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Abstract. In 3GPP mobile networks, application data is transferred between the phone and an access
point over a wireless link. The mobile network wireless link is special since one channel endpoint is
handed over from one access point to another as the phone physically moves. Key evolution during
handover has been analyzed in various works, but these do not combine the analysis with analysis of
the wireless-link application-data encryption protocol that uses the keys.
To enable formal analysis of the 4G/5G wireless link, we develop a game-based security framework for
such channels and define flexible key insulation security notions for application data transfer, including
forward and backward security in the given adversary model. Our notions are modular and combine
a bidirectional application data transfer channel with a generic framework for multiparty channel-
evolution protocols. These two components interact, and the security of the channel-evolution protocol
may rely on the security of the data transfer channel for some or all its messages.
We also develop the first formal model of 4G/5G wireless link security including both handover key
evolution and application data transfer, in the complexity theoretic setting. We prove the model secure
w.r.t. our security notions. As a byproduct, we identify recommendations for improving the security
of future mobile network standards to achieve key insulation. Specifically, we show that the current
standards do not achieve forward secure encryption, even though this appears to be an explicit goal.
We show how this can be rectified.

1 Introduction

Mobile networks, providing more than 5 billion subscribers1 with wireless internet access, are a cornerstone of
modern society. As a part of critical infrastructure, their security is essential. A core functionality is secure
transmission of application data between the mobile phone and the network while the phone physically
moves. To the best of our knowledge, this secure transmission in combination with its key evolution schemes
has not yet been formally analyzed and even lack a clear security model.

1.1 Motivation

Mobile Networks. Mobile phones and IoT devices obtain wireless access from mobile networks, which are
divided into several parts, see Fig. 1. The two main parts are the serving network and the home network.
The former provides wireless access, and the latter controls the phone’s subscription and its authentication.
Roaming occurs when the serving network is controlled by a different operator than the home network. The
serving network is further divided into a core network (CN) and a radio access network (RAN). In 4G and
5G mobile networks [1], the RAN consists of a set of access points connected to the CN. The phone connects
to one of the access points, over what we will call the wireless link. This name is chosen for its place in the
architecture, not because we consider special radio characteristics. We focus on the interactions between the
phone and the serving network, i.e., roaming is out of scope.

While key establishment and identifier-privacy aspects of mobile networks have been formally analyzed,
data transmission confidentiality and integrity have not. One important reason is lack of appropriate cryp-
tographic channel models for the wireless link, which is the problem we address in this paper.
1 https://www.gsma.com
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The wireless link is maintained as the phone moves out of one access point’s radio coverage and into
coverage of another. This ostensible continuity of the wireless link is achieved through so-called handovers.
During handover, the phone, the access points and other support functions in the mobile network coordinate,
via a set of protocols, to transfer control of the network’s endpoint of the wireless link from one access point
to another. This coordination derives new keys and protocol states for the phone and the target access point.
The coordination relies on that the links between access points and links between access points and the core
network is secured (using IPsec/TLS). For our purposes it suffices to treat the core network as a single entity
as shown in Fig. 1.

Ultimately, we wish to analyze the security of application messages passed between the phone and the
network in both directions over this wireless link. That is, we wish to analyze this communication in the secure
channel setting, including how a Channel Evolution (CE) protocol updates the channel state at handovers.
Prior works exist which focus on establishment of keys for the wireless link, and how these keys evolve at
handover, but these works leave the security of the sent application messages, i.e., the secure channel aspect,
out of scope. Composing key establishment and encryption protocols is known to be intricate.

We view the wireless link as a special case of the abstract concept stateful anycast [42], but where
endpoints of the link can be re-selected during the link’s lifetime. As far as we know, this abstract setting
has not been analyzed through the lens of secure channels earlier. Anycast considers access points equivalent
from a service delivery perspective. It may therefore be tempting to consider them equivalent also from a
security perspective, so that a multi-key channel [32] composed with state transfer between access points
suffices to model the secure channel. However, mobile networks require a more complicated threat model
and some access points may be in physically exposed locations such as shopping malls or outdoors, where
adversaries may have easy access. That is, not all access points share the same degree of protection. Therefore,
it is prudent to consider more elaborate threat models, where an adversary may compromise some access
points but not all. We define security notions incorporating a kind of recovery from state compromise after a
certain number of endpoint transfers. Such recovery may at first appear contradicting the impossibility result
of Bellare et al. which states that key insulation is unachievable under active attacks when it makes use of a
public channel between the helper and the primitive [6]. However, we make use of the fact that each access
point has its own public channel to the helper function and that compromising an access point compromises
its public channel, but not public channels between the helper function and other access points.

Running a complete secure channel (re-)establishment protocol at handover straightforwardly ensures
strict key insulation. However, that may be prohibited by network topology, or may be infeasible due to the
service’s real-time nature. 4G/5G networks therefore require security notions which are flexible in terms of
how many handovers are allowed before achieving forward and backward security.

The 4G and 5G specifications TS 33.401 and TS 33.501 [1] are unfortunately not accompanied by an
explicit security model. Neither are they written for the purpose of formal verification, and security notions
and claims are often vague and implicit. Although the specifications define two concepts, forward security and
backward security, these do not directly translate into the traditional notions of similar names [12,21,31]. 2

Therefore, one of our aims is to formally capture what secure handover perhaps ought to mean, in terms of the
more traditional meaning of forward and backward secrecy. Another aim is to investigate what improvements
4G/5G require to reach this notion of security.

We therefore construct a game-based framework for analyzing these types of links. It captures both
key evolution and the security of the encryption protocol, seen as a channel for sending application data
securely between the phone and the network. The task is made challenging by the fact that mobile network
key-evolution protocols may rely on the security of the encryption protocol, which in turn relies on the key-
evolution protocol to provide encryption keys. Further complications arise from that the network endpoint
of the channel is transferred between access points, some of which may be compromised.

Secure Channels. Although key establishment and key evolution may be part of secure channel func-
tionality, the core purpose is transfer of sequences of arbitrary messages between parties. There are many
2 We discuss the differences in a remark in Section 5.2. The differences give an interesting indication of opposing

views on security definitions.
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variations on the theme, handling complex use cases, e.g., multi-key channels [32] and unreliable trans-
mission [27,40,16,47]. Some cryptographic channel formalizations include initial channel and key establish-
ment [19,4,37,17,24], whereas others assume the channel is already securely established, and focus on appli-
cation data transmission security properties [8,16,47,41,32]. There are even formalizations modeling channel
re-establishment with an endpoint under a different name [29]. None of these formalizations, however, model
handovers, where one party seamlessly transfers control of its endpoint to another party.

The process algebra and protocol logic communities have explored 4G/5G handover security [43,20,34].
There is informal analysis [28]. There is also work in the computational model, some focusing on Small Cell
Networks (SCN). SCN is a collective term for systems integrating low-power access points in the mobile
network architecture. This is an extended architecture that not necessarily corresponds to the basic setting
of the 4G/5G standard, and calls for new schemes rather than analysis of the standardized schemes. Many
works propose schemes for authentication and key establishment for handovers from one region to another in
SCN. They consider the evolution of keys and authentication, but disregard security of the data transmission
at handover. Therefore, they often analyze their schemes in derivatives of Bellare-Rogaway’s framework for
key establishment [10], which does not treat subsequent message encryption using the established key. Recent
works include ReHand, focusing on extended architectures where small-cell access points are connected a
regular 5G access point, and the phone is handed over between the small-cell access points, for which they
propose a scheme [26]. Alnashwan et al. propose new authentication and key establishment schemes for SCN
handovers [3]. They prove key indistinguishability, anonymity, and authentication properties. Gupta et al. [33]
propose a key establishment scheme for 4G/5G handover based on bilinear pairings.

Blazy et al. [13] analyze Post Compromise Security in a multi-stage key exchange model and consider key
indistinguishability for basic 5G handovers. While they consider a vast array of adversary models, their 5G
model is much more abstract than ours. Specifically, they disregard application data security, they consider
all access points as one, and they assume secure channels between the access point(s) and the core network.
Their model is too abstract to capture the forward security weakness we uncovered. We stress again that
these proposals consider key establishment and evolution, but not application data transfer.
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Fig. 1. System model. The phone exchanges application data with access point a0 before the handover and with a1
afterwards. In our generic SACh model, the phone is called a client, the (serving) core network (CN ) is called the
orchestrator (o), and the wireless link is called the δ-channel. Links between CN and access points, and links between
access points, is in mobile networks protected by IPsec when cryptographically protected. The channel evolution
protocol updates keys and other channel state at handover to ensure that messages sent over the wireless link/δ-
channel are secured.

1.2 Contributions

We initiate the study of secure anycast channels capable of channel endpoint transfer between parties and
use this to analyze 4G/5G wireless link handovers.
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– We define a general notion of secure bidirectional anycast channels, featuring endpoint control transfer
from one party to another. Our adversary model include (restricted) endpoint corruption and session
key reveal. Our work fills a gap in techniques required to analyze real-world systems, e.g., 4G and 5G.
It is to the best of our knowledge the first to address secure anycast channels as such, which may be of
independent interest.

– Our game-based notions capture a flexible version of key insulation, achieving backward and forward
security after n phases under the adversary model Fig. 2. This enables analysis of realistic 4G/5G network
topologies.

– Our notions are modular. Endpoint control transfer is managed by a channel evolution (CE) protocol.
Importantly, CE-protocols may send messages over the secure channel itself, and crucially rely on its
security. A generic interface for interaction between the secure channel and a wide range of CE protocols.
These can be individually designed for specific topologies.

– We provide the first complexity-theoretic channel-based model of the 4G/5G wireless link data transmis-
sion security, which includes handovers. It is rather close to the 3GPP standard. We show that it fulfills
our security notions.

– We show that 4G/5G do not achieve forward security and how future mobile network generations can
be improved to do.

1.3 Related Work

Our work sprung from realizing that Günther’s and Mazaheri’s multi-key channels [32] (GM henceforth) do
not suffice for modeling 4G or 5G wireless link security. GM focuses on key-usage and cannot handle endpoint
transfer, whereas we take spatial aspects into account: access point break-ins should be compartmentalized.
GM requires deterministic key evolution and it cannot rely on the security of the secure channel. However,
our δ-channel share structure with their phase-based model and we highlight differences and similarities
throughout.

Dodis et al. proposed Key Insulation (KI) for the public key setting [22]. They consider a primitive,
assisted by a secure helper entity that evolves keys, for the purpose of temporally compartmentalizing attacks
against the primitive. This concept was later extended to the symmetric key setting by Dodis et al. [23].

Bellare et al. [6] considered communication between the helper and the key insulated primitive in the KI
setting. In GM, these two entities are co-located and this is less important. In our case, they are separated.
Bellare et al. showed that the entities communication cannot be secured against an active adversary when
the primitive is corruptible. We show how this problem is present in mobile networks, but may be practically
less severe due to the endpoint transfers.

Secure channels, including GM, are often unidirectional for simplicity. Marson and Poettering [41] showed
that combining two such channels does not trivially result in a secure bidirectional channel. We adopt their
conclusions.

Our domain is similar to secure messaging, where double-ratchet designs are often used. However, many
such designs, e.g., [4,25], use asymmetric keys and only focus on two-party message exchange; hence they
are inapplicable here.

2 Secure Anycast Channels

2.1 Preliminaries

Sets and Sequences. We write the disjoint union of sets S and T as S ⊎ T . We write |S| for the size of S
and |s| for the length of s ∈ S for some metric on S. We write S|s| for the subset of elements in S that are of
length |s|. A sequence σ = (σ0, σ1, . . . , σn−1) over S is an ordered list of possibly repeating elements σi ∈ S.
Slightly abusing notation, we denote the length of the sequence σ by |σ|, and the fact that an element σi

is in σ by σi ∈ σ. The set of all finite sequences over S is denoted by S∗. We write S⊥ for S ∪ {⊥}, where
⊥ /∈ S. We write σ∥e when appending an element e to σ, and write S←∪ e instead of S← S ∪ {e}.
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Algorithms. Let S be a finite set, and let u and v be variables. We write v←RS to denote uniform random
sampling of an element from S and assigning it to v. We use ← to denote value assignment and ↢ to denote
reference assignment. For example, if V is a reference, then v← 1; V ↢ v; v← 2; implies that V = 2. Tuples
are uniquely encoded. This enables multiple simultaneous assignments when decoded, e.g., (u, v)← (1, 2)
implies that u = 1 ∧ v = 2.

We model stateful (randomized) algorithms using conventional monadic sequencing. Let A(s, σi, ·) be an
algorithm taking as input at least a state s and data item σi, and outputting at least an updated state s′

and a processed data item τi. The entity invoking A maintains a state variable s, invokes A with s and other
inputs, and assigns the output state s′ to s when A returns, i.e., (s′, τi, ·)←A(s, σi, ·); s← s′. Suppose that
s0 is a state for A and that σ = (σ0, σ1, . . . , σn−1) is a sequence of inputs. We write (sn−1, τ, ·) ↫ A(s0, σ, ·)
for the n-fold monadic sequence of invocations of A over σ starting in state s0.

Computational Model. We consider efficient algorithms in a uniform probabilistic polynomial time (PPT)
Random Access Memory model. Definitions, theorems and reductions are given in asymptotic black-box
constructive form for a security parameter λ [46]. As usual, a function f(λ) is negligible in λ if ∀c ∈ N. ∃λc ∈
N. ∀λ ∈ N. λ ≥ λc ⇒ f(λ) ≤ λ−c. We assume a uniform distribution for sampling and random objects unless
otherwise specified.

2.2 Anycast Systems as an Abstraction of Mobile Networks

We now define what we mean by anycast systems, their architecture and system dynamics. Our model
generalizes and abstracts wireless-link communication in 3GPP mobile networks, subject to handovers.

System Architecture. Consider a client c accessing a service provided by an anycast system S consisting of
an orchestrator o and a set of (service) access points (see Fig. 1). The client (the phone in mobile networks) is
connected to, and receives service from, one of the access points in S. The orchestrator represents the serving
core network in mobile networks. Formally, let U = UO ⊎ UA ⊎ UC be a set of identities, where UO = {o},
UA = {ak}k∈N and UC = {c}. Identities represent unique parties and we use them as identifiers for the parties.
The orchestrator may encompass many subfunctions, executed by different logical or physical servers, but
we treat it as a single entity. The orchestrator and access points can all be connected by communication
channels but do not need to be.

We call the channel between the client and one of the access points the δ-channel. The δ-channel models
the secure transmission of application data over the wireless link in mobile networks. An access point may
transfer control of its δ-channel endpoint to another access point without terminating the δ-channel. We use
endpoint transfer to model handover. The multiparty protocol executed by S to transfer its endpoint is a
Channel Evolution (CE) protocol. Together, the CE protocol and the δ-channel constitute a Secure Anycast
Channel, a SACh.

System Dynamics. At any point in time, exactly one access point controls the δ-channel endpoint on
the system side. The damage compartmentalization goal suggests establishing fresh keys and state for the
δ-channel at endpoint transfer. This naturally leads to phase-divided processing; the δ-channel connects the
client c and a single access point at in each phase t, and endpoint transfer using a CE-protocol progresses
the SACh to the next phase (see Fig. 6). Let tu denote the phase that party u is in. Parties progress to the
next phase when they receive or send a message using the next δ-channel state, regardless of whether this
is an application message or a CE message. Since c may return to a previously visited access point, we may
have at = at+n for some integer n.

The δ-channel’s global state δ consists of the client substate and the controlling access point’s substate,
i.e., δ = (δc, δa). For u ∈ {c, a} and phase tu , the variables ituu and jtuu range over the number of δ-
channel messages u sent and received, respectively, in phase tu . We write δtuu for u’s δ-state in phase tu , and
δ
(tu ,i

tu
u ,jtuu )

u when the number of processed messages matter. Indices quickly become unwieldy, so we define
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a special notation for δ-substates. Let f and g be expressions in the number of sent and received messages,
respectively. Now define (u, h(t) | f(i), g(j)) ≜ (h(tu), f(i

tu
u ), g(jtuu )). Using this notation, we may write, e.g.,

δ
(v,t | i+1,j)
u instead of δ(tv ,i

tv
v +1,jtvv )

u to indicate party u’s δ-substate when party v is in phase tv, and v has
sent itvv + 1 messages and has received jtvv messages. The notation is not fully generic, but covers the cases
we need.

CE protocols may send messages over the δ-channel, and may rely on its security. This interplay allows
more faithful handover models, but is simultaneously our model’s main source of complexity. It appears that
this complexity is often purposely avoided, favoring simplicity over expressiveness [32,6].

The CE protocol’s global state γ consists of the substates of all parties, i.e., γ = (γo, γc, {γa}a∈UA).
Intuitively, session-keys in the δ-states are derived from secret information shared by only γo and γc, but we
impose no special restrictions on the δ-states or γ-states because we want flexibility to handle a large class
of CE protocols.

Our goal is to define the meaning of security for application data sent over the δ-channel during a sequence
of phases, given an already initialized system.

2.3 Syntax

The SACh syntax is composed of the CE syntax and the δ-channel syntax. We call the CE protocol the CE
component when emphasizing the formalism. States are explicit algorithm inputs, but are implicitly assumed
here in the description.

Inspired by Brzuska et al. [18], we use an algorithm Next, passing messages between the entity invoking
Next and the underlying CE component (see Definition 1). Invoking NextInit sets the target access point ν
for the next endpoint transfer. Execution starts by invoking Next with the message ⊥ and the CE-protocol
initiator u. Next returns the first CE message m generated by u. Continuing, Next is invoked again with m
and its intended receiver, and so on until Next returns the message ⊥, signaling completion.

Interactions with the δ-channel works as follows. Next takes an input κ, indicating the δ-state used to
decrypt the message (or ⊥ for no decryption). Failed decryption implies that m = ⊥. Next returns a value
κ′, indicating which δ-state the SACh must encrypt the returned message with (or ⊥ for no encryption).

Next also returns a tuple E indicating whether a party has progressed to the next phase during this
invocation. Specifically, Ea = 1 implies that the target access point ν has taken control over the δ-channel.

Definition 1 (Syntax for CE Component). A Channel Evolution (CE) Component is a tuple of dis-
tributed algorithms CE = (NextInit,Next) for parties with identities U = UO ⊎ UC ⊎ UA, s.t. o ∈ UO is an
orchestrator, c ∈ UC is a client, and UA is a set of access points. CE is associated with a γ-state space Sγ , a
δ-state space Sδ and a message space M.
– NextInit : Sγ × UA −→ Sγ The algorithm sets the target access point for the next phase progression to

u for the given γ-state.
– Next : Sγ × Sδ × U × (UC ∪ UA)⊥ ×M⊥ −→ Sγ × Sδ × Z2

2 × (UC ∪ UA)⊥ ×M⊥ The algorithm takes
a γ-state, a δ-state, a recipient u ∈ U and message for u as input. Next returns, possibly updated, γ-
state and δ-state, a tuple E = (Ec, Ea) of indicator variables (telling whether the corresponding party
progressed to the next phase), a δ-channel endpoint κ ∈ {c, a} if the returned message must be sent over
the δ-channel from that endpoint (and ⊥ otherwise), and finally the actual message itself (or ⊥ if there
is no message).

An example CE protocol is the following. Parties o and c share a root key and a monotonic counter, from
which they derive keys for the next δ-state using a PRF. A message from c to o informs o that c progressed
to the next phase and has derived the next key. In response, o sends the next δ-state key to the target access
point, which then progresses the other end of the δ-channel to the next phase. We do not define a proper
scheme-class for CE components to avoid restricting their design space or complicating their syntax.

It may be tempting to require that the CE component returns a key indistinguishable from random
key, similar to [6]. However, that requirement disqualifies key evolution protocols that require more than one
progression to achieve KI. As discussed, natural examples of such protocols exist. The price for this flexibility
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is twofold; CE protocols may be difficult to compare and, generic composition theorems for CE components
and δ-channels are likely complicated.

Secure δ-channels. Our δ-channel is a bidirectional channel, close in spirit to the work of Marson and Po-
ettering [41], but with significant differences. First, we internalize the associated data parameter ad into Send
and Recv. While Authenticated Encryption with Associated Data (AEAD) syntax [44] commonly exposes
this parameter, we consider nonce management to be a natural internal task for the channel abstraction
itself. One could imagine combining external associated data with internally generated associated data. This
gives the adversary some control over the associated data and makes the syntax more flexible. We opt not to
do this since it increases complexity and distracts from our anycast focus. Second, we use a Real-or-Random
(RoR) flavor instead of a Left-or-Right (LoR) flavor for the CPA experiment. Finally, a stylistic difference
is that we set a flag win instead of aborting when the adversary succeeds in the integrity experiment.

The δ-channel is initialized with a configuration that contains secret information, e.g., keys, and informa-
tion that may be public, e.g., which encryption algorithm to use. Note that we do not distinguish between
the messages space and the ciphertext space.

Definition 2 (Syntax for δ-channel Scheme). A δ-channel Ch is a tuple of algorithms (Initδ,Send,Recv)
implementing a bidirectional secure channel for a client and an access point. Ch is associated with a configu-
ration space CFG and a state space Sδ. The Send and Recv algorithms are further associated with a message
space M⊥. The syntax of the algorithms are as follows.
– Initδ : CFG −→ Sδ Given a configuration as input, it returns an initial δ-state δ = (δc, δa), where δc is

the substate for the client and δa is the substate for the access point currently controlling the δ-channel.
– Send : Sδu ×M −→ Sδu ×M Given a δ-substate δ

(u,t | i,j)
u and a message m(u,t | i,j), Send returns a next

state δ
(u,t | i+1,j)
u and a ciphertext c(u,t | i,j).

– Recv : Sδu ×M −→ Sδu ×M⊥ Given a δ-substate δ
(u,t | i,j)
u and a ciphertext c(u,t | i,j), Recv returns a

next state δ
(u,t | i,j+1)
u , and a message m(u,t | i,j) or ⊥.

Definition 3 (Syntax for Secure Anycast Channels (SACh)). A secure anycast channel (SACh) Ch
is a tuple of algorithms (Init,Send,Recv,NextInit,Next) for a set of parties with identities U , partitioned into
an orchestrator o ∈ UO, a set of access points UA and a client c ∈ UC . Ch is associated with state spaces
Sγ and Sδ. The Send and Recv algorithms are further associated with a message space M⊥. The syntax of
the algorithms are as follows.
– Init : N −→ Sγ ×Sδ Given the security parameter λ as input, it returns an initial γ-state and an initial

δ-state δ = (δc, δa), where δa is the substate for the access point a currently controlling the δ-channel.
– Send : Sδu ×M −→ Sδu ×M As defined for the δ-channel (Definition 2).
– Recv : Sδu ×M −→ Sδu ×M⊥ As defined for the δ-channel (Definition 2).
– NextInit : Sγ × UA −→ Sγ As defined for the CE component (Definition 1).
– Next : Sγ × Sδ × U × (UC ∪ UA)⊥ ×M⊥ −→ Sγ × Sδ × Z3

2 × (UC ∪ UA)⊥ ×M⊥ As defined for the CE
component (Definition 1).

The intuition behind the SACh correctness definition is the now de facto standard: the sequence of
received messages must be a prefix of the sequence of sent messages in the presence of a benign adversary
who faithfully relays messages [8] in a sequence of phases [32]. An important aspect of the latter work is that
correctness is conditioned on the receiver receiving all messages in a phase before progressing to the next.
Messages sent in the previous phase cannot be decoded by that receiver, who has disposed of the previous
phase’s keys.

Definition 4 (SACh Correctness). Let the tuple Ch = (Init,Send,Recv,Next) be a secure anycast channel.
Suppose Init(λ,UA) has been invoked so that the states γ = (γo, γc, {γa}a∈UA) and δ = (δc, δa) are initialized.
– Let mt

c↓ = (mt,0
c↓ , . . . ,m

t,Mt
c

c↓ ) ∈ M∗ and mt
a↓ = (mt,0

a↓ , . . . ,m
t,Mt

a

a↓ ) ∈ M∗ be the message sequence that
the client, and the anycast system respectively, sends over the δ-channel in phase t,
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– the encodings of mt
c↓and mt

a↓ be stc = (st,0c , . . . , s
t,Mt

c
c ) ↫ Send(δ

(c,tc | 0,j)
c ,mt

c↓) and sta = (st,0a , . . . , s
t,Mt

a
a ) ↫

Send(δ
(a,ta | 0,j)
a ,mt

a↓) respectively, and

– the decodings of staand stc be mt
c↑ = (mt,0

c↑ , . . . ,m
t,Mt

a

c↑ ) ↫ Recv(δ
(c,tc | i,0)
c , sta) and mt

a↑ = (mt,0
a↑ , . . . ,m

t,Mt
c

a↑ ) ↫

Recv(δ
(a,ta | i,0)
a , stc) respectively.

– Let mc↓ = (m0
c↓, . . . ,m

Nc

c↓ ) and ma↓ = (m0
a↓, . . . ,m

Na

a↓ ) be all messages sent by the client and the anycast
system respectively, in all phases.

– Let mc↑ = (m0
c↑, . . . ,m

Na

c↑ ) and ma↑ = (m0
a↑, . . . ,m

Nc

a↑ ) be all messages received by the client and the
anycast system respectively, in all phases.
The iterative invocations of Send and Recv may be interleaved with each other, but not with invocations

of Next. Once Next is first invoked after an invocation of NextInit, Next must be invoked without interleaved
Sends and Recvs for other messages than CE protocol messages until the next phase.

We say that Ch is correct if for any Nc and Na, and for 0 ≤ tc ≤ Nc and 0 ≤ ta ≤ Na any M tc
c and M ta

a ,
and for 0 ≤ ic ≤M tc

c and 0 ≤ ia ≤M ta
a and any mtc,ic

c↓ and mta,ia
a↓ we have mc↓ = ma↑ and ma↓ = mc↑.

The definition is complicated by the δ-channel being bidirectional, leading to interleaved invocations of Send
and Recv for both endpoints of the channel.

2.4 Rationale

Removing the option to send CE messages over the δ-channel results in simpler and clearer definitions. The
downside is that CE components then must protect themselves and cannot offload any of that work to the
δ-channel. Consequently, they would become more complicated. Moreover, this interaction is of practical
importance since deployed systems, such as 4G and 5G, do use it.

In contrast to GM, who use a deterministic and non-interactive derivation scheme for phase keys, and to
Alwen et al.’s CKA [4], who do not allow general (symmetric key) CE protocols, 4G/5G handovers require
fairly general multiparty CE protocols. One may expect this to complicate the correctness definition further.
However, CE protocols only indirectly affect the δ-channel messages by evolving the δ-state. Therefore,
verifying that sent and received δ-channel messages are equal rejects constructions, which do not properly
evolve the δ-state.

Bellare et al. [6] model key evolution as an atomic operation. The transcript of a two-party protocol
execution is returned together with a fixed set of keys, which must be indistinguishable from randomly
sampled keys. While simpler to work with and appropriate for their use case the technique is not general
enough for modeling 4G/5G handovers, which involve more than two parties, and where the primitive must
interact with individual messages in the transcript.

3 Security Notions for Anycast Channels

Secure communication typically requires confidentiality and integrity. Confidentiality schemes are often di-
vided into those resisting chosen plaintext attacks (CPA) and those also resisting chosen ciphertext attacks
(CCA). Both these notions are traditionally based on indistinguishability [30]. In contrast to the more
customary LoR indistinguishability, used by many secure channels, we employ RoR plaintext indistinguisha-
bility [5]. We motivate this choice later, but the intuition is that it allows a simpler abstraction for the CE
protocol. A RoR-CPA adversary queries the encrypt/send oracle with messages mi. The game samples a
bit b uniformly at random and returns ciphertexts ci, which are encryptions of either mi, if b = 0, or equal
length randomly sampled messages if b = 1. The adversary wins the game if it can determine from mi and
ci whether b equals 0 or 1. RoR-CCA adversaries are equipped with an additional decrypt/receive oracle,
but cannot forward the output from the encrypt/send oracle to the decrypt/receive oracle since this leads
to trivial attacks. Bellare et al. lifted the notion of encrypting individual messages to stateful encryption
of sequences of messages [8]. A key point is that the decryption algorithm is stateful and can thus detect
replayed and out-of-order delivered ciphertexts. Their notion comes in CPA and CCA versions, which are
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today core properties of secure channels. GM [32] later extended this notion to stateful encryption where
encryption keys evolve [2,12] over a sequence of phases.

Integrity protection, when combined with encryption, is usually captured by either of the security no-
tions INT-CTXT [39,11] or INT-PTXT [9]. The former covers integrity of ciphertexts and the latter in-
tegrity of plaintexts. They have also been lifted to sequences of messages, resulting in INT-sfCTXT and
INT-sfPTXT [8,18]. Analogous to the encryption counterparts, these integrity notions were then extended
to cover sequences of phases with evolving keys [32].

Most generic secure channel models are unidirectional, but bidirectional exceptions exist [35,15,41]. Recent
protocol-specific models are also bidirectional [4].

A somewhat orthogonal consideration is the adversary’s capability to reveal keys and corrupt parties.
Compared to stateful authenticated encryption, Günther and Mazaheri strengthen the adversary model by
allowing the adversary to reveal phase-keys and to corrupt parties in certain situations. Against this stronger
adversary, schemes can provide partial protection in the form of KI security [22] and forward security w.r.t.
the helper key (see Section 1.3).

3.1 Adversary Model

We equip an adversary A with standard capabilities to control communications, and advanced capabilities
to corrupt parties and reveal δ-state. As usual, we must prevent that A trivially wins. We handle trivial wins
via penalty-style definitions [7]. The experiment records events in a log L, and evaluate a polynomial-time
computable validity-predicate PADV

nB ,nA
over L and other parameters (defined in this section). If the validity-

predicate evaluates to false, A loses the game (or a random bit is returned for decision experiments). The
predicate is divided into subpredicates, each one capturing one aspect of the adversary model.

We first give the full predicate and then explain the subpredicates. Quantifiers in PADV
nB ,nA

capture free
variables in subpredicates, and the variable t is the phase in which A attacks. Computing PADV

nB ,nA
(L, t)

requires a fixed number of linear passes over L. The length of L is bounded from above by the number of
oracle invocations by A; hence PADV

nB ,nA
(L, t) is efficiently computable.

PCPA ≜ ∄(LCPA⊥) ∈ L,
PPh ≜ t ̸= ⊥ ∧ ∄(LNext⊥) ∈ L,
PCor ≜ tCor ≥ t+ nA ∨ a ̸∈ {src, trg , c, o},
PRev ≜ tRev ̸= ⊥ ∧ tRev /∈ (t− nB , t+ nA) ∧ tRev ≤ tu ,

PADV
nB ,nA

(L, t) ≜ PCPA ∧ PPh ∧ ∀(LCor, tCor, a) ∈ L, (LHO, src, trg) ∈ L . PCor

∧ ∀(LRev, tRev, tu , u) ∈ L . PRev.

The PCPA subpredicate prevents trivial attacks in the CPA game. If A performs active attacks in the
CPA game (and only in this game), an event LCPA⊥ is logged to L. PCPA is true if no such events exist in
L, and is guaranteed to be vacuously true for all other games.

Challenge Bits and Phases. A single challenge bit b is insufficient to capture security in multi-phase
games when A may reveal individual phases [38,36]. To see this, suppose a single bit is used, that A obtains
a ciphertext in one phase and reveals the corresponding δ-substate. A then learns b for all phases and can
legitimately use this to successfully attack a different, past or future, phase. To handle this, we apply the
common technique of using a separate challenge bit bt in each phase t and require that A determines bt∗ for
a specific phase t∗, called the test phase. In integrity games, the test phase refers to the first phase that A
attacks. The cost of this design is an index-guessing game-hop in security proofs and a security-loss growing
linearly in the number of phases.

The adversary must select a target access point by invoking ONextInit before starting the CE protocol
execution. This models adversaries that, e.g., selectively jam radio frequencies to lure a phone into connect-
ing to another access point, which possibly is under the adversaries’ control. To not complicate the Next
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algorithm’s interface further, we choose to restrict CE-protocol executions in the following sense. Once a
target access point is selected, the CE protocol must complete before another handover is allowed to start.
Whether a handover is in progress or not is tracked by the variable α. It equals ⊤ if a handover is in progress
and ⊥ otherwise. If A violates the restriction, an event LNext⊥ is logged.

Formally, the PPh subpredicate captures that the test phase is valid and that A progressed handovers
one at a time.

Corruption and State Reveal. A is malicious, active and adaptive with respect to communications,
δ-state reveals and party corruptions. A can drop, re-order, modify and inject messages arbitrarily.
A can corrupt any party except the orchestrator, and then obtains their γ-state. A controls corrupted

parties and can track all changes in their γ-state unless that is affected by the δ-state, in which case A must
reveal that state too. We model corruption using a OCor oracle, which logs the corrupted party u and u’s
current phase tu with and event (LCor, tu, u).

We claimed above that our notions are flexible in terms of how many handovers are allowed before KI
must be achieved. We realize this by parametrizing SACh with constants nA and nB , which are the upper
and lower bound on the critical region, used as follows (see Fig. 2). Corruption of any party is allowed
from phase t∗ + nA and onward. Any access point other than the source and target access points in phase
t∗ can be corrupted any time. Corruption of parties active in the test phase t∗ is disallowed before phase
t∗ + nA. While corrupted access points stay corrupt, the orchestrator and client can establish fresh δ-state
with an uncorrupted access point based on their own γ-state, i.e., the channel globally self-heals in a sense.
GM cannot capture this since it is a two-party channel with deterministic key evolution, so if one party is
corrupted, the channel is forever compromised.

Formally, the PCor subpredicate captures this: if any party, taking part in the CE protocol execution in
the critical region, is corrupted, that corruption happened after the critical region ended.
A may reveal δ-substate of access points and the client for phases up to and including phase t∗−nB , and

from phase t∗ + nA and forward. The δ-substate equals ⊥ for phases where a party have not (yet) derived
a δ-substate. We model δ-substate reveal for a phase t using the ORev oracle, which adds the tagged entry
(LRev, t, tu, u) to the log L, where u is the party and tu is the phase that u is actually in when the reveal
query is made. ORev stores all prior δ-states to handle queries for them.

Formally, the PRev subpredicate captures that L contains no reveal events for a phase inside the critical
region, and that the revealed party indeed had progressed to the revealed phase when the ORev query was
made. The latter is required, because A may ask to reveal a future phase or a past phase of an access point
that was not the controlling access point for that phase.

t∗ − 4 t∗ − 3 t∗ − 2 t∗ − 1 t∗ t∗ + 1 t∗ + 2

t∗ − nB t∗ + nA
ORev({at∗−1, at∗ , c})

OCor({at∗−1, at∗ , c})

Fig. 2. Disallowed key exposures on at∗−1, at∗ and the client c for test phase t∗ with nB = 2 and nA = 1. Access
points at∗−1 and at∗ , and the client can be corrupted earliest when phase t∗ completes. Their δ-states cannot be
revealed during phases t∗ − 1 and t∗, but can be revealed afterwards. Other access points can be corrupted and
revealed at any time, so the channel has a form of global self-healing capability.

Ciphertext Synchronization. Beginning with Bellare et al. [8], the standard CCA and integrity games
for stateful authenticated encryption are split into two stages. First, A may benignly forward outputs from
OSend (in their case represented by a LoR oracle) to ORecv as is, to progress the oracles’ states. During this
stage, ORecv suppresses its output. Inputs to ORecv are said to be in sync with outputs from OSend. The
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second stage starts when A first invokes ORecv with a ciphertext that is out of sequence or is not produced
by an invocation of OSend. From then on, ORecv no longer suppresses output.

GM [32] extends this idea to multi-key channels. Its security experiments include two additional oracles
ORev and OCor. Through these, A may reveal phase-keys (corresponding to our δ-state) of other phases than
the current one, and may corrupt one or both parties. To avoid trivial attacks, GM considers ciphertexts
to be in sync even when A has revealed a phase key and thus clearly can inject ciphertexts that will
be accepted by ORecv during that phase. However, secure GM schemes must detect these injections when
the receiver progresses to the next (uncompromised) phase. Hence synchronization is considered lost if the
receiver progress to the next phase without having received all ciphertexts sent in the previous phase. We
adopt this approach and extend it.

A δ-channel is bidirectional, so loss of synchronization in one direction may affect the δ-substate used to
process messages in the opposite direction [41]. Hence, if a receiving party loses synchronization, so may the
other party. This is reflected in Fig. 3 by that Snd will no longer add ciphertexts to the validity-table Cu;
hence these ciphertext will be considered out of sync by the receiver.

For their CCA notion, Bellare et al. [8] and GM deem synchronization lost when an invalid ciphertext is
input to the receiver. Marson and Poettering [41], in contrast, deem synchronization lost when the receiver
accepts the invalid ciphertext, i.e., a failed decryption does count as a received message (see line 44 of Figure 4
in [41]). Receive algorithms rejecting ciphertext adds a strong sense of integrity to the confidentiality notion,
which blurs the distinction between the notions, so we follow the first approach.

3.2 Confidentiality

We give CPA and CCA experiments for confidentiality (see Fig. 3). We minimize the textual differences
between the two definitions. Therefore, there are superfluous lines in the CPA definition. For instance,
variables syncc and synca are never re-assigned after initialization and can be ignored.

Secure channels commonly use LoR CPA and CCA, but we use the RoR plaintext variants since there
is no natural way to allow A to provide a left and a right CE message to be sent over the δ-channel. We do
not use the notion indistinguishable from random bit-strings (IND$) because we want to allow ciphertexts
to contain metadata, e.g., sequence numbers. When they do, they are easily distinguishable from random
strings.

The experiments allow CE protocols to make use of secure channels between parties in the anycast system
S, e.g., as instantiated by IPsec/TLS in 4G/5G.

Experiment Parametrization. A single experiment, parametrized by ATK ∈ {CPA,CCA}, captures both
CPA and CCA. When ATK = CCA, A can invoke ORecv with arbitrary ciphertexts. When ATK = CPA,
A can only invoke ORecv with ciphertexts generated by OSend, and the output of ORecv is then suppressed.
A is given access to ORecv in the CPA game for two reasons. First, reception of messages may affect the δ-
state for sending in bidirectional channels, and second, it enables fast-forwarding the δ-state to a potentially
vulnerable state.

Emphasizing the similarities between the confidentiality and the integrity experiments, we introduce a
technical parameter D for the challenge-bit sample-domain. For the confidentiality experiments D = {0, 1}.
For integrity experiments D = {0}, resulting in the experiments only encrypting real messages.

We call our confidentiality notions SACh-IND-CPA and SACh-IND-CCA. Oracles type check their inputs
and reject invocations with incorrect argument types. All variables are initialized to ⊥ at the start of the
experiment.
Definition 5 (SACh-IND-ATK Security). Let Ch = (Init,Send,Recv,Next) be a SACh (Definition 3),
and let Expsach-ind-atk

Ch,A,D (λ) be the security experiment defined in Fig. 3, parametrized by ATK ∈ {CPA,CCA}
for an adversary A and challenge domain D = {0, 1}. When ATK = CCA boxed code is included in
Expsach-ind-atk

Ch,A,D (λ), but shaded code is not included. When ATK = CPA the opposite holds. Let OIND =
{OSend,ORecv,ONextInit,ONext,OCor,ORev}. A’s advantage for the experiment is defined as

Advsach-ind-atk
Ch,A (λ) = 2 ·

∣∣∣Pr [Expsach-ind-atk
Ch,A,D (λ) = 1

]
− 1/2

∣∣∣ .
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Ch is said to be SACh-IND-ATK-secure, or (nB , nA)-SACh-IND-ATK-secure to emphasize the parameters,
when Advsach-ind-atk

Ch,A (λ) is negligible in λ.

The definition rejects constructions vulnerable to reflection attacks where A replays ciphertexts back to the
party that generated them.

Expsach-ind-atk
Ch,A,D (λ)

L← ∅; a ←R UA; α←⊥

(γ, δ)←R Init(λ,UA)

T ↢ (tc, ta)← (0, 0)

E ↢ (Ec, Ea)

(i
tc
c , j

tc
c )← (0, 0)

(i
ta
a , j

ta
a )← (0, 0)

(syncc , synca)← (1, 1)

b0←RD

(t
′
, b

′
)←RAOIND

return (b
′
= bt′ ∧

P
ADV
nB,nA

(L, t′))

ORecv(u,m)

m
′←Rcv(u,m)

if syncu = 1 then

return ⋄

return m
′

OCor(u)

L←∪ (LCor, tu , u)

return γ
tu
u

ORev(u, tRev )

L←∪ (LRev, tRev , tu , u)

return δ
tRev
u

syncReject()

return (tc ̸= ta ∨ i
ta
a ̸= j

tc
c ∨ i

tc
c ̸= j

ta
a + 1)

OSend(u,m)

return Snd(u,m)

ONextInit(u)

if (u ∈ UA ∧ α = ⊥)
then

(i
tc+1
c , j

tc+1
c )← (0, 0)

(i
ta+1
a , j

ta+1
a )← (0, 0)

btc+1←RD
ν← u; α←⊤
γ← NextInit(γ, u)

L←∪ (LHO, a, u)

else L←∪ (LNext⊥ )

return ()

Snd(u,m0)

m1←RM|m0|

(δ
tu
u ,m

′
)← Send(δtuu ,mbtu

)

if syncu = 1 then

Mu [tu , i
tu
u ]←m0

Cu [tu , i
tu
u ]←m

′

i
tu
u ← i

tu
u + 1

v ← {c, a} \ {u}
if (tv > tu ∧

∄(LRev, ·, tu , u) ∈ L)
then

syncu ← 0

L←∪ (LCPA⊥ )

return m
′

Rcv(u,m)

(δ
tu
u ,m

′
)← Recv(δtuu ,m)

v ← {c, a} \ {u}
if ((tu > tv ∨

j
tu
u > i

tu
v ∨

m ̸= Cv [tu , j
tu
u ]) ∧

∄(LRev, ·, tu , u) ∈ L)
then

syncu ← 0

L←∪ (LCPA⊥ )

else

j
tu
u ← j

tu
u + 1

if btu = 1 ∧ syncu = 1

then m
′←Mv [tu , j

tu
u ]

return m
′

ONext(u,m, κ)

if α = ⊥ then L←∪ (LNext⊥ )

if κ ∈ {c, a} then m←Rcv(κ,m)

(γ, δ, E, κ
′
,m

′
)← Next(γ, δ, u, κ,m)

T ← T + E

if Ea = 1 then

a ← ν

if syncReject() = True then

syncu← syncv ← 0

if m
′
= ⊥ then

α←⊥
return ⊥

if κ
′ ∈ {c, a} then m

′← Snd(κ
′
,m

′
)

return m
′

Fig. 3. SACh-IND-CPA and SACh-IND-CCA experiments for anycast channels. Boxed code is only used for
SACh-IND-CCA. Shaded code is only used for SACh-IND-CPA.

3.3 Integrity

We now define SACh-INT-PTXT and SACh-INT-CTXT integrity notions. The experiments are almost
identical to Expsach-ind-cca

Ch,A,D (see Fig. 3). The key difference is that A’s goal in the integrity games is to force
one party of the δ-channel out of sync and to make them accept a plaintext (ciphertext) for SACh-INT-PTXT
(SACh-INT-CTXT) not generated in sync by the other party. Due to the similarity with Expsach-ind-cca

Ch,A,D , we
only show the main experiments and the ORecv oracles in Fig. 4. Remaining oracles are identical to their
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counterparts in Expsach-ind-cca
Ch,A,D . The integrity experiments do not include the shaded code in 3. Therefore,

no LCPA⊥ events are generated and the subpredicate PCPA is vacuously true.

Definition 6 (SACh-INT-ATK Security). Let Ch = (Init,Send,Recv,Next) be a SACh (Definition 3),
and let Expsach-int-atk

Ch,A,D (λ) be the security experiment defined in Fig. 4, parametrized by ATK ∈ {PTXT,CTXT}
for an adversary A and challenge domain D = {0}. The parameter ATK decides whether OPTXT

Recv or OCTXT
Recv

is available to A. Let OINT = {OSend,OATK
Recv ,ONextInit,ONext,OCor,ORev}, where OSend, ONextInit, ONext, OCor

and ORev are as defined in Fig. 3. A’s advantage for the experiment is defined as

Advsach-int-atk
Ch,A (λ) = Pr

[
Expsach-int-atk

Ch,A,D (λ) = 1
]
.

Ch is said to be SACh-INT-ATK-secure, or (nB , nA)-SACh-INT-ATK-secure to emphasize the parameters,
when Advsach-int-atk

Ch,A (λ) is negligible in λ.

3.4 Generic Composition

Authenticated Encryption (IND-CPA + INT-CTXT) is today accepted as the appropriate security no-
tion for symmetric-key schemes, partially because, if appropriately defined, it implies IND-CCA secu-
rity [14,9]. We now proceed to show the corresponding relation between SACh-IND-CPA, SACh-IND-CCA
and SACh-INT-CTXT. We assume that the single error Recv-algorithm can return is ⊥, and we are hence
in a single-error setting [14].

Theorem 1 (Generic Composition). An (nB , nA)-SACh-IND-CPA-secure and (nB , nA)-SACh-INT-CTXT-
secure SACh Ch is (nB , nA)-SACh-IND-CCA-secure. Formally, for every (nB , nA)-SACh-IND-CCA adver-
sary A against Ch there are two adversaries, an (nB , nA)-SACh-INT-CTXT adversary B1 and an (nB , nA)-
SACh-IND-CPA adversary B2 against Ch s.t.

Advsach-ind-cca
Ch,A (λ) ≤ 2 ·Advsach-int-ctxt

Ch,B1
(λ) +Advsach-ind-cpa

Ch,B2
(λ)

The proof of Theorem 1 is provided in Appendix A.1.

Expint-atk
Ch,A,D(λ)

L← ∅; a ←R UA; t
′←⊥; α←⊥

(γ, δ)←R Init(λ,UA)

T ↢ (tc, ta)← (0, 0)

E ↢ (Ec, Ea)

(i
tc
c , j

tc
c )← (0, 0)

(i
ta
a , j

ta
a )← (0, 0)

(syncc , synca)← (0, 0)

b0←RD

win← 0; AOINT

return win = 1 ∧

PADV
nB,nA

(L, t′)

OATK
Recv (u,m)

m
′←Rcv

ATK
(u,m)

if (syncu = 0 ∧

m′ ̸= ⊥)
then

win← 1

if t′ = ⊥ then t′← tu

return (m′ = ⊥)

RcvCTXT(u,m)

return Rcv(u,m)

RcvPTXT(u,m)

(δ
tu
u ,m

′
)← Recv(δtuu ,m)

v ← {c, a} \ {u}
if (tu > tv ∨

j
tu
u > i

tv
v ∨

m ̸= Mv [tu , j
tu
u ] )

then

syncu ← 0

else

j
tu
u ← j

tu
u + 1

if btu = 1 ∧ syncu = 1

then

m
′←Mv [tu , j

tu
u ]

return m
′

Fig. 4. SACh-INT-PTXT and SACh-INT-CTXT experiments. Oracles and functions not defined here are as de-
fined in the SACh-IND-CCA experiment (see Fig. 3). Shading in this figure indicates differences compared to the
SACh-IND-CCA experiment.
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4 Relations to Other Secure Channel Notions

The SACh syntax and the multi-key channel syntax [32] differ. Nonetheless, SACh can essentially simulate
multi-key channels by restricting its functionality as follows. Let the anycast system consist of a single party
taking on both the access point and the orchestrator roles, and let the CE protocol be deterministic. Since
the orchestrator and the access point are collocated CE messages do not traverse other untrusted public
channels than the δ-channel.

By additionally removing the NextInit and Next algorithms, phase progression is impossible and the
functionality coincides with stateful encryption schemes [8].

If there is a single access point, but the orchestrator is a separate party, the impossibility result for key
insulation [6] applies as is. Once the access point is compromised the secure channel to the orchestrator
cannot be re-established since the adversary knows the access point’s full γ-state. With several access points
in the anycast system, each uncompromised access point has a separate secure channel to the orchestrator,
which can be used to re-establish δ-channel security for future phases.

5 Construction of 4G and 5G Wireless Link

We now give a model of the 4G/5G wireless link including handovers and prove its security in the SACh
meaning. The model closely follows the cryptographic core of 5G Xn handovers, which is also the core of 4G
X2 handovers, and we call it XnCh. We analyze the other kind of handover, S1/N2 handover, in Appendix B.
We need to make some improvements to the core to achieve forward security, which is necessary for SACh
security. These improvements are computational, and do not require changes to architecture or distribution
of shared secrets.

We first describe a model, XnCh∗, without our enhancements and which exposes the lack of forward
security in 4G/5G. We then give our modifications and prove that, with these, the model is secure in the
SACh sense.

XnCh∗ Structure and State. Let S be a mobile network in the form of a SACh, consisting of access points
UA and all other functions collapsed into a single orchestrator o Fig. 6. All key spaces equal {0, 1}λ. Message
spaces and ciphertext spaces equal {0, 1}∗. Let FC : {0, 1}λ × {0, 1}∗ −→ {0, 1}λ, be a domain-separated
PRF. The domain-separation constant C is a fixed-length injective integer encoding of C that is prepended
to the arbitrary length argument of FC . When C is irrelevant we write F. We discard parenthesis of tuples
input to F.

Between each pair of access points, and between each access point and o, there are secure private channels
in both directions, marked IP in Fig. 6. 4G/5G instantiate these channels with IPsec/TLS. XnCh∗ assumes
that they are ideal, but that the algorithm INext does nothing. States for sending messages from u ∈ S to
v ∈ S over a secure infrastructure channel is denoted Iu,vsts for the sender state and Iu,vstr for the receiver state.
Using these states, the algorithms ITx and IRx sends and receives, respectively, messages over the channels.

We assume that the SACh is initialized. This means that, on top of all infrastructure protection states
being initialized, the orchestrator o and the client c share a key Kf and a key counter cnt initialized to 0;
the initial access point as and c share a δ-channel key k for the current phase t. In addition, o has computed
a key nk = F1(Kf , cnt), and sent this to as.

The wireless link, i.e., the δ-channel, between the client and as is in 4G/5G secured by the Packet Data
Convergence Protocol (PDCP). It carries application data and control signaling, including CE messages. 4G
PDCP and 5G PDCP are similar enough to both fit our single δ-channel model PDCPδ, which is a bidirec-
tional stateful AEAD. A δ-substate (id, k, sq↓, sq↑, sqfin) consists of the party’s identity id, the encryption key
k, the sequence number for the next sent (sq↓) and received (sq↑) message, and a variable sqfin for handling
phase progressions.

The global γ-state for S is γ = (γo, γc, {γa}a∈UA). The orchestrator’s γ-substate γo contains the key Kf ,
the counter cnt , and infrastructure protection states Io,asts and Ia,ostr for each a ∈ UA. The client’s γ-substate
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γc contains the key Kf and corresponding counter cnt . The γ-substate of an access point u contains the
infrastructure protection states Iu,asts and Ia,ustr for each a ∈ S.

We now describe the δ-channel and the CE protocol XnCE in more detail.

5.1 δ-channel PDCPδ

Our bidirectional stateful AEAD-based model PDCPδ of PDCP is given in Fig. 5. PDCP provides authenti-
cated encryption with associated data, but does not follow the established AEAD syntax [44]; our model on
the other hand does.

PDCP tolerates message loss. To cope with this, messages are accompanied by the lower order bits of
the sequence numbers. The receiver estimates the higher order bits. Analysis of such constructions requires
special care [27]. Our PDCPδ model instead guarantees the stronger, but less flexible, security notion requiring
all messages to be securely received in order. The mechanism used is standard: parties only accept the next
expected sequence number, which is added to the nonce nc. If more than maxMsg = 2λ messages are sent in
one direction in one phase, we abort. Integrity protected message sequence numbers, sq↓ for sent messages
and sq↑ for received messages, ensure detection of out of order delivery and dropped messages. To counter
truncation attacks, we chain the last sequence numbers of each phase into the variable sqfin, which is input
as AEAD associated data (ad) in the next phase, c.f. [32]. An example of a truncation attack is that an
adversary exposes the key of a phase t in phase t, injects k messages at the end of phase t, and then discards
k messages at the start of phase t+ 1. The message loss in phase t+ 1 is undetected.

We add also the sender’s identity to ad to avoid collisions in sqfin between the two channel directions.
Sequence numbers are insufficient to fully counter reordering and packet-drop attacks; reflection attacks are
still possible since the δ-channel is bidirectional. PDCP counters this by inputting the channel direction as
associated data to the AEAD. We instead, similarly to how we handle sqfin, input the sender’s identity, which
necessarily is different for each direction. Doing so avoids additional model variables. The sequence numbers
also serve as nonces (nc) for the AEAD. Again, we add the sender identity to resolve collisions.

pdcpInit(k)

δc← (c, k, 0, 0, ∅)
δap← (ap, k, 0, 0, ∅)
return (δc, δap)

pdcpSend(δu,m)

assert δu ̸= ⊥
(id, k, sq↓, sq↑, sqfin)← δu

assert sq↓ < maxMsg

nc← (id, sq↓)

ad ← (id, sqfin)

m
′← AEnc(k,nc, ad,m)

δu← (id, k, sq↓ + 1, sq↑, sqfin)

return (δu,m
′
)

pdcpRecv(δu,m)

assert δu ̸= ⊥
(id, k, sq↓, sq↑, sqfin)← δu

assert sq↑ < maxMsg

v ← {c, ap} \ {id}
nc← (v, sq↑)

ad ← (id, sqfin)

m
′← ADec(k,nc, ad,m)

if m
′
= ⊥ then return (⊥,⊥)

δu← (id, k, sq↓, sq↑ + 1, sqfin)

return (δu,m
′
)

Fig. 5. δ-channel model PDCPδ of enhanced 4G and 5G PDCP.

5.2 CE Protocol XnCE

Our XnCE model for handover of a PDCPδ endpoint is given in Fig. 7, and an overview of its use when
combined with the infrastructure protection and PDCPδ is shown in Fig. 6. XnCE uses the key Kf , shared
only by the client c and the orchestrator o, to establish a fresh k for PDCPδ in the next phase.

4G/5G allow handovers from an access point back to itself and cancellation of partially completed han-
dovers. We exclude both cases. 3

3 The model would have to handle situations similar to lost messages if one end of the δ-channel considers the
handover complete, but the other does not (see Section 3.1).
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Client c as ad Orchestrator o

Kf , k nk, k Kf

mt
c↓,m

t
as↓

k′← F2(nk) XnPrep: as , k
′, sqfin, sq↓ + 1, sq↑

k← k′

src← as

sqfin← (sqfin, sq↓ + 1, sq↑)
XnPrepAcc: 1

XnHo: ad

nk← F1(Kf , cnt)
k← F2(nk)

cnt ← cnt + 1
Kf ← F0(Kf)

XnHoCmp: 2

mt+1
c↓ ,mt+1

ad↓

XnPsReq: ad

cnt ← cnt + 1
nk← F1(Kf , cnt)

Kf ← F0(Kf)

XnPsResp: nk

Ias ,ost Io,asst

Ias ,ad
st Iad ,as

st

Iad ,o
st Io,adst

IPsec/TLS
(IP)

δ-channel
CE message
on δ-channel

Fig. 6. Execution of a progression between phases t and t+1 for XnCh∗. Thick dashed lines indicate secure channels
instantiated by IPsec/TLS (XnCh instead uses infrastructure protection layer IP). Dashed double-arrows represent
the bidirectional δ-channel as instantiated by the PDCP protocol, protecting application message sequences between
the client and an access point over the wireless link using the key k. The δ-channel also protects CE messages XnHo
and XnHoCmp. Messages mt

c↓ are sent from the client to access point as and mt
ad↓ are sent from as to client before

the progression. After the progression, control of the δ-channel endpoint on the network side has been transferred
from as to ad . At this point the message sequences mt+1

c↓ and mt+1
ad↓ are protected by the evolved δ-channel and ad is

ready to act as source access point in the next progression by involving the orchestrator.
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The heart of CE protocols is the message dispatcher Next. It invokes an appropriate message handler and
provides it with γ-state and δ-state corresponding to the party that is to execute the handler. The auxiliary
algorithm H returns the handler to invoke for the given message type, and the party that should execute it.
Using κ, indicating whether the message has passed through pdcpRecv, H aborts if an inbound CE message
was either rejected by pdcpRecv, i.e., it equals ⊥, or if the receiver is not equal to κ. Moreover, H(κ,⊥)
returns ap, i.e., the access point currently controlling PDCPδ, and the handler XnStart, which starts the CE
protocol run. Message handlers receive the incoming message (an underscore _ indicates that they ignore
it), process it and return another message (or ⊥). They also return an indicator E = (Ec, Ea) of whether a
or c has progressed to the next phase, and also an indication of whether the CE component shall process the
returned message with pdcpSend or not. Handlers update the γ-state and δ-state as needed, and may process
outgoing and incoming messages with the algorithms ITx and IRx when messages are to be sent/received over
the secure infrastructure channels. Handlers tag their returned message with its type (c.f., message types
shown over arrows in Fig. 6). The Next algorithm finally returns the updated state information and the
output message. When assert fails in a handler, the handler returns the tuple ((0, 0),⊥,⊥), representing
(E,Och,m

′), i.e., the parties that progressed to the next phase, the direction of the δ-channel to use if any,
and the next CE-message. When assert fails in NextInit it returns the input state γ as is, and when it fails
in Next, it returns (γ, δ,E,Och,m

′). The special identifier self refers to the identity of the party executing
the handler.

The CE protocol works as follows. The XnStart handler derives the key k′, which will become the key
k for the next phase, and includes this and the sequence number information of the current phase in a
message for ad. The XnPrep handler models reception of that message by ad, which stores the information
and returns an acknowledgment XnPrepAcc. Upon reception of this, the XnPrepAcc handler creates a security
mode command message XnHo, which is sent to the client over the PDCPδ channel in the current phase. The
client processing this message, modeled by the XnHo handler, derives the nk key and, from that, the key k′,
reconfigures PDCPδ for the next phase and sends the handover complete message XnHoCmp to ad. Now, ad
processes that message using the XnHoCmp handler, which returns a path switch request message XnPsReq
for the orchestrator. The XnPsReq handler receives the message, computes a new nk for ad to use in the next
handover and returns it in the XnPsResp message. The XnPsResp handler stores nk and marks the handover
complete by letting α←⊥. Every time a new nk is derived, a new base key Kf is derived from the previous
Kf using a PRF F0. 5G allows this (4G does not), but does not require it. We require it for every handover
to ensure forward security.

Correctness follows from the correctness of the AEAD, deterministic key derivations and straight forward
but careful verification.

We have mentioned deviations from the standard throughout. Some parts, not necessary to capture the
essence of an endpoint-transferring channel have also been excluded. As a result, XnCE may seem over-
engineered. For example, key k′ is not strictly needed. However, 4G/5G allow preparation of many potential
target access points, ultimately one being chosen. Therefore, the standard include the identity of the target
access point in the derivation of k′, making it unique per access point. Similarly, cnt helps with partially
completed handovers. We leave it as future work to extend the security notions in these directions.

Lack of Forward Security in 4G and 5G, and a Fix. The SACh we have just defined, XnCh∗ is fairly
close to the 3GPP standard, and sufficient to illustrate the lack of forward security. Consider Fig. 6. Suppose
A records message XnPrep in phase t, and in phase t + 1 also some δ-channel traffic, protected by the key
k′ carried in XnPrep. Unless the IPsec/TLS tunnel is re-keyed after each handover, A can in a later phase,
e.g., t + 2, corrupt access point at, obtain its IPsec/TLS keys (which are still the same as in phase t), and
decrypt the stored XnPrep message to obtain the key k′ inside. Using k′, A can now decrypt the δ-channel
traffic recorded in phase t + 1 even though access point at+1 and c have deleted k′. Thus, the 4G/5G δ-
channel encryption is not forward secure. A similar attack is possible by recording the XnPsResp message
and obtaining the key nk. These attacks work on any deployment of the standard if the adversary can break
in to the access point’s secure execution environment.
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Init(λ)

Kf ←
R {0, 1}λ

(γo, γc, {γa}a∈UA
)←

γ-Init(Kf)

k← γc.nk

(δc, δap)← pdcpInit(k)

return (δc, δap)

NextInit(γ, trg)

assert α ̸= ⊤
α←⊤; γa .trg← trg

return γ

Next(γ, δ, u, κ,m)

assert α ̸= ⊥
(p, h)←H(κ,m)

assert h ̸= ⊥ ∧ m ̸= ⊥

(E,Och,m
′
)←

h(γp, δp,m)

return (γ, δ, E,Och,m
′
)

XnStart(γs, δs,_)

γs.k
′← F2(γs.nk)

m′← (self , γs.k
′
, δs.sqfin,

δs.sq↓ + 1, δs.sq↑)

m′←ITx(Iself ,γs.trg
sts

,m′
)

m′← (TPrep,m
′
)

return ((0, 0),⊥,m′
)

XnHo(γs, δs,m)

trg ← m

δs.sqfin← (δs.sqfin,

δs.sq↓, δs.sq↑)

nk← F1(γs.Kf , γs.cnt)

δs.k← F2(nk)

γs.cnt ← γs.cnt + 1

γs.Kf ← F0(γs.Kf)

m′← (THoCmp, 2)

return ((1, 0), c,m′
)

XnPrep(γs, δs,m)

m←IRx(Iself ,−str
,m)

(src, δs.k, δs.sqfin,

δs.sq↓, δs.sq↑)← m

δs.sqfin← (δs.sqfin,

δs.sq↓, δs.sq↑)

m′←ITx(Iself ,srcsts
, 1)

m′← (TPrepAcc,m
′
)

return ((0, 0),⊥,m′
)

XnPrepAcc(γs, δs,m)

m←IRx(Iself ,−str
,m)

m′← (THo, γs.trg)

INext(·)

return ((0, 1), ap,m′
)

γ-Init(Kf)

γo.Kf ← γc.Kf ← Kf

γa .nk← F1(Kf , 0)

γo.cnt ← γc.cnt ← 0

return γ

XnPsReq(γs, δs,m)

trg ←IRx(Iself ,−str
,m)

γs.cnt ← γs.cnt + 1

nk← F1(γs.Kf , γs.cnt)

γs.Kf ← F0(γs.Kf)

m′←ITx(Iself ,trgsts
, nk)

m′← (TPsResp,m
′
)

INext(·)

return ((0, 0),⊥,m′
)

XnPsResp(γs, δs,m)

γs.nk←IRx(Iself ,−str
,m)

α←⊥
INext(·)
return ((0, 0),⊥,⊥)

XnHoCmp(γs, δs,m)

m′←ITx(Iself ,osts
, self )

m′← (TPsReq,m
′
)

return ((0, 0),⊥,m′
)

H(κ,m) returns (p,⊥) for messages XnHo and XnHoCmp unless κ equals the expected δ-channel (c.f. Fig. 6). INext(·)
represents updates of all relevant IP channels. For XnCh∗ all calls are void.

Fig. 7. The XnCE CE protocol and main SACh model.

To counter this, we propose a new forward secure encryption layer, IP, for CE messages as a replacement
for IPsec/TLS. IP is independent of the transport and tighter coupled to the CE protocols. It allows efficient
key evolution at every handover without additional messages sent, and can be viewed as a set of secure
channels between parties in S. Note, IPsec/TLS may still be needed for other reasons in the mobile network.
INext invocations in Fig. 7 represent local updates of keys for the tunnels of IP. 4G/5G do not use IP, so
INext is void in XnCh∗.

We believe such a layer should be the long-term solution for 3GPP standards. However, a more pragmatic
approach, working already with current standards, may be to re-establish IPsec/TLS security associations
sufficiently often.

Remark The 3GPP specifications use different definitions of forward- and backward security (see Section 3
of TS 33.501 [1]) compared to the usual [12]. Paraphrased, 4G/5G define forward security by an access point
knowing a (δ-channel) key shall not be able to derive any future (δ-channel) keys. Backward security is defined
analogously. There are four noteworthy differences between the 4G/5G terms and the usual interpretations:
1) the 4G/5G terms define a property of a fail-condition (if an attack happens, that should not help in future
attacks), whereas the usual definitions capture a positive property of derived keys, which subsumes the
4G/5G terms (if the derived key is secure, it will remain secure); 2) the 4G/5G terms forward and backward
have opposite “directions” compared to what is usual; 3) the 4G/5G terms only relate one key to another
and ignore other secret information, specifically IPsec/TLS keys are left out; and 4) the 4G/5G terms only
consider compromise of the access point, not the client, or (partial) key recovery attacks from ciphertext.
The second difference may be a consequence of the first: when considering a fail-condition that should not
propagate forward into the future, it is natural to connect the term to the forward direction. However, the
usual interpretation of forward security is that if long-term security state is compromised, past keys (and
encrypted traffic) should still be secure. Peltonen et al. [43] noted that the 4G/5G term forward security is
temporally reversed compared to (perfect) forward secrecy, but we stress that it is even reversed compared
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to its much closer related namesake forward security by Abdalla and Bellare [2]. Since the 4G/5G definitions
consider a specific fail-condition and disregard IPsec/TLS, they do not capture the attack described above.
It seems as if the intention was to protect against physical break-in to the access points (see Section 7.4.13.2
of TR 33.821 [1]), so arguably they should.

We now present a modification in the form of a new component IP, providing forward secure infrastructure
protection. We call the resulting SACh XnCh.

5.3 Infrastructure Protection IP

We first define the syntax, and then its two security notions. Intuitively, the infrastructure protection is a
set of secure channels connecting parties in S. These channels are built from an authenticated encryption
scheme AE = (AEnc,ADec) and the PRF F. Parties involved in handovers use F to evolve their AE encryption
keys and ensure forward security for sent XnCE messages.

Definition 7 (Infrastructure Protection Syntax). Let S be an anycast system. Each pair (u, v) ∈ S×S
is connected by two unidirectional communication-channels, one in each direction. Infrastructure Protection
IP for S is a tuple of algorithms (IInit, ITx, IRx, INext). A channel from u to v, denoted (u, v), is associated
with two states from a state space Ist. The first state is the sender state Iu,vsts , maintained by u and input to
the sending algorithm ITx. The second is the receiver state Iu,vstr , maintained by v and input to the receiving
algorithm IRx. The syntax for IP is given by the following algorithms.
– IInit : N −→ I∗st Given the security parameter λ as input, it returns two paired states for each channel

in I.
– ITx : Ist × {0, 1}∗ −→ Ist × {0, 1}∗ Given a state and a message, it returns an updated state and a

protected message.
– IRx : Ist × {0, 1}∗ −→ (Ist × {0, 1}∗) ∪ {(⊥,⊥)} Given a state and a protected message, it returns an

updated state and a message. On failure, the special pair (⊥,⊥) is returned.
– INext : Ist × Ist −→ Ist × Ist Given two states, it progresses them to the next phase and returns the

updated states.

An infrastructure protection scheme is correct if for every channel (u, v) and message m it holds that
IRx(Iu,vstr , ITx(Iu,vsts ,m)) = m.

Definition 8 (Infrastructure Protection I-ATK Security). Let S be an anycast system and let IP
be its infrastructure protection. Let Expi-auth

IP,A,{0}(λ) and Expi-cpa
IP,A,{0,1}(λ) be security experiments as defined

in Fig. 9 for attacks ATK = AUTH and ATK = CPA, and for challenge domains D = {0} and D = {0, 1}
respectively. Let OI = {OITx ,OIRx ,OINext

,OIExpose}, where OITx , OIRx , OINext , OIExpose are defined in Fig. 9. An
adversary A’s advantages for these experiments are defined as

Advi-auth
IP,A (λ) = Pr

[
Expi-auth

IP,A,{0}(λ) = 1
]

Advi-cpa
IP,A (λ) = 2 ·

∣∣∣Pr [Expi-cpa
IP,A,{0,1}(λ) = 1

]
− 1/2

∣∣∣ .
The intuition for the predicate P I in the I-ATK definition in Fig. 9 is the same as for predicate PCor

(see Section 3.1). Consequently, if A attacks phase t∗, it is disallowed to expose at∗ or at∗+1.
IP, shown in Fig. 8, is similar in design to PDCPδ. Algorithms ITx and IRx correspond to pdcpSend and

pdcpRecv, respectively. They use increasing sequence numbers as nonces, and to ensure message order. Unlike
the bidirectional PDCPδ, IP uses pairs of unidirectional channels. Channel initialization comprises sampling
a root key rik and deriving an initial encryption key ik from rik. INext evolves a channel to the next phase,
derives a new rik from the previous one, and a new ik from the new rik.

In XnCE, as uses INext to update its channels to oand ad after sending XnHo, ad updates its after receiving
XnPsResp, and o updates its after sending XnPsResp.

An exposed access point reveals all states it shares with other access points to the adversary. The corre-
sponding states at those access points are also exposed.
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IInit(λ)

ℓ← ∅
∀(u, v) ∈ I × I do

rik←R {0, 1}λ

ℓ←∪ chInit(rik, u, v)

return ℓ

chInit(rik, u, v)

ik← FI(1, rik)

Iu,v
sts
← (rik, ik, 0)

Iu,v
str
← (v, rik, ik, 0)

return {Iu,v
sts

, Iu,v
str
}

ITx(Iu,v
sts ,m)

(rik, ik, sq↓)←I
u,v
sts

m′← AEnc(ik, sq↓,m)

sq′↓← sq↓ + 1

Iu,vsts

′← (rik, ik, sq′↓)

return (Iu,vsts

′
,m′

)

IRx(Iu,v
str ,m)

assert Iu,vstr
̸= ⊥

(id, rik, ik, sq↑)←I
u,v
str

v← {u, v} \ {id}

m′← ADec(ik, sq↑,m)

if m′
= ⊥ then

return (⊥,⊥)

sq′↑← sq↑ + 1

Iu,vstr

′← (id, rik, ik, sq′↑)

return (Iu,vstr

′
,m′

)

INext(Iu,v
sts , Iu,v

str )

(rik, ik, sq)←Iu,v
sts

rik′← FI(0, rik)

ik′← FI(1, rik
′
)

Iu,v
sts

′← (rik′, ik′, 0)

Iu,v
str

′← (id, rik′, ik′, 0)

return (Iu,v
sts

′
, Iu,v

str

′
)

Fig. 8. Infrastructure protection construction.

P I(LE ,LH) ≜ ∀(tE , u, v) ∈ LE . ∀(tH , src, dst) ∈ LH .

(tE ≤ tH − nB ∧ u, v ̸∈ {src, dst}) ∨ tE ≥ tH + nA.

Expi-atk
IP,A,D(λ)

LE ← ∅

a ←R I \ {o}

(Iu,v
st_ )

∗←IInit(λ)

∀(u, v) ∈ I × I do

Cu,v ← [ ]

bt,(u,v)←
RD

(t
′
, ch

′
, b

′
)←RAOI

win← 0

AOI

return (

b
′
= bt′,ch′

∧ win = 1

∧ P
I
(LE ,LH))

OITx(u, v,m0)

m1←R {0, 1}|m0|

(Iu,v
sts

′
,m

′
)←

ITx(Iu,v
sts

,mbt )

Cu,v ← Cu,v∥m′

return m
′

OINext(v)

LH ←∪ (t, a, v)

ℓ← {(ap, v), (v, ap),
(o, v), (v, o)}

∀(u,w) ∈ ℓ do

bt,(u,w)←
RD

(Iu,w
sts

′
, Iu,w

str

′
)←

INext(Iu,w
sts

, Iu,w
str

)

OIExpose(u)

ℓ← ∅
∀v ∈ I do

LE ←∪ (t, u, v)

ℓ←∪ {Iu,v
sts

, Iu,v
str
}

return ℓ

OIRx(u, v,m)

(Iu,v
str

′
,m

′
)←

IRx(Iu,v
str

,m)

me← head(Cu,v)

if m
′ ̸= ⊥ ∧
(|Cu,v| = 0 ∨
(|Cu,v| > 0 ∧
m ̸= me))

then

win← 1

if t
′
= ⊥ then

t
′← tu

return m
′

Fig. 9. I-CPA and I-AUTH experiments for infrastructure protection. Shaded code, in particular the OIRx oracle, is
only available in the I-AUTH game. Boxed code is only available in the I-CPA game. LE logs party-exposures and
LH logs handovers.

Lemma 1 (IP Infrastructure Protection Security). Let S be an anycast system. Let the infrastructure
protection for S be as defined in Fig. 8, where AE = (AEnc,ADec) is an IND-CPA and AUTH secure nonce
based authenticated encryption scheme [45] operating under a randomly sampled key. 4 Let F be the domain-
separated pseudorandom function employed by IP. Let I-CPA and I-AUTH be the security experiments defined
in Fig. 9. Let nph be the number of phases appearing in the execution of the security experiment. Then, for
every I-CPA adversary A1 against IP there are adversaries B2 and B4 s.t.

Advi-cpa
IP,A1

(λ) ≤ nph ·
(
nph ·Advprf

F,B2
(λ) + 4 ·Advind-cpa

AE,B4
(λ)

)
.

4 As in the rest of the paper, we use is the RoR plaintext variant of IND-CPA whereas Rogaway [45] uses RoR
ciphertext, a.k.a. IND$.

20



For each I-AUTH adversary A2 against IP there are adversaries B7 and B9 s.t.

Advi-auth
IP,A2

(λ) ≤ nph ·
(
nph ·Advprf

F,B7
(λ) + 4 ·Advauth

AE,B9
(λ)

)
.

The proof of Lemma 1 is provided in Appendix A.2.

5.4 Security of the XnCh scheme

We arrive at the main theorems combining the components into a SACh. More precisely, XnCh meets the
(2, 1)-SACh-IND-CPA and (2, 1)-SACh-INT-CTXT security notions, and thus meets the (2, 1)-SACh-IND-CCA
notion.

Theorem 2 (XnCh SACh-IND-CPA Security). Let XnCh be the SACh defined by the PDCP δ-channel in
Fig. 5, the infrastructure protection IP defined in Fig. 8, and the CE component XnCE defined in Fig. 6. Let
AEAD = (AEADEnc,AEADDec) be the AEAD employed by the PDCP δ-channel, capable of securely handling
maxMsg messages. Let F the pseudorandom function employed by XnCh. Let nph be the number of phases
occurring in the experiment Expsach-ind-cpa

XnCh,A,{0,1}(λ). For each (2, 1)-SACh-IND-CPA adversary A against XnCh
there are adversaries B2, B3, B4 and B5 such that

Advind-cpa
XnCh,A(λ) ≤ nph ·

(
Advi-cpa

I,B2
(λ) +Advi-cpa

I,B3
(λ)

+ nph ·Advprf
F,B4

(λ) +Advind-cpa
AEAD,B5

(λ)
)
.

The proof of Theorem 2 is provided in Appendix A.3.

Theorem 3 (XnCh SACh-INT-CTXT Security). Let XnCh be the SACh defined by the PDCP δ-channel
in Fig. 5, the infrastructure protection IP defined in Fig. 8, and the CE component XnCE defined in Fig. 6. Let
AEAD = (AEADEnc,AEADDec) be the AEAD employed by the PDCP δ-channel, capable of securely handling
maxMsg messages. Let F the pseudorandom function employed by XnCh. Let nph be the number of phases
occurring in the experiment Expsach-int-ctxt

XnCh,A,{0,1}(λ). For each (2, 1)-SACh-INT-CTXT adversary A against XnCh
there are adversaries B2, B3, B4 and B5 such that

Advsach-int-ctxt
XnCh,A (λ) ≤ nph ·

(
Advi-cpa

I,B2
(λ) +Advi-cpa

I,B3
(λ)

+ nph ·Advprf
F,B4

(λ) +Advauth
AEAD,B5

(λ)
)
.

The proof of Theorem 3 is provided in Appendix A.4.
This final corollary follows immediately from Theorems 1, 2 and 3.

Corollary 1 (XnCh SACh-IND-CCA Security). The SACh-IND-CCA security of XnCh is bounded as
follows. For each SACh-IND-CCA adversary A against XnCh there are adversaries B1 and B2 such that

Advsach-ind-cca
XnCh,A (λ) ≤ 2 ·Advsach-int-ctxt

XnCh,B2
(λ) +Advsach-ind-cpa

XnCh,B1
(λ).

6 Conclusions

In this paper we initiated the study of secure anycast channels. We presented the first secure channel model
featuring endpoint transfer between parties. We showed its practicality by constructing a model of 3GPP
4G/5G wireless link security and proving the model secure. Our model is rather close to the standards. We
demonstrated a lack of forward security in 4G/5G, and proposed a correction, which suggests how future
mobile networks can achieve key insulation, and compartmentalize damage to individual access points if they
are compromised.
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A Postponed Proofs

A.1 Generic Composition

Proof. The proof essentially follows the structure of [8]. We first derive a probability bound for the advantage
conditioned on that A obtains a valid decryption, and then a second bound conditioned on that A succeeds
without doing so. The sum of these bounds then gives the upper bound on Advsach-ind-cca

Ch,A (λ) stated in the
theorem, by the law of total probability.

We say that a phase t is (nB , nA)-revealed if any phase in (t− nB , t+ nA) is revealed. Similarly, we say
that t is (nB)-corrupted if the client c was corrupted in t or any prior phase, or, if any a ∈ UA controlling a
phase after t− nb was corrupted.

Let G be the SACh-IND-CCA experiment as per Definition 5. Assume A is an effective and efficient
G adversary attacking phase tA, resulting in an event log L. A being effective implies that PADV

nB ,nA
(L, tA)

evaluates to true.
Next, let badI be the failure event where A queries ORecv with a ciphertext for a party r, which is in a

non-(nB , nA)-revealed and non-(nB)-corrupted phase tr, and G goes out of sync and would return a valid
message m ∈M as reply. Specifically, m ̸= ⊥. By the difference lemma we get Pr[G = 1 ∧ badI ] ≤ Pr[badI ].
We bound Pr[badI ] by constructing an INT-CTXT adversary B1 from A. B1 simulates G towards A. Since
we use RoR based confidentiality notions, the simulator does not need to select one out of two messages
provided by A, which LoR based notions require. When A queries OSend, ONextInit, ONext, OCor or ORev, B1
forwards the queries verbatim to its INT-CTXT-challenger, and provide A with the corresponding replies.
When A queries ORecv, B1 forwards the query to OCTXT

Recv , but returns ⋄ to A. B1 stops when A first triggers
badI with a query qI , and clearly runs in polynomial time.

The simulation is correct. Until badI occurs, the simulator is identical to G; all queries are forwarded
verbatim to the INT-CTXT-game apart from ORecv, where the simulator translates replies from false to ⋄.
B1 is an effective INT-CTXT adversary. When badI occurs, B1 wins the INT-CTXT game because A is

effective, PADV
nB ,nA

(L, tA) is true, and win is 1 (see the main experiment of Fig. 4). The flag win is 1 because qI
results in Rcv returning a valid message (by badI), and the party for which qI was made is out of sync (see
OATK

Recv in Fig. 4). The party is out of sync by the effectiveness of A and by badI (see boxed code in Fig. 3).
Therefore, B1 allows us to conclude Pr[badI ] ≤ Advint-ctxt

Ch,B1
(λ), and so Pr[G = 1 ∧ badI ] ≤ Advint-ctxt

Ch,B1
(λ).

We now have a bound on Pr[G = 1 ∧ badI ] and continue by bounding Pr[G = 1 ∧ badI ]. We assume
badI does not occur. A simple reduction from the SACh-IND-CPA experiment shows that Pr[badI ] = 1/2 ·
Advind-cpa

Ch,B2
(λ)−1/2 for an IND-CPA adversary B2 we construct as follows. B2 simulates G towards A, relays

all A’s oracle queries to the IND-CPA-challenger, and provides the received replies back to A. When A stops
and outputs a test-phase t and bit-guess bt, B2 also stops and forwards (t, bt) to its IND-CPA-challenger.

The simulation is correct because G and the SACh-IND-CPA experiment are identical except for the
boxed code in Fig. 3). G loses sync whereas the SACh-IND-CPA game logs (LCPA⊥) to L. However, since
badI never occurs, these lines are never executed in either game.
B2 is an effective SACh-IND-CPA adversary because A is effective, the simulation is correct and because

badI occurs. Therefore, we have that Pr[badI ] = Pr[Expsach-ind-cpa
Ch,B2,{0,1} (λ) = 1], and so Pr[G = 1 ∧ badI ] ≤

1/2 ·Advsach-ind-cpa
Ch,B2

(λ) + 1/2. Collecting the bounds we get

Pr[G] = Pr[G = 1 ∧ badI ] + Pr[G = 1 ∧ badI ] ≤

Advsach-int-ctxt
Ch,B1

(λ) + 1/2 ·Advsach-ind-cpa
Ch,B2

(λ) + 1/2

from which the theorem follows. ⊓⊔

A.2 IP Infrastructure Protection Security

Postponed proof of IP security Lemma 1.
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Proof. We proceed by game hopping, starting with the claim of I-CPA security. Let G0 be equal to the
I-CPA experiment in Fig. 9.

Game G1. Let G1 be equal to G0 except that G1 fixes the phase in which A1 attacks. G1 samples a phase
at random t′←R {0, . . . , nph − 1}. Suppose A1 tries to discern bit bt,ch for phase t. If t ̸= t′, G1 aborts and
returns a random boolean; A1 is then considered to have lost the game. Otherwise, if t = t′, A1 wins G1 iff
A1 wins G0. The probability that t = t′ is 1/nph , so A1’s advantage is bound by

AdvG0

IP,A1
(λ) ≤ nph ·AdvG1

IP,A1
(λ).

In succeeding games we can assume that A1 attacks phase t.

Game G2. Let G2 be equal to G1 except for that G2 substitutes randomly sampled keys for the symmetric
keys rik and ik in all channel states. We argue that if A1 can distinguish G1 from G2, we can construct an
adversary B2 against the standard PRF-security of F. Simplifying notation, we write PSK j

I(o, src, trg), for
the riks and iks in the channel states for the four channels (in phase j) between the target (trg) access point
and the orchestrator (o), as well between the source (src) and the target access point.

Define hybrid distributions Hi
2 for 0 ≤ i ≤ nph , bridging G1 and G2, as follows. Hi

2 samples the keys
in PSK j

I(o, aj , aj+1 ) uniformly at random for all phases j ≤ i. For phases j > i, Hi
2 derives the keys in

PSK j
I(o, aj , aj+1 ), using FI as in G1. Note that H0

2 = G1 and H
nph

2 = G2.
We now construct a PRF adversary B2 against F. B2 simulates the experiment towards A1 as G1 does,

except for that B2 first samples a phase t′←R{0, t}, and then samples the keys in PSK j
I(o, aj , aj+1 ) uniformly

at random for j < t′. When time comes to derive the keys in PSK t′

I (o, at′ , at′+1 ) in phase t′, B2 instead
computes the rik and ik for each state by querying its own PRF oracle on the corresponding inputs. Recall
that the domain separation of FC was done by prefixing the argument with an injective encoding of the
constant C. Hence G2 can encode the prefix I in the input to its PRF oracle. Suppose A1 terminates with
a guess b′ for channel ch′ in phase t′, and that B2 sampled bt′,ch . Then B2 guesses 0 in its own game if b′
equals bt′,ch , and 0 otherwise.
B2 simulates correctly because it initially samples all keys at random and then derives all further keys,

either using FI or by invoking its PRF oracle. B2 can hence answer all oracle queries as required.
B2 is effective. If the PRF oracle uses F, B2 simulates Ht′

2 for A1. Otherwise the PRF oracle uses a
randomly selected function, and B2 simulates Ht′+1

2 .
A1’s advantage in distinguishing between Ht′

2 and Ht′+1
2 is hence converted into distinguishing advantage

for B2 in its PRF game. A1’s distinguishing advantage between Ht′

2 and Ht′+1
2 is then bounded from above

by Advprf
F,B2

(λ). By a hybrid argument we get

AdvG1

IP,A1
(λ) ≤ AdvG2

IP,A1
(λ) + nph ·Advprf

F,B2
(λ)

Game G3. Let G3 be equal to G2 except that G3 fixes which of the four channels connecting the source
access point, target access point and the orchestrator that A1 attacks. G3 samples one of the four channels at
random. Call that one channel ch ′. Suppose A1 tries to discern bit bt,ch . If ch ̸= ch ′, G3 aborts and returns
a random boolean; A1 is then considered to have lost the game. Otherwise, if ch = ch ′, A1 wins G3 iff A1

wins G2. The probability that ch = ch ′, is 1/4, so A1’s advantage can be bounded by

AdvG2

IP,A1
(λ) ≤ 4 ·AdvG3

IP,A1
(λ).

We can now assume that A1 attacks channel ch.

Game G4. In this game, we directly bound AdvG3

IP,A1
(λ) by constructing an IND-CPA adversary B4 against

AE.
B4 simulates game G3 for A1 except for that B4 computes all encryptions and decryptions itself only in

phases j ̸= t. In phase t, B4 relays the queries for channel ch and corresponding answers to and from its own
AE IND-CPA oracle. This means that the encryption key and the bit bt,ch are implicitly set to the values
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used by the IND-CPA oracle. Because A1 is effective, it does not expose the key for phase t, so setting the
encryption key implicitly is sound even though B4 does not have access to it. B4 has access to all other keys,
and can answer queries using these as required.

From G1 we know that A1 attacks phase t, from G3 we know that A1 attacks channel ch, and from
G2 we know that all keys, up to and including phase t, appear to A1 as independent and indistinguishable
from random. In particular the key used by AE in channel ch in phase t is indistinguishable from random.
Further, the nonce consists of synchronous monotonic counters, maintained independently by sender and
receiver. Nonces are thus unique per message and cannot be influenced by A1. Therefore, the simulation is
correct and directly transfer A1’s advantage in G3 to B4 in its IND-CPA game. The difference between A1’s
advantage against G3 and G4 respectively is bounded by Advind-cpa

AE,B4
(λ), so we get

AdvG3

IP,A1
(λ) ≤ Advind-cpa

AE,B4
(λ).

Combining the bounds proves the I-CPA claim.
We now go on to show the I-AUTH claim following a similar proof structure. The main differences are

that the test phase is here where integrity is broken, and that the reduction to the AE’s AUTH security
instead of its IND-CPA security.

Game G5. Let G5 equal the original I-AUTH experiment.

Game G6. Let G6 be equal to G5 except that G6 fixes the phase in which a party in IP first accepts an out
of sync ciphertext, i.e., either a valid message received out of order, or a message not generated by the valid
encryption function. If A2 does not attack the randomly fixed phase, the game aborts, and we thus get the
bound

AdvG5

IP,A2
(λ) ≤ nph ·AdvG6

IP,A2
(λ).

In succeeding games we can assume that A2 attacks phase t.

Game G7. Let G7 be equal to G6 except for that G7 substitutes randomly sampled keys for the IP pre-
shared keys. With the definition of test phase as above, this game is exactly as game G2, and we construct
a PRF adversary B7 against F to obtain

AdvG6

IP,A2
(λ) ≤ AdvG7

IP,A2
(λ) + nph ·Advprf

F,B7
(λ)

Game G8. Let G8 be equal to G7 except that G8 fixes which of the four channels connecting the source
access point, target access point and the orchestrator that A1 attacks. This game is exactly as game G3, and
we get the corresponding bound

AdvG7

IP,A2
(λ) ≤ 4 ·AdvG8

IP,A2
(λ).

We can now assume that A2 attacks channel ch.

Game G9. In this game, we directly bound AdvG8

IP,A2
(λ) by constructing an AUTH adversary B9 against

AE.
B9 simulates game G8 for A2 except for that B9 computes all encryptions and decryptions itself in phases

j ̸= t. In phase t, B9 relays the queries for channel ch and corresponding answers to and from its own AE
AUTH oracle.

From G6 we know that A2 attacks phase t, from G8 we know that A2 attacks channel ch, and from
G7 we know that all keys, up to and including phase t, appear to A2 as independent and indistinguishable
from random. In particular the key used by AE in channel ch in phase t is indistinguishable from random.
Therefore, the simulation is correct. A2 is effective, and therefore triggers the win condition in the OIRx oracle
in Fig. 9, setting the win variable. The trigger must have that decryption accepted m, i.e., that m ̸= ⊥.
In addition, either |Cu,v| = 0, in which case A1 has constructed one more message than the sender has
sent, and which is accepted by the AUTH oracle, or, |Cu,v| > 0| but the message accepted is not the next
one according to the message sequence. Because both the sender and receiver use monotonically increasing
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counters as nonces, the latter case also implies that the m is a valid forgery against AE, breaking its AUTH
security.
A2’s advantage against G8 is hence bounded by Advauth

AE,B9
(λ), so we get

AdvG8

IP,A2
(λ) ≤ Advauth

AE,B9
(λ).

Combining the bounds from games G5 to G9 proves the I-AUTH claim and concludes the proof. ⊓⊔

A.3 XnCh SACh-IND-CPA Security

Postponed proof of SACh-IND-CPA security Theorem 2.

Proof. We proceed by game hopping. Let G0 be equal to Expsach-ind-cpa
XnCh,A,{0,1}(λ) defined in Fig. 3.

Game G1. Let G1 be equal to G0 except that G1 fixes the phase in which A attacks. G1 samples a phase
at random from the phases appearing in the experiment, t′←R{0, . . . , nph −1}. Suppose A tries to discern bit
bt for phase t. If t ̸= t′ then G1 aborts and returns a random boolean; A is then considered to have lost the
game. Otherwise, if t = t′, A wins G1 iff A wins G0. The probability that t = t′ is 1/nph , so A’s advantage
can be bound by

AdvG0

XnCh,A(λ) ≤ nph ·AdvG1

XnCh,A(λ).

In succeeding games we can assume that A attacks phase t.

Game G2. Let G2 be equal to G1 except for that G2 substitutes the key k′ in the XnPrep message with an
independently and randomly sampled key in phase t − 1. If A can distinguish between G1 and G2, we can
construct an adversary B2 against the I-CPA security of IP.
B2 simulates game G1 towards A, except for the following. B2 samples a bit bI , and if bI = 1, B2 replaces

the key k′ in XnPrep with a randomly sampled key in phase t − 1. B2 stores the original k′, and restores it
when when the XnPrep message is processed by the XnPrep handler. When bI = 0, B2 passes the real XnPrep
messages to OITx as is, and uses the output from OIRx as the XnPrep message. When A halts with a guessed
bit b′, B2 guesses the same bit in its own I-CPA game.

The simulation is correct. When bI = 0, B2 simulates G1, and when bI = 1 it simulates G2. B2 does not
affect the keys actually used by the δ-channel and so reveal queries provide A with no additional information.
When A invokes OCor(u), B2 invokes OIExpose(u) to obtain the riks and iks used by u in the phase OCor(u)
was invoked. However, because A is an effective adversary, it does not corrupt either of at−1 and at earlier
than phase t+ 1. IP is 1-hop fortified and a session key forward secure (by Lemma 1), and therefore A does
not gain an advantage in the distinguishing task by corruption queries.

The simulation is effective. Since the ik used for encryption on the channel (at−1, at) appear random to
A, A can only distinguish between G1 and G2 if A detect that k′ has been replaced with a randomly sampled
key by distinguishing whether a real or random message was encrypted by IP. We therefore get the following
bound.

AdvG1

XnCh,A(λ) ≤ AdvG2

XnCh,A(λ) +Advi-cpa
I,B2

(λ).

Game G3. Let G3 be equal to G2 except for that G3 substitutes the key nk in the XnPsResp message by a
independently and randomly sampled key in phase t − 2. If A can distinguish between G2 and G3, we can
construct an adversary B3 against the I-CPA security of IP in a way analogously to game G2. The differences
are that
– the key nk is replaced in the XnPsResp message instead of the k′ in the XnPrep message as in game G2;
– XnPsResp is passed from the orchestrator to at−1 over channel (o, at−1);
– the phase we analyze is t− 2 instead of t− 1 as in game G2. Here we make crucial use of the fact that
A cannot corrupt at−1 in phase t− 2 per the adversary model. Access point at−1 is not corrupted before
phase t− 2; if it were, the nk delivered to at−1 in the phase t− 2 XnPsResp message would be available
to A, and therefore also k′ in phase t− 1, and therefore also k in phase t.
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By analysis analogous to the one for game G2, we obtain the bound

AdvG2

XnCh,A(λ) ≤ AdvG3

XnCh,A(λ) +Advi-cpa
I,B3

(λ).

From here on, we can assume that A can obtain neither nk in phase t − 2 nor k′ in phase t − 1 by
decrypting the messages in which they are passed between parties.

Game G4. Let G4 be equal to G3 except for that G4 substitutes independently and randomly sampled
keys for Kf , nk, k′ and k in all phases. We claim that if A can distinguish G3 from G4, we can construct an
adversary B4 against the standard PRF-security of F.

Define hybrid distributions Hi
4 for 0 ≤ i ≤ nph , bridging G3 and G4, as follows. Hi

4 samples Kf , nk and
k′ independently and uniformly at random in all phases j ≤ i. For phases j > i, Hi

4 derives Kf using F0, nk
using F1, and k′ using F2 as in G3. Additionally, for i > 0, Hi

4 sets k in phase i equal to k′ from phase i− 1
when the XnHo handler in G3 derives k (see Fig. 7). Note that H0

4 = G3 and H
nph

4 = G4.
We now construct a PRF adversary B4 against F. B4 simulates the experiment towards A1 as G3 does,

except for that B4 first samples a phase t′←R{0, t}, and then sets Kf , nk, k′ and k according to Hi
4 for i ̸= t′. In

phase t′, B4 instead computes these keys by invoking its own PRF oracle for F on the corresponding inputs
and domain separation constants. B4 samples all challenge bits bi itself; in particular it samples bt. When A
halts with a guess b′ for phase t, B4 answers 0 in its own PRF game if b′ = bt, and 1 otherwise.

The simulation is correct. The only dependencies between keys are introduced by deriving them from
the initial keys using F (or a real randomly selected function in phase t′). B4 hence has access to keys and
data of the game and no inconsistencies are introduced that A could detect, apart from the possible use of
a randomly selected function instead of F.
B4 is effective. If the PRF oracle uses a randomly selected function, B4 simulates Ht′

4 for A. Otherwise
the PRF oracle uses F, and B4 simulates Ht′+1

4 . A’s advantage in distinguishing between Ht′

4 and Ht′+1
4 is

hence converted into distinguishing advantage for B4 in its PRF game. A’s distinguishing advantage between
Ht′

4 and Ht′+1
4 is then bounded from above by Advprf

F,B4
(λ). By a hybrid argument, using the fact that

t′ ≤ t ≤ nph , we get
AdvG3

XnCh,A(λ) ≤ AdvG4

XnCh,A(λ) + nph ·Advprf
F,B4

(λ).

Game G5. Let G5 be equal to G4 except for that G5 aborts if A correctly determines the bit bt for phase
t. We claim that any adversary A that can distinguish between G4 and G5 can be used to construct an
effective adversary against the RoR IND-CPA security of the underlying AEAD scheme of the δ-channel.
We construct such an adversary B5 as follows.
B5 simulates the experiment for A by executing all the steps of G4, except for phase t, in which B5 uses

modified OSend and ORecv oracles to extract its AEAD IND-CPA attack from A. When A invokes OSend(u1,m)
in phase t, B5, instead of simulating AEnc, invokes its own AEAD IND-CPA encryption oracle with nonce
nc = (u1, squ1↓), additional data ad = (u1, sqfinu1

), and message m. B5 then treats the resulting ciphertext
as the outgoing encrypted message m′. Analogously, when A invokes ORecv(u2,m) in phase t, B5, instead of
simulating ADec, invokes its own AEAD IND-CPA decryption oracle with nonce nc = (u1, squ2↑), additional
data ad = (u1, sqfinu2

), and message m′. B5 then treats the resulting plaintext as the received message. Note
that we cannot remove the decryption oracle in the AEAD IND-CPA experiment since we use a bidirectional
channel. In particular, without the decryption oracle, we could not simulate the δ-channel, and theoretically,
decryption of a message could affect the state for the encryption oracle.

When A halts with a guess b′, B5 makes the same guess in its own AEAD IND-CPA game.
The simulation is correct. The only difference from G4 is that B5 uses its AEAD oracle to answer

encryption and decryption queries in phase t. Observe that the nonce consists of a user identifier, ensuring
that each direction is encrypted with a unique input, and a monotonically increasing sequence number,
ensuring that each message in a given direction has a unique input. Both pdcpSend and pdcpRecv are
guarded by assert statements that prohibit processing with unsafely large sequence numbers.

The experiment requires that no involved party is revealed in phase t. From previous games, we have
that: A attacks phase t; no party corruptions expose a key from which k in phase t is derived; k in phase t
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is from A’s perspective indistinguishable from a randomly sampled key. Hence, it is sound to implicitly set
the key k and the bit bt to the corresponding values of B5’s AEAD IND-CPA challenger in phase t.

We can conclude that

AdvG4

XnCh,A(λ) ≤ AdvG5

XnCh,A(λ) +Advind-cpa
AEAD,B5

(λ).

Finally, combining the bounds between each game gives the total bound in the theorem. ⊓⊔

A.4 XnCh SACh-INT-CTXT Security

Postponed proof of SACh-INT-CTXT security Theorem 3.

Proof. The first hops are similar in structure to the proof of Theorem 2. Let G0 be equal to Expsach-int-ctxt
XnCh,A,{0,1}(λ)

defined in Fig. 4.
Game G1. Let G1 be equal to G0 except that G1 fixes the phase in which the client or controlling access
point accept the first malicious message received over the δ-channel. A malicious message is a message
delivered out of order or which was not generated by the other party of the δ-channel. We refer to this phase
as the test phase. The rest of the game is exactly as game G1 in the proof of Theorem 2 and we obtain the
bound

AdvG0

XnCh,A(λ) ≤ nph ·AdvG1

XnCh,A(λ).

In succeeding games we can assume that A attacks phase t.

Game G2. Let G2 be equal to G1 except for that G2 substitutes the key k′ in the XnPrep message by an
independently and randomly sampled key in phase t − 1. If A can distinguish between G1 and G2, we can
construct an adversary B2 against the I-CPA security of I. The difference compared to game G2 in the proof
of Theorem 2 is how B2 extracts its answer for the I-CPA game from A. In the present game, B2 answers
0 if A succeeds to set the variable win to 1, and answers 1 otherwise. Any increased advantage A get from
being able to distinguish between G1 and G2 gets directly transferred to B2’s advantage in winning its own
I-CPA game. We therefore get the following bound.

AdvG1

XnCh,A(λ) ≤ AdvG2

XnCh,A(λ) +Advi-cpa
I,B2

(λ).

Game G3. Let G3 be equal to G2 except for that G3 substitutes the key nk in the XnPsResp message by an
independently and randomly sampled key in phase t− 2. The difference compared to game G3 in the proof
of Theorem 2 is how B3 extracts its answer for the I-CPA game from A. In the present game, B3 answers
0 if A succeeds to set the variable win to 1, and answers 1 otherwise. Any increased advantage A get from
being able to distinguish between G2 and G3 gets directly transferred to B3’s advantage in winning its own
I-CPA game. We therefore get the following bound.

AdvG2

XnCh,A(λ) ≤ AdvG3

XnCh,A(λ) +Advi-cpa
I,B3

(λ).

From here on, we can assume that A can obtain neither nk in phase t − 2 nor k′ in phase t − 1 by
decrypting the messages in which they are passed between parties.

Game G4. Let G4 be equal to G3 except for that G4 substitutes independently and randomly sampled
keys for Kf , nk, k′ and k in all phases. We claim that if A can distinguish G3 from G4, we can construct
an adversary B4 against the standard PRF-security of F. Similarly to the two previous games in the present
proof, the main difference compared to the corresponding game in the proof of Theorem 2 is how B4 extracts
its answer from A. The difference between the present game and game G4 in the proof of Theorem 2 is that
in the present game, B4 answers 0 if A succeeds setting the variable win to 1, and answers 1 otherwise.

By a hybrid argument analogous to that of game G4 in Theorem 2, using the fact that t′ ≤ t ≤ nph , we
get

AdvG3

XnCh,A(λ) ≤ AdvG4

XnCh,A(λ) + nph ·Advprf
F,B4

(λ).
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Game G5. Let G5 be equal to G4 except that G5 aborts if the client or controlling access point accept a
message m∗, processing this with some δ-state δ∗, when the party’s sync flag syncv∗ equals 0. We denote
this receiving party by v∗. We claim that any adversary A against G5 can be used to construct an effective
adversary against the AUTH security of the scheme AEAD underlying the δ-channel. We construct such an
adversary B5 as follows.

First note that the pdcpSend and pdcpRecv functions that provide state management on top of AEAD
(see Fig. 5) rejects processing of messages — both incoming and outgoing — once pdcpRecv has rejected a
single incoming message. This is remembered by pdcpRecv setting the δ-state equal to ⊥. Consequently A
only has this first opportunity to win its game, and processing of the message m∗ must therefore also result
in that the experiment sets win to 1. From this we conclude that pdcpRecv(δ∗,m∗) ̸= ⊥. That is, pdcpRecv
returns a valid decrypted message.
B5 behaves almost identically to the reduction in game G5 in the proof of Theorem 2. The main difference

is the extraction of the answer from A. B5 in the present game extracts it as follows. When B5 is about to set
the variable win to 1 in the OATK

Recv oracle in Fig. 4, we know that this is because A has successfully crafted a
message m∗, which was accepted by AEADDec (out of sync) when given the nonce nc∗ and additional data
ad∗ constructed from the δ-state δ∗ as it was before processing m∗. Therefore, B5 halts at this point and
answers with the triplet (nc∗, ad∗,m∗), which is a valid forgery, to its AEAD AUTH challenger.

The simulation is correct. B5 has access to all keys required to answer corruption and reveal queries,
except for in phase t, but since A is effective, it does not make any such queries.
B5 is effective. Similar to the proof of Theorem 4.2 in [32], we here do a case analysis split based on

whether m∗ is the message that brings v∗ out of sync, or whether the v∗ already was out of sync when
the message is received. In each case we must show that at least one element in the triplet (nc∗, ad∗,m∗)
differ from what could have been produced by a call to the AUTH oracle when invoked by the OSend oracle.
Because A is effective, PCor evaluates to true, and for all cases we can assume that neither the sender nor
the receiver have been compromised. First consider the case when syncv∗ = 0 before v∗ receives m∗. Let ms

be the message that causes syncv∗ to be set to 0. Sync is lost under any out of the following five conditions.
– OSend oracle: See Snd in Fig. 3. tv∗ > tu and sender u is not revealed. Because ad contains the sender

identity, the message ms, if received by v∗, would use a different identity compared to what v∗ would use
as ad . Because v∗ is at least one phase ahead of u, we have that ituu > jtu∗

v∗ in the experiment, matched
by sq↓u > sq↑v∗ in the δ-state during phase tu . The sender’s ad contains sq↓u and the receiver’s ad
contains sq↑v∗ . Therefore, these parts of the two ads will never match in phase tu . Once u progresses to
the next phase, it will have transmitted at least one more message in phase tu than v∗, and hence the
values of their sqfin variables will differ. Since sqfin is included in ad , u and v∗ will not have equal ads
for any future message. Therefore, whatever message encrypted using the AUTH oracle (as invoked from
the OSend oracle) will have different ad values, compared to what ORecv uses, for all future messages.
Therefore, whatever message m∗ that v∗ later receives, it will bring v∗ out of sync and if v∗ accepts it,
it will be a valid forgery, which could not have been generated by OSend using its AUTH oracle.

– ORecv oracle: See Rcv in Fig. 3. tv∗ > tu and the receiver v∗ is not revealed. The message ms brings the
experiment out of sync, but the pdcpRecv invocation must not allow A to win, because the assumption
in this branch of the proof is that v∗ is brought out of sync before receiving m∗. A wins iff pdcpRecv does
not return ⊥, since that would mean that pdcpRecv would continue to answer ⊥ in all future invocations,
effectively preventing A from winning. By similar reasoning as in the previous case, we have that when
the receiver is at least one phase ahead of the sender, the AUTH AEADDec oracle invoked by pdcpRecv
will use mismatching ad contents. If pdcpRecv accepts such a message, and returns a valid plaintext, it
would be a valid forgery that B5 can use to win its AUTH game. This contradicts that A does not win
during thins invocation, and can therefore not happen.

– ORecv oracle: See Rcv in Fig. 3. jtv∗
v∗ > ituu and the receiver v∗ is not revealed. We have that in the

δ-state this is matched by sq↑v∗ > sq↓u during phase tv∗ . As in the previous case, we must have that the
AUTH oracle AEADDec invoked by pdcpRecv does not return ⊥. However, because u includes sq↓u in
ad when invoking AEADEnc and v∗ include sq↓v∗ in ad when invoking AEADDec. If the latter accepts
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the message, it is therefore a valid forgery, contradicting that A does not win in this invocation of ORecv

Therefore, this case cannot occur.
– ORecv oracle: See Rcv in Fig. 3. The received ciphertext message is not the ciphertext message that

u sent. The ciphertext message generated by pdcpSend’s invocation of AUTH for this position in the
message sequence does not equal the message m∗ received and processed by pdcpRecv for that same
position. If pdcpRecv’s invocation of its AUTH AEADDec oracle accepts the message, it is a valid forgery,
contradicting that A does not win in this invocation of ORecv Therefore, this case cannot occur.

– ONext oracle: See syncReject in Fig. 3. We first argue that A cannot interfere with the Xn CE protocol
execution, and then that the execution results in that the sync-failure condition in syncReject cannot
be triggered.
The infrastructure protection IP ensures that all Xn CE protocol messages are delivered authentically
and in order, except for possibly the XnHo and the XnHoCmp messages delivered over the δ-channel.
The authenticity of Xn CE messages delivered over the δ-channel can be modified by A, and A can
inject messages on the δ-channel iff A can forge a plaintext, additional data or a nonce against AEADDec
— regardless, this requires a valid forgery that B5 can use to win its AEAD AUTH game. Since we
only provide a security guarantee when the Xn CE protocol executes to the end between phases, we
do not need to consider truncation attacks against it. The global state machine of the Xn CE protocol
is lock-step, so if messages are authentic, there can be no replays and each party execute as expected.
None of the parties involved in the phase progression are revealed or corrupted (follows from the security
definition). We can therefore conclude that the Xn CE protocol executes as expected unless cut short,
but when cut short, we make no security claims.
The Xn CE protocol returns an Ea = 1 from the Next function only when calling the XnPrep handler.
This handler appends the sq↓ and sq↑ received from the source a to the sqfin and is then prepared to
accept a XnHoCmp message over the δ-channel. The Xn CE protocol returns an Ec = 1 from the Next
function only when calling the XnHo handler. This handler does the corresponding actions for the client.
As a remark, the sequence number for the δ-channel message delivering the XnHo message to the client
increases the sequence number by one, and this is compensated for in the XnStart function. This means
that the sequence number space continues to monotonically increase after this point on both sides. The
next message accepted by the target a will be the XnHoCmp, unless A forges a δ-channel message (and
thereby provides B5 with a valid forgery to win its AEAD AUTH game). All in all, we see that both S
and the client progress to and agree on the next phase, and they agree on the sequence numbers for the
δ-channel in both directions. Therefore, the sync-failure condition in syncRejectcannot be triggered
unless B5 extracts a valid forgery from A.
This concludes the cases where sync was lost prior to receiving the first forged message. We now consider

the case when syncv∗ becomes 0 when v∗ processes m∗. We need to consider the following subcases.
– ORecv oracle: See Rcv in Fig. 3. tv∗ > tu and the receiver v∗ is not revealed. When the receiver is

one phase ahead of the sender, the received message m∗ must be necessity be a valid forgery, because
pdcpSend has not yet been invoked in phase tv∗ (and has hence not invoked its AUTH oracle).

– ORecv oracle: See Rcv in Fig. 3. jtv∗
v∗ > itv∗

u and the receiver v∗ is not revealed. In the δ-state this
is matched by sq↑v∗ > sq↓u during phase tv∗ . Because pdcpSend includes sq↓u in ad if it would have
generated m∗, and pdcpRecv includes sq↑v∗ in ad when processing m∗, we must have that m∗ is a valid
forgery when jtv∗

v∗ > itv∗
u .

– ORecv oracle: See Rcv in Fig. 3. The received ciphertext message is not the ciphertext message that
u sent. The ciphertext message generated by pdcpSend’s invocation of AUTH for this position in the
message sequence does not equal the message m∗ received and processed by pdcpRecv for that same
position. If pdcpRecv’s AUTH AEADDec oracle accepts m∗, it must therefore be a valid forgery.
We can conclude that

AdvG4

XnCh,A(λ) ≤ AdvG5

XnCh,A(λ) +Advauth
AEAD,B5

(λ).

Finally, combining the bounds between each game gives the total bound in the theorem. ⊓⊔
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B S1/N2 Handover

As mentioned, 4G/5G has a second kind of handover, S1/N2 handover. Just as X2 handover in 4G and Xn
handover in 5G share common structure, so does S1 handovers (4G) and N2 handovers (5G). We formalize
the S1/N2 handover in a SACh N2Ch and prove it secure in the SACh sense. We captured the 4G X2
handover and the 5G Xn handover with a single model. We correspondingly capture the 4G S1 handover
and the 5G N2 handover with a single model.

In a sense S1/N2 handover is simpler than X2/Xn handover and it has a tighter critical region. What
motivates X2/Xn handovers in comparison, is their efficiency and that they only involve the core network,
i.e., the orchestrator, in completed and successful handovers.

The N2Ch Channel. The setting and parties involved are the same as in X2/Xn handover and the PDCPδ

channel is also the same. The overall structure of the protocol (see Fig. 11) is also the same on a high level:
the source access point as prepares the target access point ad to take over control of PDCPδ, ad acknowledges
this; as then sends a handover command to the client, which sends a handover complete message to ad. The
core difference is that instead of sending messages directly between each other, as and ad pass the information
via the orchestrator o, which relays it. Relaying via o enables o to send an nk derived from the helper key
Kf directly to ad during preparation, which can take it into use knowing that as does not have access to
it. Consequently, there is no need for the post-handover signaling between ad and o to fetch the next nk,
and both forward and backward security are reached in one step. Because nk is freshly generated, it is used
directly as key k for PDCPδ.

Like for Xn handover, we require that Kf is updated every N2 handover. 4G/5G specifies that cnt shall
then be set to 0, and it may appear superfluous. However, as pointed out in Section 5.2, the counter cnt
helps security when partially completed handovers are allowed, which they are in the 4G/5G standards. Our
notions do not cover partially completed handovers, but we include cnt for completeness.

Compared to XnCE, N2CE does not rely on the secure infrastructure channels between as and ad. Specif-
ically, only the message NtPrep from o to ad contains a key. N2CE evolves the two secure infrastructure
channels between o and ad after the handover (see OINext in Fig. 9). By Lemma 1 we can rely on IP as
infrastructure protection also when only this channel is evolved.

The source access point as may have a key nk from a previous Xn handover, in which it acted as target
access point. This nk is discarded in N2 handovers, and instead o derives a new nk, not known to as. The
newly derived nk ensures both forward security in a single hop, and backwards security in a single hop w.r.t
ORev queries and OCor queries for access points not involved in test phase.

Security Analysis. We show that N2Ch satisfies the (1, 1)-SACh-IND-CPA and (1, 1)-SACh-INT-CTXT
security notions, and thus it also satisfies the (1, 1)-SACh-IND-CCA notion.

Theorem 4 (N2Ch SACh-IND-CPA Security). Let N2Ch be the SACh defined by the PDCP δ-channel in
Fig. 5, the infrastructure protection IP defined in Fig. 8, and the CE component N2CE defined in Fig. 11. Let
AEAD = (AEADEnc,AEADDec) be the AEAD employed by the PDCP δ-channel, capable of securely handling
maxMsg messages. Let F the pseudorandom function employed by N2Ch. Let nph be the number of phases
occurring in the experiment Expsach-ind-cpa

N2Ch,A,{0,1}(λ). For each (1, 1)-SACh-IND-CPA adversary A against N2Ch
there are adversaries B2, B3 and B4 such that

Advind-cpa
N2Ch,A(λ) ≤ nph ·

(
Advi-cpa

I,B2
(λ) + nph ·Advprf

F,B3
(λ) +Advind-cpa

AEAD,B4
(λ)

)
.

Proof. The proof follows the same structure as that of Theorem 2, the main difference being that no game is
needed to simulate transport of k′ between as and ad. Let G0 be equal to Expsach-ind-cpa

N2Ch,A,{0,1}(λ) defined in Fig. 3.

Game G1. Let G1 be equal to G0 except that G1 fixes the phase in which A attacks. G1 samples a phase
at random from the phases appearing in the experiment, t′←R{0, . . . , nph −1}. Suppose A tries to discern bit
bt for phase t. If t ̸= t′ then G1 aborts and returns a random boolean; A is then considered to have lost the
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Init(λ)

Kf ←
R {0, 1}λ

(γo, γc, {γa}a∈UA
)←

γ-Init(Kf)

k← γc.nk

(δc, δap)← pdcpInit(k)

return (δc, δap)

NextInit(γ, trg)

assert α ̸= ⊤
α←⊤; γa .trg← trg

return γ

Next(γ, δ, u, κ,m)

assert α ̸= ⊥
(p, h)←H(κ,m)

assert h ̸= ⊥ ∧ m ̸= ⊥

(E,Och,m
′
)←

h(γp, δp,m)

return (γ, δ, E,Och,m
′
)

NtStart(γs, δs,_)

sqfin← (sqfin,

sq↓, sq↑)

m′← (as, ad,

sqfin, sq↓ + 1, sq↑)

m′←ITx(Iself ,γs.o
sts

,m′
)

m′← (TPrepReq,m
′
)

return ((0, 0),⊥,m′
)

NtHo(γs, δs,m)

trg ← m

γs.Kf ← F0(γs.Kf)

γs.cnt ← 0

δs.sqfin← (δs.sqfin,

δs.sq↓, δs.sq↑)

nk← F1(γs.Kf , γs.cnt)

δs.k← nk

m′← (TNtHoCmp, 3)

return ((1, 0), c,m′
)

NtPrepReq(γs, δs,m)

m←IRx(Iself ,−str
,m)

(src, trg, sqfin, sq↓, sq↑)

←m

γs.Kf ← F0(γs.Kf)

γs.cnt ← 0

nk← F1(γs.Kf , γs.cnt)

m′← (nk, sqfin, sq↓, sq↑)

m′←ITx(Iself ,trgsts
,m′

)

m′← (TNtPrep,m
′
)

return ((0, 0),⊥,m′
)

NtPrep(γs, δs,m)

m←IRx(Iself ,−str
,m)

(δs.nk, δs.sqfin,

δs.sq↓, δs.sq↑)←m

m′← (TNtPrepAcc, 1)

OINext
(·)

return ((0, 1),⊥,m′
)

γ-Init(Kf)

γo.Kf ← γc.Kf ← Kf

γa .nk← F1(Kf , 0)

γo.cnt ← γc.cnt ← 0

return γ

NtPrepReqAcc(γs, δs,m)

m←IRx(Iself ,−str
,m)

m′← (TNtHo, γs.trg)

OINext
(·)

return ((0, 0), a,m′
)

NtPrepAcc(γs, δs,m)

m←IRx(Iself ,−str
,m)

m′← (TNtPrepReqAcc, 2)

OINext
(·)

return ((0, 0),⊥,m′
)

NtHoCmp(γs, δs,m)

α←⊥
return ((0, 0),⊥,⊥)

H(κ,m) returns (p,⊥) for messages NtHo and NtHoCmp unless κ equals the expected δ-channel (c.f. Fig. 11).

Fig. 10. The N2CE CE protocol.

game. Otherwise, if t = t′, A wins G1 iff A wins G0. The probability that t = t′ is 1/nph , so A’s advantage
can be bound by

AdvG0

N2Ch,A(λ) ≤ nph ·AdvG1

N2Ch,A(λ).

In succeeding games we can assume that A attacks phase t.

Game G2. Let G2 be equal to G1 except for that G2 substitutes the key nk in the NtPrep message with an
independently and randomly sampled key in phase t − 1. If A can distinguish between G1 and G2, we can
construct an adversary B2 against the I-CPA security of IP.
B2 simulates game G1 towards A, except for the following. B2 samples a bit bI , and if bI = 1, B2 replaces

the key nk in NtPrep with a randomly sampled key in phase t− 1. B2 stores the original nk, and restores it
when when the NtPrep message is processed by the NtPrep handler. When bI = 0, B2 passes the real NtPrep
messages to OITx as is, and uses the output from OIRx as the NtPrep message. When A halts with a guessed
bit b′, B2 guesses the same bit in its own I-CPA game.

The simulation is correct. When bI = 0, B2 simulates G1, and when bI = 1 it simulates G2. B2 does not
affect the keys actually used by the δ-channel and so reveal queries provide A with no additional information
in B2 compared to G1. When A invokes OCor(u), B2 invokes OIExpose(u) to obtain the riks and iks used by u
in the phase OCor(u) was invoked. However, since A is an effective adversary, it does not corrupt at earlier
than phase t + 1. IP is 1-hop forward secure w.r.t. corruption queries (by Lemma 1), and therefore A does
not gain an advantage in the distinguishing task by corrupting parties.
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Kf , k nk, k Kf

mt
c↓,m

t
as↓

NtPrepReq: as, ad, sqfin, sq↓, sq↑

Kf ← F0(Kf)
cnt ← 0

nk← F1(Kf , cnt)
NtPrep: nk, sqfin, sq↓, sq↑

k← nk
NtPrepAcc: 1

NtPrepReqAcc: 2
NtHo: ad

Kf ← F0(Kf)
cnt ← 0

nk← F1(Kf , cnt)
k← nk

NtHoCmp: 3

mt+1
c↓ ,mt+1

ad↓

Ias ,ost Io,asst

Ias ,ad
st Iad ,as

st

Iad ,o
st Io,adst

IP

δ-channel
CE message
on δ-channel

Fig. 11. Execution of a progression between phases t and t+1 for N2Ch. Thick dashed lines indicate secure channels
instantiated by the infrastructure protection layer N2IP. Dashed double-arrows represent the bidirectional δ-channel
as instantiated by the PDCP protocol, protecting application message sequences between the client and an access
point over the wireless link using the key k. The δ-channel also protects CE messages NtHo and NtHoCmp. Messages
mt

c↓ are sent from the client to access point as and mt
ad↓ are sent from as to client before the progression. After the

progression, control of the δ-channel endpoint on the network side has been transferred from as to ad . At this point
the message sequences mt+1

c↓ and mt+1
ad↓ are protected by the evolved δ-channel and simultaneously, the N2CE protocol

prepares ad to act as source access point in the next progression by involving the orchestrator.
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The simulation is effective. Since the ik, used for encryption of the channel (o, at), appear random to
A (Lemma 1), A can only distinguish between G1 and G2 if A detects that nk has been replaced with a
randomly sampled key by distinguishing whether a real or random message was encrypted by IP. We therefore
get the following bound,

AdvG1

N2Ch,A(λ) ≤ AdvG2

N2Ch,A(λ) +Advi-cpa
I,B2

(λ).

Game G3. Let G3 be equal to G2 except for that G3 substitutes independently and randomly sampled
keys for Kf and nk in all phases. Keys k and nk are equal and hence not independent. However, after G2,
nk only affects computations also affected by k, so if A can distinguish k from a randomly sampled key, it
is because A can distinguish F from a random function. We claim that if A can distinguish G2 from G3, we
can construct an adversary B3 against the standard PRF-security of F.

Define hybrid distributions Hi
3 for 0 ≤ i ≤ nph , bridging G2 and G3, as follows. Hi

3 samples Kf and nk
independently and uniformly at random in all phases j ≤ i. For phases j > i, Hi

3 derives Kf using F0 and nk
using F1 as in G2. Note that H0

3 = G2 and H
nph

3 = G3.
We now construct a PRF adversary B3 against F. B3 simulates the experiment towards A1 as G2 does,

except for that B3 first samples a phase t′←R {0, t}, and then sets Kf and nk according to Hi
3 for i ̸= t′. In

phase t′, B3 instead computes these keys by invoking its own PRF oracle for F on the corresponding inputs
and domain separation constants. B3 samples all challenge bits bi itself; in particular it samples bt. When A
halts with a guess b′ for phase t, B3 answers 0 in its own PRF game if b′ = bt, and 1 otherwise.

The simulation is correct. The only dependencies between keys are introduced by deriving them from
the initial keys using F (or a real randomly selected function in phase t′). B3 hence has access to keys and
data of the game and no inconsistencies are introduced that A could detect, apart from the possible use of
a randomly selected function instead of F.
B3 is effective. If the PRF oracle uses F, B3 simulates Ht′

3 forA. Otherwise the PRF oracle uses a randomly
sampled function, and B3 simulates Ht′+1

3 . A’s advantage in distinguishing between Ht′

3 and Ht′+1
3 is hence

converted into distinguishing advantage for B3 in its PRF game. A’s distinguishing advantage between Ht′

3

and Ht′+1
3 is then bounded from above by Advprf

F,B3
(λ). By a hybrid argument, and using the fact that

t′ ≤ t ≤ nph , we get
AdvG2

N2Ch,A(λ) ≤ AdvG3

N2Ch,A(λ) + nph ·Advprf
F,B3

(λ).

Game G4. Let G4 be equal to G3 except for that G4 aborts if A correctly determines the bit bt for phase
t. We claim that any adversary A that can distinguish between G3 and G4 can be used to construct an
effective adversary against the RoR IND-CPA security of the underlying AEAD scheme of the δ-channel.
We construct such an adversary B4 as follows.
B4 simulates the experiment for A by executing all the steps of G3, except for phase t, in which B4 uses

modified OSend and ORecv oracles to extract its AEAD IND-CPA attack from A. When A invokes OSend(u1,m)
in phase t, B4, instead of simulating AEnc, invokes its own AEAD IND-CPA encryption oracle with nonce
nc = (u1, squ1↓), additional data ad = (u1, sqfinu1

), and message m. B4 then treats the resulting ciphertext
as the outgoing encrypted message m′. Analogously, when A invokes ORecv(u2,m) in phase t, B4, instead of
simulating ADec, invokes its own AEAD IND-CPA decryption oracle with nonce nc = (u1, squ2↑), additional
data ad = (u1, sqfinu2

), and message m′. B4 then treats the resulting plaintext as the received message. Note
that we cannot remove the decryption oracle in the AEAD IND-CPA experiment since we use a bidirectional
channel. In particular, without the decryption oracle, we could not simulate the δ-channel, and theoretically,
decryption of a message could affect the state for the encryption oracle.

When A halts with a guess b′, B4 makes the same guess in its own AEAD IND-CPA game.
The simulation is correct. The only difference from G3 is that B4 uses its AEAD oracle to answer

encryption and decryption queries in phase t. Observe that the nonce consists of a user identifier, ensuring
that each direction is encrypted with a unique input, and a monotonically increasing sequence number,
ensuring that each message in a given direction has a unique input. Both pdcpSend and pdcpRecv are
guarded by assert statements that prohibit processing with unsafely large sequence numbers.

The experiment requires that no involved party is revealed in phase t. From previous games, we have
that: A attacks phase t; no party corruptions expose a key from which k in phase t is derived; k in phase t
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is from A’s perspective indistinguishable from a randomly sampled key. Hence, it is sound to implicitly set
the key k and the bit bt to the corresponding values of B4’s AEAD IND-CPA challenger in phase t.

We can conclude that

AdvG3

N2Ch,A(λ) ≤ AdvG4

N2Ch,A(λ) +Advind-cpa
AEAD,B4

(λ).

Finally, combining the bounds between each game gives the total bound in the theorem. ⊓⊔
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Theorem 5 (N2Ch SACh-INT-CTXT Security). Let N2Ch be the SACh defined by the PDCP δ-channel
in Fig. 5, the infrastructure protection IP defined in Fig. 8, and the CE component N2CE defined in Fig. 11.
Let AEAD = (AEADEnc,AEADDec) be the AEAD employed by the PDCP δ-channel, capable of securely
handling maxMsg messages. Let F the pseudorandom function employed by N2Ch. Let nph be the number
of phases occurring in the experiment Expsach-int-ctxt

N2Ch,A,{0,1}(λ). For each (1, 1)-SACh-INT-CTXT adversary A
against N2Ch there are adversaries B2, B3 and B4 such that

Advsach-int-ctxt
N2Ch,A (λ) ≤ nph ·

(
Advi-cpa

I,B2
(λ) + nph ·Advprf

F,B3
(λ) +Advauth

AEAD,B4
(λ)

)
.

Proof. The proof follows the same structure as that of Theorem 3, the main difference being that no game is
needed to simulate transport of k′ between as and ad. Let G0 be equal to Expsach-int-ctxt

N2Ch,A,{0,1}(λ) defined in Fig. 4.

Game G1. Let G1 be equal to G0 except that G1 fixes the phase in which the client or controlling access
point accept the first malicious message received over the δ-channel. A malicious message is a message
delivered out of order or which was not generated by the other party of the δ-channel. We refer to this phase
as the test phase. The rest of the game is exactly as game G1 in the proof of Theorem 2 and we obtain the
bound

AdvG0

N2Ch,A(λ) ≤ nph ·AdvG1

N2Ch,A(λ).

In succeeding games we can assume that A attacks phase t.

Game G2. Let G2 be equal to G1 except for that G2 substitutes the key nk in the NtPrep message by an
independently and randomly sampled key in phase t − 1. B2 embeds the I-CPA game just as in G3 in the
proof of Theorem 3. B2 answers 0 if A succeeds to set the variable win to 1, and answers 1 otherwise. Any
increased advantage A get from being able to distinguish between G1 and G2 gets directly transferred to
B2’s advantage in winning its own I-CPA game. We therefore get the following bound.

AdvG1

N2Ch,A(λ) ≤ AdvG2

N2Ch,A(λ) +Advi-cpa
I,B2

(λ).

From here on, we can assume that A cannot obtain k used in phase t by decrypting NtPrep in phase t−1.

Game G3. Let G3 be equal to G2 except for that G3 substitutes independently and randomly sampled keys
for Kf and nk in all phases. We claim that if A can distinguish G2 from G3, we can construct an adversary
B3 against the standard PRF-security of F. This game equals G3 in the proof of Theorem 4, except for that
here B3 answers 0 if A succeeds setting the variable win to 1, and answers 1 otherwise.

By a hybrid argument analogous to that of game G3 in the proof of Theorem 4, and using the fact that
t′ ≤ t ≤ nph , we get

AdvG2

N2Ch,A(λ) ≤ AdvG3

N2Ch,A(λ) + nph ·Advprf
F,B3

(λ).

Game G4. Let G4 be equal to G3 except that G4 aborts if the client or controlling access point accepts
a message m∗, processing this with some δ-state δ∗ when the party’s sync flag syncv∗ equals 0. We denote
this receiving party by v∗. We claim that any adversary A against G4 can be used to construct an effective
adversary against the AUTH security of the scheme AEAD underlying the δ-channel. We construct such an
adversary B4 as follows.

First note that the pdcpSend and pdcpRecv functions that provide state management on top of AEAD
(see Fig. 5) rejects processing of messages — both incoming and outgoing — once pdcpRecv has rejected a
single incoming message. This is remembered by pdcpRecv setting the δ-state equal to ⊥. Consequently A
only has this first opportunity to win its game, and processing of the message m∗ must therefore also result
in that the experiment sets win to 1. From this we conclude that pdcpRecv(δ∗,m∗) ̸= ⊥. That is, pdcpRecv
returns a valid decrypted message.
B4 behaves almost identically to the reduction in game G5 in the proof of Theorem 2. The main difference

is the extraction of the answer from A. B4 in the present game extracts it as follows. When B4 is about to set
the variable win to 1 in the OATK

Recv oracle in Fig. 4, we know that this is because A has successfully crafted a
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message m∗, which was accepted by AEADDec (out of sync) when given the nonce nc∗ and additional data
ad∗ constructed from the δ-state δ∗ as it was before processing m∗. Therefore, B4 halts at this point and
answers with the triplet (nc∗, ad∗,m∗), which is a valid forgery, to its AEAD AUTH challenger.

The simulation is correct. B4 has access to all keys required to answer corruption and reveal queries,
except for in phase t, but since A is effective, it does not make any such queries.
B4 is effective. Similar to the proof of Theorem 4.2 in [32], we here do a case analysis split based on

whether m∗ is the message that brings v∗ out of sync, or whether the v∗ already was out of sync when
the message is received. In each case we must show that at least one element in the triplet (nc∗, ad∗,m∗)
differ from what could have been produced by a call to the AUTH oracle when invoked by the OSend oracle.
Because A is effective, PCor evaluates to true, and for all cases we can assume that neither the sender nor
the receiver have been compromised. First consider the case when syncv∗ = 0 before v∗ receives m∗. Let ms

be the message that causes syncv∗ to be set to 0. Sync is lost under any out of the following five conditions.
– OSend oracle: See Snd in Fig. 3. tv∗ > tu and sender u is not revealed. Because ad contains the sender

identity, the message ms, if received by v∗, would use a different identity compared to what v∗ would use
as ad . Because v∗ is at least one phase ahead of u, we have that ituu > jtu∗

v∗ in the experiment, matched
by sq↓u > sq↑v∗ in the δ-state during phase tu . The sender’s ad contains sq↓u and the receiver’s ad
contains sq↑v∗ . Therefore, these parts of the two ads will never match in phase tu . Once u progresses to
the next phase, it will have transmitted at least one more message in phase tu than v∗, and hence the
values of their sqfin variables will differ. Since sqfin is included in ad , u and v∗ will not have equal ads
for any future message. Therefore, whatever message encrypted using the AUTH oracle (as invoked from
the OSend oracle) will have different ad values, compared to what ORecv uses, for all future messages.
Therefore, whatever message m∗ that v∗ later receives, it will bring v∗ out of sync and if v∗ accepts it,
it will be a valid forgery, which could not have been generated by OSend using its AUTH oracle.

– ORecv oracle: See Rcv in Fig. 3. tv∗ > tu and the receiver v∗ is not revealed. The message ms brings the
experiment out of sync, but the pdcpRecv invocation must not allow A to win, because the assumption
in this branch of the proof is that v∗ is brought out of sync before receiving m∗. A wins iff pdcpRecv does
not return ⊥, since that would mean that pdcpRecv would continue to answer ⊥ in all future invocations,
effectively preventing A from winning. By similar reasoning as in the previous case, we have that when
the receiver is at least one phase ahead of the sender, the AUTH AEADDec oracle invoked by pdcpRecv
will use mismatching ad contents. If pdcpRecv accepts such a message, and returns a valid plaintext, it
would be a valid forgery that B4 can use to win its AUTH game. This contradicts that A does not win
during thins invocation, and can therefore not happen.

– ORecv oracle: See Rcv in Fig. 3. jtv∗
v∗ > ituu and the receiver v∗ is not revealed. We have that in the

δ-state this is matched by sq↑v∗ > sq↓u during phase tv∗ . As in the previous case, we must have that the
AUTH oracle AEADDec invoked by pdcpRecv does not return ⊥. However, because u includes sq↓u in
ad when invoking AEADEnc and v∗ include sq↓v∗ in ad when invoking AEADDec. If the latter accepts
the message, it is therefore a valid forgery, contradicting that A does not win in this invocation of ORecv

Therefore, this case cannot occur.
– ORecv oracle: See Rcv in Fig. 3. The received ciphertext message is not the ciphertext message that

u sent. The ciphertext message generated by pdcpSend’s invocation of AUTH for this position in the
message sequence does not equal the message m∗ received and processed by pdcpRecv for that same
position. If pdcpRecv’s invocation of its AUTH AEADDec oracle accepts the message, it is a valid forgery,
contradicting that A does not win in this invocation of ORecv Therefore, this case cannot occur.

– ONext oracle: See syncReject in Fig. 3. We first argue that A cannot interfere with the N2 CE protocol
execution, and then that the execution results in that the sync-failure condition in syncReject cannot
be triggered.
The infrastructure protection IP ensures that all N2 CE protocol messages are delivered authentically
and in order, except for possibly the NtHo and the NtHoCmp messages delivered over the δ-channel.
The authenticity of N2 CE messages delivered over the δ-channel can be modified by A, and A can
inject messages on the δ-channel iff A can forge a plaintext, additional data or a nonce against AEADDec
— regardless, this requires a valid forgery that B4 can use to win its AEAD AUTH game. Since we
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only provide a security guarantee when the N2 CE protocol executes to the end between phases, we
do not need to consider truncation attacks against it. The global state machine of the N2 CE protocol
is lock-step, so if messages are authentic, there can be no replays and each party execute as expected.
None of the parties involved in the phase progression are revealed or corrupted (follows from the security
definition). We can therefore conclude that the N2 CE protocol executes as expected unless cut short,
but when cut short, we make no security claims.
The N2 CE protocol returns an Ea = 1 from the Next function only when calling the NtPrep handler.
This handler appends the sq↓ and sq↑ received from the source access point to the sqfin and is then
prepared to accept a NtHoCmp message over the δ-channel. The N2 CE protocol returns an Ec = 1 from
the Next function only when calling the NtHo handler. This handler does the corresponding actions for
the client. As a remark, the sequence number for the δ-channel message delivering the NtHo message to
the client increases the sequence number by one, and this is compensated for in the NtStart function. This
means that the sequence number space continues to monotonically increase after this point on both sides.
The next message accepted by the target access point will be the NtHoCmp, unless A forges a δ-channel
message (and thereby provides B4 with a valid forgery to win its AEAD AUTH game). All in all, we see
that both S and the client progress to and agree on the next phase, and they agree on the sequence
numbers for the δ-channel in both directions. Therefore, the sync-failure condition in syncRejectcannot
be triggered unless B4 extracts a valid forgery from A.
This concludes the cases where sync was lost prior to receiving the first forged message. We now consider

the case when syncv∗ becomes 0 when v∗ processes m∗. We need to consider the following subcases.
– ORecv oracle: See Rcv in Fig. 3. tv∗ > tu and the receiver v∗ is not revealed. When the receiver is

one phase ahead of the sender, the received message m∗ must be necessity be a valid forgery, because
pdcpSend has not yet been invoked in phase tv∗ (and has hence not invoked its AUTH oracle).

– ORecv oracle: See Rcv in Fig. 3. jtv∗
v∗ > itv∗

u and the receiver v∗ is not revealed. In the δ-state this
is matched by sq↑v∗ > sq↓u during phase tv∗ . Because pdcpSend includes sq↓u in ad if it would have
generated m∗, and pdcpRecv includes sq↑v∗ in ad when processing m∗, we must have that m∗ is a valid
forgery when jtv∗

v∗ > itv∗
u .

– ORecv oracle: See Rcv in Fig. 3. The received ciphertext message is not the ciphertext message that
u sent. The ciphertext message generated by pdcpSend’s invocation of AUTH for this position in the
message sequence does not equal the message m∗ received and processed by pdcpRecv for that same
position. If pdcpRecv’s AUTH AEADDec oracle accepts m∗, it must therefore be a valid forgery.
We can conclude that

AdvG3

N2Ch,A(λ) ≤ AdvG4

N2Ch,A(λ) +Advauth
AEAD,B4

(λ).

Finally, combining the bounds between each game gives the total bound in the theorem. ⊓⊔
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