
Full Quantum Equivalence of

Group Action DLog and CDH, and More

Hart Montgomery
Linux Foundation & Fujitsu Labs
hart.montgomery@gmail.com

Mark Zhandry
NTT Research & Princeton University

mzhandry@gmail.com

Abstract

Cryptographic group actions are a relaxation of standard cryptographic groups that have
less structure. This lack of structure allows them to be plausibly quantum resistant despite
Shor’s algorithm, while still having a number of applications. The most famous example of
group actions are built from isogenies on elliptic curves.

Our main result is that CDH for abelian group actions is quantumly equivalent to discrete
log. Galbraith et al. (Mathematical Cryptology) previously showed perfectly solving CDH to
be equivalent to discrete log quantumly; our result works for any non-negligible advantage. We
also explore several other questions about group action and isogeny protocols.

1 Introduction

Proving the equivalence of breaking the
Diffe-Hellman protocol and computing
discrete-log is one of the oldest problems
in public key cryptography.

Boneh and Lipton [BL96]Diffie-Hellman key agreement [DH76] is one of the most
important protocols in cryptography. Given a generator
g of a cyclic group of order p, Alice and Bob choose random a← Zp and b← Zp, respectively, and
exchange the values ga and gb. Their shared key is then gab = (ga)b = (gb)a.

One way to break Diffie-Hellman is to compute discrete logarithms (DLog): extract a from
(g, ga) and then compute gab = (gb)a from Alice’s message. Fortunately, computing discrete logs
appears hard, and after decades of cryptanalytic effort the best classical algorithms on certain
groups—multiplicative groups of finite fields and elliptic curves—have sub-exponential or exponen-
tial complexity.

The security of Diffie-Hellman key exchange, however, is potentially easier than solving DLog.
Indeed, computing the shared key is equivalent to solving the computational Diffie-Hellman problem
(CDH): computing gab from (g, ga, gb). While CDH is clearly no harder than DLog, it is not a priori
obvious that the converse should hold. After all, CDH and DLog are very different problems: CDH
is in essence computing multiplication a, b 7→ a× b homomorphically on the encoded values ga, gb,
whereas DLog is inverting the encoding. The good news is that there has been classical progress
towards proving such an equivalence [den90, Mau94, MW96, BL96]. However, the polynomial-time
equivalence of DLog and CDH in general groups without any auxiliary information still remains an
important fundamental open question. As such, the hardness of CDH must simply be assumed in
Diffie-Hellman key exchange, requiring a potentially much stronger assumption than the hardness
of DLog.

1

Quantum Diffie-Hellman. Shor [Sho94] shows that DLog is easy on a quantum computer,
meaning the Diffie-Hellman protocol is no longer secure. Numerous proposals have been made for
replacement “post-quantum” cryptosystems. One interesting example preserving the spirit of the
original Diffie-Hellman protocol is due to Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06].
They propose to replace the group in Diffie-Hellman with a group action. Very roughly, the group
action allows for a similar operation as discrete exponentiation as in Diffie-Hellman, but does not
have an analagous operation for multiplying two group elements, as is needed by Shor’s attack.

In more detail, a group action consists of a group G and a set X, together with an action
? : G ×X → X such that for any a, b ∈ G and x ∈ X, it holds that (ab) ? x = a ? (b ? x). In this
setting, DLog is the task of recovering a from (x, a ? x), and CDH is the task of computing (ab) ? x
from (x, a ? x, b ? x). If we consider abelian and regular1 group actions, we can translate Diffie-
Hellman key exchange from groups to group actions by viewing Zp as the group acting on the set 〈g〉
through discrete exponentiation: a?x = xa. DLog and CDH on the group immediately correspond
to DLog and CDH on the group action. However, other group actions that do not correspond to
plain groups are possible. The most notable example is isogenies over elliptic curves [CLM+18],
one of the leading candidates for post-quantum public key cryptography proposed by Couveignes,
Rostovtsev, and Stolbunov2. As we discuss in Section 8, other plausibly post-quantum proposals
can sometimes also be phrased as group actions.

As in the classical case, the DLog-CDH equivalence is an important fundamental question in
the quantum world. It may even be more important than the classical equivalence today, as the
post-quantum hardness of group actions has so far seen a much smaller cryptanalytic effort than the
classical hardness of groups, and therefore our confidence in the post-quantum CDH assumption
on group actions is much weaker. An equivalence to DLog would therefore be an important step
toward improving this confidence. In ordinary groups, the post-quantum equivalence is trivial:
they are both easy. In group actions, however, it is less clear: group actions have less exploitable
structure for proving such an equivalence, but quantum algorithms are more powerful and can
potentially be used to facilitate a reduction.

In a short paper, Galbraith et al. [GPSV18] give a promising first step toward proving an
equivalence: they show that any perfect algorithm for solving CDH in abelian group actions can
be converted into a DLog algorithm. The core idea is that a perfect, efficient CDH algorithm
essentially turns the set of a group action into a plain group, with x1×x2 = CDH(x1, x2). One can
then apply Shor’s DLog algorithm to the derived group. The main difficulty is that solving DLog
in the derived group is not exactly identical to DLog in the original group action. Galbraith et al.
essentially show how to translate one DLog to the other to complete the reduction.

Unfortunately, if the CDH algorithm has even relatively minor correctness error (even, say, 10%),
the above algorithm does not work. On the other hand, for cryptographic applications, we want
to justify that no efficient algorithm can solve CDH with any non-negligible success probability.
It could therefore be, for example, that CDH can be broken—and hence also group action key
agreement—with probability 0.9, but that DLog is still hard. In plain groups, one can amplify
success probability using standard random self-reductions for CDH. However, as pointed out by
Galbraith et al., the limited structure of group actions prevents such random self-reductions. They
therefore leave the full quantum equivalence of DLog and CDH for group actions as an important
open question.

1A regular group action is a group action that, for every x1, x2 ∈ X, there exists a unique element g ∈ G such
that x1 = g ? x2.

2A few very recent works [CD22, MM22, Rob22] break a certain isogeny-based protocol called SIDH. SIDH,
however, is just one of a number of isogeny protocols, and in particular it is not a group action. For a slightly more
in depth discussion about different isogeny protocols, see Section 2.5.

2

1.1 This Work: Full Quantum Equivalence of DLog and CDH

In this work, we resolve the open question above, showing that DLog and CDH are quantumly
equivalent for abelian group actions (Section 3). Since the most commonly used group actions in
cryptography (from isogenies) are abelian, our results here have wide applicability and can be used
directly on isogeny-based cryptosystems such as CSI-FiSh [BKV19]3.

As a secondary result, we also show that the same cannot hold generically for Decisional Diffie-
Hellman (DDH), which is equivalent to asking that the shared key not only cannot be predicted
by the adversary, but that it is indistinguishable from a random string. In other words, there is
no black box quantum equivalence between DLog (or even CDH) and DDH (Section 4). We also
formally specify a generic model for group actions (Section 5), explore relaxations of group actions
relevant to certain isogeny protocols (Section 9), and discuss the relationship between group actions
and the dihedral hidden subgroup problem (Section 10).

Our reduction (Section 3). Our DLog-CDH equivalence will use Galbraith et al. to reduce
the problem of proving equivalence to that of boosting the success probability of a CDH algo-
rithm. However, this comes with many challenges, which we now explore. Consider a deterministic
algorithm A such that:

Pr
a,b←G

[A(x, a ? x, b ? x) = (ab) ? x] = p Pr
a,b←G

[A(x, a ? x, b ? x) = (uab) ? x] = 1− p

for some constant p ∈ [0, 1] and fixed known group element u ∈ G \ {1}. This would certainly be a
valid CDH adversary with success probability p.

Remark 1. Throughout, we will consider x as being fixed; this is usually how CDH is modeled,
and typically makes hardness results for CDH more challenging. It is also possible to consider a
variant where x is chosen randomly and A works for a random x. [BMZ19] explore the fixed vs
random question for plain groups.

In the plain group setting, the equivalent setup would be that A on input (g, ga, gb), outputs gab

with probability p and guab with probability 1− p. An easy random self-reduction for this A would
be to run h← A(g, (ga)× gc, (gb)× gd) for random choices of c, d. Each trial will run A on random
independent inputs, so we know that h = g(a+c)(b+d) with probability p, and h = gu(a+c)(b+d) with
probability 1−p. We can then compute h′ = h×(ga)−d(gb)−cg−cd. If h = g(a+c)(b+d), then h′ = gab.
Meanwhile, if h = gu(a+c)(b+d), then h′ = g(u−1)(a+c)(b+d)+ab, which is a uniformly random element.
Therefore, by repeating this process many times on independent c, d, a p fraction of the elements
will be identical to gab, and the rest will be uniformly random. Taking a majority therefore gives
gab with overwhelming probability. An important feature of this self-reduction is that when A is
correct, the self-reduction gives the correct answer, and when A is incorrect, the self-reduction gives
a uniformly random answer. The self-reduction can be strengthened to handle arbitrary A, thus
giving a generic way to boost success probability.

Unfortunately, the above re-randomization is not possible with group actions, since there is no
multiplication analog for set elements. Given (x, a ? x, b ? x), one could try choosing a random c, d
and running (cd)−1 ? A(x, c ? (a ? x), d ? (b ? x)). The result will be (cd)−1 ? [(ac)(bd)] ? x = (ab) ? x
with probability p and (uab) ? x with probability 1 − p. This allows us to obtain many samples
of each. But unlike the plain group self-reduction, now when A is incorrect we do not output a
uniformly random answer, but instead output a fixed incorrect answer (uab) ? x. This means we

3We note that our result does not directly apply to restricted effective group actions (REGAs) like
CSIDH [CLM+18] and explain this in more detail later.

3

cannot in general take a majority since if p < 1/2 this would actually give the incorrect answer.
In this case, if we knew that p < 1/2, we would know to actually take the minority element as
output. This would require making non-black box use of A, which is non-standard but acceptable.
However, if p = 1/2, then the majority or minority element is just a random sample between (ab)?x
and (uab) ? x. In this case, even knowing p is not enough to identify the correct answer.

We will now show how to resolve the reduction for this particular class of adversaries. To do
so, we consider two cases: u2 = 1, or not. The exponent 2 in u2 = 1 is a result of our algorithm A
outputting a random choice amongst two elements, and in more general settings we could consider
higher, but still polynomial, exponents. Note that group actions are defined and plausibly hard for
non-cyclic or non-prime order groups, so it is reasonable to consider group orders that have small
factors. For isogenies, the group order is indeed smooth.

If u2 = 1 and p = 1/2, we are basically stuck: A is simply outputting a random sample in
the orbit of (ab) ? x under action by u. Nothing we can do will amplify the success probability.
Instead, we observe that A can be viewed as essentially solving CDH—with perfect probability!—in
the subgroup G/〈u〉. We then apply Galbraith et al. to this subgroup to solve DLog relative to
G/〈u〉. We can then solve for the full DLog in G by brute forcing the 〈u〉 component. This works
regardless of p, but requires u to generate a small group.

If u2 6= 1 and/or if p 6= 1/2, another approach will work. Here, we can first run our re-
randomized A several times on (x, a ? x, b ? x) to obtain y0 = (ab) ? x and y1 = (uab) ? x, but we do
not yet know which is which. But in this case, we can use the fact that A is not generating uniform
outputs in the orbit of (ab)?x to distinguish the two cases. Concretely, we run the re-randomized A
several times on (x, x, y0) and (x, x, y1). Since x = 1?x, we know that (x, x, y0) will output y0 with
probability p and u ? y0 = y1 with probability 1− p. This distribution of outputs exactly matches
the distribution from our original set of trials on (x, a ? x, b ? x). Meanwhile, (x, x, y1) will output
y1 and u ? y1 = (u2ab) ? x with probabilities p and 1 − p. This distribution will be different than
that from our original set of trials. Thus by comparing the distributions generated from (x, x, y0)
and (x, x, y1) with the distribution generated from (x, a ? x, b ? x), we can identify which of y0, y1

are the correct CDH output.
Our result generalizes the approach above to work with arbitrary adversaries A, and to work

without needing any side-information (like the probability p) about the distribution of outputs of
A. Essentially, we show that there is always a polynomial-sized subgroup H of G such that we can
amplify A to have near-perfect success probability on G/H. We then apply Galbraith et al. to the
subgroup, and then brute-force the quotient group.

There are a number of challenges to getting this sketch to work. One issue is to actually identify
the subgroup of G. Suppose G has order n = 2 × 3 × 5 × Then the number of subgroups of
polynomial-size will be λO log(λ); if G is non-cyclic, the number of small subgroups can even be
exponential. So we cannot simply guess the subgroup, and must instead compute it.

Another issue is thresholding : we need to make decisions about whether various distributions
of elements are close or far. These decisions are made by sampling a number of samples from the
distributions, and comparing frequencies. But we can only obtain frequency estimates with inverse-
polynomial error. For whatever criteria we use to distinguish distributions, if two distributions are
close but not too close, the noise in our estimates will cause the criteria to output just a random bit.
The question is then: if the various decisions underlying our algorithm may have random answers,
how can we guarantee consistent outputs, as required to achieve a high success probability?

The randomness from thresholding seems impossible to fully overcome. However, we show via
careful arguments that the randomness can all be contained within the choice of the subgroup H.
Once this subgroup is fixed, we show that we can set our decision-making criteria such that we
always make consistent decisions, resulting in consistent CDH solutions.

4

We note that our main proof assumes the group action is regular, meaning for a fixed x, a ? x
is a bijection. This is the most relevant setting to isogeny-based group actions. Nevertheless, we
explain in Section 3.1 how to extend to arbitrary abelian group actions.

Impossibility of Extending to DDH (Section 4). Given the above, one may hope to actually
prove that DLog implies DDH, namely that (ab) ? x is indistinguishable from c ? x for a random c,
given x, a ? x, b ? x.

Unfortunately, we refute this possibility, at least in the composite-order setting that is most
relevant to post-quantum cryptosystems. The idea is simple: we start with any group action
? : G × X → X where CDH—and maybe even DDH—is hard. We then define a slightly larger
group and set G′ = G× Zp and X ′ = X × Zp, for some polynomially bounded p. We expand ? to
an action of G′ on X ′ by defining (a, u) ? (x, y) = (a ? x, u + y). DLog and CDH easily hold for
the expanded group action, but DDH is trivially false just by looking at the Zp component, which
has no hardness. We note that if G is cyclic, we can make G′ cyclic as well by choosing p to be
relatively prime to the order of G.

Generic Group Actions (Section 5). Next, we propose a generic group action model, anal-
ogous to the generic group model of [Sho97]. In this model, the set elements X are just random
strings, and the action of G on X is provided by an oracle which can be queried by the adversary.
This model is implicit in much of the prior work on group actions, but we are not aware of it being
formally written down. We also note that the model trivially extends to the quantum setting,
where classical queries are replaced by quantum queries.

On REGAs (Section 9). Many isogeny protocols cannot be phrased as clean group actions.
Essentially, in some isogeny-based protocols (such as CSIDH [CLM+18]) there is a set of generators
g1, . . . , g` ∈ G, and it is only known how to efficiently compute the actions of the gi or g−1

i ; one

can then compute the action of any g ∈ G provided one has a representation of g =
∏`
i=1 g

αi
i for

polynomially-sized αi. In general, finding such a representation is believed to be hard. This setting
is referred to as a Restricted Effective Group Action (REGA).

Our reduction (as with Galbraith et al.) does not apply to REGAs, since applying Shor’s
algorithm requires the ability to compute the action of arbitrary group elements g. Formalizing
some discussion from Galbraith et al., we show that the reduction works for REGAs if a problem
similar to the 1D Short Integer Solution (1D-SIS) problem is easy which we call REGA-SIS.4 In the
case that G = Zp–which we can assume since we are focused on abelian groups–the problem becomes
essentially the one-dimensional version of the inhomogeneous SIS (ISIS) problem [BGLS19]: given
a target integer t ∈ Zp and a vector of integers s ∈ Z`p defined by the REGA description, the

problem is to find a vector of integers v ∈ [−β, β]` such that t = s · v. The only difference between
REGA-SIS and what a natural definition of “1D-ISIS” would be is that the given vector of integers
s is defined by the REGA rather than sampled randomly.

Essentially, we show that such a REGA-SIS oracle is enough to compute a representation of g
in terms of the gi, which converts the REGA into a standard group action. This shows that in a
world where REGA-SIS is easy, our equivalence between DLog and CDH also holds for REGAs.
It turns out that the hardness of REGA-SIS is, in fact, inherent in solving DLog on REGAs: we
also show that any algorithm which solves DLog on REGAs can be used to solve this REGA-SIS

4We defer a formal definition of this problem to the body of the paper. It is shown in [BLP+13] that 1D-SIS, for
certain paramater settings, is equivalent to the “standard” LWE problem.

5

problem. This result is quite interesting since it implies DLog on REGAs is at least as hard as a
(not necessarily randomized, and thus maybe not hard) version of a hard lattice problem.

If we could somehow strengthen this to show that a CDH solver on REGAs must also solve
REGA-SIS, then we would obtain a full quantum equivalence between DLog and CDH for REGAs.
We do not know how to prove such a result, but we give some evidence that generic adversaries for
CDH on REGAs may have to solve REGA-SIS or, for certain groups, 1D-SIS itself. More precisely,
we show a reduction that generic adversaries for CDH on REGAs that make classical group and
group action “queries” can solve REGA-SIS.5 We leave formally proving this equivalence as an
interesting and practically important open problem.

The Dihedral Hidden Subgroup Problem (Section 10). Childs et al. [CJS14] apply the
Dihedral Hidden Subgroup Problem (DHSP) algorithm of [Kup05] to compute isogenies between
elliptic curves. This is a special case of the folklore result that any algorithm for DHSP yields an
algorithm for DLog on regular, abelian group actions. We prove this folklore theorem.

The DHSP is the main approach for cryptanalyzing regular, abelian group actions, and no
known better general algorithm is known. However, we point out that the two are not trivially
equivalent: group actions have significant extra structure that could potentially be used for attacks
that is not exploited by the reduction to DHSP. We are not aware of this observation being explicitly
mentioned previously.

We next conjecture that, nevertheless, DHSP and regular, abelian group actions are generically
equivalent, meaning any generic algorithm for solving these group actions can be used to solve
DHSP generically. We offer some evidence of this conjecture, but leave proving or disproving it as
a fascinating open question.

2 Preliminaries

In this section we discuss background material that is used in the rest of the paper. We expect
that experienced readers can skip this section.

2.1 Min-entropy and Leftover Hash Lemma

Let Z be a discrete random variable Z with sample space Ω. Its min-entropy is

H∞(Z) = min
ω∈Ω
{− log Pr[Z = ω]}.

For two random variables Y and Z, we use H∞(Z|Y) to denote the min-entropy of Z conditioned on
Y . We will use the following lemma, which is a simplified version of the leftover hash lemma [ILL89].

Lemma 1. Let {Hs : Z → Y }s∈S be a family of pairwise independent hash functions, and Z and
S be discrete random variables over Z and S, respectively. If H∞(Z) > log |Y | + 2 log(ε−1) we
have ∆[(S,HS(Z)), (S,U)] ≤ ε, where ∆ denotes statistical distance and U denotes the uniform
distribution over Y .

We will also use the following corollary of the leftover hash lemma.

5The adversary could be quantum but is restricted to classical queries to the group and group action oracles.

6

Lemma 2. Let G be an (additive) finite abelian group such that |G| = λω(1). Let n ∈ Z such that
n > log |G|+ ω(log(λ)). If g← Gn and s← {0, 1}n, then(

g,

n∑
i=1

si · gi

)
s
≈ (g, u),

where u← G is a uniformly chosen element from G.

2.2 1D-SIS Problem

The 1D-SIS problem dates to the original work of Ajtai [Ajt96] and has been used in many cryp-
tographic applications [BV15, BKM17]. These cases use special moduli, but the case for general
moduli follows from [BLP+13], where it is shown that the 1D-SIS problem with certain parameters
but no special restrictions on the modulus is as hard as standard polynomial modulus LWE.

Definition 3. Let m, β, and q be positive integers. In the 1D-SISm,q,β problem, an adversary is
given a random vector v ← Zmq and asked to provide a vector u ∈ Zmq such that ||u|| < β. We say
that an adversary efficiently solves the 1d-SISm,q,β problem if it can provide such a vector in PPT
time.

2.3 Cryptographic Group Actions

Here we define cryptographic group actions following Alamati et al. [ADMP20], which are based
on those of Brassard and Yung [BY91] and Couveignes [Cou06].

Definition 4. (Group Action) A group G is said to act on a set X if there is a map ? : G×X → X
that satisfies the following two properties:

1. Identity: If e is the identity of G, then ∀x ∈ X, we have e ? x = x.

2. Compatibility: For any g, h ∈ G and any x ∈ X, we have (gh) ? x = g ? (h ? x).

We may use the abbreviated notation (G,X, ?) to denote a group action. We extensively consider
group actions that are regular :

Definition 5. A group action (G,X, ?) is said to be regular if, for every x1, x2 ∈ X, there exists
a unique g ∈ G such that x2 = g ? x1.

We emphasize that most results in group action-based cryptography have focused on regular
actions. As emphasized by [ADMP20], if a group action is regular, then for any x ∈ X, the map
fx : g 7→ g ? x defines a bijection between G and X; in particular, if G (or X) is finite, then we
must have |G| = |X|.

In this paper, unless we specify otherwise, we will work with effective group actions (EGAs). An
effective group action (G,X, ?) is, informally speaking, a group action where all of the (well-defined)
group operations and group action operations are efficiently computable, there are efficient ways
to sample random group elements, and set elements have unique representation. Since the focus
of this paper is on abelian group actions in a quantum world, we note that we can efficiently map
any abelian group to Zp for some integer p (see Appendix A and our discussion on KEGAs), and
all of the less obvious properties needed for EGAs follow automatically. However, the definition
of an EGA itself is a little bit tedious (and quite formal so as to properly model isogeny-based
constructions in a classical world) so we defer it to Appendix A.

7

2.4 Computational Problems

We next define problems related to group action security that are more semantically similar to
typical group-based problems than those that are traditionally used in isogeny litaterature. We
define the formal definitions that are typically used in isogenies (based on [ADMP20] in Appendix A
and compare them to our (intuitively simpler) notions of security here. We emphasize that we are
defining problems here and not assumptions because these are easier to use in reductions.

Definition 6. (Group Action Discrete Logarithm) Given a group action (G,X, ?) and distributions
(DX ,DG), the group action discrete logarithm problem is defined as follows: sample g ← DG and
x← DX , compute y = g ? x, and create the tuple T = (x, y). We say that an adversary solves the
group action discrete log problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs g.

Definition 7. (Group Action Computational Diffie-Hellman (CDH)) Given a group action (G,X, ?)
and distributions (DX ,DG), the group action CDH problem is defined as follows: sample g ← DG
and x, x′ ← DX , compute y = g ? x, and create the tuple T = (x, y, x′). We say that an adversary
solves the group action CDH problem if, given T and a description of the group action and sampling
algorithms, the adversary outputs y′ = g ? x′.

Definition 8. (Group Action Decisional Diffie-Hellman (DDH)) Given a group action (G,X, ?) and
distributions (DX ,DG), the group action DDH problem is defined as follows: sample g1, g2 ← DG
and x, z′ ← DX , compute y1 = g1 ? x, y2 = g2 ? x, and z = g1g2 ? x.

The group action DDH problem is to distinguish whether a tuple is of the form (x, y1, y2, z) or
(x, y1, y2, z

′).

Remark 2. The above definitions allow for different distributions DX on X. In particular, DX
could be uniform over X, or it could be a singleton distribution that places all its weight on a
single fixed x. Whether x is fixed or uniform potentially changes the the nature of these problems
(see [BMZ19] for an exploration in the group-based setting). Looking ahead, our reduction between
DLog and CDH will preserve x, and therefore it works no matter how x is modeled.

2.5 Instantiations of Cryptographic Group Actions

We next discuss various instantiations of cryptographic group actions and where they fall into our
definitions. We start by discussing isogenies. For more details, we refer the reader to [ADMP20],
which has an extensive discussion on the classification of various isogeny protocols into group action
definitions.

2.5.1 Isogenies that are EGAs.

CSI-FiSh [BKV19] and its derivatives/applications [DM20a] have EGA functionality and are con-
jectured to even have weak pseudorandomness. However, there have recently been some subexpo-
nential attacks on CSI-FiSh [Pei20, BS20] and current cryptosystems built from CSI-FiSh are not
particularly efficient. In fact, there are not efficient algorithms to (asymptotically) generate pa-
rameter sets for CSI-FiSh. However, if a powerful quantum computer were available, then efficient
(quantum) computation of the class group structure could be used to generate arbitrary parameter
sets for CSI-FiSh and improve efficiency.

8

2.5.2 Isogenies that are restricted EGAs (REGAs).

Recall that, in a REGA, there is a set of generators g1, . . . , g` ∈ G, and it is only known how to
efficiently compute the actions of the gi or g−1

i ; one can then compute the action of any g ∈ G

provided one has a representation of g =
∏`
i=1 g

αi
i for polynomial αi. We define REGAs formally in

Appendix A. Many of the most commonly used isogeny protocols are based on CSIDH [CLM+18],
which is a REGA. These include things like the signature scheme SeaSign [DG19] or OT proto-
cols [LGdSG21].

2.5.3 Isogenies that are not GAs.

There are many isogeny-based schemes that cannot be modeled as group actions. Examples include
SIDH [DJP14] and the recently proposed OSIDH [CK20, Onu21, DDF21]. Most isogeny-based
protocols that are not group actions are typically used for key exchange or other very simple
cryptographic applications.

Remark 3. A few very recent works [CD22, MM22, Rob22] break SIDH by showing how to solve
the discrete log problem. However, the attack crucially exploits certain extra points that are made
public in SIDH, and these points are precisely one of the reasons that SIDH is not a group action.
In particular, the the attack does not seem to apply to CSI-FISH or CSIDH, the main instantiations
of EGAs and REGAs, respectively.

2.5.4 Non-Isogeny Group Actions.

Currently all instantiations of abelian candidate cryptographic group actions that are thought to
be secure are isogeny-based [DDF21]. There have been a number of attempts to build key exchange
and other basic primitives from nonabelian groups that amount to group actions or have hardness
assumptions that can be modeled in some way as group actions [KLC+00, Sti05, SU05a], but the
proposed instantiations of these schemes have been completely cryptanalyzed [Shp08, BKT18].

We note that these candidate cryptosystems typically propose an abstract scheme and then
attempt to instantiate it with a group. We note that it is not usually the case that the abstract
schemes themselves are broken: the cryptanalysis typically works directly on the instantiations, so
it is possible that some of these protocols could be implemented securely with different choices of
groups.

There have also been some candidate nonabelian cryptographic group actions proposed [JQSY19].
While these are not known to be insecure, they have far fewer applications than abelian group ac-
tions.

3 Reducing DLog to CDH Quantumly

Let (G,X, ?) be a regular abelian group action. In Section 3.1 we explain how to extend our
reduction to non-regular abelian actions. Let x ∈ X be a fixed set element.

Theorem 9. If DLog is post-quantum hard in (G,X, ?), then so is CDH. More precisely, there exists
an oracle algorithm RA,(G,X,?)(µ, y) that runs in time poly(1/µ, log |G|) and makes poly(1/µ, log |G|)
total queries to a supposed CDH adversary A and group action (G,X, ?), such that the following
holds. If Pra,b←G
[A(a ? x, b ? x) = (ab) ? x] ≥ µ, then for any a ∈ G, Pr[RA,(G,X,?)(µ, a ? x) = a] ≥ 0.99.

9

We note that the above means that R is very slightly non-black box, in that its running time
and number of calls to A depend on the success probability µ of A. We note that any amplification
of success probability (say, from µ to 0.99) will always come with such a dependence on µ. In our
case, amplification is critical to our algorithm, and the dependence on µ would persist even if we
only wanted RA to have very small success probability. The remainder of this section is devoted
to proving Theorem 9.

Define CDH to be the function which correctly solves CDH relative to x: CDH(a ? x, b ? x) =
(ab) ? x. We will also allow CDH to take as input a vector of elements, behaving as CDH(a1 ?
x, · · · , an ? x) = (a1 · · · an) ? x. Furthermore, we will allow CDH to take as input distribution(s)
over the set X; in this case, CDH will also output a distribution.

Let a, b ∈ G be group elements, and let y = a ? x and z = b ? x. Suppose A is an efficient
(quantum) algorithm such that

q := Pr[A(y, z) = CDH(y, z)]

is a non-negligible function in the security parameter, where a and b are random elements in G,
and the probability is over the randomness of a and b and A.

Our goal is to turn A into a quantum algorithm for discrete logarithms. As a first step, we
introduce a random self-reduction for CDH. In the case of groups (as opposed to group actions),
a more powerful random self-reduction allows for amplifying the success probability on any input.
The result would be an algorithm for CDH with overwhelming success probability. In our case,
due to the restricted nature of group actions, we can only perform a more limited self-reduction.
Nevertheless, this self-reduction has useful properties.

The Basic Random Self-reduction. The random self-reduced version of A, denoted A0, works
as follows:

• On input y = a ? x, z = b ? x, choose random a′, b′ ∈ G.

• Let y′ = a′ ? y, z′ = b′ ? z.

• Run w′ ← A(y′, z′).

• Output w = (a′b′)−1 ? w′.

Note that each run of A0 runs A exactly once, and uses a constant number of group action opera-
tions. This reduction is correct since, if A is correct, then we output

w =
(
a′b′
)−1

CDH
((
a′a
)
? x,

(
b′b
)
? x
)

=
(
a′b′
)−1 (

aa′bb′
)
? x = (ab) ? x

which is the correct output for CDH. Moreover, the set elements y′, z′ are uniformly distributed
over the possible set elements.

Let D be the distribution A0(x, x). That is, we are feeding the “dummy” distribution to our
random self-reduction. While we know what the answer should be (x = CDH(x, x)), we use this
distribution to learn more about A’s behavior.

Lemma 10. Pr[x← D] = q.

Proof. Recall that D is the distribution A0 (x, x). A0 on input (x, x) calls A (a′ ? x, b′ ? x) for
random a′, b′ ∈ G. With probability q, A (a′ ? x, b′ ? x) returns (a′b′) ? x, and in this case we have
w = x as desired.

We next generalize our notation. For any y, z ∈ X where y = a ? x and z = b ? x for some
a, b ∈ G, let Dy,z be the distribution of outputs of A0(y, z).

10

Lemma 11. For every y, z ∈ X such that there exist a, b ∈ G where y = a ? x and z = b ? x,
Dy,z = CDH(y, z,D), where CDH(·, ·, ·) is the 3-way CDH function. In other words, A0(a ? x, b ? x)
is identically distributed to (ab) ?A0(x, x).

Proof. Fix a, b ∈ G. Consider the probability that A0(a ? x, b ? x) outputs w:

Pr[A0(a ? x, b ? x) = w] = Pr
a′,b′∈G

[
(
a′b′
)−1

?A((aa′) ? x, (bb′) ? x) = w]

= Pr
a′,b′∈G

[A((aa′) ? x, (bb′) ? x) = (a′b′) ? w]

= Pr
a′′,b′′∈G

[A(a′′ ? x, b′′ ? x) = (a′′b′′ (ab)−1) ? w]

= Pr[A0(x, x) = (ab)−1 ? w]

Thus, A0(a ? x, b ? x) is just the distribution A0 (x, x), but shifted by ab.

Using this “shift invariance,” we can define Dw := Dw,x = Dx,w = Dy,z, if CDH(y, z) = w.
Lemma 11 shows that Dy,z outputs CDH(y, z) with probability q. Thus, by running A0 many
times, the right answer is almost certainly amongst the list of outputs. However, to amplify the
success probability, we would need to know which of the list of outputs is the correct answer; we
cannot determine this yet.

In the following, we will take steps to remedy this issue. Throughout this section, it is instructive
to keep the following examples in mind:

1. Let g ∈ G \ {1}. A(Y, Z) outputs CDH(y, z) with probability 1/3, and g ? CDH(Y,Z) with
probability 2/3. Notice that in this case, A0 has the same distribution of outputs as A.
Also notice that taking the majority element will give the wrong answer. Thus, we cannot
immediately decide which of the outputs of A0 is the right answer just by looking at the
frequencies.

2. Let H be a subgroup of G of size 1/q. Then consider the case where A(y, z) outputs c ?
CDH(y, z), where c← H is chosen uniformly. Note that A is still correct with probability q in
this case, since c = 1H with probability q. Similar to Example 1, there is no way to identify
the correct output just by looking at frequencies.

3. SupposeH = Zlog λ
2 , which we can decompose as a chain of subgroupsHi = Zi2 withHi−1 ⊆ Hi.

A outputs c ? CDH(y, z), where c ∈ H. However, c is not uniform. Instead, i ∈ [0, log λ] is
chosen according to some probability distribution, and then c is chosen uniformly from Hi.

4. Suppose H = Zlog λ
2 . Again, A outputs c ? CDH(y, z), where c ∈ H but not uniform. Here, c

occurs with probability 1− α|c|1, where |c|1 denotes the Hamming weight of c.

Example 1. It turns out Example 1 can be handled using the shifting property from Lemma 11.
Suppose we are given a CDH challenge parameterized by (y = a ? x, z = b ? x). Basically, after
repeating many runs of A0 (y, z), we obtain two elements: w0 = (ab) ? x and w1 = (gab) ? x. In
theory, in this example we could exploit the fact that we know the probabilities with which A
outputs the correct set element and the “g-multiplied” set element, but let’s assume that we do
not know this. What can we do?

Suppose we feed these outputs back into A0, running A0 (w0, x) and A0 (w1, x) several times
each. Each of these two runs will output two distinct elements. Since w0 = (ab) ? x, Lemma 11
shows that A0 (w0, x) = Dw0 = Dy,z = A0 (y, z) as distributions. Likewise, since w1 = (gab) ? x, we
have A0 (w1, x) = A0 (g ? y, z).

11

Therefore, because A0 (w0, x) is distributed the same as A0 (y, z) and A0 (w1, x) is not, we can
effectively distinguish w0 from w1 and find the correct CDH output.

Example 2. On the other hand, Example 2 is much harder to handle. Mimicking the above, we
first run A0 several times, obtaining the list of values c ? CDH(y, z) as c ranges over H, but we
don’t know c. We can then try, for each c ? CDH(y, z), running A0(c ? CDH(y, z), x) several times,
to obtain tuples of elements. However, this will not give us any useful information: each tuple will
be exactly the same list as in the original run of A0, namely the entire set H ? CDH(y, z). The
problem is that the output distribution of A0 is invariant under action by H.

Looking ahead, we cannot improve the CDH algorithm for this example. However, this partic-
ular example gives a perfect CDH oracle relative to the group G/H acting on X/H := {H ? w :
w ∈ X}. We will use such an algorithm to solve discrete log in G/H. We can then solve discrete
logarithms in H by brute force, and then piece the two results together to solve discrete logarithms
in G.

Examples 3 and 4. In general, however, we may not get a perfect CDH oracle for H, and are
not even obviously guaranteed that the outputs lie in a small subgroup. In Example 3, consider
the distribution over i such that larger subgroups are very unlikely, but not too unlikely. For any
fixed number of queries, it could be that, with probability 1/2, all results end up in Hi, but with
probability 1/2 some of the results will end up in Hi+1. It might, a priori, not even be possible
to identify when you have all the elements from a subgroup, since “chaining” calls to A0 as we
have done above might move us outside a subgroup. So it is unclear if there is a way to always
output a consistent complete subgroup, so as to get a near-perfect CDH solver relative to G mod
this subgroup.

Next, we will gradually improve our CDH solver to resolve these difficulties.

Restricting to a small subgroup. We show how to discard some wrong outputs of A0 so that
the remaining outputs lie in a reasonably-small subgroup of G, while still guaranteeing that we
keep CDH(y, z).

We first give some notation. For any two distributions D0,D1 over X, let ‖D0 − D1‖∞ =
maxw∈X |Pr[w ← D0]− Pr[w ← D1]|. For a distribution D over X, consider sampling T elements
w1, . . . , wT from D. This vector of wi gives rise to an “empirical” distribution D̃, where the
probability of any w is just the relative frequency of w amongst the wi. Note that even though D̃
has a domain of exponential size, we can represent it by the list w1, . . . , wT , which has size T . Also
note that there are two distributions here: the empirical distribution D̃ itself, and the distribution
over empirical distributions. We denote the latter as D̃ ← DT .
We are now ready to give our next algorithm, A1(y, z):

• Let T = λ/δ2 for some parameter δ ∈ (0, 1).

• Run D̃∗ ← A0(y, z)T

• For each w in the support of D̃∗, run D̃w ← A0(w, x)T .

• Output L, the set of w in the support of D̃∗ such that ‖D̃w − D̃∗‖∞ ≤ δ/2.

We will think of λ being poly(log q), so that 2−Ω(λ) is negligible in 1/q. Note that A1 makes at
most T 2 + T = O(λ2/δ4) evaluations of A1, and hence T 2 + T evaluations of A0 and O(T 2 + T)
group action operations. In order to analyze the algorithm A1, we need to give some basic results.
First we recall the Dvoretzky-Kiefer-Wolfowitz inequality:

12

Lemma 12 ([Mas90]). For any ζ > 0 and distribution D, except with probability 2e−2ζ2T , ‖D̃ −
D‖∞ ≤ ζ, where D̃ ← DT .

In other words, the empirical distribution converges to the underlying distribution D as the
number of samples T grows large.

Now consider the distribution D = A0(x, x) from before, and the derived distributions Dw =
CDH(w,D). Let dw = ‖Dw −D‖∞.

Lemma 13. ∀y, z ∈ X, ‖DCDH(y,z) −Dy‖∞ = dz and dCDH(y,z) ≤ dy + dz.

Proof. For the equality, note that ‖DCDH(y,z) − Dy‖∞ = ‖CDH(y,Dz) − CDH(y,D)‖∞. Since
CDH(y, ·) simply permutes the elements of X—more precisely, it maps v ∈ X to a ? v where
y = a ? x—it does not affect the distance between distributions, and therefore |CDH(y,Dz) −
CDH(y,D)| = |Dz−D| = dz. For the inequality, we have dCDH(y,z) = |DCDH(y,z)−D|∞ ≤ |DCDH(y,z)−
Dy|∞ + |Dy −D|∞ = dz + dy, where we used the equality in the second to last step.

Now we prove the following general result about abelian groups. Fix an abelian group H
and a set of generators a = (a1, . . . , an). For any vector e ∈ Nn of non-negative integers, define
ae :=

∏n
i=1 a

ei
i . Let ‖e‖1 :=

∑n
i=1 |ei|. Then for any r ∈ H, we define ‖r‖ := mine∈Nn:r=ae ‖e‖1.

Lemma 14. If U = {r ∈ H : ‖r‖ ≤ ns} has size at most s, then U = H.

In other words, if the subset of H with small ‖ · ‖ is not too big, then in fact all of H has small
‖ · ‖.
Proof. Clearly U ⊆ H. In the other direction, consider a single ai. Since U has size at most s,
then so does the set {aeii : 0 ≤ ei ≤ s} ⊆ U . As there are s + 1 different possibilities for ei, there

must be e′i < ei such that aeii = a
e′i
i . Then a

e′i−ei
i = 1, and 0 < e′i − ei ≤ s. For any r ∈ H, write

r = ae. Since ai has order at most s, we can reduce each ei to an integer smaller than s without
changing r. After such a reduction, ‖e‖1 ≤ ns, and so r ∈ U . Hence H ⊆ U .

Let Lδ ⊂ G be the set of all a ∈ G such that da?x ≤ δ, and Hδ be the subgroup of G generated
by Lδ. We have the following:

Lemma 15. Let ε ∈ (0, 1] be a real number. Then if δ ≤ εq4/8, |Hδ| ≤ q−1 + ε.

Note that ε is necessary: D may output g ? x for a g in a subgroup H of size n, with q−1

negligibly smaller than n. Suppose Pr[x← D] = q and Pr[g ? x← D] is slightly less than q for all
other g. Then Hδ = H for any non-negligible δ.

Proof. We first prove that |Lδ| ≤ q−1 + ε. Note that d1G?x = dx = 0 and so 1G ∈ Lδ. From
Lemma 10, Pr[x← D] = q. Therefore, for any a ∈ Lδ,

Pr[a−1 ? x← D] = Pr[x← Da?x] ≥ Pr[x← D]− δ = q − δ,

where the inequality follows since da?x ≤ δ for a ∈ Lδ. Then

1 =
∑
a∈G

Pr[a−1 ? x← D] ≥
∑
a∈Lδ

Pr[a−1 ? x← D]

= Pr[1 ? x← D] +
∑

a∈Lδ\{1}

Pr[a−1 ? x← D] ≥ q + (|Lδ| − 1)(q − δ)

13

Solving for |Lδ| gives |Lδ| ≤ (1− δ)/(q − δ). Setting the right hand side to be ≤ q−1 + ε gives the
desired bound whenever δ ≤ εq2/(1− q + qε). Note that (1− q + qε) ≤ 1. Therefore, δ ≤ εq4/8 is
only a stronger bound on δ.

We now bound |Hδ| by applying Lemma 14 to H = Hδ and a = Lδ and s = 1/q + ε. Consider
some r = ae in Hδ. Then by iteratively applying Lemma 13,

dr?x = dCDH(a1?x,··· ,a1?x︸ ︷︷ ︸
e1

,a2?x,··· ,a2?x︸ ︷︷ ︸
e2

,a3?x,···) ≤
∑
i

eidai?x ≤
∑
i

eiδ = |e|1δ

By minimizing over all e, we have that dr?x ≤ ‖r‖δ. For U as in Lemma 14, this means that
Pr[r−1 ? x ← D] = Pr[x ← Dr?x] ≥ q − ‖r‖δ ≥ q − nsδ. Since the probabilities of each outcome
sum to at most 1, we therefore have that |U | ≤ (q − nsδ)−1. In order to satisfy the conditions
of Lemma 14, we therefore need 1/(q − nsδ) ≤ s, which is equivalent to 1 ≤ s(q − nsδ). Since
n = |Lδ| ≤ 1/q + ε, we have that this inequality is satisfied whenever δ ≤ εq4/(1 + εq)3. As
1 + εq ≤ 2, our bound of δ ≤ εq4/8 is only a stronger bound, showing that Hδ = Lδ. Our prior
bound on |Lδ| thus proves Lemma 15.

We are finally ready to analyze the algorithm A1. Let D′ be the distribution A1(x, x), and D′y,z
be the distribution A1(y, z). The next lemma follows immediately from Lemma 11:

Lemma 16. For every y, z ∈ X where y = a ? x and z = b ? x for some a, b ∈ G, D′y,z =
CDH(y, z,D′).

Thus, we define D′w := D′w,1 = D′1,w = D′y,z, if CDH(y, z) = w. We now prove:

Lemma 17. Except with probability 2(T + 1)e−δ
2T/8 + (1 − q)T ≤ 2−Ω(λ) over L ← A1(x, x), we

have that x ∈ L ⊆ Hδ ? x.

Proof. Suppose we set ζ = δ
4 . By Lemma 12, we have that |D̃?−DCDH(y,z)|∞ ≤ δ/4 and for each w

in the support of D̃?, |D̃w−Dw| ≤ δ/4, each individually except with probability at most 2e−δ
2T/8.

We also have that with probability 1− (1− q)T , x will be amongst the T samples of A1(x, x). By a
union bound, all of these happen simultaneously, except with probability 2(T +1)e−δ

2T/8 +(1−q)T .
If all of these happen, then |D̃x−D̃?| ≤ |D̃x−D|+ |D̃?−D| ≤ 2δ/4 = δ/2. Thus x ∈ L assuming

the above hold. On the other hand, for any w ∈ L, dw = |Dw − D| ≤ |D̃w − Dw| + |D̃w − D̃?| +
|D̃? − D| ≤ δ. Hence w ∈ Lδ ? x by the definition of the set Lδ, which immediately implies that
each w ∈ Hδ ? x.

As a consequence, we have that D′ has negligible support outside of Hδ ? x. Note that D′
may not be random in Hδ ? x, as the list L may not include all of Hδ ? x, and L itself may be
randomized. Indeed, in Example 4, α may be such that D and Dc?w are sufficiently close for c with
small Hamming weight, but Dc?w is far for c with large Hamming weight. Some c may even be
right on the cusp, being included in L with constant probability. The result is that the output may
not be a whole subgroup and may have entropy.

We note that by setting ε a constant and δ = εq4/8 = O(q4), we have that A1 runs in time
O(λq−8) = Õ(q−8) and makes Õ(q−8) total queries to A and the group action operations.

Filling an entire subgroup. A1 outputs a subset of Hδ?CDH(y, z), and the subset must include
CDH(y, z). We will now devise a new algorithm A2 which outputs H ? CDH(y, z), where H is a
(potentially unknown) subgroup of Hδ. We split A2(y, z) into two phases, A0

2(), which outputs the
set H ? x, and then A1

2(y, z,H ? x), which outputs the set H ? CDH(y, z). We first give A0
2():

14

• Initialize list L = {x}. Let s = q−1 + ε be an upper bound on the size of Hδ.

• Let T = sλ/τ , for a parameter τ ∈ (0, 1) to be chosen later.

• Repeat the following at least T times:

– For each pair (w,w′) ∈ L2, run Lw,w′ ← A1(w,w′)

– Let L′ = ∪w,w′Lw,w′

– If |L′| = |L| and the number of iterations so far is ≥ T , terminate and output L.
Otherwise (if the number of iterations is < T or |L′| 6= |L|), replace L with L′, and
continue.

We now analyze the algorithm L← A0
2().

Lemma 18. Except with negligible probability 2−Ω(λ), all of the following hold:

• L = H ? x for some (potentially unknown) subgroup H ⊆ Hδ.

• A0
2() will terminate in at most T + s steps.

• For the resulting H, Pr[M * H : M ← D′] < τ .

Proof. Combining Lemmas 16 and 17, we know that except with probability 2−Ω(λ), Lw,w′ will be
a list containing CDH(w,w′). Throughout the rest of the proof of Lemma 18, we will therefore
assume CDH(w,w′) ∈ Lw,w′ for all iterations and for all w,w′.

We first argue that L ⊆ L′ in every iteration, except with probability 2−Ω(λ). In particular,
since L is set to L′ at the end of each iteration, this means that L is never decreasing in size,
and once an element is added to L it will remain for the rest of the algorithm. Indeed, L initially
contains x. By induction, assume L contains x for the first i iterations, and consider computing L′

in this iteration. L′ is set to L′ = ∪w,w′Lw,w′ where Lw,w′ ← A1(w,w′) as w,w′ range over L. In
particular, since x ∈ L, L′ will contain Lw,x ← A1(w, x) for every w ∈ L. Since we assume Lw,x
contains CDH(w, x) = w, every w ∈ L will be included in L′.

Therefore, if |L′| = |L|, it must mean that L′ = L. Additionally, once we terminate, we know
that CDH(w,w′) ∈ L′ = L for every w,w′ ∈ L, meaning L is closed under CDH/multiplication once
we terminate. Hence, L forms H ?x for some subgroup H. By Lemma 17, our algorithm maintains
the invariant that L ⊆ Hδ at all times, and hence H ⊆ Hδ.

Now consider any w ∈ Hδ such that Pr[w ∈ M : M ← D′] ≥ τ/s. Then after T iterations, the
probability w never gets added to L is (1− τ/s)T = (1− τ/s)sλ/τ ≈ e−λ. Union bounding over at
most s such w, we see that all such w get added to L, except with probability at most 2−Ω(λ). In
this case, a union bound over the w such that Pr[w ∈ M : M ← D′] < τ/s, of which there are at
most s, shows that the probability of sampling any value not in H is less than τ .

We now give the algorithm A1
2(y, z, L):

• Initialize M to be an empty list of unordered sets.

• Repeat the following λ times:

– Run M ← A1(y, z).

– For each w ∈M,w′ ∈ L, run Mw,w′ ← A1(w,w′).

– Let M = ∪w,w′Mw,w′ . Add M to M (keeping duplicates).

15

• Let M∗ be the most common element in M.

We now analyze the algorithm A1
2(y, z, L).

Lemma 19. If τ ≤ 1/4(s2 + 1), then except with probability 2−Ω(λ), L = H ? x for some subgroup
H ⊆ Hδ, and M∗ = CDH(y, z,H ? x).

Proof. Define w∗ = CDH(y, z). We assume the bullets of Lemma 18 hold, which Lemma 18 shows
hold except with probability 2−Ω(λ). Therefore, L = H ? x for some subgroup H ⊆ Hδ. It remains
to show that M∗ = CDH(y, z,H ? x) = H ? w∗. By union-bounding over the s2 + 1 runs of A1 in
each iteration and invoking the last bullet of Lemma 18, the following holds: for each iteration,
except with probability at most τ × (s2 + 1) ≤ 1/4, we have that

• Mw,w′ ⊆ H ? w∗ for each w ∈M,w′ ∈ L, and therefore in particular M ⊆ H ? w∗.

• w∗ ∈M .

Provided M ⊆ H ? w∗, except with probability 2−Ω(λ), we have CDH(w,w′) ∈ Mw,w′ , and so
H?w∗ = CDH(w?,H?x) ⊆M . Therefore, M = H?w∗ with probability at least 3/4−2−Ω(λ) ≥ 2/3.
Since each iteration samples independently the distribution over M , by simple concentration bounds
H ? w? will be the majority element of M, except with probability 2−Ω(λ).

Note that A0
2 runs A1 for (T + s)|L|2 = O(|L|2λ/q3) = Õ(q−5) times, giving Õ(q−13) total

queries to A and the group action operation. Meanwhile, A1
2 runs A1 for λ|L|2 times, giving

Õ(q−10) queries to A and the group operation.
From this point on, we fix a single L← A0

2() once and for all.

Removing Superfluous Information. We will next want to run quantum period-finding algo-
rithms which make queries to A1

2 on superpositions of inputs. These algorithms, however, assume
A1

2 is a function. Unfortunately, our algorithm generates significant side information, namely all
the intermediate computations used to arrive at the final answer. Fortunately, since our algorithm
outputs a single answer with overwhelming probability, we can use the standard trick of purifying
the execution of A1

2 and then un-computing all the intermediate values. The result is that A1
2 is

negligibly close to behaving as the function mapping (y, z) 7→ H ?CDH(y, z). From now on, we will
therefore assume that A1

2 is such a function.

Computing H. Given algorithm A1
2, we can compute the subgroup H using quantum period-

finding [BL95]. Concretely, the function a 7→ A1
2(a ? x, x, L) will output (aH) ? x, which is periodic

with set of periods H. Therefore, applying quantum period finding to the procedure a 7→ A1
2(a ?

x, x, L) will recover H. This will make O(log |G|) calls to A1
2(a ? x, x, L).

Solving DLog in G/H. Notice that A1
2 is a (near) perfect CDH-solver, just in the group action

corresponding to G/H. Concretely, the group G/H acts on the set X/H := {H ? y : y ∈ X} in
the obvious way; the distinguished element of X/H is H ? x. Our algorithm A1

2 gives a perfect
CDH algorithm for this group action: we compute CDH(H ? y,H ? z) as A1

2(y′, z′) for an arbitrary
y′ ∈ H ? y, z′ ∈ H ? z.

We apply Galbraith et al. [GPSV18] to our CDH adversary for (G/H, X/H) to obtain a DLog
adversary B(gH ? x) which computes gH. For completeness, we sketch the idea: Let a be a set of
generators for G/H. Since G is abelian, we can write any g as av for some vector v ∈ Zn1×· · ·×Znk
where ni is the period of ai. We assume the ni are fully reduced, so that the choice of v is unique.

16

Shor’s algorithm is used in this step, and we note that Shor’s algorithm will not necessarily work
if G is not abelian and our group action is not regular, which is why we need this restriction.

The CDH oracle allows, given h ? (H ? x), to compute hy ? (H ? x) in O(log y) steps using
repeated squaring. Given a DLog instance g ? (H ? x) = av ? (H ? x), we define the function
(x, y) 7→ ax+yv ? (H ? x), which can be computed using the CDH oracle. Then this function is
periodic with period (v,−1). Running quantum period-finding therefore gives v, which can be
used to compute h.

Solving DLog in G. We now have an algorithm which solves, with overwhelming probability,
DLog in G/H. We now turn this into a full DLog adversary, which works as follows:

• Given y = c ? x, first apply the DLog adversary for G/H, which outputs cH.

• For each a ∈ cH (which is polynomial sized), test if y = a ? x. We output the unique such a.

Overall, assuming q is small relative to log |G|, the running time of the algorithm is dominated
by the cost of running A0

2, namely Õ(q−13) total calls to A and the group action operations.

Remark 4. The dependence on q in our reduction is not ideal. The cost of our attack, however,
is dominated by the cost of determining the subgroup. Typically, however, we expect the possible
small-order subgroups to be known, and for there to only be a very limited number of options. In
this case, we expect the complexity of our attack could be drastically improved.

3.1 Extending to Non-Regular Group Actions

The above assumed a regular group action, which captures all the cryptographic abelian group
actions currently known. Here, we briefly sketch how to extend to an arbitrary abelian group
action. The idea is that, within any ablelian group action, we can pull out a regular group action,
and then apply the reduction above.

Concretely, we first consider restricting (G,X, ?) to the orbit of x under G, namely G ? x. Let
S ⊆ G the the set of a that “stabilizes” x, namely a ? x = x. Then S is a subgroup. Moreover, for
any y ∈ G ? x, the set of a that stabilize y is also exactly S.

The first step is to compute the (representation of the) subgroup S. Let f : G→ X be defined
as f(a) = a?x. Then f is an instance of the abelian hidden subgroup problem with hidden subgroup
exactly S. Therefore, we can find S using Shor’s quantum algorithm.

Then we can define the new group action (G/S,G ? x, ?), which is a regular abelian group
action. CDH in this group action is identical to CDH in the original group action, in that a CDH
adversary for one is also a CDH adversary for the other. We can also solve DLog in (G,X, ?) by
solving DLog in (G/S,G ? x, ?), and then lifting a ∈ G/S to a′ = (a, g) ∈ G for an arbitrary g ∈ S.

The main challenge is that our CDH adversary A may not always output elements in G?x, and
it may be infeasible to tell when it outputs an element in G?x versus a different orbit. Nevertheless,
the same reduction as used above applies, and the analysis can be extended straightforwardly but
tediously to handle the fact that A may output elements in different orbits. The rough idea is that
L outputted by A1 may no longer be a subset of Hδ ? x, as it may have pieces from elements from
different orbits. But L ∩G ? x is still a subset of Hδ ? x, and similar statements hold for A0

2,A1
2 as

well. This is enough to ensure that we obtain a near-perfect CDH algorithm on (G/S)/H.

17

4 On the DDH and CDH (In)equivalence

A natural question to ask is whether we can show that the group action variants of CDH and DDH
are equivalent. In traditional groups, there are a number of ways to argue that CDH and DDH are
not equivalent, including by positing the existence of bilinear maps [BF01].

We show that for general group actions, the problems are also not equivalent. We do this by
providing examples of group actions where “CDH” is hard and “DDH” is easy. In particular, we
show that any group action where the group can be written as a non-trivial product group has the
potential to be “CDH” hard but not “DDH” hard. This mirrors what we know classically and in
the plain group setting, since there we can have groups that are CDH hard but not DDH hard. We
state this formally in the following lemma.

Lemma 20. Let (G,X, ?) be an effective group action as defined in definition 42 such that no
efficient adversary can solve the group action CDH problem (as defined in definition 7) over it. Then
there exists a group action (G′, X ′,F) where no efficient adversary can solve the CDH problem, but
there exists a PPT algorithm for solving the group action DDH problem (as defined in definition 8).

Proof. Consider some extra group G̃. We can define a “group action” G̃ × G̃ → G̃ where the
group action operation is simply group multiplication in G̃. Discrete log is trivial on this group
since group inversion is efficient.

From our secure group action (G,X, ?) and our insecure “group action,” we construct another
group action (G′, X ′,F) which we define as follows:

G′ = G× G̃

X ′ = X × G̃

F :
{
G× G̃

}
×
{
X × G̃

}
→
{
X × G̃

}
For some g ∈ G, x ∈ X, g̃1, g̃2 ∈ G̃, we define the action as follows:

{g, g̃1}F {x, g̃2} = {g ? x, g̃1g̃2}

Note that this definition meets all of the requirements of the group action. G × G̃ is a (product)
group, and all of the group action axioms hold.

We can immediately build a PPT distinguisher: given a DDH tuple
(x′1 = (x, g̃1) , g′ ? x′1 = (g ? x1, g̃g̃1) , x′2 = (x, g̃2) , g′ ? x′2 = (g ? x2, g̃g̃2)), we can perform the follow-
ing check:

(g̃g̃2)−1 (g̃g̃1) = g̃−1
2 g̃1

This immediately breaks the pseudorandomness of the group action, meaning that the group action

DDH problem is not hard over
(
G̃, X̃,F

)
. However, any adversary that breaks the group action

CDH problem on
(
G̃, X̃,F

)
also breaks it on (G,X, ?), which contradicts our assumption that the

CDH problem is hard on this group action.
In the above example, we used a product group. A nice question is as follows: what happens

if we assume that the group must be, say, prime-order cyclic? This case is much harder to show
interesting results since we don’t have efficiently computable bilinear pairings as in the standard
group setting.

18

5 A Generic Group Action Framework

In this section, we define a generic group action framework. We create two models: one for
classical queries, and one which allows quantum queries. Our framework is based on the generic
group framework of Shoup [Sho97]. We borrow from Shoup’s description in our own explanation
below.

Let G be a group of order n, let X be a set that is representable by bit strings of length m,
and let (G,X, ?) be a group action. We define additional sets SG and SX such that they have
cardinality of at least n and 2m, respectively. We define encoding functions of σG and σX on SG
and SX , respectively, to be injective maps of the form σG : G→ SG and σX : X → SX .

A generic algorithm A for (G,X, ?) on (SG, SX) is a probabilistic algorithm that behaves in the
following way. It takes as input two encoding lists (σG (g1) , ..., σG (gk)) and (σX (x1) , ..., σX (xk′))
where each gi ∈ G and xi ∈ X and where σG and σX are encoding functions of G on SG and X on
SX , respectively. As the algorithm executes, it may consult two oracles, OG and OX .

The oracle OG takes as input two strings y, z representing group elements and a sign “+” or
“–”, computes σG

(
σ−1
G (y)± σ−1

G (z)
)
. The oracle OX takes as input a string y representing a group

element and string z representing a set element, and computes σX
(
σ−1
G (y) ? σ−1

X (z)
)
. As is typical

in the literature, we can force all queries to be on either the initial encoding lists or the results of
previous queries by making the string length m very long. We typically measure the running time
of the algorithm by the number of oracle queries.

We can also extend the generic group action model to the quantum setting, where we allow quan-
tum queries to the oracles. We model quantum queries in the usual way: OG

∑
y,z,±,w αy,z,±,w|y, z,±, w〉 =∑

y,z,±,w αy,z,±,w|y, z,±, w ⊕ OG(y, z,±)〉 and OX
∑

y,z,w αy,z,w|y, z, w〉 =
∑

y,z,w αy,z,w|y, z, w ⊕
OX(y, z)〉.

6 On REGAs

Our reductions showing the equivalence of group action DLog and CDH unfortunately only hold
for EGAs and not for REGAs. In their work showing an equivalence for a perfect oracle [GPSV18],
Galbraith et al. suggest that applying the BKZ algorithm [SE94] or other lattice reduction tech-
niques can be used to complete the reduction. In this section, we formalize this idea with a number
of resuts on the relationship between REGAs and lattices, and, in particular, focus on the 1D-SIS
problem, which is a lattice problem that is equivalent to the standard form of LWE modulo PPT
reductions. Due to space constraints, we only state the relevant lemmas in this section and defer
proofs to the appendix. We present the full, unabridged version of this section as well as the formal
definitions related to REGAs in full in the appendix.6

In this section, we will rely on the fact that, using a generalization of Shor’s algorithm [CM01],
we can (quantumly) efficiently compute the isomorphism between any abelian group G and a
product group over groups of the integers

G ∼= Z1 × ...× Zm.

We additionally note that most of our results here only hold for regular group actions. We do
not consider this a major drawback since all popular REGAs (e.g. CSIDH and its derivatives) are
regular REGAs.

6While this results in some duplication, we find that it makes for much easier reading.

19

A “1D-SIS Oracle” Completes the DLog/CDH Reduction for REGAs. We begin by
formalizing the argument from Galbraith et al. [GPSV18] that efficient lattice reductions could be
used to show the discrete log/CDH equivalence of REGAs. While doing this in full would involve
completely replicating our earlier proof, we simply point out at which stages using a REGA makes
a difference and how we can handle these points.

We first need to ensure that we can randomly sample elements from a REGA. We define a
notion of “sampleable REGA” capturing this:

Definition 21. Sampleable REGA: Let (G,X, ?) be a REGA with group element vector g =
(g1, ...,gm) for some m. We say that such a REGA is sampleable if there exists an efficient way
to sample a vector b ∈ {−γ, γ}m for some polynomial γ such that the vector r =

∑m
i=1 bigi is

distributed statistically close to uniform over G.

This requirement essentially just requires that some form of the leftover hash lemma applies over
the group with the action-computable elements as the “base.” We note that many cryptosystems
build on REGAs (i.e. those using CSIDH) implicitly make this assumption. We need this to rule
out cases where the elements of g are too clustered: for instance, if G is Zp and all of the gi are
small integers, we will not be able to effectively compute the group action on randomly distributed
group elements. Next, we define a specialized problem we call “REGA-SIS.” Note that this is not
a standard problem because, among other things, the gi distribution comes from the definition of
the REGA.

Definition 22. REGA-SIS: Let (G,X, ?) be a REGA with group element vector g = (g1, ...,gm)
for some m. We define SISREGA,β in the following way: given a random element h ← G, the
problem is to find some vector u ∈ [−β, β]m such that h =

∑m
i=1 uigi.

This problem is parameterized by the REGA and, in particular, by both the group and the
computable elements. Furthermore, for G = Zq and when each coefficient of g is distributed
uniformly at random, REGA-SIS is exactly the 1D-inhomogeneous SIS (1D-ISIS) problem (which
is reducible to standard 1D-SIS with a slight loss in parameters, and 1D-SIS itself is again reducible
to and from standard LWE, for appropriate parameter settings). So this problem can be viewed as
a slightly unnatural generalization of SIS. We can now state our core lemma on REGAs.

Lemma 23. Consider any efficiently sampleable REGA as defined in definition 32. Then any
adversary that can solve the CDH problem on the REGA with advantage ε1 and the SISREGA,β
problem for the same REGA and some polynomial β with advantage ε2 can be used to solve the
discrete log problem on the same REGA with advantage ε1ε2.

Discrete Log on REGAs and 1D-SIS. Recall from Definition 43 that a REGA is a group
action (G,X, ?) where the action is only computable on a set of group elements defined by a vector
g = (g1, . . . , gn). Suppose that G is an abelian group. We claim that if these group elements are
distributed randomly, then any adversary that can solve discrete log on the REGA can be used to
solve the 1D-SIS problem for certain parameter settings (which are all reducible to some form of
standard LWE). The analysis of most practical REGAs (e.g. CSIDH) assume follow this convention,
so this is not an unreasonable assumption to make. We formalize this with the following lemma.

Lemma 24. Let q and m be integers such that m ≥ 3 log q. Let A be an adversary that can solve
the group action DLog problem on regular REGAs of the form (Zq, X, ?) where the vector of group
elements g = (g1, ..., gm) is m elements long and distributed uniformly at random with advantage
ε. Then A can be used to solve the 1D-SISm,q,β problem for some polynomial β with advantage ε.

20

CDH on REGAs. We above showed that an adversary that can solve discrete log on a REGA
can solve a variant of the SIS problem, and that any adversary that can solve this SIS variant
can also be used to complete the CDH/DLog reduction. Can we tie all of this together to get an
unconditional CDH to DLog reduction to work for REGAs?

We give some mild evidence in this direction. We can show that any generic adversary that
makes only classical queries to a generic group action oracle (that may still be able to perform quan-
tum computations) can be used to solve the REGA-SIS problem we defined above in Definition 33.
We can then use this to complete the CDH to DLog reduction for generic, classically-querying ad-
versaries. Of course, classically we can prove CDH and DLog are unconditionally hard (this follows
from the unconditional hardness of these problems in plain groups), and therefore equivalent. But
phrasing the equivalence as a reduction suggests a possible starting point for a quantum equivalence

Lemma 25. Consider some regular, abelian, and efficiently sampleable REGA (G,X, ?) with com-
putable elements g = (g1, ...,gm). Suppose there exists a generic adversary making only classical
group and group action queries that can solve the GA-CDH problem on this REGA with advantage
ε. Then there exists an adversary that can solve REGA-SIS for some polynomial parameter β with
advantage ε/2.

Discussion. We have shown three core results on REGAs (stated informally): an adversary for
our REGA-SIS problem would complete our CDH/DLog reduction for REGAs, an adversary for
DLog on REGAs solves this REGA-SIS problem, and a generic adversary that only makes classical
queries that can solve CDH on REGAs can be used to solve REGA-SIS as well. All together,
these seemingly tightly bind CDH and DLog on a REGA to a SIS-like problem that appears to
be vulnerable to lattice-based cryptanalysis [GPSV18]. We therefore provide some evidence for a
quantum DLog-CDH equivalence on REGAs.

7 Hidden Subgroup Problems and GAs

In this section, we discuss some similarities between different kinds of hidden subgroup problems
(HSPs) and solving group actions. We particularly focus on the generalized dihedral group. We
note that, among other things, formalizing a connection between group actions and these kinds
of problem would allow us to potentially tie two of the most popular forms of post-quantum
cryptosystems (lattices and isogenies) together. Once again, due to space constraints, we just
state lemmas here and defer the full presentation to the appendix.

The Generalized Dihedral Hidden Subgroup Problem. We begin by defining the general-
ized dihedral group.

Definition 26. Generalized Dihedral Group: Let A be an abelian group. The generalized
dihedral group on A, denoted DA, is the group defined by Z2 nA.

When A ∼= Zn, we get back the standard notion of the dihedral group on 2n elements. The
dihedral group has a number of nice geometric explanations and properties, but we defer those to
others [KLG06]. We next define the general dihedral hidden subgroup problem. However, rather
than defining this problem in its traditional sense, we will use an equivalent formulation known as
the abelian hidden shift problem. These problems are well known to be equivalent [CVD05].

Definition 27. Abelian Hidden Shift Problem (equivalent to GDHSP): Consider some
functions f, g such that, for some c ∈ A and for all b ∈ Zn, f(b) = g (b+ c). We also require

21

that each of the ||A|| output values of f and g are also distinct. We say that an algorithm solves
the abelian hidden shift problem if, given descriptions of f and g, it outputs c (which reveals the
subgroup in the generalized dihedral hidden subgroup version of the problem).

The dihedral hidden subgroup problem has strong connections to lattice problems [Reg02], in
that if an efficient algorithm for the DHS problem that uses a special type of “coset sampling”
exists, then an efficient algorithm for the LWE problem exists as well. The best known algorithms
for solving the DHS problem are subexponential and based on Kuperberg’s algorithm [Kup05,
Reg04, Kup13].

An Algorithm for the AHSP Breaks Regular, Abelian Group Actions. We first show a
relatively straightforward result: any algorithm that can solve the abelian hidden shift problem can
be used to solve DLog on a regular, abelian group action. This is essentially already folklore since
there have been many instances (starting with [CJS14]) using Kuperberg’s algorithm or related
principles to build attacks against isogenies that can be modelled as EGAs.

Lemma 28. Let (G,X, ?) denote a regular, abelian group action. Suppose there exists a PPT
algorithm A for solving the abelian hidden shift problem on A with probability ε. Then there exists
for solving the GA-DLog problem on (G,X, ?) with probability ε.

Using Group Action Algorithms to Solve the AHSP. What about the other direction?
Can we show that an adversary that can break DLog on a group action can solve the AHSP?
Unfortunately, this seems difficult: because the AHSP is described so generally–the functions f
and g can be anything as long as the functions are injective–so it seems difficult or impossible to
prove this for any non-generic algorithm.

But what about generic algorithms? Could we prove that the AHSP is equivalent to generically
solving DLog over group actions? This seems like it might be plausible. The most interesting result
would show equivalence in a generic group action model with quantum queries. While this may be
attainable, unfortunately we do not know how to achieve this result. However, we can show that
an adversary that can generically solve group action DLog with classical queries can be used to
solve the AHSP, which is seemingly a step in the right direction. We formalize this result below.

Lemma 29. Let (G,X, ?) be an abelian, regular group action (EGA). Suppose there exists a generic
adversary A that breaks the group action DLog problem (as defined in definition 6) with advantage
ε on this group action. Then there exists an algorithm that solves that AHSP on G with advantage
ε.

Discussion. Unfortunately, it seems difficult to show a full quantum equivalence between the
generalized dihedral hidden subgroup problem and solving DLog on a generic group action. The
challenge comes from the fact that it is difficult quantumly to “remember” an adversary’s query for
later use in the simulation. One possible direction is to use compressed oracles [Zha19], which offer
some ability to record quantum queries. However, it appears challenging to adapt the compressed
oracle framework to highly structured oracles such as generic group actions. Nevertheless, we close
this section with the following conjecture, which we think is very interesting future work:

Conjecture 30. The generalized dihedral hidden subgroup problem on an abelian group A is equiv-
alent to the group action discrete logarithm problem on a regular, abelian group action (A,X, ?) in
a quantum generic model.

22

8 Group Actions Beyond Isogenies?

The main candidate group actions are those from isogenies. However, just as cryptography from
groups transitioned from focusing primarily on multiplicative groups of finite fields to considering
additional groups such as elliptic curves, we anticipate cryptographic group actions to be broadly
more applicable. In such a case, our reduction will be quite useful, as it means that quantum
cryptanalytic effort can focus on increasing confidence in DLog, which would immediately translate
to confidence in CDH.

Next, we discuss how group actions naturally arise implicitly in several other proposals, and
what implications (if any) our reduction has in these settings.

8.1 Stickel’s Key Exchange Protocol

In [Sti05], Stickel proposed a new paradigm for key exchange. We can define Stickel’s protocol in
a general form as follows:

Definition 31. Stickel’s Key Exchange Protocol: let G be a nonabelian group, and let g, h ∈ G
be public elements with order N and M , respectively. Let u ∈ G be an additional element. The key
exchange proceeds as follows:

• Alice picks a1 ∈ ZN and a2 ∈ ZM uniformly at random, computes sa = ga1uha2 and sends sa
to Bob.

• Bob picks b1 ∈ ZN and b2 ∈ ZM uniformly at random, computes sb = gb1uhb2 and sends sb
to Alice.

• Alice receives sb and computes K = ga1sbh
a2 = ga1+b1uha2+b2.

• Bob receives sa and computes K = gb1sah
b2 = ga1+b1uha2+b2.

Both parties use K as their shared key.

While it was not observed in the original line of work, we note that Stickel’s protocol can, in
fact, be viewed as an abelian group action. Let the set X be defined to be all possible group
elements of the form giuhj for i ∈ [0, N − 1] and j ∈ [0,M − 1]. Let G′ be defined as the group
G′ = ZN × ZM . We can define the operation ? : G′ ×X → X in the following way:

(a, b) ? gxuhy = ga+xuhb+y

Then (G′, X, ?) is an abelian group action, even though G itself is not abelian. Moreover, Stickel’s
protocol can be seen as an instantiation of the most primitive form of key exchange from an abelian
group action: to complete the key exchange, Alice and Bob sample some g′a, g

′
b ∈ G′, compute g′a ?x

and g′b ? x for “base set element” x (in this case, the set element corresponding to the identity
element in the group), and then compute the final key as g′a ? (g′b ? x) = g′b ? (g′a ? x).

Instantiation. Stickel instantiates the above protocol with matrix groups, where g, h, u are ma-
trices. Unfortunately, Shpilrain [Shp08] used a clever re-linearization trick to compute the shared
key for this instantiation.

23

Implications of our Reduction. When viewing Stickel’s protocol as a group action, Shpilrain’s
attack exactly solves the CDH problem. However, the attack does not explicitly recover the user’s
secret keys. Our reduction shows how to use Shpilrain’s attack to do exactly this. The result is that
we obtain a quantum algorithm which computes a1, a2 from ga1uha2 , where g, h, u are matrices.

Though Stickel’s protocol is insecure for matrix groups, it may be secure in other non-abelian
groups. Our reduction proves the security of the key agreement protocol based on the hardness of
computing Alice or Bob’s individual keys.

8.2 Other Protocols: Non-abelian Group Actions

Some non-commutative key exchange protocols are based (implicitly or explicitly) on the decom-
position search problem (DSP), formally defined by [SU05b]: given two subgroups A,B ⊆ G of a
non-abelian group G and elements u,w ∈ G, find a ∈ A, b ∈ B such that aub = w. Examples of
such protocols include [KLC+00, SU05b, SU05a]. The precise instantiations of these protocols are
considered insecure [BKT14], but the generic frameworks may still be useful. All these protocols
correspond to a group action: A×B acts on G by (a, b)∗u = aub. Then DSP is exactly DLog in this
group action. However, because A,B are in general non-abelian, the group action is non-abelian.

In these protocols, Alice and Bob send aub and a′ub′ respectively. The decomposition search
problem/DLog corresponds to computing their individual secrets. The actual security of the pro-
tocols are not known to be reducible to this problem, analogous to standard groups and isogenies.
Unfortunately our reduction says nothing about this setting since the group action is non-abelian.

9 On REGAs

Our reductions showing the equivalence of group action DLog and CDH unfortunately only hold
for EGAs and not for REGAs. In their work showing an equivalence for a perfect oracle [GPSV18],
Galbraith et al. suggest that applying the BKZ algorithm [SE94] or other lattice reduction tech-
niques can be used to complete the reduction. In this section, we formalize this idea with a number
of resuts on the relationship between REGAs and lattices, and, in particular, focus on the 1D-SIS
problem, which is a lattice problem that is equivalent to the standard form of LWE modulo PPT
reductions.

In this section, we will rely on the fact that, using a generalization of Shor’s algorithm [CM01],
we can (quantumly) efficiently compute the isomorphism between any abelian group G and a
product group over groups of the integers

G ∼= Z1 × ...× Zm.

We additionally note that most of our results here only hold for regular group actions. We do
not consider this a major drawback since all popular REGAs (e.g. CSIDH and its derivatives) are
regular REGAs.

9.1 A “1D-SIS Oracle” Completes the DLog/CDH Reduction for REGAs

We begin by formalizing the argument from Galbraith et al. [GPSV18] that efficient lattice reduc-
tions could be used to show the discrete log/CDH equivalence of REGAs. While doing this in full
would involve completely replicating our earlier proof, we simply point out at which stages using a
REGA makes a difference and how we can handle these points.

We first need to ensure that we can randomly sample elements from a REGA. We define a
notion of “sampleable REGA” below that enables us to sample random elements.

24

Definition 32. Sampleable REGA: Let (G,X, ?) be a REGA with group element vector g =
(g1, ...,gm) for some m. We say that such a REGA is sampleable if there exists an efficient way
to sample a vector b ∈ {−γ, γ}m for some polynomial γ such that the vector r =

∑m
i=1 bigi is

distributed statistically close to uniform over G.

This requirement essentially just requires that some form of the leftover hash lemma applies over
the group with the action-computable elements as the “base.” We note that many cryptosystems
build on REGAs (i.e. those using CSIDH) implicitly make this assumption. Next, we define
a specialized problem we call “REGA-SIS.” Note that this is not a standard problem since the
elements are not parameterized distributionally.

Definition 33. REGA-SIS: Let (G,X, ?) be a REGA with group element vector g = (g1, ...,gm)
for some m. We define SISREGA,β in the following way: given a random element h ← G, the
problem is to find some vector u ∈ [−β, β]m such that h =

∑m
i=1 uigi.

This problem is parameterized by the REGA and, in particular, by both the group and the
computable elements. Furthermore, for G = Zq and when each coefficient of g is distributed
uniformly at random, REGA-SIS is exactly the 1D-inhomogeneous SIS (1D-ISIS) problem (which
is reducible to standard 1D-SIS with a slight loss in parameters, and 1D-SIS itself is again reducible
to and from standard LWE, for appropriate parameter settings). So this problem can be viewed as
a slightly unnatural generalization of SIS.

We can now state our core lemma on REGAs.

Lemma 34. Consider any efficiently sampleable REGA as defined in definition 32. Then any
adversary that can solve the CDH problem on the REGA with advantage ε1 and the SISREGA,β
problem for the same REGA and some polynomial β with advantage ε2 can be used to solve the
discrete log problem on the same REGA with advantage ε1ε2.

Proof. Rather than recreate our entire previous proof, we mention parts of the reduction that
would be affected by the use of a REGA and point out how the reduction can be modified to still
work. There are two points we need to address where we use properties of an EGA that are not
also properties of a REGA:

Sampling random elements. We need to ensure that we can sample (statistically close to)
uniform random elements in our reduction. Because we are using a sampleable REGA, we know
that this can be done efficiently.

Solving the final Dlog. Like the original work of Galbraith et al. [GPSV18], assuming we have
efficient sampleability, our algorithm will work for REGAs until the very last stage. At this point,
we will be given some h ∈ G such that h is the correct discrete logarithm. However, we will not
be given a description of how to “reach” h using the vector of group elements g, and thus we will
have not solved Dlog over the REGA; it is required that we output an efficiently computable Dlog
solution in order to solve the Dlog problem.

To rectify this, suppose we are given some h ∈ G and wish to write it in the form h =
∑m

i=1 uigi
for some u ∈ Zmq where each ui ∈ [−β′, β′].7 We first use the REGA sampling algorithm to generate
a random h′ ∈ G for which we know the decomposition in terms of g, and then send hh′ to the
SISREGA,β adversary. The adversary responds with some u′ ∈ Zm with each ||ui|| ≤ β. We
can then use the decomposition from the sampling algorithm and u′ to determine an appropriate
solution for u with coefficients bounded by β + β′, giving us the desired solution.

7We intentionally leave β and β′ here “polynomial” rather than quantify them due so we do not have to quantify
the effectiveness of the sampling algorithm.

25

9.2 Discrete Log on REGAs and 1D-SIS

Recall from definition 43 that a REGA is a group action (G,X, ?) where the action is only com-
putable on a set of group elements defined by a vector g = (g1, . . . , gn). Suppose that G is an
abelian group with order q. We claim that if these group elements are distributed randomly when
we map the group to Zq, then any adversary that can solve discrete log on the REGA can be used
to solve the 1D-SIS problem for certain parameter settings (which can all be reducible to some
form of standard LWE). We note that most practical REGAs (e.g. CSIDH) assume that these ele-
ments are distributed randomly for their applications without proof, so this is not an unreasonable
assumption to make.

We formalize this below in the following lemma.

Lemma 35. Let q and m be integers such that m ≥ 3 log q. Let A be an adversary that can solve
the group action DLog problem on regular REGAs of the form (Zq, X, ?) where the vector of group
elements g = (g1, ..., gm) is m elements long and distributed uniformly at random with advantage
ε. Then A can be used to solve the 1D-SISm,q,β problem for some polynomial β with advantage ε.

Proof. Suppose we are given a 1D-SIS challenge instance consisting of uniformly random vector
v ∈ Zmq . We must use A to compute some vector u ∈ Zm such that u ·v = 0 mod q and ||u|| ≤ β.
We set G = Zq and g = (v1, ...,vm).

To create a DLog challenge, we sample a random binary string b ∈ {0, 1}m and compute
h =

∑m
i=1 bi ∗ vi. By lemma 2 (a corollary of the leftover hash lemma), we know that h is

distributed uniformly at random in G. Note that we can also efficiently compute h ? x for any set
element x ∈ X because we can decompose h using the elements of g.

So, suppose we sample some x ← X uniformly at random, compute y = h ? x, and then send
the tuple ((G,X, ?,g) , x, y) to the adversary A. In order to solve discrete log on the REGA, A
must produce some vector u′ ∈ Zm such that for h′ =

∑m
i=1 ui ∗ gi, h

′ ? x = h ? x. Since we
are assuming our group action is regular, we have h = h′ by definition, and thus (u′ − u) · v = 0
mod q. Since m ≥ 3 log q, we can again apply lemma 2 to argue that there will be many binary
subset sums evaluating to h, and thus the adversary is unlikely to pick u = u′. Moreover, since A
is polynomially bounded, it must be only able to compute the group action a polynomial number
of times, and thus u′ must have polynomially bounded coefficients.8 Therefore u− u′ is a solution
to the SIS problem for polynomial β, which completes the reduction. Note that our reduction is
direct, so the advantage ε is preserved.

9.3 CDH on REGAs

We have previously showed that an adversary that can solve discrete log on a REGA can solve a
variant of the SIS problem, and that any adversary that can solve this SIS variant can also be used
to complete the CDH/DLog reduction. Can we tie all of this together and somehow get a CDH to
DLog reduction to work for REGAs? This seems difficult because, unlike a DLog adversary that
must give us the raw “multipliers for the group elements,” a CDH adversary only has to provide
set elements. On the other hand, if we force an adversary to be generic–and thus we can learn the
queries and “multipliers” through queries to the generic oracle–could we possibly show a reduction?

Unfortunately, even in the case of a generic algorithm, the answer is currently no for us, but we
can prove a sort of consolation prize. Namely, suppose we assume a classical generic group action
(we aren’t allowed to make superposition queries). Then we can show that any generic adversary

8If A could somehow compute the group action more efficiently–i.e. compute “powers” of elements of g in some
way more efficient than brute force–then the computational model would be outside the scope of a REGA.

26

that makes classical queries to the group action oracle (that may still be able to perform quantum
computations) can be used to solve the REGA-SIS problem we defined above in definition 33.
We can then use this to complete the CDH to DLog reduction for generic, classically-querying
adversaries. Of course, classically we can prove CDH and DLog are unconditionally hard (this
follows from the unconditional hardness of these problems in plain generic groups), and therefore
equivalent. But phrasing the equivalence as a reduction suggests a possible starting point for a
quantum equivalence.

Lemma 36. Consider some regular, abelian, and efficiently sampleable REGA (G,X, ?) with com-
putable elements g = (g1, ...,gm). Suppose there exists a generic adversary making only classical
group and group action queries that can solve the GA-CDH problem on this REGA with advantage
ε. Then there exists an adversary that can solve REGA-SIS for some polynomial parameter β with
advantage ε/2.

Proof. In this proof, we will need to simulate a generic group action oracle (with classical queries).
We begin by explaining this. We will assume the existence of two random oracles RO1, RO2 : G→
{0, 1}` such that 2` > ||X||2. The reason for the length is to ensure that, with all but negligible
probability, there are no collisions in the random oracle.9 We will simulate terms in a way that
should be very familiar for a reader who is familiar with generic group models.

Generic Simulation. In order to simulate the group, we will maintain a list of queries of the form
(gi, g̃i) for g̃i ∈ {0, 1}`. Initially, we will add (gI , RO1 (gI)) to the table, and RO1 (gI) will represent
the identity element. Then, for each gi ∈ g, we add the tuples (gi, RO1 (gi)) and

(
g−1
i , RO1

(
g−1
i

))
to the table as well, giving access to the computable elements.

When an adversary makes a query of the form
(
h̃, h̃′,+

)
or
(
h̃, h̃′,−

)
, we will look up x in

our table and find the entries
(
h, h̃

)
and

(
h′, h̃′

)
. We know that such an entry must exist because

our algorithm is generic. Then we add the appropriately signed entry (h± h′, RO1 (h± h′)) to our
table and return RO1 (h± h′).

In order to simulate the set elements and group action computation queries, we will maintain a
list of queries of the form (gi, x̃i). Initially, we will add (gI , RO2 (gI)) to the table, and RO2 (gI) will

be our “base point.” When an adversary makes a query of the form
(
h̃, x̃

)
we will first look up h̃

in our table of group elements and recover the tuple
(
h, h̃

)
. Then we will look up x̃ in our set table

and recover the tuple (g, x̃). We will then add (hg,RO1 (hg)) to our group table and (hg,RO2 (hg))
to our set table, and return RO2 (hg). Since we are using a REGA, our oracle should reject any
group action computation queries that do not involve one of the elements gi.

CDH Proof. Now, suppose we are given a REGA-SIS instance consisting of a vector g ∈ Gm
and a target element g∗ ∈ G. We set up our simulation as discussed before using a description of G
and g. We use the efficient sampleability of the REGA to generate some vector b ∈ Zm and some
element h =

∑m
i=1 bigi which is distributed uniformly at random. We then sample some random

r ← G in a similar way to h such that we know the decomposition in terms of g.
Define the group elements y0 = h, y1 = h+ g∗ + r, and note that the tuple (x0, y0 ? x0, y1 ? x0)

is distributed uniformly at random from the set elements (as required by the statement of the
CDH adversary). Moreover, note that y0 + y1 = g∗ + r. Finally, note that we do not know the

9Note that the set size and group order are the same in a regular group action.

27

decomposition of g∗ into proper sums of gi terms, but we get around this because the random
oracle hides whether or not we have knowledge of the decomposition or not.

Suppose we give a generic adversary that only makes classical queries the tuple (x0, y0 ? x0, y1 ? x0)
and access to the generic group action oracle. The adversary must output (y0 + y1) ? x0 =
(g∗ + r) ? x0. Since set elements cannot be combined in any way, to do this, the adversary must
star wtih one set element in the tuple (x0, y0 ? x0, y1 ? x0) and use group action queries to reach the
desired output. A (efficiently determinable) subset of the adversary’s queries q1, ..., qQ must take
one of the following forms:

Q∑
i=1

qi = g∗ + r or

Q∑
i=1

qi = g∗ + r − h or

Q∑
i=1

qi = h

where the exact form depends on the set element from the tuple the adversary decides to use to
generate the final element. Since each of the qi terms must be ±gi for some gi, we know that the
first two forms can be used to immediately generate REGA-SIS solutions for polynomial β since we
have the knowledge of the decomposition of r. So assuming the adversary uses x0 or x1 to generate
its challenge query, it solves REGA-SIS.

Unfortunately, the adversary could choose to use x2. However, this has an easy fix: we can just
flip the description of x1 and x2 randomly and then feed this modified tuple to the adversary. Since
both x1 and x2 are distributed uniformly at random, the adversary cannot determine whether we
have performed the switch or not, and thus only reduces the overall advantage by a factor of 2,
giving us our final result.

9.4 Discussion

We have shown three core results on REGAs (stated informally): an adversary for our REGA-SIS
problem enables us to complete our CDH/DLog reduction for REGAs, an adversary for DLog on
REGAs can be used to solve this REGA-SIS problem, and a generic adversary that only makes
classical queries that can solve CDH on REGAs can be used to solve REGA-SIS as well. All
together, these seemingly tightly bind CDH and DLog on a REGA to a SIS-like problem that
appears to be vulnerable to lattice-based cryptanalysis [GPSV18]. We therefore provide some
evidence for a quantum DLog-CDH equivalence on REGAs.

10 Hidden Subgroup Problems and GAs

In this section, we discuss some similarities between different kinds of hidden subgroup problems
(HSPs) and solving group actions. We particularly focus on the generalized dihedral group. We
note that, among other things, formalizing a connection between group actions and these kinds
of problem would allow us to potentially tie two of the most popular forms of post-quantum
cryptosystems (lattices and isogenies) together.

10.1 The Generalized Dihedral Hidden Subgroup Problem

We begin by defining the generalized dihedral group.

Definition 37. Generalized Dihedral Group: Let A be an abelian group. The generalized
dihedral group on A, which we denote DA is the group defined by Z2 nA.

28

When A ∼= Zn, we get back the standard notion of the dihedral group on 2n elements. The dihe-
dral group has a number of nice geometric explanations and properties, but we defer those to others
here [KLG06]. We next define the general dihedral hidden subgroup problem. However, rather than
defining this problem in its traditional sense, we will use an equivalent formulation known as the
abelian hidden shift problem. These problems are well known to be equivalent [CVD05].

Definition 38. Abelian Hidden Shift Problem (equivalent to GDHSP): Consider some
functions f, g such that, for some c ∈ A and for all b ∈ Zn, f(b) = g (b+ c). We also require
that each of the ||A|| output values of f and g are also distinct. We say that an algorithm solves
the abelian hidden shift problem if, given descriptions of f and g, it outputs c (which reveals the
subgroup in the generalized dihedral hidden subgroup version of the problem).

The dihedral hidden subgroup problem has strong connections to lattice problems [Reg02], in
that if an efficient algorithm for the DHS problem that uses a special type of “coset sampling”
exists, then an efficient algorithm for the LWE problem exists as well. The best known algorithms
for solving the DHS problem are subexponential and based on Kuperberg’s algorithm [Kup05,
Reg04, Kup13].

10.2 An Algorithm for the AHSP Breaks Many Group Actions

We first show a relatively straightforward result: any algorithm that can solve the dihedral hidden
shift problem can be used to solve DLog on a regular, abelian group action. This is essentially
already folklore since there have been many instances (starting with [CJS14]) using Kuperberg’s
algorithm or related principles to build attacks against isogenies that can be modelled as EGAs.

Lemma 39. Let (G,X, ?) denote a regular, abelian group action.. Suppose there exists a PPT
algorithm A for solving the abelian hidden shift problem on A with probability ε. Then there exists
an algorithm for solving the GA-DLog problem on (G,X, ?) with probability ε.

Proof. Suppose we are given a discrete log challenge of the form (x, g ? x) for appropriately
sampled g ∈ G, x ∈ X. Suppose we define our function f : G→ X as f (h) = h ? x, and we define
our shifted function g : G → X as f (h) = h ? (g ? x). Given access to a discrete log challenge
and a group action description, a challenger can immediately provide oracle access to appropriately
defined hidden shift functions on A. Since the action is regular and abelian, we meet all of the
criteria of the AHSP (i.e. the fact that the outputs must be unique), meaning the reduction is
immediate.

10.3 Using Group Action Algorithms to Solve the AHSP

What about the other direction? Can we show that an adversary that can break DLog on a group
action can solve the AHSP? Unfortunately, this seems difficult: because the AHSP is described so
generally–the functions f and g can be anything as long as the functions are injective–so it seems
difficult or impossible to prove this for any non-generic algorithm.

But what about generic algorithms? Could we prove that the AHSP is equivalent to generically
solving DLog over group actions? This seems like it might be plausible. The most interesting result
would show equivalence in a generic group action model with quantum queries. While this may be
attainable, unfortunately we do not know how to achieve this result. However, we can show that
an adversary that can generically solve group action DLog with classical queries can be used to
solve the AHSP, which is seemingly a step in the right direction. We formalize this result below.

29

Lemma 40. Let (G,X, ?) be an abelian, regular group action (EGA). Suppose there exists a generic
adversary A that breaks the group action DLog problem (as defined in definition 6) with advantage
ε on this group action. Then there exists an algorithm that solves that AHSP on G with advantage
ε.

Proof. As in lemma 36, we will need to simulate a generic group action oracle (with classical
queries). Unlike before, though, we will need to use a more complicated strategy to handle both
functions f and g from the AHSP. We will assume the existence of two random oracles RO1, RO2 :
G→ {0, 1}` such that 2` > ||X||2. The reason for the length is to ensure that, with all but negligible
probability, there are no collisions in the random oracle.10 We will simulate terms in a way that
should be very familiar for a reader who is familiar with generic group models.

Generic Simulation. In order to simulate the group, we will maintain a list of queries of the form
(gi, g̃i) for g̃i ∈ {0, 1}`. Initially, we will add (gI , RO1 (gI)) to the table, and RO1 (gI) will represent
the identity element. Then, for each gi ∈ g, we add the tuples (gi, RO1 (gi)) and

(
g−1
i , RO1

(
g−1
i

))
to the table as well, giving access to the computable elements.

When an adversary makes a query of the form
(
h̃, h̃′,+

)
or
(
h̃, h̃′,−

)
, we will look up x in

our table and find the entries
(
h, h̃

)
and

(
h′, h̃′

)
. We know that such an entry must exist because

our algorithm is generic. Then we add the appropriately signed entry (h± h′, RO1 (h± h′)) to our
table and return RO1 (h± h′).

Unlike before, we need a more complicated strategy to simulate the set elements. Instead of
having one list of set elements, we will have two: one for the function f and one for the function g.
Both of these lists will contain queries of the form (gi, x̃i).

Initially, we will add (gI , RO2 (f (gI))) to the f -list, and RO (f (gI)) will be our “base point.”
We will add (gI , RO2 (g (gI))) to the g-list, and RO2 (g (gI)) will be our “DLog challenge point.”

When an adversary makes a query of the form
(
h̃, x̃

)
we will first look up h̃ in our table of

group elements and recover the tuple
(
h, h̃

)
. Then we will look up x̃ and see which list it is in and

recover the tuple (g, x̃).
If it is in the f list, then we will add (hg,RO1 (hg)) to our group table and (hg,RO2 (f (hg))) to

our set table for f , and return RO2 (f (hg)). If it is in the g list, then we will still add (hg,RO1 (hg))
to our group table but then add (hg,RO2 (g (hg))) to our set table for g, and return RO2 (g (hg)).

Actual Reduction. With the simulation above, our reduction becomes very straightforward.
Given oracles f and g to the AHSP, we simulate a generic group action (with classical queries) in
the above way. The solution to the AHSP will be exactly the solution to the discrete log problem
defined by the “base point” and the “DLog challenge point.” So any adversary that can solve the
DLog problem generically with classical queries can be used to solve the AHSP problem.

10.4 Discussion

Unfortunately, it seems difficult to show a full quantum equivalence between the generalized dihedral
hidden subgroup problem and solving DLog on a generic group action. The challenge comes from
the fact that it is difficult quantumly to “remember” an adversary’s query for later use in the
simulation. One possible direction is to use compressed oracles [Zha19], which offer some ability to

10Note that the set size and group order are the same in a regular group action.

30

record quantum queries. However, it appears challenging to adapt the compressed oracle framework
to highly structured oracles such as generic group actions.

Nevertheless, we close this section with the following conjecture, which we think is very inter-
esting future work:

Conjecture 41. The generalized dihedral hidden subgroup problem on an abelian group A is equiv-
alent to the group action discrete logarithm problem on a regular, abelian group action (G,X, ?) in
a quantum generic model.

References

[ADMP20] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic
group actions and applications. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part II, volume 12492 of LNCS, pages 411–439. Springer, Heidelberg,
December 2020.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
Heidelberg, August 2001.

[BGLS19] Shi Bai, Steven D. Galbraith, Liangze Li, and Daniel Sheffield. Improved combina-
torial algorithms for the inhomogeneous short integer solution problem. Journal of
Cryptology, 32(1):35–83, January 2019.

[BKM17] Dan Boneh, Sam Kim, and Hart William Montgomery. Private puncturable PRFs
from standard lattice assumptions. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 415–445. Springer,
Heidelberg, April / May 2017.

[BKT14] Adi Ben-Zvi, Arkadius Kalka, and Boaz Tsaban. Cryptanalysis via algebraic spans.
Cryptology ePrint Archive, Report 2014/041, 2014. https://eprint.iacr.org/2014/
041.

[BKT18] Adi Ben-Zvi, Arkadius G. Kalka, and Boaz Tsaban. Cryptanalysis via algebraic spans.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 255–274. Springer, Heidelberg, August 2018.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient
isogeny based signatures through class group computations. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
227–247. Springer, Heidelberg, December 2019.

[BL95] Dan Boneh and Richard J. Lipton. Quantum cryptanalysis of hidden linear functions
(extended abstract). In Don Coppersmith, editor, CRYPTO’95, volume 963 of LNCS,
pages 424–437. Springer, Heidelberg, August 1995.

[BL96] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application
to cryptography (extended abstract). In Neal Koblitz, editor, CRYPTO’96, volume
1109 of LNCS, pages 283–297. Springer, Heidelberg, August 1996.

31

https://eprint.iacr.org/2014/041
https://eprint.iacr.org/2014/041

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 575–584. ACM Press, June 2013.

[BMZ19] James Bartusek, Fermi Ma, and Mark Zhandry. The distinction between fixed and
random generators in group-based assumptions. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 801–830.
Springer, Heidelberg, August 2019.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106
of LNCS, pages 493–522. Springer, Heidelberg, May 2020.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from
standard lattice assumptions - or: How to secretly embed a circuit in your PRF. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of
LNCS, pages 1–30. Springer, Heidelberg, March 2015.

[BY91] Gilles Brassard and Moti Yung. One-way group actions. In Alfred J. Menezes and
Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 94–107. Springer,
Heidelberg, August 1991.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on sidh
(preliminary version). Cryptology ePrint Archive, Paper 2022/975, 2022. https:

//eprint.iacr.org/2022/975.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isoge-
nies in quantum subexponential time. Journal of Mathematical Cryptology, 8(1):1–29,
2014.

[CK20] Leonardo Colò and David Kohel. Orienting supersingular isogeny graphs. Journal of
Mathematical Cryptology, 14(1):414–437, 2020.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages
395–427. Springer, Heidelberg, December 2018.

[CM01] Kevin K. H. Cheung and Michele Mosca. Decomposing finite abelian groups. Quantum
Information & Computation, 1(3):26–32, 2001.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291, 2006. https://eprint.iacr.org/2006/291.

[CVD05] Andrew M Childs and Wim Van Dam. Quantum algorithm for a generalized hidden
shift problem. arXiv preprint quant-ph/0507190, 2005.

[DDF21] Pierrick Dartois and Luca De Feo. On the security of osidh. Cryptology ePrint Archive,
2021.

[den90] Bert den Boer. Diffie-Hellman is as strong as discrete log for certain primes (rump
session). In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 530–
539. Springer, Heidelberg, August 1990.

32

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2006/291

[DG19] Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signatures from
class group actions. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 759–789. Springer, Heidelberg, May 2019.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.

[DM20a] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions.
In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors,
PKC 2020, Part II, volume 12111 of LNCS, pages 187–212. Springer, Heidelberg, May
2020.

[DM20b] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. In
Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-
Key Cryptography – PKC 2020, pages 187–212, Cham, 2020. Springer International
Publishing.

[GPSV18] Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik Vercauteren. Quantum
equivalence of the DLP and CDHP for group actions. Cryptology ePrint Archive,
Report 2018/1199, 2018. https://eprint.iacr.org/2018/1199.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM
Press, May 1989.

[JQSY19] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action
on tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon
Rosen, editors, TCC 2019, Part I, volume 11891 of LNCS, pages 251–281. Springer,
Heidelberg, December 2019.

[KLC+00] Ki Hyoung Ko, Sangjin Lee, Jung Hee Cheon, Jae Woo Han, Ju-Sung Kang, and
Choonsik Park. New public-key cryptosystem using Braid groups. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880 of LNCS, pages 166–183. Springer, Heidelberg,
August 2000.

[KLG06] Hirotada Kobayashi and François Le Gall. Dihedral hidden subgroup problem: A
survey. Information and Media technologies, 1(1):178–185, 2006.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM Journal of Computing, 35(1):170–188, 2005.

[Kup13] Greg Kuperberg. Another Subexponential-time Quantum Algorithm for the Dihe-
dral Hidden Subgroup Problem. In Simone Severini and Fernando Brandao, editors,
8th Conference on the Theory of Quantum Computation, Communication and Cryp-
tography (TQC 2013), volume 22 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20–34, Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

33

https://eprint.iacr.org/2018/1199

[LGdSG21] Yi-Fu Lai, Steven D Galbraith, and Cyprien Delpech de Saint Guilhem. Compact,
efficient and uc-secure isogeny-based oblivious transfer. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 213–241.
Springer, 2021.

[Mas90] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality. The
Annals of Probability, 18(3):1269 – 1283, 1990.

[Mau94] Ueli M. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete algorithms. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of
LNCS, pages 271–281. Springer, Heidelberg, August 1994.

[MM22] Luciano Maino and Chloe Martindale. An attack on sidh with arbitrary starting curve.
Cryptology ePrint Archive, Paper 2022/1026, 2022. https://eprint.iacr.org/2022/
1026.

[MW96] Ueli M. Maurer and Stefan Wolf. Diffie-Hellman oracles. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 268–282. Springer, Heidelberg, August
1996.

[Onu21] Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields and Their
Applications, 69:101777, 2021.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 463–492. Springer,
Heidelberg, May 2020.

[Reg02] Oded Regev. Quantum computation and lattice problems. In 43rd FOCS, pages 520–
529. IEEE Computer Society Press, November 2002.

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup prob-
lem with polynomial space. arXiv:quant-ph/0406151, June 2004.

[Rob22] Damien Robert. Breaking sidh in polynomial time. Cryptology ePrint Archive, Paper
2022/1038, 2022. https://eprint.iacr.org/2022/1038.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-Key Cryptosystem Based On
Isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. https://eprint.iacr.
org/2006/145.

[SE94] Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical programming, 66(1):181–
199, 1994.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factor-
ing. In 35th FOCS, pages 124–134. IEEE Computer Society Press, November 1994.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[Shp08] Vladimir Shpilrain. Cryptanalysis of stickel’s key exchange scheme. In International
Computer Science Symposium in Russia, pages 283–288. Springer, 2008.

34

https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1038
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145

[Sti05] Eberhard Stickel. A new method for exchanging secret keys. In Third International
Conference on Information Technology and Applications (ICITA’05), volume 2, pages
426–430. IEEE, 2005.

[SU05a] Vladimir Shpilrain and Alexander Ushakov. A new key exchange protocol based on the
decomposition problem. Cryptology ePrint Archive, Report 2005/447, 2005. https:

//ia.cr/2005/447.

[SU05b] Vladimir Shpilrain and Alexander Ushakov. Thompson’s group and public key cryp-
tography. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05,
volume 3531 of LNCS, pages 151–163. Springer, Heidelberg, June 2005.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indiffer-
entiability. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 239–268. Springer, Heidelberg, August 2019.

A Formal Group Action Definitions

In this section we provide formal definitions of all of our primitives. We include full, formal versions
of the traditional definitions that have been used in the isogeny literature. Our definitions here
generally mirror those of [ADMP20].

A.1 Effective Group Action

Our first formal definition is that of an effective group action. We define an effective group action
(EGA) as follows:

Definition 42. (Effective Group Action) A group action (G,X, ?) is effective if the following
properties are satisfied:

1. The group G is finite and there exist efficient (PPT) algorithms for:

(a) Membership testing, i.e., to decide if a given bit string represents a valid group element
in G.

(b) Equality testing, i.e., to decide if two bit strings represent the same group element in G.

(c) Sampling, i.e., to sample an element g from a distribution DG on G. In this paper, We
consider distributions that are statistically close to uniform.

(d) Operation, i.e., to compute gh for any g, h ∈ G.

(e) Inversion, i.e., to compute g−1 for any g ∈ G.

2. The set X is finite and there exist efficient algorithms for:

(a) Membership testing, i.e., to decide if a bit string represents a valid set element.

(b) Unique representation, i.e., given any arbitrary set element x ∈ X, compute a string x̂
that canonically represents x.

3. There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string repre-
sentation is known.

4. There exists an efficient algorithm that given (some bit-string representations of) any g ∈ G
and any x ∈ X, outputs g ? x.

35

https://ia.cr/2005/447
https://ia.cr/2005/447

A.2 Restricted Effective Group Action

Some isogeny-based protocols (e.g. CSIDH [CLM+18]) are structured in a way that almost (but not
quite) resembles a group action. To model this kind of protoocol, we use he definition of Restricted
Effective Group Action (REGA) from [ADMP20]. A REGA is a weakening of EGA, where we can
only evaluate the action of a generating set of small cardinality.

Definition 43. (Restricted Effective Group Action) Let (G,X, ?) be a group action and let g =
(g1, . . . , gn) be a (not necessarily minimal) generating set for G. The action is said to be g-restricted
effective, if the following properties are satisfied:

• G is finite and n = poly(log(|G|)).

• The set X is finite and there exist efficient algorithms for:

1. Membership testing, i.e., to decide if a bit string represents a valid set element.

2. Unique representation, i.e., to compute a string x̂ that canonically represents any given
set element x ∈ X.

• There exists a distinguished element x0 ∈ X, called the origin, such that its bit-string repre-
sentation is known.

• There exists an efficient algorithm that given any i ∈ [n] and any bit string representation of
x ∈ X, outputs gi ? x and g−1

i ? x.

Although a REGA is limited to evaluations of the form gi ?x and g−1
i ?x, this is actually enough

to evaluate the action of many, and potentially all elements of G without even needing axioms on
the effectivity of G. It is typically assumed (but not always proven) in a REGA that taking a
random subset product of all of the elements gi results in a group element that is statistically close
to uniform. We defer commentary on this assumption, as well as more discussion on modelling
isogeny-based protocols as REGAs, to [ADMP20].

A.3 Known-order Effective Group Actions

In this paper, we will typically assume that all parties have access to a quantum computer. For
abelian group actions, this means that we can use Shor’s algorithm and its generalization [Sho94,
CM01] to decompose the structure of the group. More generally, and again following the definition
of [ADMP20], for a strengthening of EGA, we may assume that the group structure of G is known.
The most important case is where G is abelian, which, by abuse of language, we call known-order
EGA.

By “known order” we mean that a minimal list of generators g = (g1, . . . , gn) together with
their orders (m1, . . . ,mn) is known, which in turn is equivalent to a decomposition

G ' Z/m1Z⊕ · · · ⊕ Z/mnZ.

An important special case is when G is cyclic, i.e., G = 〈g〉 ' Z/mZ.
Denote by L the lattice m1Z⊕ · · · ⊕mnZ, the map

φ : Zn/L → G

(a1, . . . , an) 7→
n∏
i=1

gaii

36

is an effective isomorphism, its inverse being a generalized discrete logarithm. If (G,X, ?) is an
EGA, then it is immediate to verify that (Zn/L, X, ?) is an EGA through φ. We may just use Zn/L
as the standard representation for G.

Definition 44. (Known-order Effective Group Action (KEGA).) A Known-order Effective Group
Action is an EGA (Zn/L, X, ?) where the lattice L is given by the tuple (m1, . . . ,mn).

We note that for an abelian group action an EGA and a KEGA are quantumly equivalent.
However, a REGA and a KEGA are not necessarily quantum equivalent, even if the group action is
abelian. We discuss this relationship more in the body of the paper, and [ADMP20] also includes
a substantial discussion on the topic. In the quantum world, KEGA is a more appropriate tool to
design protocols, owing to its simplicity. There are in fact some protocols that explicitly require
the KEGA setting, e.g. [DM20b].

A.4 Formal Definitions of Group Action Security

Here we present the formal definitions of group action securtiy from [ADMP20] and discuss their
relationship with our group-inspired security definitions. These definitions are, to our knowledge,
the most popular current definitions for security notions of isogeny-based group actions.

Definition 45. (One-Way Group Action) A group action (G,X, ?) is (DX ,DG)-one-way if the
family of efficiently computable functions {fx : G → X}x∈X is (DX ,DG)-one-way, where fx : g 7→
g ? x, and DX , DG are distributions on X, G respectively.

Note that any adversary that this definition is exactly equivalent to the definition of group
action discrete logarithm, as we defined in definition 6.

Definition 46. (Weak Unpredictable Group Action) A group action (G,X, ?) is (DG,DX)-weakly
unpredictable if the family of efficiently computable permutations {πg : X → X}g∈G is (DG,DX)-
weakly unpredictable, where πg is defined as πg : x 7→ g ? x and DX , DG are distributions on X, G
respectively.

Note that any adversary that can win the group action CDH game (as defined in definition 7)
can be immediately used to win the weak unpredictable group action game. On the other hand,
if DG and DX are uniformly distributed and the group action is regular, then an adversary that
can break the weak unpredictability of a group action can be used to solve the group action CDH
problem. However, if the group is not regular, the problems may not be equivalent: given just
a CDH instance, it may be impossible to simulate the correct distribution of “fresh” outputs
(xi, g ? xi) for some xi ← DX when the only information provided about g is y = g ? x. However,
we note that in practice these distributions are typically uniform (or assumed to be uniform) and
popular group actions are almost always regular, and in these cases the CDH problem exactly
models key exchange11 which is the focus of most applications of group actions.

Definition 47. (Weak Pseudorandom Group Action) A group action (G,X, ?) is (DG,DX)-weakly
pseudorandom if the family of efficiently computable permutations {πg : X → X}g∈G is (DG,DX)-
weakly pseudorandom, where πg : x 7→ g ? x, and DX , DG are distributions on X, G respectively.

In each of the definitions above, if DG is a probability distribution on G and DX is the distribu-
tion induced on X by taking g ← DG and outputting g ? x0, then we simply write DG-OW group
action for (DX ,DG)-OW group action, and similarly for weak unpredictable/pseudorandom group
actions. If both distributions are uniform (or statistically close to uniform), we omit them.

11The weak unpredictable group action definition is more useful than the CDH problem for constructing more
complicated primitives; see [ADMP20].

37

	Introduction
	This Work: Full Quantum Equivalence of DLog and CDH

	Preliminaries
	Min-entropy and Leftover Hash Lemma
	1D-SIS Problem
	Cryptographic Group Actions
	Computational Problems
	Instantiations of Cryptographic Group Actions
	Isogenies that are EGAs.
	Isogenies that are restricted EGAs (REGAs).
	Isogenies that are not GAs.
	Non-Isogeny Group Actions.

	Reducing DLog to CDH Quantumly
	Extending to Non-Regular Group Actions

	On the DDH and CDH (In)equivalence
	A Generic Group Action Framework
	On REGAs
	Hidden Subgroup Problems and GAs
	Group Actions Beyond Isogenies?
	Stickel's Key Exchange Protocol
	Other Protocols: Non-abelian Group Actions

	On REGAs
	A ``1D-SIS Oracle'' Completes the DLog/CDH Reduction for REGAs
	Discrete Log on REGAs and 1D-SIS
	CDH on REGAs
	Discussion

	Hidden Subgroup Problems and GAs
	The Generalized Dihedral Hidden Subgroup Problem
	An Algorithm for the AHSP Breaks Many Group Actions
	Using Group Action Algorithms to Solve the AHSP
	Discussion

	Formal Group Action Definitions
	Effective Group Action
	Restricted Effective Group Action
	Known-order Effective Group Actions
	Formal Definitions of Group Action Security

