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Abstract In this paper, we consider the new version of tropical cryptography
protocol, i.e the tropical version of ElGamal encryption. We follow the ideas
and modify the classical El Gamal encryption using tropical matrices and
matrix power in tropical algebra. Then we also provide a toy example for the
reader’s understanding.
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1 Introduction

El Gamal encryption was inveted in 1985 by Taher Gamal [13]. The idea of
this algorithm based on the most popular public key exchange protocol,i.e., the
Diffie-Hellman protocol. Furthermore, he made the Diffie-Hellman system bet-
ter and came up with two algorithms that could be used for encryption and
authentication. Since ElGamal Encryption using the idea of Diffie-Hellamn
protocol then the security based on the complexity to solve the discrete loga-
rithm problem (DLP). As we know there is no efficient algorithm can be solved
the DLP unless quantum computer can be used.

The effectiveness and safety of any cryptography system are determined
by the algorithm and the platform employed. Some researcher are trying to
find the best platform to construct the new protocol. There is a new study
cryptography in tropical algebra. Tropical algebra studies linear algebra over
semiring. Tropical algebra is a semiring R ∪ {−∞} endowed with two binary
operations i.e maximisation (⊕) and addition (⊗). The algebraic structure is
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denoted by Rmax = (R ∪ {−∞},⊕,⊗). Suppose we have a, b ∈ Rmax, then we
define a ⊕ b := max(a, b) and a ⊗ b = a + b. For further reading in tropical
algebra, we can find in, e.g, [8].

Since tropical multiplication is equivalent to addition, computing in a trop-
ical setting is unquestionably faster than its classical analogue. Many previous
attempts have been made to provide a practical and safe key exchange mecha-
nism based on tropical matrix algebra. The researchers who introduced the new
concept of tropical cryptography are Dima Grigoriev and Vladimir Sphilrain
[6]. They modify the Stickel’s protocol using polynomial over tropical matrix
algebra. Then some studies in tropical cryptography are followed such that
[7],[4],[1],[2],[?]. For analysis security the tropical cryptography, there are also
some studies such that [10],[3],[5],[11].

Therefore, in this paper we introduce a new tropical version of El Gamal
encryption. Using the similar ideas to the classical one we replace the inte-
gers number by matrix over tropical algebra. Since the invertible matrices in
tropical algebra only diagonal matrix and permutation matrix then we use
tropical diagonal matrices for decryption step. We also give a toy example for
the reader’s understanding.

2 Tropical Algebra

In this section, we define tropical algebra and tropical matrices in their most
fundamental form.

2.1 Basic Definition

Let us introduce the definition of semiring

Definition 1 Given a non empty set S with two binary operations + and ×
then we call (S,+,×) semiring if for all a, b, c ∈ S which satisfy the following
conditions:

1. (S,+) is an abelian monoid, that means:
(i) associativity

(a+ b) + c = a+ (b+ c).
(ii) identity element

there exists ⊬ ∈ S such that ⊬+ a = a+ ⊬ = a.
(iii) Commutativity

a+ b = b+ a.
2. (S,×) is a monoid, that means

(i) Associativity
(a× b)× c = a× (b× c).

(ii) identity element
there exists ⊮ ∈ S such that ⊮× a = a× ⊮.

3. (S,+,×) is distributive
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(i) a× (b+ c) = a× b+ a× c.
(ii) (b+ c)× a = b× a+ c× a.

4. absorbing property of ⊬ : ⊬× ⊮ = ⊮× ⊬ = ⊬

Tropical algebra is one of example of semiring.

Example 1 Let the set R ∪ {−∞} with two binary operations ⊕ and ⊗ be
defined as tropical semiring (Rmax = (R ∪ {−∞},⊕,⊗)). For all a, b ∈ Rmax

then we have

a⊕ b = max(a, b), a⊗ b = a+ b.

The element identity respect to maximization and also addition are −∞ and
0, respectively.

2.2 Tropical Matrices

In the section, we will introduce some terms in tropical matrices.

Definition 2 Let us define the tropical matrix identity I ∈ Rn×n
max where the

diagonal entries equals to 0 and non diagonal entries equals to −∞.

Definition 3 If the diagonal entries of tropical square matrix equal to any
numbers in Rmax and non diagonal entries equal to −∞ then we called this
kind of matrix as tropical diagonal matrix denoted by D.

We can also extend the arithmetic operation of ⊕ and ⊗ to vectors and
matrices as in the following definition:

Definition 4 (Matrix addition and multiplication)
Let k be a scalar in Rmax and matrix A = (aij) ∈ Rm×n, (i.e tropical matrix
with dimension m× n), then we define

(k ⊗A)ij = k ⊗ (aij),∀ i = 1, ...,m and j = 1, ..., n.

If we have two tropical matrices A = (aij) and B = (bij) with the same
dimension m× n, then we define

(A⊕B)ij = max(aij , bij),∀ i = 1, ...,m and j = 1, ..., n.

If we have two matrices A = (aij) ∈ Rm×p
max and B = (bij) ∈ Rp×n

max then we
define

(A⊗B)ij =

p⊕
k=1

aik ⊗ bkj ,∀ i = 1, ...,m and j = 1, ..., n.

Next, we will discuss the definition of tropical matrix powers.
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Definition 5 (Tropical matrix powers)
Let A be a tropical square matrix. Then we define the nth tropical matrix
power of A as

A⊗n = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
n

.

We have A⊗0 = I.

We can also study the behaviour of tropical matrix powers [9] and apply
it for analyse the security of our cryptosystem.

3 Tropical Version of El Gamal Encryption

We first recall the classical version of ElGamal encryption as follows:

Algorithm 1 (ElGamal Encryption).
Alice and Bob agree on public parameter: finite group Zp, prime number p and
generator g ∈ Zp

Key Generation
In this part, Alice will generate her public key and sends it to Bob.

1. Alice chooses random integer number x and computes u = gx mod p.
2. Alice sends the public key u to Bob.

Encryption Bob is here with a message m and he wants to send the message
to Alice. In order to protect his message then Bob encrypt the message as
follows

– Bob randomly chooses integer number y.
– Bob computes his public key v = gy.
– Bob then computes his secret key using u and get KB = (u)y mod p
– Using his secret key KB then he decrypt the message into cipher text c =

m⊗ S.
– Bob then sends c and v to Alice.

Decryption
In order to reveal the message m, Alice does the following step:

– Compute KA = vx

– Compute m = c⊗K−1
A .

Following the idea of classical ElGamal encryption then we modify the
algorithm (1) using matrix over tropical algebra.

Let us define the set Z∪{−∞} subset of R∪{−∞} then we can also define
the subsemiring Zmax of Rmax. in this paper we use Zmax instead of Rmax.

We next introduce the tropical version of Elgamal Encryption.

Algorithm 2 (Tropical ElGamal Encryption).
Alice and Bob agree on public parameters: prime number p and matrix G ∈
Mn(Zmax) (i.e matrix n× n with entries in Zmax.
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1. Key Generation
– Alice chooses a random integer x.
– Alice computes U = G⊗x mod p and sends it to Bob.

2. Encryption
Bob has message m.
– Bob randomly chooses integer number y.
– Bob computes KB = U⊗y mod p.
– He computes V = G⊗y

– Bob change matrix KB to matrix diagonal form and then encrypts the
message c = m⊗KB.

– Then Bob sends c and V to Alice
3. Decryption

Alice then decrypts the message in the following steps:
– Alice computes her private key KA = V x and then change it to diagonal

matrix.
– Alice decrypts the message m = m⊗K−1

A

Since the invertible matrices in tropical algebra only tropical diagonal ma-
trices dan permutation matrices then we transform the secret key of Alice
KA and the secret key of Bob KB to diagonal matrices (replace non diagonal
entries with −∞).

4 A Toy Example

We give a toy example as follows: Let Alice and Bob agree on public parameter

p = 73 and public matrix G =

(
67 71
23 56

)
∈ M2(Zmax).

Key Generation
In this part, Alice generates the public key and private key in the following
steps:

1. Alice picks at random integer number x = 57.

2. Alice computes her public key U = Gx =

(
67 71
23 56

)57

=

(
819 3823
3775 3779

)
mod 73 =(

23 27
52 56

)
.

3. Alice sends U to Bob.

Encryption
In this part, Bob has a message M= Eve want to kill you. Before he sends the
message to Alice then Bob divide the message into some blocks of matrices as
follows:

m1 =

(
E v
e space

)
,m2 =

(
w a
n t

)
,m3 =

(
t o

space k

)
,m4 =

(
i l
l u

)
,m5 =

(
y o
u space

)
. Then Bob needs to encrypt the message in the following steps:
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1. Bob translates the message into ASCII code as follows:

m1 =

(
69 118
101 32

)
,m2 =

(
119 97
110 16

)
,m3 =

(
116 111
32 107

)
,

m4 =

(
105 108
108 32

)
,m5 =

(
121 111
117 32

)
.

2. Bob picks integer y = 43.

3. He computes KB = U⊗y = (G⊗x)⊗y =

(
2375 2379
2404 2408

)
mod 73 =

(
39 43
68 72

)
.

4. Bob also computes his public key V = G⊗y =

(
2881 2885
2837 2841

)
mod 73 =(

0 4
42 3

)
5. Bob changes matrixKB into diagonal matrix and we haveKB =

(
39 −∞
−∞ 72

)
.

6. Bob computes ci = mi ⊗ S for i = 1, ..., 5 and we have the following

cipher text: c1 =

(
108 190
140 104

)
, c2 =

(
158 169
149 88

)
, c3 =

(
155 183
71 179

)
, c4 =(

144 180
147 104

)
, c5 =

(
160 183
156 104

)
.

7. Bob sends ci and V to Alice.

Decryption
After Alice receives the cipher text ci and public key V . Then she decrypts
the cipher text to reveal the message.

1. Alice then computes KA = V ⊗x=(G⊗y)⊗x, and Alice transform S into

diagonal matrix S =

(
39 −∞
−∞ 72

)
.

2. Alice decrypts the cipher text d = ci ⊗K−1
A and then reveal the message

from Bob: Eve want to kill you.

5 Conclusions

In this paper, a new version of ElGamal encryption based on tropical matrices
are presented. This new version using tropical matrix powers and diagonal
matrices. We also give a toy example. We give a suggestion for parameters
to avoid brute attack. For further research, we will consider to analyse the
security using tropical discrete logarithm problem [3].
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