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Abstract. The pseudorandom function Farfalle, proposed by Bertoni et
al. at ToSC 2017, is a permutation based arbitrary length input and
output PRF. At its core are the public permutations and feedback shift
register based rolling functions. Being an elegant and parallelizable de-
sign, it is surprising that the security of Farfalle has been only investi-
gated against generic cryptanalysis techniques such as differential/linear
and algebraic attacks and nothing concrete about its provable security
is known. To fill this gap, in this work, we propose Farasha, a new
permutation-based parallelizable PRF with provable security. Farasha
can be seen as a simple and provable Farfalle-like construction where the
rolling functions in the compression and expansion phases of Farfalle are
replaced by a uniform almost xor universal (AXU) and a simple counter,
respectively. We then prove that in the random permutation model, the
compression phase of Farasha can be shown to be an uniform AXU
function and the expansion phase can be mapped to an Even-Mansour
block cipher. Consequently, combining these two properties, we show that
Farasha achieves a security of min{keysize, permutation size/2}. Finally,
we provide concrete instantiations of Farasha with AXU functions pro-
viding different performance trade-offs. We believe our work will bring
new insights in further understanding the provable security of Farfalle-
like constructions.

Keywords: Pseudo random function · Farfalle · Almost xor universal
function

1 Introduction

Designing a cryptographic primitive which is parallelizable and at the same time
offers provable security bounds requires a holistic approach. The simplest exam-
ple of such a design is Parallelizable Message Authentication Code (PMAC),
proposed by Black and Rogaway, which is based on the Hash-then-PRF design
paradigm [14]. The same design principle with variations is later adopted in au-
thenticated encryption (AE) modes based on (tweakable) block ciphers. Some of
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the examples include OCB [38], GCM [33,26], SIV [39], OCB-3 and ΘCB-3 [32],
OTR [34], Deoxys-II [31] and SCT [37], to name a few.

Although parallelizable and provable, the aforesaid AE modes based on (tweak-
able) block ciphers employ a (tweakable) secret permutation as the core primi-
tive. In order to have a mode which depends on an unkeyed cryptographic per-
mutation rather than a (tweakable) secret permutation, Bertoni et al. introduced
sponge functions [10].

Initially, the sponge construction was proposed for the Keccak hash function
[11], but later gained popularity because of its versatility in providing multiple
cryptographic functionalities such as hash, authenticated encryption with associ-
ated data (AEAD), MAC or pseudo random number generator (PRNG) [8,9,12]
using a single permutation. As such, researchers focused on designing unkeyed
cryptographically secure permutations (the so-called permutation-based crypto)
rather than designing an individual mode. Numerous cryptographic primitives
based on sponge construction have thus been proposed, with their security thor-
oughly analyzed. Examples of hash functions include Photon [30], Spongent [15]
and Quark [1], while Ascon [23], Norx [2], Ketje [6], Gimli [5], Subterranean-AE
[22], Xoodyak [20] and Elephant [13] are few examples of AEAD schemes.

Albeit versatile, the sponge-based primitives are inherently sequential and
therefore not able to exploit available parallelism on high-end CPUs. At ToSC
2017, Bertoni et al. [7] proposed Farfalle, a parallel counterpart of sponge func-
tions. It is an arbitrary length input and output pseudo random function (also
referred to as a deck function [19]) by design and modes have been built on top of
it. Figure 1a shows the high level description of Farfalle that uses public permu-
tations denoted as pb, pc, pd and pe for the different stages of the construction. It
takes a secret key K and a sequence of data blocks M1,1, · · · ,M1,ℓM1

as inputs
(corresponding to message M1) and outputs a sequence of keystream blocks
Z1,1, · · · , Z1,ℓZ1

. The feedback shift register based rolling functions rollc and
rolle (denoted by a circular arc within a square in Figure 1a) are used for par-
allelism in the compression and expansion phases. An output block is computed
by masking the permutation pe output with a rolled key K ′′.

While the designers of Farfalle provided its security analysis based on un-
predictability of state values and generating affine subspaces at the input of pc,
periodicity of rolling functions, differential/linear cryptanalysis and meet-in-the-
middle attacks, a security proof for the construction is missing. Very recently,
Dobraunig et al. [24] proposed a construction resembling Farfalle, but again it
lacks a security proof. Thus, it is worth questioning whether Farfalle can be mod-
ified to a new construction which is provable and can simultaneously achieve all
the benefits of Farfalle. In this work, we confirm the feasibility of the latter ques-
tion through our proposed construction Farasha. In what follows, we first briefly
describe our design approach in moving from Farfalle to Farasha and we then list
our contributions.
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(a) Farfalle (Figure adapted from [7])

(b) Farasha

Fig. 1: A high level overview of Farfalle and Farasha

1.1 Design Rationale of Farasha

In Figure 1a, a simple but careful observation depicts that Farfalle can alterna-
tively be viewed as a composition of a parallel keyed hash construction (up to
the input of pd) and a parallel PRF construction (from pd to the PRF output),
which is similar to the well-known Hash-then-PRF composition for constructing
a PRF. We focus on similar building blocks to construct a permutation-based
parallelizable PRF with provable security. Our main idea is to extend the well-
known parallelizable keyed hash algorithm [14] to a public permutation and then
combine it with the permutation based CTR-mode PRF [3,4].
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1.2 Our Contributions

We propose Farasha4, a permutation-based variable length input and output
PRF which is parallelizable, provably secure and whose design is motivated by
Farfalle’s missing security proof. We emphasize that the goal here is to analyze
the provable security and not to compare the performance between Farasha and
Farfalle. Our contributions are summarized as follows.

1. Design of Farasha: Our construction as shown in Figure 1b is composed
of two layers: a compression layer followed by an expansion layer similar
to Farfalle (Figure 1a). To achieve a design with provable security bounds,
we incorporate the following changes to Farfalle: 1) the linear rolling func-
tion in the compression layer is replaced by a uniform AXU function; 2)
the nonlinear feedback shift register based rolling function in the expansion
layer is changed to a counter mode Even-Mansour construction; and 3) the
intermediate permutations pb and pd of Farfalle are removed. The changes
are highlighted in Figure 1 with a blue dotted box denoting a modification
and a red one for removal. We also provide an instance of Farasha, named
Farasha-wLFSR where the uniform AXU function is a word based LFSR.
It is worth noting that in Farasha, all inputs to permutations P and P ′ can
be computed in parallel unlike Farfalle where there is a dependency among
input states (of pe) because of the nonlinear rolling function.

2. Security analysis:We provide a detailed formal security analysis of Farasha
in the indistinguishability framework in a random permutation model. First,
we show that the compression phase of Farasha is a ϵ-uniform-AXU func-
tion (for some ϵ > 0) and the expansion phase can be mapped to multi-key
Even-Mansour block cipher. We then show that Farasha achieves a security
of minimum of keysize or half the permutation size. In the end, we give
insights on the security of Farfalle.

1.3 Outline of the Paper

The rest of the paper is organized as follows. In Section 2, we define our notation
and give a brief overview of the security model and keyed hash functions. Section
3 presents the design of Farasha along with its salient features. We provide the
security analysis of Farasha in Section 4. In Section 5, we provide a discussion on
improved security of Farasha, the choice of AXU functions and their performance
trade-offs, and insights on the security of Farfalle. Finally, we conclude the paper
in Section 6.

2 Preliminaries

In this section, we describe the notation used throughout the paper, our security
model, and some well-known constructions which are relevant to this work.

4 Farasha means butterfly in Arabic
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2.1 Notation and Security Model

Fix n,m ∈ N. We use {0, 1}n and {0, 1}⋆ to denote the set of all bit strings of
length n and variable length bit strings, respectively. For any X ∈ {0, 1}⋆, |X|
denotes the length of X in bits. The size of a set S is also denoted by |S| if the
meaning is clear from the context. We use X1, · · · , Xu

n←− X to denote the n-bit
block partitioning of X where |Xi| = n for 1 ≤ i ≤ u−1 and 1 ≤ |Xu| ≤ n. Also,
padn(X) denotes the bit string obtained by appending X with 1, followed by 0’s,
so that its length becomes the nearest multiple of n. For X,Y ∈ {0, 1}n, X ⊕ Y
and X∥Y denote the bitwise XOR and concatenation operators, respectively. By
X ←$ {0, 1}n, we mean X is picked uniformly at random from the set {0, 1}n.
Further, Perm(n) denotes the set of all n-bit permutations while Func(n,m)
refers to the set of all n-bit to m-bit functions. For n = m, we write Func(n, n)
as Func(n). We define msbi(X) as the leftmost i bits of a string X. Finally,
Pr[X = x] denotes the probability that a random variable X takes value x.

For our security analysis, we consider an adversary A which is an algorithm
that is given access to one or more oracles O. After interacting with O, it out-
puts a bit w ∈ {0, 1}. We denote this event by AO 7→ w. We always consider
computationally unbounded adversaries, i.e., their computational time is always
measured in terms of number of oracle queries (say q). For any two oracles O
and P, the advantage of distinguishing O from P is then defined as

AdvPO(A, q) :=
∣∣∣Pr[AO 7→ 1

]
− Pr

[
AP 7→ 1

]∣∣∣. (1)

2.2 Keyed Hash Functions

Let k, t ∈ N and ϵ > 0. A keyed hash function H is a deterministic algorithm
from {0, 1}k × {0, 1}⋆ → {0, 1}t with H(K,M) = T . For a fixed key K, we
denote it by HK . We now state some relevant definitions related to the keyed
hash functions (adapted from [16][Section 7.1 and 7.2]).

Definition 1. [Almost XOR Universal Hash Function (AXU)] Let ∆ ∈ {0, 1}t.
We say HK is ϵ-AXU if for any two distinct messages M and M ′, we have

Pr
[
K ←$ {0, 1}k |HK(M)⊕HK(M ′) = ∆

]
≤ ϵ (2)

Definition 2. [Uniform Hash Function] Let ∆ ∈ {0, 1}t. We say HK is ϵ-
uniform if for any message M , the following holds:

Pr
[
K ←$ {0, 1}k |HK(M) = ∆

]
≤ ϵ (3)

Definition 3. [Uniform AXU Function] We say HK is ϵ-uniform-AXU if HK

is both ϵ-uniform and ϵ-AXU.

Note that in the above definitions, the number of queries is not present. Ac-
cordingly, to formulate the security of HK (which usually relies on the hash out-
put being secret) against adversaries with q queries, we define the distinguishing
game setup for each of these definition and give its adversarial advantage.
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Adversarial Setup for HK as an AXU. Here the goal of the adversary is
to find the Xor-difference of the hash of two messages. For the security of the
secret key, hash values are always kept secret (typically via encryption) and this
process is often referred to as a blinding operation on the hash. The blinding
operation is modelled with the help of a random oracle: a function that returns
an independent random value for every new input.

For a query of the form (M,∆), the responses of the oracles are as follows.

– Real world O: Here, the key K ←$ {0, 1}k is sampled along with a secret
random oracle RO1;. The challenger returns RO1(HK(M)⊕∆).

– Ideal world P: RO2(M,∆) with a secret random oracle RO2.

For an adversary A making q queries, the advantage is given by

AdvaxuH (A, q) :=
∣∣∣Pr[AO 7→ 1

]
− Pr

[
AP 7→ 1

]∣∣∣ (4)

Note that Equation 4 is identical to the blinded key hash (bhk) model defined in
[29].

(a) Adversarial setup for AXU

(b) Adversarial setup for uniformity

Fig. 2: Adversarial setups for keyed-hash functions

Adversarial Setup for HK as Uniform Function. Here the adversary’s
goal is to find a message along with its hash-value and a query is of the form
(X,∆). The real world oracle returns whether HK(X) = ∆ is true or false. The
ideal world always returns false as shown in Figure 2b. The advantage is defined
as,

AdvuniH (A, q) :=
∣∣∣Pr[K ←$ {0, 1}k |HK(Mi) = ∆

]∣∣∣ (5)
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Adversarial Setup for HK as a Uniform-AXU. Here the adversary is given
access to both oracles, that of an AXU function and a uniform function, and the
goal is to distinguish the real world from the ideal world.

2.3 Even-Mansour Block Cipher

The Even-Mansour (EM) construction [27], builds a b-bit block cipher from a
b-bit public permutation P . The original construction (dual key Even-Mansour),
based on a pair of b-bit keys K1 and K2, is defined as EP

K1,K2
(M) = P (M ⊕

K1) ⊕ K2 where M is a b-bit message. Dunkelman et al. [25] showed that the
original EM scheme is not minimal in terms of key size and they presented the
Single-key Even-Mansour (SEM) block cipher with the same security level. The
single key Even-Mansour (SEM) is given by EP

K(M) = P (M ⊕K)⊕K.

SEM in Multi-Key Setting with Independent Keys. The security bounds
of SEM in the multi-key setting is given by Theorem 1.

Theorem 1 (Security of Multi-key EM [35]). In a multi-key setting with µ
EM block-cipher instances with µ independent keys, the distinguishing advantage
of an adversary is bounded by

AdvprpEM (A, σ, µ) ≤ σ2

2b
+

2σqp
2b

(6)

where σ is the total number of construction queries (across all µ instances) and
qp is the number of primitive queries to P .

SEM in the Modified Key Setting. In contrast to µ independent keys as in
Theorem 1, we consider keys which are the output of an ϵ-uniform-AXU keyed
hash function HK , where K ←$ {0, 1}k. Figure 3 depicts this setting and we
provide a security proof of SEM with these multiple keys in Theorem 2.

Theorem 2 (Security of SEM in the modified key setting). Let ϵ, k > 0,
K ←$ {0, 1}k and HK : {0, 1}k×{0, 1}⋆ → {0, 1}k be a ϵ-uniform-AXU. Consider
µ SEM instances with keys Ki = HK(Mi) for i = 1, · · · , µ. Then, in a multi-key
setting, the distinguishing advantage of an adversary is bounded by

AdvprpEM (A, σ, µ) ≤ σ2ϵ+ 2σqpϵ (7)

where σ is the total number of construction queries (across all µ instances) and
qp is the number of primitive queries to P .

Proof. The proof is analogous to the proof of Theorem 1 and details are provided
in Appendix A.3 for completeness.

Corollary 1. Theorem 2 can be trivially extended to the dual-key variant of EM
cipher.
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Fig. 3: Multi-key SEM game setup in the modified key setting

2.4 PRP-PRF Switching

To bound the advantage of an multiple EM block cipher as a PRF, we extend
the PRP-PRF switching lemma [18] to the multi-key setting as follows.

Lemma 1. The advantage of switching µ independent PRPs to PRFs is bounded
by

Advprfprp(A, σ, µ) ≤
σ2

2

1

2b
(8)

where σ is the total number of queries to µ PRP instances.

3 Farasha Specification and Features

In this section, we formally introduce Farasha - a PRF with provable security
bounds. We describe its building blocks and one of the instance. We also highlight
the salient features of Farasha by comparing it with Farfalle.

3.1 The Farasha PRF

Farasha is a variable length input and variable length output PRF. As shown in
Figure 1 (dashed boxes), Farasha consists of two layers5, namely Farasha-L and
Farasha-R. The core components of these layers include (1) public permutations

5 Farasha means butterfly in Arabic. Here Farasha-L and Farasha-R correspond to the
left and right wing of a butterfly, respectively.
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P and P ′ which operate on a b-bit state; and (2) a fixed input-size keyed hash
function H that takes as input a counter and a secret key K of length k satis-
fying k ≤ b and outputs a b-bit message digest. We now explain Farasha-L and
Farasha-R in detail.

3.1.1 Description of Farasha-L In a nutshell, Farasha-L is a compression
function similar to the compression layer of Farfalle. We simply abstract the lin-
ear rolling function of Farfalle (see Figure 1a) to a keyed hash function which is a
uniform-AXU. Let Mi ∈ {0, 1}⋆ be the i-th input message. Let ℓMi ≥ 1 such that

(Mi,1, · · · ,Mi,ℓMi
)

b←− padb(Mi). For a fixed key K, denote the keyed hash func-
tion by HK(·). Then Farasha-L computes a b-bit secret state Xi by first applying
the function P ◦HK to ℓMi blocks of message Mi in parallel and then computing

the XORed value of outputs. Formally, we have Xi =
⊕ℓMi

j=1 P (HK(j) ⊕Mi,j).
An algorithmic description of Farasha-L is provided in Algorithm 1.

Algorithm 1: Farasha-L

Input: k-bit secret key K with k ≤ b; message Mi with

(Mi,1, · · · ,Mi,ℓMi
)

b←− padb(Mi)

Output: Xi ∈ {0, 1}b
1 Xi ← 0b

2 for j = 1 to ℓMi do
3 Xi ← Xi ⊕ P (HK(j)⊕Mi,j)
4 end
5 return Xi

3.1.2 Description of Farasha-R Farasha-R is a fixed input and variable
length output PRF analogous to Farfalle (see Figure 1a). The output of Farasha-L
is used as the key for Farasha-R, such that each Farasha-R invocation has a dif-
ferent key (using a different input message). We modify the expansion layer of
Farfalle to the counter-mode based Even-Mansour-like construction as follows.
Let Xi be the output of Farasha-L corresponding to the message Mi. Further, let
N be the required number of PRF output bits with ℓZi = ⌈Nb ⌉. For 1 ≤ j ≤ ℓZi ,
we compute the j-th output block as Zi,j ← Xi ⊕ P ′(Xi ⊕ (j − 1)). Note that
for the last output block, we do the truncation if N is not a multiple of b. The
entire procedure is illustrated in Algorithm 2.

3.2 Farasha-wLFSR: An Instance of Farasha

We present an instances of Farasha, where HK is an LFSR. We call this instance
as Farasha-wLFSR. For the concrete LSFR, we consider word-based ones, using
the method described in [28]. Consider an LSFR with state size of 256 bits
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Algorithm 2: Farasha-R

Input: b-bit secret state Xi

Output: N bits of PRF with ℓZi = ⌈Nb ⌉
1 Zi ← ε
2 for j = 1 to ℓZi do
3 Zi,j ← Xi ⊕ P ′(Xi ⊕ (j − 1))
4 Zi ← Zi||Zi,j

5 end
6 return msbN (Zi)

arranged into 4 64-bit words, initialised with as S0 = K. If Sj = (x0, x1, x2, x3)
is the state at time j, then the next state Sj+1 is computed as

Sj+1 = (x1, x2, x3, (x0 ≪ 3)⊕ (x3 ≫ 5)). (9)

Note that this LFSR initialized with S0 = K, is shown to be a uniform AXU
[28,17].

3.3 Salient Features of Farasha

Our main goal while designing Farasha is to have a parallel permutation-based
PRF construction with provable security. In addition to achieving this goal,
Farasha, by design, incorporates the following salient features.

Simple and Versatile Design. Farasha is a simple construction with fewer build-
ing blocks compared to Farfalle. The utilized uniform AXUs in Farasha-L could
be versatile and platform-specific rather than a specific LFSR based rolling func-
tion in Farfalle. The permutation pd and function rolle are required in the Far-
falle expansion phase to augment the non-linearity provided by a limited rounds
permutation pe (e.g. Xoodoo[6] in Xoofff). With pe replaced by a random per-
mutation, these two components can be replaced with a simple counter as in a
CTR-mode PRF design.

Independent Input States in Farasha-R. An LFSR based compression phases in
both Farasha and Farfalle can be mapped to matrix multiplication operations,
enabling independent computations for all input blocks to permutation P . The
same holds true for inputs to P ′ in the expansion phase of Farasha, which uses
a simple counter addition. On the other hand, Farfalle uses a non-linear func-
tion rolle, which introduces a dependency amongst the inputs in the expansion
phase. The independence of states in the expansion phase gives an additional
advantage for Farasha in terms of implementation (for example, multi-CPU im-
plementation).

Small State Size. Farfalle requires 3b bits of state registers in both the compres-
sion and expansion phases. For Farasha, the state size required for the two phases
is k + 2b and 2b, respectively. Overall, the state size of Farasha is smaller than
Farfalle.
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4 Security Analysis of Farasha

In this section, we discuss the security of Farasha in a single-user setting and
show that it is birthday-bound secure. We start this section by explaining our
adversarial setup. Next, we state our main result in Theorem 3 and provide its
security proof. Before proceeding to the proofs, we recall some notations which
will be used throughout this section.

Notation. Let ϵ > 0, t ≥ 0 and k, b ∈ N with k ≤ b. Fix K = {0, 1}k and Y =
{0, 1}b. Let H : K×N→ Y be a ϵ-uniform-AXU. Let K ←$K, P , P ′←$Perm(b),
and Rand be a function that for each input Mi ∈ {0, 1}⋆ returns a random string

Zi ∈ {0, 1}⋆. Let Mi = Mi,1∥ · · · ∥Mi,ℓMi
consists of ℓMi

= ⌈ |Mi|
b ⌉ b-bit blocks.

We pad the last message block if it is not a multiple of b. Similarly, we have
Zi = Zi,1∥ · · · ∥Zi,ℓZi

for some ℓZi ≥ 1. Note that Zi,ℓZi
may not be a full block,

however, for the simplicity of analysis we take |Zi,ℓZi
| = b. Furthermore, we write

Farasha-L and Farasha-R as FL and FR, respectively.
For Mi = Mi,1∥ · · · ∥Mi,ℓMi

, let (j,Mi,j) denote the tuple corresponding to
the j-th message block Mi,j of Mi. Now, for Mi ̸= M ′

i , we say two tuples are
identical if both j = j′ and Mi,j = Mi′,j′ . In our proof, we denote σ as the total
number of distinct tuples (j,Mi,j) within the q messages M1, · · · ,Mq.

6

4.1 Adversarial Setup

Consider a deterministic and computationally unbounded adversary A which

tries to distinguish O := (FarashaH,P,P ′

K , P±, P ′±) (real world) from P := (Rand,
P±, P ′±) (ideal world). The notation P± denotes that both P and P−1 queries
can be made. The advantage of adversary A for the PRF security of Farasha is
defined as

AdvprfFarasha(A) :=
∣∣∣Pr[K ←$K : AFarashaK ,P±,P ′±

7→ 1
]
− Pr

[
ARand,P±,P ′±

7→ 1
]∣∣∣.

(10)

To compute an upper bound on the adversarial advantage in Equation 10
(later given in Theorem 3), we first define the data (inputs, outputs) available
to an adversary after its interaction with oracle O or P. The input-output pairs
are collected in a transcript τ . We say τ is attainable, if it can be obtained with
a non-zero probability in the ideal world. 7

Transcripts from construction queries. Let the adversaryAmakes q construction
queries to O or P, in the forward direction only. We summarize the inputs and
outputs of these queries in the following transcript.

τc = {(Mi, Zi) |Mi, Zi ∈ {0, 1}∗, 1 ≤ i ≤ q}. (11)

We only consider valid queries here, i.e., Mi ̸= Mi′ for i ̸= i′ in τc.

6 For instance, if M1 = a∥a∥a∥a and M2 = a∥a∥b∥b, then there are 6 distinct tuples.
7 This means there exists a random function Rand which on an input Mi ∈ {0, 1}⋆
returns a random string Zi ∈ {0, 1}⋆.
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Transcripts from primitive queries. Let the adversary A makes qp and qp′ primi-
tive queries to P and P ′, respectively. The transcripts are summarized as follows.

τp = {(ui, vi) | ui, vi ∈ {0, 1}b, P (ui) = vi, 1 ≤ i ≤ qp}
τp′ = {(ui, vi) | ui, vi ∈ {0, 1}b, P ′(ui) = vi, 1 ≤ i ≤ qp′}

(12)

Note that each of the sets τp, τp′ does not contain duplicates.

Transcripts after releasing keying material. After its interaction with oracles
O and P, and before A outputs its final decision, we release the secret keying
material used in the construction. This only improves the adversarial success
probability and can be done without loss of generality. We first release the secret
key K used in the construction. In the real world, K is the actual key used in
the construction, and in the ideal world K is sampled uniformly from K. The
release of key-material provides additional inputs of permutation P arising from
the key K, which are denoted as τc,p and are given by

τc,p = {Ai,j |Ai,j = HK(j)⊕Mi,j , for 1 ≤ i ≤ q, 1 ≤ j ≤ ℓMi
} (13)

Thus, the entire transcripts can be denoted as τ = (τc, τp, τp′ ,K) or equiva-
lently as τ = (τc, τp, τp′ , τc,p).

4.2 Main Result on the PRF Security of Farasha

Theorem 3 (PRF security of Farasha). Let ϵ > 0 and k, b ∈ N with k ≤ b
and K ←$K. Consider Farasha := FR ◦ FL as defined in Section 3.1 where
FL is a uniform-AXU based on a ϵ-uniform-AXU HK and a random permutation
P ←$Perm(b), and FR is a fixed input and variable output length PRF based on
a random permutation P ′←$Perm(b). For any adversary A making q construc-
tion queries (with σ being the number of distinct tuples (j,Mi,j) over all q
queries), σ′ output blocks (each query consisting of lZi

output blocks and σ′ =∑q
i=1 lZi

), qp primitive queries to P and qp′ primitive queries to P ′,

AdvprfFarasha(A, q, qp, qp′ , σ, σ′) ≤
(
σ2

2
ϵ+ σqpϵ+

σ2

2

1

2b

)
+

(
3σ′2

2

1

2b
+

2σ′qp′

2b

)
.

Proof. The basic idea of proof is as follows. In Step-1, we observe that FR can
be mapped to a multi-key EM construction where the output of FL is the key for
every EM instance. In Step-2, we show that FL is a uniform-AXU function and
analyse FR in the modified key-setting (given in Theorem 2). Next, we describe
these two steps in details.

Step 1: In Farasha, the component FR generates the PRF outputs. Thus, from
the construction, it follows that

AdvprfFarasha(A, q, qp, qp′ , σ, σ′) := AdvprfFR
(A′, q, qp′ , σ′) (14)
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for an adversary A′. Note that in the following, we introduce the intermediate
adversaries (similar to A′) if the meaning is clear from the context.

Now, a closer look at Farasha shows that FR is a CTR-mode PRF where
the counter values are encrypted using the EM block cipher with key Xi. Since
the key changes per input message Mi, it is an instance of the multi-key Even
Mansour block cipher. Note that FR is a block-cipher based construction with its
output indistinguishable from a random PRP. To compute the advantage of FR

as a PRF, we apply the PRP/PRF switching for the EM block-cipher instances
(with a total of σ′ queries). The advantage is captured by Lemma 1 and we have
the following:

AdvprfFR
(A′, q, qp′ , σ′) ≤ AdvprfEM (A′′, q, qp′ , σ′)

≤ AdvprpEM (A′′, q, qp′ , σ′) +
σ′2

2

1

2b

(15)

Step 2: The EM keys here resemble the SEM in the modified key setting (as
discussed in Theorem 2) where they satisfy the ϵ′-uniform-AXU property, for a
given ϵ′ > 0. As shown in Section 4.3, FL is a ϵ′-AXU, however there is also an
additional advantage arising from the number of AXU queries using the hash
values (Xi = FL(K,Mi) for i = 1, · · · , q). We denote this advantage by Advu-axuFL

.
Consequently, the first term in Equation 15 is given by

AdvprpEM (A′′, q, qp′ , σ′) ≤ σ′2ϵ′ + 2σ′qp′ϵ′ + Advu-axuFL
(B, q, qp, σ) (16)

Now, by Lemma 2, we have

Advu-axuFL
(B, q, qp, σ) ≤

σ2

2
ϵ+ σqpϵ+

σ2

2

1

2b
(17)

Note that ϵ′ = 2−b when there is no collision among Xi’s. Thus, substituting
ϵ′ = 2−b in Equation 16, and combining Equations 15-17, we have

AdvprfFarasha(A, q, qp, qp′ , σ, σ′) ≤
(
σ2

2
ϵ+ σqpϵ+

σ2

2

1

2b

)
+

(
3σ′2

2

1

2b
+

2σ′qp′

2b

)
.

(18)

The first two terms in Equation 16 are given by Theorem 2 and the proof of
Equation 17 is given in Section 4.3.

Remark 1. Theorem 3 shows that for ϵ = 2−k, Farasha achieves a birthday-bound
security in the key-size k and the permutation-size b, i.e., min{k/2, b/2}.

4.3 Uniform AXU Bound of Farasha-L

Recall that for Mi ∈ {0, 1}⋆, we have FL(K,Mi) =
⊕ℓMi

j=1 P (HK(j)⊕Mi,j) where
K ←$K, P ←$Perm(b) and HK is a ϵ-uniform-AXU. In Lemma 2, we give the
uniform-AXU bound of Farasha-L, i.e., the adversarial advantage Advu-axuFL

.
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Lemma 2 (Uniform AXU bound of FL). Let ϵ > 0 and k, b ∈ N with k ≤ b.
Let K ←$K, P ←$Perm(b) and HK be a ϵ-uniform-AXU. Consider FL as defined
above. For any adversary A making q construction queries (with σ being the
number of distinct tuples (j,Mi,j) over all q queries) and qp primitive queries to
P ,

Advu-axuFL
(A, q, qp, σ) ≤

σ2

2
ϵ+ σqpϵ+

σ2

2

1

2b
. (19)

Proof. From the transcript τ = (τc, τp, τp′ , τc,p), the subset of interest to A is
(τc, τp, τc,p). To prove the AXU (resp. uniformity) bound for FL, we look at the
XOR difference of the FL output of two messages (resp. output of a message)
when the number of queries made by the adversary are q. We divide the proof
into three steps, with the first two steps capturing the adversary’s advantage: (1)
replace P by a random function ρ←$Func(b), (2) define bad events and bound
their probability and (3) prove the 1

2b
-uniform-AXU property when P is replaced

by a random function ρ and no bad events occur.

Step 1: PRP-PRF switching. For the sake of brevity, let FL
′ be FL when P is

replaced by a random function. Since there are σ distinct tuples (j,Mi,j) and
HK(j) ⊕Mi,j is input to P , the number of calls to P is bounded by σ. By the
PRP-PRF switching lemma [18], we have

Advu-axuFL
(A, q, qp, σ) ≤

σ2

2

1

2b
+ Advu-axuFL

′ (A′, q, qp, σ). (20)

Step 2: Accounting bad events. We define the following two events as bad events.

- Bad1: Collision in the set τc,p, i.e., HK(j) ⊕ Mi,j = HK(j′) ⊕ Mi′,j′ for
(j,Mi,j) ̸= (j′,Mi′,j′). If j = j′, we have Mi,j ̸= Mi′,j′ and hence there will
be no collision. If j ̸= j′, a collision implies HK(j)⊕HK(j′) = Mi,j ⊕Mi′,j′ ,
with the probability of this event bounded by ϵ (since HK is ϵ-AXU). With
the number of distinct input-tuples (j,Mi,j) being σ, the probability of a
collision is at most

(
σ
2

)
ϵ ≤ σ2ϵ/2.

- Bad2: Collision in the sets τc,p and τp, i.e., there exists Ai,j ∈ τc,p and
(ur, vr) ∈ τp such that Ai,j = ur. A collision between an element of τc,p
(computed as HK(j) ⊕Mi,j) and (ur, vr) ∈ τc implies HK(j) = ur ⊕Mi,j .
Since H is ϵ-uniform, the probability of this event is bounded by ϵ. With
|τc,p| ≤ σ and |τp| = qp, the probability of a collision in the two sets is at
most σqpϵ.

Now, we define FL
′′ as FL

′ when neither Bad1 nor Bad2 occurs. Then, accounting
for the probability of the bad events, we have

Advu-axuFL
(A, q, qp, σ) ≤

(
σ2

2
ϵ+ σqpϵ+

σ2

2

1

2b

)
+ Advu-axuFL

′′ (A′′, q, qp, σ) (21)
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Step 3: Bounding Advu-axuFL
′′ . We show that FL

′′ is both 1/2b-uniform and 1/2b-
AXU. We highlight that ρ is a random function in FL

′′ with no collisions in
inputs to ρ.

- FL
′′ is 1/2b-uniform: FL(K,Mi) computed as

⊕lMi
j=1 ρ(HK(j)⊕Mi,j)) is uni-

formly distributed as each input to ρ is distinct with each output of ρ being
uniformly distributed. Thus, Pr[FL(K,Mi) = Y ] is 1/2b and FL

′′ is 1/2b-
uniform.

- FL
′′is 1/2b-AXU: For any given message pair (M1,M2), we show that the

XOR difference of FL(K,M1)⊕ FL(K,M2) is uniformly distributed. Let

∆ =

ℓM1⊕
j=1

ρ(HK(j)⊕M1,j)⊕
ℓM2⊕
j=1

ρ(HK(j)⊕M2,j). (22)

Without loss of generality, assume that ℓM1
≥ ℓM2

. Since M1 ̸= M2 there
always exists an index j∗ such that the message blocks M1,j∗ and M2,j∗

differ. If ℓM1
> ℓM2

, then take j∗ = ℓM1
and if ℓM1

= ℓM2
, choose j∗ as a

block-index where M1 and M2 differ. Accordingly, we rewrite Equation 22
as

∆ = ρ(HK(j∗)⊕M1,j∗)⊕
( ℓM1⊕

j=1,j ̸=j∗

ρ(HK(j)⊕M1,j)⊕
ℓM2⊕
j=1

ρ(HK(j)⊕M2,j)
)
.

(23)
Since the term at index j∗ is independent of the rest of the right-hand side
of Equation 23, and ρ is a random function, the term at index j∗ is uni-
formly distributed. Hence, the probability of ∆ being equal to FL(K,M1)⊕
FL(K,M2) is 1/2

b. Thus FL
′′ is 2−b-AXU.

Substituting Advu-axuFL
′′ = 1/2b proves the lemma.

Remark 2. It is crucial to note that FL is not 2−b-uniform-AXU if the adversary
is allowed unbounded number of queries. It satisfies uniform-AXU property with
a bounded number of queries with the advantage given in Lemma 2. When no bad
event happens, FL is 2

−b-uniform-AXU (exactly as FL
′′ in Step 3 above). Further-

more, it is always possible to construct queries of the form M1 = (M1,1,M1,2),
M2 = (M2,1,M2,2), M3 = (M1,1,M2,2) and M4 = (M2,1,M1,2) so that ⊕4

i=1Xi =
0. However, since Xi’s are secret, nothing is revealed about Xi ⊕Xj .

5 Further Insights on Farasha and Farfalle

5.1 Farasha based on Regular-size Keys

In Theorem 3, we have shown that Farasha achieves only k/2 bits of security for
k-bit key. A natural question is whether this can be improved to full k bits of
security. To answer this, we present Farasha#, a variant of Farasha. Farasha# is
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exactly similar to Farasha, except for the fact that we expand the master keyK to
another 2k-bit key K ′ (satisfying 2k ≤ b) by a single call of the b-bit permutation
P ′′. The key K ′ and the message M are then used as inputs to Farasha. This
extension of Farasha to Farasha# is shown in Figure 4 and the security proof
is given in Appendix A.2. Note that the permutation P ′′ is analogous to the
permutation pb in Farfalle.

P ′′ K′

Farasha

K∥10∗

M

2k

N

Fig. 4: A generic diagram of Farasha#

5.2 On Performance Trade-offs in Farasha

Although the goal of this work is to understand the provable security aspects,
we now highlight that the design choices in Farasha could provide different per-
formance trade-offs. For instance, given a 8-bit micro controller, we can choose
HK as an LFSR over finite field F28 . We could further select a primitive feedback
polynomial that allows either efficient implementations or require low latency.
Similarly, one could choose an LFSR for 32 and 64-bit architectures. In the
case where hardware resources are not limited, a designer may choose HK as a
finite field multiplier (similar to AES-GCM). Moreover, since Farasha use pub-
lic permutations, then for concrete instantiations, we could choose any secure
permutation or its round-reduced variant (given that it is also secure) based on
the performance requirements. All-in-all, based on the use-case and performance
requirements, we could select an appropriate HK and permutation.

We also believe that the Farasha-L can be abstracted to any generic uni-
form AXU function. Then it gives many new choices for AXUs. One inter-
esting example is that 4-round AES with uniform and independent keys is an
2−113-AXU [21].

5.3 Discussion on the Security of Farfalle

While the goal of Farfalle is to have an efficient design with security claims, as
opposed to provable security, we can analyse Farfalle in the random permutation
model under the following assumptions:

- rollc is a uniform-AXU: The authors of Farfalle mention that rollc should
posses the properties of a uniform-AXU, i.e., “Informally, an adversary not
knowing K shall not be able to predict the mask value rollic(K) for any i
in a reasonable range, nor the difference between any pair of mask values
rollic(K) and rolljc(K) for any i ̸= j in that range” [7, Section 2.3]. In fact
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for rollc being an LFSR with primitive feedback polynomial, this property
holds.

- pb, pc, pd and pe are random permutations: While the authors do not make
this assumption (and use a 6-round Xoodoo instead), we analyze the overall
Farfalle construction where permutations are modelled as a random permu-
tation.

Under these assumptions, we can show that Farfalle is birthday bound secure
in the random permutation model. We omit the details of proof due to space
limitation and will provide them in the full version of the paper.

6 Conclusion

In this work, we have proposed Farasha, a permutation-based variable length
input and output pseudo random function, which is parallelizable and provably
secure. The Farasha PRF relies on a uniform almost xor universal hash function
and a counter for its provable security. We presented Farasha-wLFSR, where the
uniform AXU is an LFSR whose output state is always secret. We then proved
that Farasha is birthday-bound secure and also have shown that a slight mod-
ification ensures full security in the key-size. Moreover, we discussed different
AXUs and the security of Farfalle in the random permutation model. Finally,
since our work presents the first formal treatment of Farasha and Farfalle, find-
ing more tight bounds for these constructions is another interesting research
direction. We also believe this work will bring new insights to the readers in
further understanding the provable security of Farfalle-like constructions.
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A Security Proofs

A.1 Proof of Lemma 1

Proof. Let σi be the number of queries to Pi. By the PRP/PRF switching lemma,

the advantage after switching Pi by PRF ρi is bounded by
σ2
i

2·2b . Since the permu-
tations as well as the functions are independent of each other, the total advantage
of the µ switchings is given by

1

2

1

2b

µ∑
i=1

σ2
i ≤

1

2

1

2b

( µ∑
i=1

σi

)2
=

σ2

2 · 2b
. (24)

A.2 PRF Security of Farasha#

In Farasha# (see Section 5.1), we first expand a k-bit key K to a 2k-bit key
K ′ = P ′′(K). The key K ′ is then used as a key for Farasha. Denote the modified
left-side as Farasha-L#(K,M) = Farasha-L(P ′′(K),M). Then, the security of
Farasha# follows from Lemma 3.

Lemma 3 (PRF security of Farasha#). Consider Farasha as defined in Theo-
rem 3 and additionally let P ′′←$Perm(b) and Farasha-L# as defined above. Then
for adversaries A,A′, we have

Advu-axuFarasha-L#(A) ≤
qp′′

2k
+ Advu-axuFarasha-L

=⇒ Advprf
Farasha#

(A′) ≤qp′′

2k
+ AdvprfFarasha ,

(25)

where qp′′ is the number of primitive queries to P ′′.

Proof. With another public permutation P ′′ for the key expansion, P ′′± is the
additional (primitive) oracle available to the adversary A. Let A make qp′′ prim-
itive queries to P ′′ and denote its input-output pairs as τp′′ = {(ui, vi) |P ′′(ui) =
vi, 1 ≤ i ≤ qp′′}. Now, in addition to all cases in proof of Theorem 3, we need to
consider an additional bad event, i.e., when one of the queries in τp′′ matches the
key K. The probability of this event is at most qp′′/2k. Given that the construc-
tion after the key expansion is identical to Farasha-L, accounting for this term in
Lemma 2 (resp. Theorem 3) gives the adversarial advantage of Farasha-L# (resp.
Farasha#) as given in Equation 25. This proves the lemma.

A.3 Proof of Theorem 2

Proof Idea. Let (Mij , Cij) denote the j-th plaintext and ciphertext pair cor-
responding to the EM instance with key Ki, i.e., EKi

. Furthermore, (xj , yj)
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denote the input/output of the j-th public permutation query. The bad events
are identical to the independent keys analysis done in [35], and are as follows.

∃ i, i′, j, j′ : i ̸= i′ :Mij ⊕Mi′j′ = Ki ⊕Ki′ ∨ Cij ⊕ Ci′j′ = Ki ⊕Ki′ (26a)

∃ i, j, j′ :Mij ⊕ xj′ = Ki ∨ Cij ⊕ yj′ = Ki (26b)

The probabilities that Equation 26a and Equation 26b hold is bounded by ϵ
due to the ϵ-uniform-AXU property. The rest of the proof is identical to the one
in [35], and the 1/2b term can be generalised to ϵ with ϵ = 1/2b for independent
keys.

Proof. The adversarial model for the modified key setting is depicted in Figure 3,
with an adversary A having bidirectional access to µ+1 oracles (O1, · · · ,Oµ,O).
In the ideal world, these are (P1, · · · , Pµ, P )←$Perm(n)µ+1. In the real world,
these are (EK1 , · · · , EKµ , P ), where EKi(Mij) = P (Mij ⊕ Ki) ⊕ Ki for i =
1, · · · , µ. Note that, in this setting, the keys Ki are the output of a keyed hash
function HK and satisfy the ϵ-uniform-AXU property. The adversary makes
σi queries to oracle Oi (resp. qp queries to oracle O), which are captured in
transcripts τi for 1 ≤ i ≤ µ (resp. τp). Thus, the transcripts in the real-world
are:

τi = {(Mij , Cij) |Mij , Cij ∈ {0, 1}b, EKi
(Mij) = Cij , 1 ≤ i ≤ σi}

τp = {(xi, yi) | xi, yi ∈ {0, 1}b, P (xi) = yi, 1 ≤ i ≤ qp}
(27)

We assume the adversary never makes duplicate queries, so that Mij ̸=
Mij′ , Cij ̸= Cij′ , xj ̸= xj′ , yi ̸= yj′ for all i, j, j′ where j ̸= j′. We denote the
total number of keyed (or construction) queries by σ =

∑µ
i=1 σi.

After all the queries by A are done, but before it outputs its decision,
the key K (of the hash function HK) in the real world and a dummy key
in the ideal world is released to the adversary. This enables the adversary to
compute the keys (K1, · · · ,Kµ). The interaction of A with the oracles can
be summarized by a transcript τ = {K, τ1, · · · , τµ, τp} or equivalently, τ =
{K1, · · · ,Kµ, τ1, · · · , τµ, τp}.

Without loss of generality we assume that A is deterministic. Given the fixed
deterministic adversary A, we denote the probability distribution of transcripts
in the real world by X, and in the ideal world by Y . We say that a transcript
τ is attainable if it can be obtained from interacting with (P1, · · · , Pµ, P ), i.e.,
Pr[Y = τ ] > 0. In our proof, we use the H-coefficient technique, as given by
Lemma 4.

Lemma 4. (H-coefficient Technique [36]). Let us consider a fixed deterministic
adversary A, and let T = Tgood ∪ Tbad be a partition of the set of attainable
transcripts. Let δ be such that for all τ ∈ Tgood

Pr[X = τ ]

Pr[Y = τ ]
≥ 1− δ (28)

Then, AdvprpEM (A, σ) ≤ δ + Pr[Y ∈ Tbad].
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We say that a transcript τ ∈ T is bad if two different queries result in the
same input (or output) to P , were A interacting with the real world. Stated
formally, τ is bad if one of the following conditions is met:

∃ i, i′, j, j′ : i ̸= i′ :Mij ⊕Mi′j′ = Ki ⊕Ki′ ∨ Cij ⊕ Ci′j′ = Ki ⊕K ′
i (29a)

∃ i, j, j′ :Mij ⊕ xj′ = Ki ∨ Cij ⊕ yj′ = Ki (29b)

A transcript that is not a bad transcript, is referred to as a good transcript.

Upper Bounding Pr[Y ∈ Tbad]. We want to upper bound the event that a tran-
script τ in the ideal world satisfies Equation 29a or 29b. Recall that for i =
1, · · · , µ, keys Ki satisfy the ϵ-uniform-AXU property. For any fixed i ̸= i′, there
are at most 2σiσi′ possible plaintext pairs and ciphertext pairs. With keys satis-
fying ϵ-AXU property, the probability of satisfying the condition in Equation 29a
is bounded by 2σiσi′ϵ. Analogously, for any fixed i, there are at most 2σiqp dis-
tinct values in Equation 29b. Since the keys are also ϵ-uniform, the probability
of satisfying the condition in Equation 29b is bounded by 2σiqpϵ. Therefore,

Pr[Y ∈ Tbad] ≤
(
ΣiΣi′<i2σiσi′ϵ

)
+
(
Σi2σiqpϵ

)
≤ σ2ϵ+ 2σqpϵ.

Lower Bounding Ratio Pr[X = τ ]/Pr[Y = τ ]. Let us consider a good and attain-
able transcript τ ∈ Tgood. Then, denote by ΩX = 2b · 2b! the set of all possible
oracles in the real world and by compX(τ) ⊆ ΩX the set of oracles in ΩX com-
patible with transcript τ . Define ΩY = 2b · (2b!)µ+1 and compY (τ) similarly.
According to the H-coefficient technique:

Pr[X = τ ] =
|compX(τ)|
|ΩX |

and Pr[Y = τ ] =
|compY (τ)|
|ΩY |

(31)

First, we calculate |compX(τ)|. As τ ∈ Tgood, there are no two queries in τ
with the same input or output of the underlying permutation. Any query tuple in
τ , therefore, fixes exactly one input-output pair of the underlying oracle. Because
τ consists of σ+qp query tuples, the number of possible oracles in the real world
equals (2b − σ − qp)!. By a similar reasoning, the number of possible oracles in
the ideal world equals

∏µ
i=1(2

b − σi)! · (2b − qp)!. Therefore,

Pr[X = τ ] =
(2b − σ − qp)!

2b · 2b!
(32)

Pr[Y = τ ] =

∏µ
i=1(2

b − σi)! · (2b − qp)!

2b · (2b!)µ+1

≤ (2b − σ − qp)! · (2b!)µ

2b · (2b!)µ+1

=
(2b − σ − qp)!

2b · 2b!
= Pr[X = τ ]

(33)
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It then follows that Pr[X = τ ]/Pr[Y = τ ] ≥ 1. Thus,

AdvprpEM (A, σ) ≤ Pr[Y ∈ Tbad] ≤ σ2ϵ+ 2σqpϵ.

This proves the theorem.
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