering server, desktop and mobile platforms.

Table 2: L1 data cache latency (hit) of simple access via pointer

Processor Microarchitecture Latency
AMD Opteron A1170 Cortex-A57 4
Apple M1 Firestorm 3
Qualcomm Snapdragon 855 Cortex-A76 4

data collected from https://7-cpu.com

https://7-cpu.com

Weiji Guo 7

U i
j , W i

j , Xi
j , Y i

j ∈ (Z32
2)4, j = 0, 1, 2, 3 are inputs to ith round, round key rki is duplicated to 128

bit, tbl and tbx are NEON table lookup instructions (extension), and L is SM4-defined
transformation. Interleaved execution of tbl and tbx are highlighted with dashed blue lines,

between which the same instruction looks up data for different indexing & destination registers
from the same set of sub-table as indicated in the left. In our implementation, we load the S-Box
into NEON’s upper 16 SIMD registers, from V16 to V31. Then the four calls to tbl instruction

lookup from V16−19 each time with different indexing and destination registers, first four calls to
tbx instruction lookup from V20−23, then from V24−27, and finally from V28−31.

Figure 2: SM4 would-be round function 4x.

Figure 3 and Figure 4 further detail how the registers are allocated, reused, saved to
and loaded from cache. The SM4 encryption or decryption could be split into 3 phases:
pre-round, in-round and post-round. For pre-round phase, step 1 and step 2 stride loads
data from memory into registers and also manage to hit L1 cache by saving loaded data to
designated memory locations. Stride loading is accomplished with the ld4 instruction. For
the in-round phase, there are 8 steps, which are shown in Figure 3 and then in Figure 4,
separated due to the complexity of the data paths. In post-round phase encrypted or
decrypted data are stride stored from register to memory with the st4 instruction.

4.3 Implementation details and results
We implemented both the NEON table lookup and cache exploiting techniques. And
we compared the performance of 4x interleaving with L1 cache exploiting against that
of plain 2x with no cache exploiting. The results are shown in Table 3, which also
includes performance data for non-interleaving version (4 parallel blocks) and optimized
software implementation. The software implementation looks up S-Box (blended with L

8 Efficient Constant-Time Implementation of SM4

block0
block1
block2
block3

block4
block5
block6
block7

32-bit × 4

block8
block9
block10
block11

block12
block13
block14
block15

32-bit × 4

V0 V1 V2 V3

32
-b
it
×

4 C0

C2

V4 V5 V6 V7

32
-b
it
×

4 C1

C3

RoundKey(V12) V8 V9 V10 V11

L · τ

pre-round step 1 pre-round step 2

common functions in-round step 1

in-round step 2 in-round step 3

in-round step 4

Steps of the first (0th) round of the 4x interleaving for 16 parallel data blocks, which are placed
continuously from block0 to block15, and in units of 32-bit. pre-round step 1: Stride load from
block8−11 to V0−3 and from block12−15 to V4−7, in unit of 32-bit. Then save V0−3 to C2, and

V4−7 to C3. Ci are designated memory addresses. pre-round step 2: Stride load from block0−3 to
V0−3, and from block4−7 to V4−7. Then save V0−3 to C0, and V4−7 to C1. common functions and
in-round step 1: V8 = V1 ⊕ V2 ⊕ V3 ⊕ V12, V9 = V5 ⊕ V6 ⊕ V7 ⊕ V12. in-round step 2: Load C2 to

V0−3 and C3 to V4−7. common functions and in-round step 3: V10 = V1 ⊕ V2 ⊕ V3 ⊕ V12,
V11 = V5 ⊕ V6 ⊕ V7 ⊕ V12. in-round step 4: Run in-place τ and L transformations over V8−11.

Figure 3: register allocation and execution plan (part 1)

Weiji Guo 9

V0 V1 V2 V3

32
-b
it
×

4 C0

C2

V4 V5 V6 V7

32
-b
it
×

4 C1

C3

V8 V9 V10 V11

in-round step 5 in-round step 6

in-round step 7 in-round step 8

(continued) in-round step 5: Load V0 from C2 and V4 from C3. in-round step 6: V0 = V0 ⊕ V10,
V4 = V4 ⊕ V11. Save V0 back to C2, and save V4 back to C3. in-round step 7: Load C0 to V0−3
and C1 to V4−7. in-round step 8: V0 = V0 ⊕ V8, V4 = V4 ⊕ V9. Save V0 back to C0, and save V4

back to C1.

Figure 4: register allocation and execution plan (part 2)

transformation) in memory, thus variable time. The tests were run on same Mac Book
Pro with Apple M1 processor @3.2GHz. The exploiting of L1 cache contributes 61% more
performance on top of the 2x interleaving. We did not implemented or benchmarked the
3x interleaving, but even with the reported performance data from [KKE+21], our cache
exploiting technique still gain 28% more cpb.

Table 3: SM4 performance with Apple M1

cache
exploiting, 4x

2x
interleaving

non-
interleaving

variable time
software

parallel blocks 16 8 4 1
cpb 6.74 10.96 19.92 20.87
speedup 1.61× 1.00× 0.55× 0.53×

1) cache exploiting: our contribution to enable 4x interleaving for SM4; 2) 2x interleaving: the
baseline with NEON lookup; 3) non-interleaving: lookup without interleaving tbl/tbx

instructions; 4) variable time software: optimized pure-software implementation with lookup
blended with L transformation, using 4 tables of 256 elements of 32 bits

In our implementation, we could manage 4x interleaving with 30 NEON registers. But
for performance reasons, all 32 are used during pre-lookup. For details, see Appendix B.

We note that the 4x interleaving table lookup per se only needs 29 NEON registers.
So if we take care to leave V0 and V4 intact during lookup, we could skip in-round step 5.
However we did not take this course for two reasons: 1) our implementation is based on

10 Efficient Constant-Time Implementation of SM4

Go Assembly, and it does not support tbx instruction directly. We had to code machine
words and hard coded register numbers. It is still possible but then the source code will
be much longer; 2) benchmarking showed barely any gain. Also, given the effects of cache
line, it does not matter to load V0 / V4 individually or V0−3 / V4−7 together in step 5.

We believe this is the first time cache is purposefully exploited to hide latency. And this
technique could be used for other applications and hardware platforms when the number
of register is the constraining factor for hiding latency for data intensive computations.

4.4 Discussion
A practical consideration is whether this cache exploiting technique is still effective under
heavy load and high contention. The performance will certainly be impacted when cached
data corresponding to Ci (Figure 3, Figure 4) are evicted from L1 or even from L2 or L3.
However, we argue without testing data that the costs is negligible if the application is not
frequently interrupted or preempted, or otherwise still acceptable.

Modern non-realtime operating systems use time quantum of 10 to 100 milliseconds,
and context switching usually costs about 10 microseconds [Bel13]. Typical main memory
reference costs about 100 nanoseconds 4, just a small portion of context switching costs,
and even smaller portion of the time quantum. In case the application is not frequently
interrupted, this means at most 0.1 to 1 thousandth of total allocated time will be wasted
on cache miss.

Considering interruption in non-realtime operating systems or preemption in RTOS, a
key concern is for how long can this application keep running without being interrupted or
preempted. In practice, 6.74 cpb means the computation of 16 parallel block encryption
or decryption could finish within 1 microsecond for most modern processors. Assuming
an extreme case where the SM4 computation is interrupted or preempted once every
microsecond. The computation then suffers cache miss upon resumption. Without cache
miss the performance gain is 61% over 2x or 28% over 3x, then around 100 nanoseconds
of penalty or 10% to 20% loss in worst case could still be offset by the gain. The actual
situation could be much better due to: 1) interruption or preemption happen at a much
lower frequency, far below 1MHz; 2) or they could run on another core; 3) interrupt
routines finish their jobs pretty briefly and quickly without evicting L2 or L3.

To summarize, we suggest to enable the cache exploiting technique by default, unless
found optimal the other way in some corner cases.

5 Conclusion
We developed these techniques while developing a software package for constant time
implementation of the Chinese commercial ciphers. There are still ways for further
improvements, for example to stitch SM4 encryption with GCM mode and to encrypt or
decrypt many instead of minimal blocks in a function call. We plan further enhancements
and to open-source the package for public merits.

Acknowledge
We thank our colleagues Na Xiao, Lei Zhang, Hualin Lu for careful reviews and helpful
comments. We’d also like to mention the TikZ for Cryptographers project [Jea16] as we
drew all four figures based on it.

4for example, check out https://www.7-cpu.com/cpu/Apple_M1.html or http://norvig.com/21-days.
html#answers

https://www.7-cpu.com/cpu/Apple_M1.html
http://norvig.com/21-days.html#answers
http://norvig.com/21-days.html#answers

Weiji Guo 11

References
[Arm21] Arm. Arm cortex-x1 core software optimization guide, issue 4.0. https://

developer.arm.com/documentation/102174/latest, 2021. Accessed: 2022-
07-15.

[Bel13] John Bell. Operating systems course notes: Chapter 6 CPU schedul-
ing. https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/
6_CPU_Scheduling.html, 2013. Accessed: 2022-08-25.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf, 2005. Accessed: 2022-07-13.

[Bie17] Ard Biesheuvel. Accelerated AES for arm64 linux kernel. https://www.linaro.
org/blog/accelerated-aes-for-the-arm64-linux-kernel/, 2017. Ac-
cessed: 2022-07-08.

[BLT16] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Comb to
pipeline: Fast software encryption revisited. IACR Cryptol. ePrint Arch.,
page 47, 2016.

[EDC10] Jeremy Erickson, Jintai Ding, and Chris Christensen. Algebraic cryptanalysis
of SMS4: Gröbner basis attack and SAT attack compared. In Donghoon Lee
and Seokhie Hong, editors, ICISC 09, volume 5984 of LNCS, pages 73–86.
Springer, Heidelberg, December 2010.

[Hu22] Daniel Hu. SM4 optimization for ARM by HW instruc-
tion. https://github.com/openssl/openssl/pull/17455/commits/
4db4629b35b49eefbb2cb85d873935407d83c58c, 2022. Accessed: 2022-07-08.

[Int22] Intel. Intel intrinsics guide. https://www.intel.com/content/www/us/en/
docs/intrinsics-guide/index.html, 2022. Accessed: 2022-07-14.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[Joh21] Dougall Johnson. Firestorm/IceStrom TBX (four register table,
16b). https://dougallj.github.io/applecpu/measurements/{firestorm,
icestorm}/TBX_four_reg_table_16B.html, 2021. Accessed: 2022-07-15.

[Kiv20] Jussi Kivilinna. sm4-aesni-avx2-amd64.s. https://github.com/gpg/
libgcrypt/commit/35a78eb248d6bacd2a58477a122a0020d796ce63, 2020.
Accessed: 2022-07-08.

[KKE+21] Hyeokdong Kwon, Hyunjun Kim, Siwoo Eum, Minjoo Sim, Hyunji Kim, Wai-
Kong Lee, Zhi Hu, and Hwajeong Seo. Optimized implementation of sm4 on
avr microcontrollers, risc-v processors, and arm processors. Cryptology ePrint
Archive, Paper 2021/667, 2021. https://eprint.iacr.org/2021/667.

[LJH+07] Fen Liu, Wen Ji, Lei Hu, Jintai Ding, Shuwang Lv, Andrei Pyshkin, and
Ralf-Philipp Weinmann. Analysis of the SMS4 block cipher. In Josef Pieprzyk,
Hossein Ghodosi, and Ed Dawson, editors, ACISP 07, volume 4586 of LNCS,
pages 158–170. Springer, Heidelberg, July 2007.

[Saa19] Markku-Juhani O. Saarinen. sm4ni. https://github.com/mjosaarinen/
sm4ni, 2019. Accessed: 2022-07-08.

https://developer.arm.com/documentation/102174/latest
https://developer.arm.com/documentation/102174/latest
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/6_CPU_Scheduling.html
https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/6_CPU_Scheduling.html
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://www.linaro.org/blog/accelerated-aes-for-the-arm64-linux-kernel/
https://github.com/openssl/openssl/pull/17455/commits/4db4629b35b49eefbb2cb85d873935407d83c58c
https://github.com/openssl/openssl/pull/17455/commits/4db4629b35b49eefbb2cb85d873935407d83c58c
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://dougallj.github.io/applecpu/measurements/{firestorm,icestorm}/TBX_four_reg_table_16B.html
https://dougallj.github.io/applecpu/measurements/{firestorm,icestorm}/TBX_four_reg_table_16B.html
https://github.com/gpg/libgcrypt/commit/35a78eb248d6bacd2a58477a122a0020d796ce63
https://github.com/gpg/libgcrypt/commit/35a78eb248d6bacd2a58477a122a0020d796ce63
https://eprint.iacr.org/2021/667
https://github.com/mjosaarinen/sm4ni
https://github.com/mjosaarinen/sm4ni

12 Efficient Constant-Time Implementation of SM4

[SCA12] SCA (State Cryptography Administration). GM/T 0002-2012: SM4 block
cipher algorithm. Standards Press of China, 2012.

[WSH+19] Zihao Wei, Siwei Sun, Lei Hu, Man Wei, Joan Boyar, and Rene Peralta. Scru-
tinizing the tower field implementation of the F28 inverter – with applications
to AES, Camellia, and SM4. Cryptology ePrint Archive, Report 2019/738,
2019. https://eprint.iacr.org/2019/738.

[Yan21] Paul Yang. Shangmi (SM) cipher suites for TLS 1.3. RFC, 8998:1–13, 2021.

A SM4 S-Box table and its algebraic expression rewriting
The complete SM4 S-Box is provided in Table 4.

Table 4: SM4 S-Box

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 D6 90 E9 FE CC E1 3D B7 16 B6 14 C2 28 FB 2C 05
1 2B 67 9A 76 2A BE 04 C3 AA 44 13 26 49 86 06 99
2 9C 42 50 F4 91 EF 98 7A 33 54 0B 43 ED CF AC 62
3 E4 B3 1C A9 C9 08 E8 95 80 DF 94 FA 75 8F 3F A6
4 47 07 A7 FC F3 73 17 BA 83 59 3C 19 E6 85 4F A8
5 68 6B 81 B2 71 64 DA 8B F8 EB 0F 4B 70 56 9D 35
6 1E 24 0E 5E 63 58 D1 A2 25 22 7C 3B 01 21 78 87
7 D4 00 46 57 9F D3 27 52 4C 36 02 E7 A0 C4 C8 9E
8 EA BF 8A D2 40 C7 38 B5 A3 F7 F2 CE F9 61 15 A1
9 E0 AE 5D A4 9B 34 1A 55 AD 93 32 30 F5 8C B1 E3
A 1D F6 E2 2E 82 66 CA 60 C0 29 23 AB 0D 53 4E 6F
B D5 DB 37 45 DE FD 8E 2F 03 FF 6A 72 6D 6C 5B 51
C 8D 1B AF 92 BB DD BC 7F 11 D9 5C 41 1F 10 5A D8
D 0A C1 31 88 A5 CD 7B BD 2D 74 D0 12 B8 E5 B4 B0
E 89 69 97 4A 0C 96 77 7E 65 B9 F1 09 C5 6E C6 84
F 18 F0 7D EC 3A DC 4D 20 79 EE 5F 3E D7 CB 39 48

Numbers in hex. Looking up 0xEF is to find the intersection of row E and column F, which is
0x84.

Liu etc. originally provided the algebraic expression of SM4 S-Box in [LJH+07]. We
first translated it to the notation we used in this paper, as (13).

S(X) = (X · Ao ⊕ Co)−1 · Ao ⊕ Co (13)
In (13), (·)−1 is multiplicative inverse over FS , Ao is 8 × 8 matrix and Ao = A, Co is a

row vector and Co = CT = (1, 1, 0, 0, 1, 0, 1, 1) (Check out (3) for A and C).
We then showed that (13) does not lead to S-Box values in accordance with conventional

matrix multiplication rules. We simply tested:

S(0) ?= Lookup(0)

1) We have Lookup(0) = 0xD6 by looking to the intersection of row 0 and column 0
of Table 4.

2) For S(0), we should have S(0) = C−1
o ·Ao ⊕Co. According to [LJH+07], a row vector

V = (v0, v1, ..., v7) encodes
∑7

i=0 vix
i. Therefore Co encodes 1 + x + x4 + x6 + x7, and its

inverse over FS should be C−1
o = (1, 1, 0, 0, 1, 0, 0, 1), thus C−1

o · Ao = (1, 0, 0, 0, 0, 0, 1, 0).
Then S(0) = (0, 1, 0, 0, 1, 0, 0, 1) = 0x92.

https://eprint.iacr.org/2019/738

Weiji Guo 13

Therefore S(0) ̸= Lookup(0).
We are not the first to expose this issue. The contribution of [EDC10] has been

mentioned earlier in Subsection 1.2. In addition, the archived earlier version of a withdrawn
preprint paper [WSH+19] provides a formula equivalent to (1) in its Table 4 5. The revised
version of [WSH+19] had been accepted by IJICS and was scheduled to be published in a
future date 6.

B Register allocation details and 4x interleaving codes
Pre-lookup. Among 32 NEON registers, V16 to V31 are allocated to hold S-Box, thus
saved from Figure 3 and Figure 4. V0 to V12 have been allocated (Figure 3). This leaves 3
NEON registers at our disposal (V13 − V15). We still need to reserve one to hold a constant
value needed to calculate indexing value for tbx instruction. This is V15 for CONST
in below code block. We also allocated the remaining 2 (V13 and V14) for performance
reasons during the ⊕ evaluation, for example in the in-round step 1, calculating V8 with 2
additional registers could take only 2 clock cycles instead of 3 by leveraging multi-issuing:

V13 = V1 ⊕ V2 in parallel with V14 = V3 ⊕ V12
V8 = V13 ⊕ V14

Lookup. For the τ transformation of 4x interleaving, we could reuse V0 to V7 to
calculate the new indexing value, as shown in below code block of macro definition in Go
Assembly. We had renamed V0 to V3 as Z0 to Z3, V4 to V7 as Y0 to Y3, V8 to V11 as U0 to
U3. CONST is V15. The τ transformation of 4x interleaving therefore needs 29 NEON
registers including 16 holding the S-Box.

#define tableLookupX16() \
\// 1st
VSUB CONST.B16, U0.B16, Z0.B16 \
VTBL U0.B16, [V16.B16, V17.B16, V18.B16, V19.B16], U0.B16 \
VSUB CONST.B16, U1.B16, Z1.B16 \
VTBL U1.B16, [V16.B16, V17.B16, V18.B16, V19.B16], U1.B16 \
VSUB CONST.B16, U2.B16, Y0.B16 \
VTBL U2.B16, [V16.B16, V17.B16, V18.B16, V19.B16], U2.B16 \
VSUB CONST.B16, U3.B16, Y1.B16 \
VTBL U3.B16, [V16.B16, V17.B16, V18.B16, V19.B16], U3.B16 \
\// 2nd
VSUB CONST.B16, Z0.B16, Z2.B16 \
WORD $0x4E007000 | 0<<16 | 20<<5 | 0x08 \
VSUB CONST.B16, Z1.B16, Z3.B16 \
WORD $0x4E007000 | 1<<16 | 20<<5 | 0x09 \
VSUB CONST.B16, Y0.B16, Y2.B16 \
WORD $0x4E007000 | 4<<16 | 20<<5 | 0x0A \
VSUB CONST.B16, Y1.B16, Y3.B16 \
WORD $0x4E007000 | 5<<16 | 20<<5 | 0x0B \
\// 3rd
VSUB CONST.B16, Z2.B16, Z0.B16 \
WORD $0x4E007000 | 2<<16 | 24<<5 | 0x08 \

5we thank Runqing Xu for providing the information soon after this paper initially appeared in
Cryptology ePrint Archive. The said version could be retrieved from https://eprint.iacr.org/archive/
2019/738/1561125664.pdf

6the new title is Searching the Space of Tower Field Implementations of the F (28) Inverter - with
Applications to AES, Camellia, and SM4. It is listed under Forthcoming and Online First Articles for
International Journal of Information and Computer Security at https://www.inderscience.com/info/
ingeneral/forthcoming.php?jcode=ijics. URL accessed: 2022-09-06.

https://eprint.iacr.org/archive/2019/738/1561125664.pdf
https://eprint.iacr.org/archive/2019/738/1561125664.pdf
https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijics
https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijics

14 Efficient Constant-Time Implementation of SM4

VSUB CONST.B16, Z3.B16, Z1.B16 \
WORD $0x4E007000 | 3<<16 | 24<<5 | 0x09 \
VSUB CONST.B16, Y2.B16, Y0.B16 \
WORD $0x4E007000 | 6<<16 | 24<<5 | 0x0A \
VSUB CONST.B16, Y3.B16, Y1.B16 \
WORD $0x4E007000 | 7<<16 | 24<<5 | 0x0B \
\// 4th
WORD $0x4E007000 | 0<<16 | 28<<5 | 0x08 \
WORD $0x4E007000 | 1<<16 | 28<<5 | 0x09 \
WORD $0x4E007000 | 4<<16 | 28<<5 | 0x0A \
WORD $0x4E007000 | 5<<16 | 28<<5 | 0x0B \

Go Assembly does not directly support the tbx instruction so we hard coded a word
of 0x4E007000, followed by its parameters from left to right: the indexing register, the
registers to lookup from, and the destination register. For example,

WORD $0x4E007000 | 0<<16 | 20<<5 | 0x08

means to lookup values of V0 from V20−23, and save results to V8:

VTBX V0, [V20.B16, V21.B16, V22.B16, V23.B16], V8

	Introduction
	Previous works
	Our contributions
	Overview of this paper

	Preliminary
	Intel GFNI implementation of SM4 S-Box
	Algebraic expression of SM4 S-Box
	the Intel GFNI instruction set extension
	Combining expressions together
	Implementation results and discussion

	Arm NEON implementation
	Table look-up within NEON
	Exploiting L1 cache
	Implementation details and results
	Discussion

	Conclusion
	SM4 S-Box table and its algebraic expression rewriting
	Register allocation details and 4x interleaving codes

