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Abstract—The need for cross-blockchain interoperability is
higher than ever. Today, there exists a plethora of blockchain-
based cryptocurrencies, with varying levels of adoption and di-
verse niche use cases, and yet communication across blockchains
is still in its infancy. Despite the vast potential for novel
applications in an interoperable ecosystem, cross-chain tools and
protocols are few and often limited.

Cross-chain communication requires a trusted third party,
as the Fair Exchange problem is reducible to it. However, the
decentralised consensus of blockchains can be used as a source of
trust, and financial incentives can achieve security. XCLAIM uses
these principles to enable collateralised cryptocurrency-backed
assets to be created and used. However, full collateralization
is inefficient, and to protect against exchange rate fluctuations
overcollateralization is necessary. This is a significant barrier to
scaling, and as a result, in practice, most systems still employ a
centralised architecture.

In this work, we introduce XCC, an extension to the XCLAIM
framework which allows for a significant reduction in collateral
required. By making use of periodic, timelocked commitments on
the backing blockchain, XCC decouples locked collateral from
issued CBAS, allowing fractional collateralization without loss
of security. We instantiate XCC between Bitcoin and Ethereum
to showcase practical feasibility. XCC is compatible with the
majority of existing blockchains without modification.

I. INTRODUCTION

Ever since the success of Bitcoin [29], introduced in 2008
by Satoshi Nakamoto, a vast market of cryptocurrencies has
emerged. Over 8000 individual currencies, the majority of
them blockchain-based, with a total market cap exceeding
$2.47 trillion, are currently in circulation [7]. However, the
majority of blockchains operate independently and do not
natively provide methods to interoperate with other chains.
Indeed, distributed cross-chain applications are non-trivial to
implement. Often, a central trusted intermediary is used, as
is the case for instance with traditional centralised cryptocur-
rency exchanges. But this can be seen as running counter to the
vision for a distributed ecosystem with no trusted authorities
and no central points of failure. In fact, over the last decade,
over $1.8 billion worth of cryptocurrency has been lost due to
compromises in centralised exchanges [9].

XCLAIM [37] aims to offer a solution to this problem,
by introducing cryptocurrency-backed assets (CBAS). CBAS
involve locking funds on one chain (the backing chain) and
issuing new corresponding tokens — the backed assets —
on another chain (the issuing chain). The CBAS can then be
redeemed for the original funds at any time, which ensures

their value remains pegged to the value of the backing funds.
While distinct from two-way swaps as facilitated by traditional
exchanges, CBAS, thanks to their pegged value, can be used to
effectively trade on one blockchain using funds from another.

XCLAIM employs vaults to ensure backing assets are cor-
rectly locked while CBAS exist, and are unlocked when CBAS
are redeemed. Any participant can become a vault and a
smart contract is employed on the issuing chain to enforce
correct protocol execution, tracking the backing chain via
a cross-chain light client, a so-called chain relay [36]. To
achieve economic trustlessness, XCLAIM requires vaults to
bond collateral in the smart contract. This ensures rational
vaults are disincentivised from breaching the protocol, while
allowing users to be reimbursed should a vault misbehave.

This approach has two drawbacks. Firstly, this means that
full collateralization of all CBAS existing in the system is re-
quired, which is arguably not capital efficient. Secondly, since
the collateral is locked in the smart contract on the issuing
chain, its value relative to the backing funds is vulnerable
to exchange rate fluctuations. Due to this, XCLAIM requires
overcollateralization. As cryptocurrency exchange rates can be
quite volatile, the amount of overcollateralization required to
ensure secure operation is significant; the original specification
suggests an ideal collateral factor of at least 2x for secure
operation. This is a significant barrier to large-scale use of
XCLAIM, as vaults must be willing to put down significant
capital amounts for any CBAS issued. Furthermore, since
CBAS can exist indefinitely, vaults cannot reliably predict for
how long their collateral is locked.

A. Contributions

In this paper, we extend XCLAIM to greatly reduce the
collateralization required in the protocol. We present XCC, a
novel, round-based CBA framework which combines XCLAIM
with commit chains [26], a technique used for scalable off-
chain transaction processing. XCC ensures backing assets are
cryptographically locked on the backing chain for pre-defined
periods, avoiding the need for continuous collateral lockup,
and introducing the concept of on-demand collateralization.
Vaults broadcast regular on-chain checkpoint transactions to
update the on-chain state of the CBA ledger and renew the
cryptographic locks at the user’s request. By construction,
XCC ensures users can always exit the system, even if a vault
is offline. As a result, XCC greatly improves the security



of user’s funds, making vaults non-custodial, and decouples
collateralization from the amount of issued CBAS improving
capital efficiency.

The contributions of this paper can be summarized as
follows:
• We present XCC (short for XCLAIM Commit), a novel

framework for cryptocurrency-backed assets which com-
bines XCLAIM with the concept of commit chains, making
vaults non-custodial and significantly reducing collateraliza-
tion requirements. We present a step-by-step migration from
XCLAIM to XCC and provide a detailed security analysis.

• We provide a formal protocol specification and analyse
blockchain requirements. While XCC requires smart con-
tracts on the issuing chain, only limited scripting functional-
ity (hash and timelocks) is necessary for ensuring the safety
of backing funds, enabling XCC to support Bitcoin and
similar systems as backing chain.

• We present multiple extensions to XCC, showcasing (i) how
CBAS can be issued and maintained with zero collateral at
the cost of reduced usability and stricter online requirements
for users; (ii) cross-vault transfers; (iii) and how users can
run their own vaults for personal use cases.

• We present a proof of concept implementation for XCC
Bitcoin-backed assets on Ethereum, demonstrating practical
feasibility. We analyse running costs and offer a comparison
to XCLAIM, providing case studies for different user types.
We observe XCC is significantly more cost-efficient for
users who execute occasional transfers or moderate trading
activity, while a temporary fallback to XCLAIM is recom-
mended for periods of high frequency trading.

II. BACKGROUND

In this section, we provide the relevant background on cross-
chain communication and XCLAIM. In consideration of space,
we do not aspire to provide a complete description of the
working of Bitcoin and distributed ledgers, hence recommend
readers unfamiliar with these research fields to consult existing
literature, such as [17, 21, 32].

A. Cross-Chain Communication

Given the proliferation of different cryptocurrencies with
different properties and use cases, it becomes desirable to
achieve some sort of interoperability between them. Cross-
chain communication (CCC) can arise in a variety of different
settings, such as between sibling chains in sharded systems
(e.g. [28], [35]), merged mining parent/child chains ([3], [25]),
or between completely separate, heterogeneous chains. Here,
we focus on the latter case.

Impossibility, Assumptions, and Models: Unfortunately,
cross-chain communication is not solvable without a trusted
third party [36]. The simplest example of a heterogeneous
CCC implementation is a fully centralised exchange, which
allows a user to swap assets held on one chain for assets on
another. However, the "trusted third party" can be abstracted
away from a physical party; for instance, protocols such as
Hash Time-Lock Contract (HTLC) Atomic Swaps [8] [24]

implement a two-phase commit, requiring all parties to be
online for correct execution of the swap. Here, the synchrony
assumption is used to ensure protocol fairness: if a participant
fails to be online throughout its execution, the protocol aborts.
The consensus layer of the underlying blockchains stands in
for the trusted third party, by enforcing timelocks on the
transactions. Alternatively, on blockchains that support it, it is
possible to use on-chain smart contracts as trusted third parties
— again, the trust is put into the blockchain consensus.

The protocols mentioned so far implement a two-way swap
between two blockchains. An alternative use case for CCC
is one-way transfers, such as those used for cryptocurrency-
backed assets [31] [37]: funds x on a backing chain X are
locked, while on a different chain Y, assets y(x) are backed by
those funds. Ownership changes in y(x) are propagated back
to x. Similarly to two-way swaps, the trusted third party can
be partially abstracted to e.g. a smart contract.

A useful way to consider cross-chain protocols is to aim
for economic trustlessness: in other words, building protocols
where rational actors acting in self-interest never benefit from
misbehaving. An actor not acting rationally might still cause
failure from a protocol point of view, but should not be able
to inflict financial damage on other participants.

Cross-Chain State Verification: An important aspect of
cross-chain communication is the ability to prove, on one
chain, the state of another chain. In particular, if a chain
supports smart contracts, one might wish to prove to a contract
that, for instance, a transaction occurred on a different chain.

To achieve this practically, due to the cost of computation
and memory on a blockchain, generally requires using light
clients, which allow verification of blockchain state without
running an entire node. Not all blockchains natively sup-
port light clients; for instance, the Ethereum specification is
under development at the time of writing [12]. Bitcoin, on
the other hand, was designed to support light clients from
the outset [29]; its implementation is known as Simplified
Payment Verification (SPV) [13]. SPV on Bitcoin operates by
obtaining block headers, but not block data, which allows the
client to eschew storing the transaction history for the entire
blockchain. For instance, BTCRelay [10] is an Ethereum smart
contract implementing Bitcoin SPV, allowing verification of
Bitcoin transaction inclusion on the Ethereum chain for a fee.

As an alternative to "naive" SPV verification, wherein
block headers are directly submitted for the smart contract to
verify and store, using zero-knowledge proofs [16] can allow
for off-chain proofs of header chain validity. This provides
potentially more efficient — and therefore cheaper — on-chain
verification [33].

B. XCLAIM

XCLAIM [37] is a framework for cryptocurrency-backed
assets between two heterogeneous blockchains. It uses a smart
contract as a trusted party, and financial incentives in the form
of collateral to achieve an economically trustless protocol.

XCLAIM allows users to lock funds on a backing
blockchain, and obtain an equivalent amount of tokens on



an issuing blockchain. Those cryptocurrency-backed tokens
can then be traded and used entirely using transactions on
the issuing chain. Any user holding tokens can then redeem
them back for the same amount of backing funds on the
original chain. Thus, the issuing chain — and its consensus
and transaction mechanisms — can be employed to trade value
across the backing chain.

The smart contract powering the framework resides on the
issuing chain, which is therefore required to support Turing
complete scripting. In contrast, the backing chain has fewer
requirements to be suitable for use in XCLAIM — for instance,
Bitcoin can be used as the backing chain. To allow the smart
contract to act upon events occurring in the backing chain,
a cross-chain relay between the backing chains and issuing
chains is integrated.

XCLAIM relies on vaults, entities which lock funds on
the backing blockchain. To be issued cryptocurrency-backed
tokens, users send their backing funds to a Vault, submit proof
of the transaction to the smart contract, and are issued newly-
minted tokens in exchange. The Vault’s responsibility is to
hold the funds and to provide them back to a user who wishes
to redeem their tokens for backing currency. XCLAIM allows a
distributed, scalable architecture, where any number of vaults
can operate and any user can register as a Vault.

Security via Chain Relays and Overcollateralization: To
achieve financial security and trustlessness, XCLAIM employs
collateralization of vaults: before a Vault can lock funds for
a user, it must bond a sufficient amount of collateral with the
smart contract, in the form of assets on the issuing blockchain.
If a Vault refuses or is unable to operate correctly (e.g. fails to
honour a request to redeem funds), then its collateral is slashed
and used to reimburse affected users, who regain assets equal
in value to the backing funds they lost (albeit on a different
blockchain) and therefore suffer no economic loss.

However, since the collateral consists of assets on the
issuing chain, while the collateralised funds are on the back-
ing chain, exchange rate fluctuations allow the value of the
collateral to fluctuate relative to the value of the funds it
is meant to collateralise. To remedy this, XCLAIM employs
overcollateralization. The security model assumes an upper
bound on the rate of change of the exchange rate; based on
this, collateral ratio thresholds are set, below which the Vault
is considered to be under-collateralised and appropriate actions
are taken. The original XCLAIM specification [37] suggests an
ideal collateralization factor of 2, which could however be set
higher if more security is desired; below a factor of 1.5, the
specification suggests the Vault should no longer be permitted
to serve further issuing requests by locking additional funds
until the Vault rebalances its collateral. Additionally, there are
automatic liquidation measures if a Vault refuses to rebalance,
to avoid the possibility of the collateral’s value ever falling
below the value of the collateralised funds.

C. Commit Chains

Commit chains, first introduced by the NOCUST frame-
work [26], are a blockchain scaling technique leveraging off-

chain transactions. NOCUST employs a central operator who
is responsible for managing an off-chain ledger and routing
payments across users.

To ensure the correct behaviour of the operator, a smart
contract is employed on-chain. At regular intervals, the op-
erator commits the state of all user accounts via an on-chain
checkpoint transaction, notifying the contract. Users may then
challenge the checkpoint; if the operator fails to respond with
a proof of correct operation, the contract rolls back ownership
of funds to the approved previous checkpoint and halts the
system, allowing users to recover their funds.

Properties and Security: Commit chains require users to
come online at least once between every checkpoint to verify
that the operator updated their balances correctly - and issue
a challenge in case of inconsistencies. It is worth noting,
however, that in a naive implementation, operators are capable
of censoring users since transfers ignored by the operator are
not visible to the smart contract.

A practical drawback of commit chain is that transfers are
not final until they are committed to a checkpoint and no
challenges are issued until the next checkpoint. To remedy this,
some implementations, including NOCUST, allow operators to
put down collateral as guarantee of correct behaviour, enabling
instant transfer finalization.

III. SYSTEM MODEL AND ASSUMPTIONS

In this section, we introduce the distributed ledger, network,
and threat models for interlinked blockchains B and I , as
well as system model and actors in XCC, including relevant
notation. For a full table of the symbols used in this work,
refer to Appendix A.

A. Distributed Ledger Model

We use the terms distributed ledger and blockchain as
synonyms and adapt the distributed ledger model based
off [21, 36]
Ledgers and State Evolution. We consider two distributed
systems B and I that each consist of a set of participants
and employ a consensus protocol to agree on a sequence of
transactions. We assume the security model (threat, network
and cryptographic assumptions) of the consensus protocol
holds: the fraction of consensus participants f or computa-
tional power α corrupted by an adversary is bounded by the
threshold necessary to ensure the security of the consensus
protocol. For Proof-of-Work blockchains, we therefore assume
α ≤ 33% [20, 23, 30].

To achieve consensus on the sequence of transactions, B and
I each maintain a distributed ledger structured as a blockchain.
i.e., an append-only sequence of blocks where each block
contains a reference to its predecessor(s), e.g. via a hash.
We define the state of a ledger L as a dynamically evolving
sequences of transactions 〈T1 , ...,Tn〉. We assume that the
state of the ledger progresses in discrete rounds, indexed1

by a natural number r ∈ N. At each round r, a new set

1The index of a ledger is often referred to as the blockchain height.



of transactions is included in the ledger L. We use L[r] to
denote the state of ledger L at round r, i.e., after applying
all transactions included in the ledger since round r − 1. A
transaction can be included in or written to L only if it satisfies
the consensus rules of the system, given the current state of
the ledger. This consistency is left for each particular system
to define, and we describe it as a free predicate valid(·).
Notion of Time. The state evolution of ledgers Lb and Li may
progress at different time intervals (i.e., B and I may exhibit
different block generation rates [21]. To correctly capture the
ordering of transactions across Lb and Li, we define a clock
function τ which maps a given round on any ledger to the
time on a global, synchronized clock τ : r → t. We assume B
and I are nevertheless synchronized and that there is no clock
drift between them. We use this conversion implicitly in the
rest of this paper.
Persistence and Liveness. Each party of the system maintains
a local ledger that depicts its current view of the system. The
views of two parties on the same ledger may differ (e.g., due
to network delays or message loss). However, eventually, all
honest parties in the distributed ledger will have the same view.
This is encapsulated by the persistence and liveness properties
of the distributed ledger, as defined in [22]:
• Persistence: Parameterized by persistence (or “depth") pa-

rameter k, if transaction T appears in the ledger of an honest
party at time t, then it will eventually appear in the ledger
of all other honest parties at time t′ ≤ t + k (“stable"
transaction).

• Liveness: Parameterized by liveness delay parameter u, if
an honest party attempts to write a valid transaction T to
its ledger at time t, then T will appear in its ledger at time
t′ ≤ t+ u.
In this work, we only consider distributed systems that

maintain robust transaction ledgers [22], meaning they satisfy
persistence and liveness with high probability to the security
parameters.

B. Transaction and UTXO Model

We proceed to introduce the transaction and UTXO model
for Bitcoin-like blockchains, based on [15]. Account-based
systems, such as Ethereum [19], can replicate the functionality
relevant for XCC and we hence use the UTXO model as a
base framework. Specifically, we assume that B uses a UTXO
transaction model, as seen in Bitcoin-like cryptocurrencies.

In the UTXO (Unspent Transaction Output) model, trans-
actions consist of inputs and outputs: a transaction (i) takes
as input or consumes coins locked in one or more unspent
outputs of existing transactions, and (ii) maps these coins to
new outputs, specifying how, when and by whom these coins
can be spent, i.e., used as input for another transaction. The
total amount of assets controlled by a user is hence computed
from the set of outputs from which she can spend. UTXOs
are outputs that have not yet been spent and can only be spent
as a whole.

Transactions are specified by a list of inputs and outputs; for
instance, Ti =

[
o1
j (w1 )

]
7→

[
o1
i , o

2
i

]
denotes a transaction Ti

which spends the first output o1
j of transaction Tj , providing

witness data w1 (such as a user’s signature), and creates two
outputs o1

i and o2
i . We use # to denote when it does not matter

what outputs are used as inputs for a given transaction.
Outputs are described by the amount of funds locked into

them, and the conditions that need to be met to spend them. In
this paper, we differentiate between the following conditions
in accordance with Bitcoin, which can be composed and
combined using logical operators ∧, ∨ and ¬:

• Signature locks, denoted as σA, require that a valid signa-
ture over the spending transaction, generated by the private
key of A (Alice), be provided. The combination of multiple
signature locks is called a multisignature lock.

• Hashlocks, denoted as H(s), requires the revelation of the
pre-image s of H(s), where H() is a secure cryptographic
hash function.

• Timelocks, denoted as ∆(t), specify a delay t after which
a UTXO can be spent. In the rest of the paper, we make
use of "relative" timelocks, i.e., ∆(t) = ∆(r) determines
the number of rounds that must elapse after the transaction
T generating the associated UTXO has been included in the
underlying ledger L.

For example, (σA | 5b) denotes an output which holds 5 b
coins and can be spent by anyone able to generate a signature
associated with a user A’s private key — assumed to be A
herself.

C. Network Model

For the underlying network, we make the same assumptions
as in prior work [27], [28], [37], namely that (i) honest
nodes are well connected and (ii) communication channels
between these nodes are (semi-)synchronous, i.e., messages
sent between honest participants will be received within a
known maximum delay ∆. Additionally, we assume that all
participants are aware of the smart contract iSC, and hence of
the values publicly stored in it.

D. Threat model

We assume that the cryptographic primitives of B and I
are secure and that adversaries are computationally bounded.
Adversaries are fully adaptive, i.e can freely choose con-
trolled/corrupted participants (Vaults and users) in the XCC
protocol for each time window. Adversaries may also perform
arbitrary actions to maximize their economic value, such as
delay or withhold transactions on protocol-level, read uncon-
firmed transactions in the network, and perform Sybil attacks.
Note that under these assumptions (and the persistence and
liveness properties of I) the adversary cannot tamper with the
correct execution of the smart contract iSC.

To keep track of and react to exchange rate fluctuations
between i and b, we assume an oracle O provides the iSC
with the exchange rate ε(i,b) ∈ R≥0. We further assume the
fluctuations in the exchange rate within a time interval ∆ε is
bounded by a maximum value ε(i,b).



E. XCC System Model and Actors

XCC allows users to create symmetric cryptocurrency-
backed assets (CBAs), as defined by XCLAIM [37]. Specif-
ically, XCC operates between two blockchains: a backing
blockchain B of a cryptocurrency b and an issuing blockchain
I with native currency i. A cryptocurrency-backed asset on I
backed by B is a ("wrapped") representation of B’s native
currency b on I and is denoted as i(b). In this paper we
consider symmetric CBAs, i.e., assets i(b) issued on I are
backed by the equivalent amount of funds b on B, i.e.,
|i(b)| = |b|.

XCC differentiates between the following actors, following
XCLAIM:

• User. A user in XCC can take up any of the following roles:
– Requester. Locks b on B to request i(b) on I .
– Sender. Owns i(b) and transfers ownership to another

user on I .
– Receiver. Receives ownership over i(b) on I .
– Redeemer. Destroys i(b) on I to receive the correspond-

ing amount of b on B.
• Vault. A Vault is a (non-trusted) intermediary responsible

for securely holding backing funds b locked on B until they
are redeemed for i(b).

• Smart Contract (iSC). A public smart contract responsible
for managing the correct issuing and transfer of i(b) and
ensuring correct behaviour of Vaults.

All actors are identified by their public/private key pairs (or
the representation thereof, e.g. accounts or addresses) on B
and I .

F. System Goals

XCC is an extension deployed on top of the XCLAIM
framework[37]. As such, under the blockchain, network and
threat models specified above, in Sections III-E-III-D, we
derive the following desirable security properties for XCC,
based on XCLAIM [37]:

• Auditability. Any user with read access to blockchains B
and I can audit the operation of XCC and detect protocol
failures.

• Consistency. No CBA units i(b) can be issued without the
equivalent amount of backing currency B being locked, i.e.,
|b| = |i(b)|.

• Strong Redeemability. Any user is guaranteed to be able
to redeem CBA i(b) for backing currency b on B during
publicly known secure periods S∆. In the intervals between
secure periods, denoted as T∆, a user can redeem CBA i(b)
for backing currency b on B or will be reimbursed with
equivalent economic value on I in case of failure.

• Weak Liveness. Any user in XCC redeem CBAs without
requiring a third party, relying only on the secure opera-
tion of B and I . Issuing and transferring CBAS requires
interaction with the Vault holding b locked on B.

• Atomic Swaps. Users can atomically swap XCC CBAs
against other assets on I or the native currency i.

In addition, we derive the following desirable functional
properties for XCC:
• Strong Scale-Out. The total amount of CBAs i(b) available

for circulation increases with the total amount of backing
currency b locked up on blockchain B but is independent
of the collateral locked up on I . Any user can contribute to
the amount of i(b) by assuming the role of the Vault and/or
locking b.

• Weak Compatibility. XCC does not depend on the features
of any specific blockchain and is compatible with any pair
of blockchains meeting a minimum set of requirements:
smart contract support2 on the issuing blockchain I; time-
locks, hashlocks, and basic fund transfers on the backing
blockchain B.

IV. DESIGN ROADMAP: FROM XCLAIM TO XCC

In this section, we provide a high-level overview of the
core protocols of the XCLAIM framework, highlight XCLAIM’s
main drawbacks, and lay out a design roadmap for the more
secure and collateral-efficient design of XCC.

A. The XCLAIM Protocols

We provide a high-level step-by-step description of the
XCLAIM protocols to issue, transfer, and redeem assets i(b)
on an issuing blockchain I backed by b locked on a backing
blockchain B. A detailed protocol specification can be found
in [37].
XCLAIM Protocol: Issue. Alice (requester) locks units on b
with the Vault on B to mint i(b) on I:
1) Setup. One or more Vaults register with the smart contract

iSC, bonding collateral i. The amount of backed-assets
i(b) that can be issued is determined by the exchange rate
ε(i,b) between b and i, and XCLAIM’s over-collateralization
rate rcol: max(i(b)) = icol

rcol·ε(i,b)
. Before starting the issue

process with a Vault, Alice verifies that the Vault has
sufficient collateral locked in the iSC.

2) Request. Alice requests to issue an amount of i(b) with iSC,
specifying her public key on I and temporarily reserving
the corresponding amount of collateral icol = i(b) · ε(i,b).

3) Lock. Alice locks funds b (|b| = |i(b)|) with one or more
Vaults on B using via a standard on-chain asset transfer.

4) Prove. Alice submits a transaction inclusion proof to iSC,
attesting that she correctly locked b.

5) Issue. The smart contract iSC verifies the transaction in-
clusion proof via a chain relay and, if successful, issued
i(b) to Alice on I .

XCLAIM Protocol: Transfer. Alice (sender) transfers i(b) to
Dave (received) on I:
1) Transfer. Alice notifies the iSC that she wishes to transfer

her i(b) to Dave on I . The state of iSC is updated and
Dave becomes the new owner of i(b).

2) Witness. The Vaults witnesses the change of ownership on
I by observing iSC, and will no longer allow Alice to
withdraw the transferred i(b) for locked b.

2Turing completeness is not required, cf. [37] Section VI-B.



XCLAIM Protocol: Redeem. Dave (redeemer) locks i(b) with
the iSC on I to receive b from one or more Vaults on B; i(b)
is then destroyed and the Vaults’ collateral icol unlocked:
1) Lock. Dave locks i(b) with the iSC on I , requesting

redemption of i(b) and specifying his / the recipient public
key on B.

2) Release. One or more Vaults are selected to execute the
redeem request by the iSC and proceed to release funds b
to Dave on B, such that |b| = |i(b)|.

3) Prove. Next, each Vault involved in the redeem process
submits a transaction inclusion proof to the chain relay
component of the iSC, attesting that they correctly released
b to Dave.

4) Burn. Finally, the iSC verifies the proofs and, if successful,
destroys or burns the corresponding amount of i(b) and
releases the associated locked collateral icol to the Vaults
on I .

B. XCLAIM Properties and Limitations

XCLAIM allows users to issue, transfer and redeem CBAS
without requiring a third party (Liveness) and logs all trans-
actions either B or I (Auditability). Since users must prove
correct lock-up of b with Vaults when issuing i(b), XCLAIM
also achieves Consistency. Thereby, XCLAIM only requires
standard transfers to be supported by the backing chain B
and supports fully fungible CBAS (Compatibility), making
i(b) easily tradeable against any other asset on I (Atomic
Swaps).

However, XCLAIM exhibits two main drawbacks hindering
its practicability. When issuing CBAS, users transfer custody
over b to Vaults, who are required to bond collateral to protect
users against financial damage. Nevertheless, Vaults may still
choose to steal funds b despite losing collateral i, e.g. triggered
by private information such as speculation on future exchange
rates. As a result, when redeeming CBAS, XCLAIM can only
guarantee that a user will either be able to redeem i(b) for b
or will be reimbursed in the equivalent (or higher) amount of i
in case of Vault failure (Redeemability). While this provides
significantly better guarantees than any existing centralized
service, unexpectedly receiving collateral i instead of b may
impose challenges on applications making use of i(b).

Since the collateral is locked up in a different currency than
b, XCLAIM must employ over-collateralization to mitigate
exchange rate fluctuations and prevent financial damage to
users. In practice, this makes the supply of available i(b)
dependent on the amount of b locked by users on B and the
collateral i locked by Vaults on I (Scale-out). For example,
if we assume XCLAIM’s suggested collateralization rate of
2.0, the overall capital requirement of minting a single unit
of i(b) is 300% of its economic value. Another challenge
is that there is no time limit on the lifetime of CBAS. This
means Vaults do not know for how long they must bond their
collateral on I , making it difficult to estimate the opportunity
costs of their invested capital. As a result, Vaults in XCLAIM
must charge high fees to users during the issue and redeem
processes, yielding a framework less attractive to users from

an economical standpoint than trusted but more cost-efficient,
centralized services.

C. XCC Design Roadmap

To address the security and scalability limitations of
XCLAIM, we outline the design roadmap for XCC, introducing
the core components used in its construction.
• In Section V-B, we prevent vaults from accessing users’

funds, save for short, pre-determined periods, and ensure
users can always redeem CBAS without a Vault’s involve-
ment, thus achieving Strong Redeemability. For this, we
introduce a novel checkpointing mechanism on the backing
chain B. When issuing CBAS, users lock b in timelocked
commitments on B, which ensure b cannot be moved. Vaults
aggregate and renew these commitments periodically via on-
chain checkpoints on B. Pre-signed recovery transactions,
spending from dedicated multisignature outputs in commit-
ments, ensure users can always recover their funds on B.

• In Section V-C, we achieve Strong Scale-out by signifi-
cantly reducing the collateral requirements for Vaults and
allowing fractional collateralization without loss of secu-
rity. Specifically, Vaults must only bond collateral during
short periods when checkpoints are renewed and, through
parallelization and cascading, can use the same collateral
to securely maintain numerous checkpoints and scale to
thousands of users.

• Finally, in Section V-D we achieve Atomic Swaps by
ensuring users can instantly transfer CBAS, independent of
the checkpointing scheme, via on-demand collateralization
by Vaults.

V. XCC PROTOCOL DESIGN

This section presents the design of XCC. We first provide
a high-level overview and intuition of the protocol, and then
follow the design roadmap laid out in Section IV-C to detail
XCC’s design.

A. Overview

XCC overcomes the limitations of XCLAIM by adding theft
prevention mechanisms for vaults on the backing chain B,
thus removing the need for collateralization on I , save for very
short intervals. Similarly to XCLAIM, users must lock block on
B and submit a proof of this to the iSC when issuing CBAS
i(b) on I . However, instead of transferring funds directly into
a Vault’s custody, users lock b in transactions encumbered
by timelocks, guaranteeing that b cannot be spent until the
timelock expires. To ensure CBAS can exist for an indefinite
period and are easily transferable, vaults temporarily receive
custody over block to renew timelocks upon expiry. Thereby,
vaults aggregate funds from multiple users into checkpoints
— transactions on B which move users’ block into new
timelocked commitments. During the short period when funds
block are under a Vault’s control, the Vault locks up collateral
icol on I to guarantee economic security to users.

Funds in timelocked commitment can be recovered ear-
lier from multisig outputs by providing both the user’s and



Fig. 1: High-level overview of the Issue, Transfer, and Redeem protocols in XCC.

Vault’s signatures. To ensure users can always exit the system,
vaults distribute pre-signed recovery transactions to all users
involved in a checkpoint.

Coordination on timelock duration and checkpoint compo-
sition happens via the iSC on I and, in some cases, can be
offloaded to off-chain channels. Just like in XCLAIM, users
can run their own vaults, while relying on third-party vaults
is a matter of convenience and usability.

Since backing funds block cannot be stolen by Vaults except
during checkpoint renewal, there is no need for Vaults to
maintain full collateralization continuously. Instead, Vaults
only provide collateral shortly before executing a checkpoint,
which can be limited to e.g. 2 hours in the case of Bitcoin. If
a Vault fails to bond collateral, a single honest, online party
can broadcast a recovery transaction to return block to affected
users. To service a large number of users, Vaults can cascade
independent checkpoints and, by avoiding overlaps, re-use the
same collateral icol to secure funds of thousands of users, s.t.
|i(b)| = |block | > |icol |.

The ability of users to always recover their backing funds
introduces a limitation to XCC CBAS in terms of transferabil-
ity. Changing the ownership of i(b) on I must be reflected
in checkpoints on B (update of recovery conditions), which
can incur delays of several hours in the worst case. To
enable instant transfers, XCC vaults hence offer on-demand
collateralization: users can request a Vault to bond collateral
|icol | > |block | until the update in i(b) ownership is reflected
in a checkpoint on B.

In the following sections we introduce six XCC protocols
encompassing the above functionality - Issue, Checkpoint,
Transfer, Redeem, Recovery, Instant Transfer, sometimes ex-
tending protocols with additional steps, necessary for features
introduced in later sections. A final and formal protocol
specification is then presented in Figure 5.

B. Timelocked Commitments, Checkpoints and Recovery

As outlined in Section IV-C, XCC makes use of time-
locked commitments and an interactive checkpointing scheme

to secure backing funds block on B, while allowing users
to independently recover their funds. We now proceed to
detail the necessary transactions on the backing chain B and
the resulting modifications to XCLAIM’s issue, transfer and,
redeem processes.

Initially, we assume the Vault is still fully (over-) collat-
eralized, following the XCLAIM model. As we shall see in
Section V-C, the newly introduced timelocked commitments
and checkpointing mechanism allow us to relax the collater-
alization requirements - described in Section V-C below.

1) Issuing to Timelocked Commitments: First, we modify
how backing funds are locked in the XCLAIM Issue protocol.
Instead of simply transferring block to a Vault and giving away
custody over the assets, a user A locks block in a contract which
prevents them from being spent by the Vault for a pre-defined
period - the so-called checkpoint duration ∆V . Specifically, A
creates a transaction TIssue as follows:

TIssue =
[
#
]
7→

[
(σV ∧∆V ) ∨ (σV,A ∧∆Rec)

]
.

That is, user A creates a transaction the output of which can
be spent under two conditions:

1) (σV ∧∆V ): the Vault can spend block after a delay ∆V , or
2) (σV,A∆Rec): the Vault and A can cooperate to spend the

locked assets from the multsig output after a delay ∆Rec,
where ∆Rec < ∆V .

The execution of Issue then proceeds as follows:
XCC Protocol: Issue. User A locks block on B with the Vault
V and obtains i(b) on I:

1) Registration. A verifies the smart contract iSC is available
on the issuing blockchain I , and records her public key on
B, as well as her preferences for ∆V and ∆Rec, with the
contract.

2) Setup. A selects the Vault V she wishes to use on the
backing chain B; and comes to an agreement on ∆V and



Fig. 2: Overview of the XCC checkpoint process. User A and B have b timelocked with a Vault on B for duration ∆C

(Checkpoint 1). The Vault unbonds its collateral icol once Checkpoint 1 is completed. User B trades 1.0 i(b) to user B, which
will be reflected in Checkpoint 2 on B. Shortly before timelock ∆C expires (∆esc), the Vault re-bonds collateral on I . Once
Checkpoint 2 is stable on B, the Vault submits a proof to the iSC and unbonds its collateral.

∆Rec, and any service fees, with V (if necessary, updating
her account information with the iSC). 3

3) Lock. A broadcasts TIssue , as described above, on B.
4) Prove. A submits a transaction inclusion proof for TIssue

to the the iSC, proving that the funds block are locked with
V.

5) Issue. The iSC verifies TIssue , ensuring the σV signature
lock corresponds to the specified Vault’s public key, σA

corresponds to A’s public key recorded during Registration,
and that the timelocks ∆V and ∆Rec are correct. The
contract then creates and credits to A the corresponding
amount of i(block ), such that |i(block )| = |block |.

2) Periodic Checkpoints: Once the Issue protocol is ex-
ecuted correctly, the user’s backing assets block are locked
in a timelock contract and cannot be moved/spent until the
timelock expires. Once the timelock expires, Vault V receives
full custody over the locked funds and is instructed to renew
the timelock such that block remain locked while i(block )
exists. This process is defined in a new Checkpoint protocol.

To renew timelocks of locked backing assets, the Vault
creates and broadcasts a new, so-called checkpoint transaction

3It is possible for the user to proceed here without the Vault’s agreement;
however in such a case the Vault needs to take no action and will suffer no
penalty, while the user’s only course of action will be to exit the system.

on B. The checkpoint transaction takes as input (spends) the
outputs of (a) an issue transaction, or (b) a previous checkpoint
transaction, and exhibits the same output structure as TIssue

described above. Thereby, a single checkpoint transaction can
refresh timelocks of multiple users at the same time: a separate
input and output are included for every user participating in
the checkpoint.

We define a checkpoint timeout ∆CP such that ∆CP −
∆V provides sufficient time for the Vault to broadcast the
checkpoint on B and notify the iSC.

The execution of Checkpoint therefore proceeds as follows:
XCC Protocol: Checkpoint. The Vault V refreshes the time-
locks of one or more of its users.
1) Construct. The Vault creates a transaction TCPi+1

, where
i is the index of the last checkpoint, as follows. For each
user U (whose ∆V timelock has expired):
• Add as input the corresponding output of the previous

checkpoint transaction TCPi or, if this is the first renewal
for this user, the output of the user’s issue transaction
TIssue .

• Add an output ((σV ∧∆V ) ∨ (σV,A ∧∆Rec) | blockU) to
TCPi+1

2) Broadcast. V broadcasts TCPi+1 (providing the necessary
signatures as witness data), and notifies the smart contract



iSC.
3) Prove. The Vault submits a transaction inclusion proof for

the checkpoint transaction TCPi+1 to the iSC.
4) Verify. The iSC verifies for each user/output the correctness

of (i) the updated timelocks, (ii) the amount of block locked,
and (iii) the signature and timelock parameters. In case of
any inconsistencies, the Vault’s collateral is slashed, and the
affected users are reimbursed using the Vault’s collateral
icol .

5) Timeout. For any given user, if ∆CP since their last
checkpoint has passed and the Vault has not submitted a
checkpoint, it is considered to be timed out. The iSC slashes
Vault collateral for that user, if any, and burns that user’s
tokens.

With the introduction of checkpoints, specifically multisig-
nature outputs, we implicitly altered the process required to
redeem CBAS: both the user’s and the Vault’s signatures
are required for a cooperative Redeem. Note: we introduce
a Recovery mechanism allowing users to exit the system even
if the Vault is non-cooperative in the next section.
XCC Protocol: Redeem (Cooperative). The user redeems
their tokens for backing funds, with cooperation from the
Vault.
1) Setup. The user and Vault prepare and co-sign a transaction

spending from the user’s last checkpoint’s output, and
returning the funds to the sole custody of the user.

2) Unlock. Any time after ∆Rec has passed since the check-
point, the transaction is broadcast.

3) Burn. The contract burns the corresponding tokens, either
upon notification from any party, or at the latest after the
checkpoint timeout ∆CP since the user’s last checkpoint.

The checkpoint scheme further requires us to redefine the
XCLAIM Transfer protocol: in XCC, CBA transfers on I only
become final once they have been included in a checkpoint on
B and the later has been verified by the iSC. We introduce a
protocol for instant transfers in Section V-D.
XCC Protocol: Transfer. A user transfers XCC CBA funds
to another user on I , finalized by a checkpoint on B.
1) Request. The user submits the transfer request to the iSC,

which records it. The Vault observes this.
2) Finalise. At some point in the future, the Vault broadcasts

the next checkpoints for both the sender and the receiver,
with the updated output amounts.

3) Record. Once the iSC has verified correct backing fund
allocations for both users, the token balances are updated.

3) User Recovery: While holding the backing funds in
a timelock prevents theft by the Vault, in practice that will
merely delay a malicious Vault, as the user has no recourse to
recover their funds if the Vault is dishonest: once the timelock
expires, the Vault gains control over block is can commit
theft. We remedy this by introducing the Recovery protocol:
a mechanism allowing users to pre-empt a malicious Vault
and regain control of their backing funds block if necessary,
which makes use of a recovery transaction spending from the
multisignature lock/condition of the user’s checkpoint output.

(a) Each user’s full output conditions from a checkpoint
transaction

(b) The pre-signed (but not yet broadcast) recovery
transaction and its outputs

Fig. 3: Visualization of a checkpoint for a single user. (a)
shows the checkpoint transaction, its output conditions and
timelocks, and the pre-signed recovery transaction. (b) shows
in detail the output of the recovery transaction.

XCC Protocol: Checkpoint - Extension. When creating the
checkpoint CPi for a user A (during the Construct phase
of the Checkpoint protocol) the Vault pre-signs a recovery
transaction, TRecA

i
. This transaction spends from A’s output

in CPi, and returns the backing funds blockA(CPi) to A on B.
The Vault publishes this signature to the iSC when submitting
the checkpoint for verification during the Prove step of the
Checkpoint protocol. User A can add her signature and broad-
cast TRecA

i
to recover funds on B - and is are the only user

able to do so (digital signature).
XCC Protocol: Recovery. A user unilaterally regains custody
of their backing funds.
1) Recover. Any time after ∆Rec has passed since the last

checkpoint, the user signs the already partially-signed
recovery transaction TRec stored in the iSC and broadcasts
it on B.

2) Verify. Any user or Vault (latest during the next checkpoint)
submits an SPV proof for TRec to the iSC.

3) Burn. The iSC verifies the recovery transaction and burns
user A’s i(b).

Security Argument for Strong Redeemability. XCC by design
ensures that the user’s funds block are always (a) cryptographi-
cally locked on the backing chain B in multisig and timelocked
outputs (S∆), or (b) are in the Vault’s custody but secured by



locked collateral icol on I (T∆). In the edge case that the Vault
fails to bond collateral icol before ∆Rec, the user can recover
her block using the Recovery protocol, i.e., by broadcasting
the recovery transaction TRec on B.

To steal a user’s block the Vault would hence have to achieve
one of the following:

1) Forge user A’s signature or to include an invalid transaction
in B to incorrectly spend from the outputs of the check-
point. This is only possible if Persistence of B does not
hold or if the adversary is not computationally bound (i.e.,
can obtain the private key from A’s public key) - which is
a contradiction to the model.

2) Tamper with the smart contract iSC on I to illicitly with-
draw collateral icol . This is a contradiction to the model.

3) Forge a transaction proof from B to the iSC. This is a
contradiction to the model, as this is equivalent to proving
a valid double-spend, but the adversary is computationally
bound.

4) Prevent the user from broadcasting the recovery trans-
action TRec . This again is a contradiction to the model
(Persistence and Liveness of B, and synchronous channels
between honest parties).

Alternatively, a dishonest user could attempt to steal from
a different user by broadcasting a Redeem or Recover trans-
action, but without having notified the contract to burn the
corresponding tokens. The dishonest user could then attempt
to execute Transfer. In this edge case, the delayed finality of
Transfer in XCC ensures that the receiver will not receive the
unbacked fraudulent tokens, and the transfer will fail.

To successfully steal from another user by transferring
unbacked tokens, the malicious user would have to achieve
one of the following:

1) Tamper with the smart contract iSC on I to force the invalid
transfer to go through. This is a contradiction to the model.

2) Forge a transaction proof for a successful checkpoint from
B to the iSC. As above, this is a contradiction to the model.

We conclude that under the model, a user can redeem i(b)
for b during S∆, or be reimbursed in collateral icol during T∆.
Hence XCC achieves Strong Redeemability.

Security Argument for Auditability. All the parameters neces-
sary to reconstruct protocol execution, including the Vault’s
signature for the Recovery transaction, B addresses for the
user and Vault, timelock durations, etc., are recorded in the
iSC. By the assumptions of the model, it directly follows that
all participants can observe these values, and hence verify
the correct execution of the protocol. Thus, Auditability is
achieved.

Security Argument for Weak Liveness. A user is able to:

• Execute Issue by broadcasting TIssue on B, and notifying
the iSC on I: no third party is required.

• Redeem their funds by broadcasting TRecA
i

on B as soon as
∆Rec has passed since the last checkpoint: no third party is
required.

• Execute Transfer by notifying the iSC on I , and waiting until
the user’s Vault updates the balances of block for themselves
and their recipient: cooperation of the vault is required.
Therefore, all the conditions for Weak Liveness are satis-

fied.

C. Collateral Reduction

Due to Strong Redeemability, full collateralization of block
funds is no longer necessary in XCC. In particular, during the
secure period S∆, a user is guaranteed the ability to redeem her
i(block ) for the corresponding backing funds block . As a direct
consequence, the Vault is not required to lock collateral while
timelocks are active (S∆), but only during the short periods
T∆ when the Vault gains full control over block to renew time
timelocks.

This section outlines how collateral can be more optimally
managed, leading to satisfying the Scale-out Collateralization
property by reducing total collateral required below the total
value of the locked funds. In Section V-C1, we describe how
security is maintained during checkpoints, by requiring that
the Vault put down collateral a short period in advance. In
Section V-C2 we describe how this can be used to minimise
the amount of funds required to operate a Vault, by interleaving
checkpoints and reusing collateral between them.

1) Periodic Checkpoint Collateralization: We specify that
the funds must be collateralised by the Vault prior to the
user’s timelock expiring, i.e. prior to ∆Rec since the latest
checkpoint. We the define ∆col = ∆CP − ∆Rec, i.e ∆col is
the duration of time between ∆Rec and the timelock expiring.

To achieve economic security, we therefore require that
users come online at any point during ∆col prior to their
scheduled checkpoint, and verify that the Vault has correctly
collateralised their funds. Should a Vault attempt to avoid
collateralising funds and wait for the timelock to expire to
steal the funds with no repercussions, the user(s) involved,
upon observing this, broadcast their recovery transactions and
regain custody of their backing funds.

After the checkpoint has been broadcast, this collateral is
then released again once the iSC has verified its correctness.

2) Fractional Collateralization: Thanks to periodic collat-
eralization, the Vault may interleave groups of users such that,
after each group’s checkpoint, the collateral is released before
∆Rec of the next group’s checkpoint. This allows the Vault to
reuse the same liquid funds to collateralise alternating groups
of users. As a result, the total amount of collateral required at
any one time can be reduced below the total amount of funds
locked across all users.

Arguments for Strong Scale-Out. Taking advantage of frac-
tional collateralization, a Vault can securely lock the backing
funds block of a large number of users, while reusing the same
icol as collateral across multiple, cascaded checkpoints/user
groups. Thus, the total amount of CBAs i(b) that can be minted
in XCC depends directly on the amount of b locked with Vaults
and not on the total amount of collateral icol the Vault can put
down at any given point in time. By design, any user can



Fig. 4: A comparison between the collateral required for
XCLAIM and XCC in an example scenario, with 1

2 fractional
collateralization (i.e. two even user groups participating in
checkpoints, interleaved by the Vault), and 1.1 overcollater-
alization in XCC.

lock block with one or more Vaults, or take up the role of a
Vault herself by registering with the iSC and providing some
amount of collateral icol . The iSC by design does not restrict
the set of Vaults, only verifying the collateral requirements at
checkpoint renewal. We conclude that XCC achieves Strong
Scale-Out.

3) Reducing Overcollateralization: An additional benefit
of the period collateralization is the significantly reduced
requirement for overcollateralization. As collateral is locked
in the smart contract in the issuing chain, its value relative to
the backing funds (on the backing chain) may fluctuate as the
exchange rate between the cryptocurrencies on the two chains
fluctuates; thus, in both XCLAIM and XCC, overcollateraliza-
tion is necessary to guard against the collateral becoming less
valuable than the funds it secures.

XCLAIM recommends a collateralization factor of 2 or
greater for these purposes. By contrast, in XCC, collateral is
only locked for the duration of ∆col, followed by the delay
necessary for the checkpoint transaction to be confirmed on the
backing chain, then verified on the issuing chain. Depending
on the value of ∆col, the total duration during which collateral
is necessary, ∆t, may be as short as several hours. As a result,
the maximum change in exchange rate E(t) will generally
be bounded much lower than for XCLAIM, which operates
with an unbounded ∆t (can be days, weeks, even months).
Depending on the volatility of the cryptocurrencies XCC
operates on at any given time, a collateralization factor of 1.2
or lower may be appropriate.

Further, if we assume that the rate of change of volatility
— which is ∂

∂tE(t), or the second derivative of the exchange
rate — is bounded, then, given an appropriate oracle, the
collateralization factor can be adjusted based on the volatility
at any given time. During periods of low volatility, the
collateralization factor could approach 1, thanks to the short
∆t and bounded rate of change of volatility. During periods of

increased volatility, the factor could be increased as necessary,
allowing for continued secure operation of the protocol.

D. Instant Collateralised Transfer

In this section, we introduce the revocable recovery mecha-
nism, which allows instant transfer finality at the cost of extra
collateralization when the Vault is available and cooperating.

Note that at the time CPi and RecA
i are created, A owns

i(b)A(CPi) and therefore her checkpoint output — from which
the recovery transaction spends — locks blockA(CPi). How-
ever, if prior to the next checkpoint, A trades some of her
tokens to some other user B, it will be the case that (i(b)

A
=

block
A) < block

A(CPi). But the recovery transaction cannot be
adjusted after it has been created. As A can broadcast RecA

i

at any time, this would result in theft, by A, of backing funds
belonging to B. Therefore, currently, the Transfer protocol
requires that users wait until the sender’s next checkpoint
before it is considered finalised.

For transfers to be securely final before the next checkpoint,
the sender’s current Recovery transaction must therefore be
invalidated. To this end, a hashed timelocked contract (HTLC)
is used as RecA

i ’s output (illustrated in Fig. 3b):

TRecA
i

=
[
oA
CPi

(σV)
]
7→[

((σA ∧∆Rec) ∨ (σV ∧H (rA
i )) | blockA)

]
In other words, to spend from RecA

i , one of two conditions
must be specified: either A can simply provide her signature
and claim the output, but only after the recovery delay time-
lock, ∆Rec, has expired; or the Vault can spend the output with
its signature, but only if it has the hash preimage rA

i . This
preimage is known to the user, who sets the corresponding
hashes in the iSC in advance, allowing the Vault to construct
and pre-sign the recovery transactions as required as well as
maintaining Auditability.

Thus, to invalidate the recovery transaction, A records the
preimage corresponding to its hashlock in the iSC, publicly
revealing it. After doing so, should A try to broadcast the
Recovery anyway, the Vault will be able to regain the funds
before ∆Rec expires, while A is yet unable to spend them.

This allows the A to potentially execute transfers, without
the receiver bearing the risk of A then broadcasting their
Recovery and gaining back the ostensibly traded away funds.
However, a consequence of invalidating the Recovery trans-
action is that the secure period S∆ ends, and the T∆ period
begins: therefore, the user’s funds must be collateralised prior
to performing this; ensuring this is the user’s responsibility.
We introduce a modified Transfer protocol for this.
XCC Protocol: Instant Transfer. A user transfers XCC-
locked funds to another user with instant finality, with co-
operation from the Vault.
1) Request. The user submits the transfer request to the iSC,

which records it. Additionally, the user requests that the
Vault put down collateral for their funds, if it has not
already done so.



Operations:

Off-chain:
Off-chain, operations can be executed by the user and the Vault .
• verifyCollateral(block )→ >|⊥: (Executed by: user) The user observes

the state of the iSC and the current exchage between b and i, and ensures
that Vault has locked sufficient collateral locked to cover block .

Additionally, we assume that both the user and Vault are able to observe
and verify relevant transactions on both B and I , and will not proceed
with a procedure if any party fails to perform an earlier step.
Backing Blockchain:
On the backing chain B, again the operation can be executed by the user
and the Vault .
• createLock(block ,Vault) → Tlock : (Executed by:

user) Outputs a transaction Tlock =
[
#
]

7→[
((σVault ∧∆user

i ) ∨ (σVault,user ) | block )
]
, which can be used to

lock block with Vault on B.
• createUnlock(i(b), user)→ Tunlock : (Executed by: Vault) Outputs a

transaction Tunlock =
[
#
]
7→

[
(σuser | b)

]
, which returns the backing

funds for i(b) to the sole control of user .
• createCP(user , block )→ TCP : (Executed by: Vault) Outputs a trans-

action TCP =
[
#
]
7→

[
((σVault ∧∆user

i ) ∨ (σVault,user ) | block )
]

which re-locks the user’s funds for another round (i.e. a checkpoint
transaction).

• createRecovery(user ,TCP ) → TRecuser : (Executed by:
Vault) Creates a transaction TRecuser =

[
oTCP

(σVault )
]
7→[

((σuser ∧∆Rec) ∨ (σuser ∧H (ruser
i )) | block user )

]
, which pro-

vides the recovery mechanism for the TCP , immediately signs it with
σVault , and outputs this pre-signed transaction.

• broadcast(T): (Executed by: any) Broadcasts T on B, provided
the party executing the procedure is able to satisfy and outstanding
requirements to spend from the inputs of the transaction.

Issuing Blockchain:
On the issuing chain I , operations are executed by the iSC. Some
operations are restricted to being executed by certain parties; where this
is not specified, any party can execute the operation.
• verifyIssue(Tlock , user)→ block |⊥: Verifies that Tlock ∈ Lb and is a

valid locking transaction, and observes the amount of block .
• issue(i(block ), user): Mints i(block ) tokens and assigns them to the

ownership of the user .
• verifyHash(round , user) → >|⊥: Verifies that the user has supplied

a preimage corresponding to their Recovery transaction this round, and
that the preimage matches the hashlock.

• storeHashPreimage(round , user , preimg): (Invoked by: user) Pub-
licly stores the user’s Recovery preimage for round .

• transfer(i, user , receiver): (Invoked by: user) Subtracts i from the
balance of user and adds it to the balance of receiver .

• burn(i, user): (Invoked by: user) Destroys i of tokens from the user’s
balance.

• verifyRedeem(i(b),Tunlock , user): Verifies that Tunlock ∈ Lb and
is a valid transaction, and returns b corresponding to i(b) to the sole
control of user .

• verifyCP(Vault , user ,TCP ,TRecuser ) → >|⊥: Verifies that TCP ∈
Lb, that is a valid checkpoint transaction broadcast by Vault , that it
locks block corresponding to the user’s i(block ) token holdings into a
new checkpoint, and that TRecuser is a matching, valid, and correctly
pre-signed recovery transaction.

• verified(round)→ >|⊥: Returns > if the checkpoint at round round
has been successfully verified using verifyCP, and ⊥ otherwise.

• hasCollateral(vault , user)→ >|⊥: Returns > if Vault has non-zero
collateral bonded for user .

• bondCollateral(i,Vault , user): (Invoked by: Vault) Locks i as collat-
eral to back funds of user .

• unbondCollateral(Vault , user): Releases the collateral locked by
Vault for user .

• slashAndReimburse(Vault , user , icol ): Slashes icol locked by Vault
against user , and transfers ownership of the slashed collateral assets to
the user as reimbursement.

Algorithms:
1: procedure ISSUE
2: user .createLock(block ,Vault)→ Tlock

3: user .broadcast(Tlock )
4: if (iSC.verifyIssue(Tlock , user ,Vault)→ i(block )) 6= ⊥ then
5: iSC.issue(i(block ), user)

6: procedure INSTANT TRANSFER
7: if ¬iSC.verifyHash(ri, user) then
8: if user .verifyCollateral(block ) then
9: user calls iSC.submitHashPreimage(τ(ri), user , ruseri )

10: if iSC.verifyHash(ri, user) then
11: sender calls iSC.transfer(i, user , receiver)

12: procedure CHECKPOINT
13: before τ(ri + ∆Rec):
14: Vault calls iSC.bondCollateral(icol ,Vault , user)
15:
16: after τ(ri + ∆Rec):
17: if ¬user .verifyCollateral(block ) then
18: user executes RECOVER
19:
20: after τ(ri + ∆V ), before τ(ri + ∆CP ):
21: Vault .createCP(user , block )→ TCP

22: Vault .createRecovery(user ,TCP )→ TRecuser
23: Vault .broadcast(TCP )
24: if iSC.verifyCP(Vault , user ,TCP ,TRecuser ) = > then
25: iSC.unbondCollateral(Vault , user)
26: return
27: else
28: iSC.slashAndReimburse(Vault , user , icol )
29: return
30:
31: after τ(ri + ∆CP ):
32: if ¬iSC.verified(ri) then
33: iSC.slashAndReimburse(Vault , user , icol )

34:

35: procedure REDEEM
36: user calls iSC.burn(block , user)
37: Vault .unlock(block , user)→ Tunlock

38: Vault .broadcast(Tunlock )
39: if iSC.verifyRedeem(i(block )),Tunlock , user) = > then
40: if iSC.hasCollateral(Vault , user) = > then
41: iSC.unbondCollateral(Vault , user)

42: procedure RECOVER
43: after τ(ri + ∆Rec):
44: user .broadcast(TRecuser )
45:

Fig. 5: Formal specification of XCC protocols.



2) Collateralise. The Vault bonds the required collateral.
3) Finalise. The user reveals the hashlock to their recovery

HTLC, recording it in the iSC, if they have not already
done so since the last checkpoint. If they have, the transfer
is automatically considered finalised.

4) Record. Once the iSC has verified that collateral has been
bonded and the recovery has been revoked, the token
balances are updated.

If the user is next scheduled to participate in a checkpoint far
into the future, this may result in the Vault locking collateral
for an extended period of time. To remedy this, the user and
Vault may cooperate to make use of the last checkpoint’s
multisignature output to release the funds into custody of the
Vault. This will not affect security since the Vault must have
already put down collateral and allows the Vault to spend the
funds and include them in an earlier checkpoint.

Security Arguments for Strong Redeemability. We first con-
sider the funds block held by the sender. According to the
Instant Transfer protocol execution, the sender’s funds are
always either (a) locked on the backing chain B under multisig
and timelock outputs, with Recovery available; or (b) either
locked on B with Recovery unavailable, or in the Vault’s
custody, but secured by bonded collateral icol on the issuing
chain I .

Case (a) satisfies Strong Redeemability as demonstrated
in Section V-B3. In case (b), to steal the sender’s block , the
Vault must tamper with the execution of the contract iSC to
withdraw collateral icol . This contradicts the model. Thus, the
XCC Instant Transfer satisfies Strong Redeemability for
the sender.

We now consider the receiver. According to the protocol,
the block from referenced by the transferred i(b) are fully col-
lateralised by the Vault’s icol . As such, if the Vault and/or the
sender collude to commit theft, the received will be reimbursed
in icol . To withdraw icol without reflecting the correct balance
updates (sender to receiver) on B, the Vault must tamper with
the verification logic of iSC, which contradicts the model.
We conclude, Strong Redeemability is also satisfied for the
receiver.

Arguments for Atomic Swaps. The XCC Transfer protocol
does not allow performing atomic swaps of XCC tokens for
other assets on I , due to the delayed finality of the transfer.
However, with the introduction of the instant transfer mecha-
nism, swaps become possible, using the following protocol:
XCC Protocol: Atomic Swap. A sender and a receiver
atomically exchange i(b) for a pre-agreed amount of any asset
on I .
1) Prepare. The sender executed steps 1-3 of the Instant

Transfer protocol if they have not done so already since the
last checkpoint. This ensures their funds are collateralised
and their recovery has been revoked.

2) Lock. The sender locks i(b) in the iSC.
3) Swap. If the receiver locks the pre-agreed assets in the iSC

within the delay ∆swap, the iSC executes both transfers
atomically, performing the swap.

4) Revoke. If the receiver fails to perform the swap within
∆swap, the iSC released i back to the sender.

VI. SECURITY AND INCENTIVE CONSIDERATIONS

In this section, we provide an informal analysis of potential
security flaws and attack vectors, and their mitigation, sup-
plementing the design choices from Sections V-B, V-C and
V-D.

A. Chain Relay Security

The contract iSC operating on the issuing chain I must be
aware of the state of the backing chain B; in particular, it
must be able to verify the validity and inclusion of relevant
transactions on B. A chain relay is used for this purpose, as
described for XCLAIM.

As the relay’s design is reused directly, the security con-
siderations for the chain relay are identical. We present an
overview of these; a more detailed discussion can be found in
XCLAIM citezamyatin2018xclaim.
1) Chain Relay Poisoning. An adversary may attempt to

submit fake data to the relay. To remedy this, a maturity
period is introduced before which submitted block headers
are not considered final, similar to the confirmation period
used on most blockchains themselves.

2) Replay Attacks on Inclusion Proofs. An adversary may
attempt to replay transaction inclusion proofs to e.g. issue
duplicate tokens. To mitigate this, a unique identifier can
be required to be included in relevant transactions. Note
that, unlike in XCLAIM, the timelock-based nature of XCC
limits the scope in which replay attacks are possible: for
instance, a Redeem transaction can no longer be replayed
after the next checkpoint, nor can it be used as proof for
any user except the original one.

3) Chain Splits. It is possible, when consensus rules are
modified in a conflicting way (hard fork) without full
adoption by all consensus and network participants, that
two instances of the same blockchain will propagate at
the same time [38]. In the case of B chain splits (B and
B’), the iSC on I will be default follow the non-upgraded
chain B and must be modified to support B’. In this
scenario, correct implementation of replay protection on
B and B’ is critical for the security of XCC (and all other
B applications for that matter) to distinguish between i(b)
and i(b)’.
In case of a I chain split, two distinct instances of i(b)
are created, backed by the same locked funds block but
by different collaterals: icol and icol ’. To ensure physical
redemption is possible, can be required to chose between
holding CBAS on I and I’. Alternatively, one can allow
a self-managed transition, where block are redeemed on a
first-come-first-served basis and remaining CBAS become
synthetic assets backed only by collateral on I and I’
respectively. In the latter case, to prevent incorrect slashing
of vaults, checkpoint verification rules must be loosened to
account for the imbalance between block and the sum of



icol and icol ’. Economic security of users is ensured by
design in both cases.

B. Ledger Synchronisation

Various parameters of XCC can be adjusted, either when
instantiating the smart contract iSC, or even individually for
every user. In particular, the durations of the timelocks ∆Rec,
∆V and ∆CP , expressed in rounds of Lb, are left up to the
implementation.

The choice of these parameters, however, must take into
account the persistence and liveness parameters k and u for
both Lb and Li. In particular, ∆V −∆Rec — that is, the time
interval during which users are able to execute Recovery if
a Vault is misbehaving or failing to collateralise, before the
funds are released into Vault custody — must be greater than
ub +kb, i.e. the delay for a user to include a stable transaction
in B.

Similarly, ∆CP − ∆V > ub + kb + ui must be satisfied,
i.e. the time a Vault has to broadcast a checkpoint before
timeout must allow for both the delay to include and stabilise
the checkpoint transaction on Lb and additionally the delay
for a transaction to be included in Li, as the iSC, located on
I , must verify the checkpoint (as part of a transaction on I)
before ∆CP .

C. Counterfeiting

A common concern in both XCLAIM and XCC is of a Vault,
and in the case of XCC potentially a Vault colluding with a
user, reusing already locked funds block to re-issue additional
i(block ).

In XCLAIM, this required restricting any spending of block ,
except as required for the execution of the protocols. In XCC,
locked funds cannot normally be moved while the various
timelocks are active, as part of predefined protocols such as
Redeem or Recover. During the brief period between ∆V

and ∆CP , while the Vault has sole custody of the funds,
the opportunity to counterfeit is very limited. Due to this,
fraud proofs become a practically feasible way to prevent
counterfeiting, and the Vault can remain otherwise unrestricted
in its handling of the funds in preparation for a checkpoint.

Interestingly, counterfeiting only becomes a potential prob-
lem on a macro-economic scale, specifically in case of bank
runs for b. Since every issued i(b) is secured by icol even
if block have been removed, i(b) owners remain financially
unaffected. In this scenario, i(b) represents synthetic asset
backed by collateral and pegged to the price to b through price
oracles.

D. DoS

While XCC operates in a decentralised model where any
user can function as a Vault, unlike XCLAIM, tokens have
limited fungibility due to being tied to a single Vault through
the multisignature timelock transactions. Therefore, if a partic-
ular Vault is the target of a denial-of-service (DoS) attack, all
the users of that Vault may be forced to exit the system and
liquidate their tokens. Furthermore, due to Weak Liveness,

executing Transfer becomes impossible if the sending user’s
Vault is not available. This does not cause direct financial
damage due to Strong Redeemability, but may be used to
execute a targeted DoS attack against a particular user or users.
Such an attack may also be caused by a Vault itself deliberately
going offline.

As a partial remedy, an affected user may collateralise their
own funds in order to transfer them to a different Vault by
means of the Recovery protocol. This approach allows users of
an unresponsive Vault to avoid liquidating their tokens, at the
cost of requiring users to provide sufficient collateral to cover
their own funds, and incurring a delay due to the Recovery
HTLC timelock.

E. Fee Model Considerations

Both XCLAIM and XCC are protocols that rely on rational
behaviour of Vaults - and as such must provide sufficient fee
income to cover costs and generate a net return. The XCC
(and XCLAIM) costs can be split as follows:
• Operation costs: The costs of operating clients (ideally, full

nodes) on both B and I , as well as additional client software
to automate Vault operation, in terms of both server storage
and bandwidth.

• Capital costs: The costs of the locked icol collateral on I .
While both XCLAIM and XCC require over-collateralization

to mitigate exchange rate fluctuations, XCC significantly
improves over XCLAIM by exhibiting predictable collateral
lockup times. Specifically, while in XCLAIM Vaults lock
collateral indefinitely (at user’s discretion), Vaults in XCC only
require collateral during the checkpoint renewal period T∆,
or when user’s request collateralization for instant transfers.
In both cases, the collateral lockup duration is predictable,
allowing the Vault to estimate the capital and opportunity costs
and hence to offer collateral as a service.

A challenge arising in XCC is the need for vaults to
incentivize users to pick suitable checkpoint frequencies. A
straightforward approach is to charge checkpoint costs (trans-
action fees and bandwidth) to users, yet especially during the
initial stages of protocol adoption lower fees may be preferred.

VII. EXTENSIONS

In this section, several extensions to the core XCC protocol
are discussed, which can provide improved decentralisation or
reduced collateralization.

A. Interactive, Zero-Collateral Checkpoints

Section V-B describes how timelocks can be renewed
through collateralised checkpoints. We presently describe an
extension of the protocol which can be used to renew check-
points without requiring collateralization, with the tradeoff of
requiring all participating users to be online.

After ∆Rec since the last checkpoint but before ∆V , a
user’s multisignature output from a checkpoint can be used to
sign a subsequent checkpoint transaction, before the timelock
expires. This is performed as follows:



XCC Protocol: Zero-Collateral Checkpoint. The Vault V
refreshes the timelocks of one or more of its users, in an
interactive but zero-collateral manner.
• Construct. The Vault creates TCP in an identical manner to

the Checkpoint protocol.
• Sign. Every user participating in the checkpoint adds their

signature to the relevant input and output of the transaction.
Any users which fail to respond at this point are dropped
from the transaction.

• Broadcast and Verify. V broadcasts TCP on the chain B and
notifies the iSC which verifies it, identically to steps 2-4 of
the Checkpoint protocol.
Since the transaction’s inputs are signed by every user, it can

be broadcast as soon as ∆Rec has expired for all participating
users, and before ∆V . As the Vault therefore never gains
custody of the backing funds, no collateralization is necessary
at any point during the execution of this protocol.

Partially-signed, Malleable Transactions: If Bitcoin is
used as the backing blockchain, it is possible to use
SIGHASH_SINGLE | SIGHASH_ANYONECANPAY as the
signing parameters to allow each user to only sign their
specific input and output. This ensures that unresponsive users
do not impede the broadcasting of the checkpoint. If a backing
chain without such functionality is used and each user must
sign the entire transaction, then the Sign step must use a multi-
step commit phase and may need to be retried multiple times
should any committed user fail to uphold their commitment,
potentially rendering this protocol impractical.

B. Cross-Vault Transfers

Transferring tokens between users assumes that both partici-
pants in the transfer are trading within a single Vault. However,
to ensure the system is scalable and resilient, it should allow
any number of vaults to interoperate.

Unlike in XCLAIM, this cannot be achieved transparently to
users with full fungibility of tokens, as vaults must actively
track the backing funds corresponding to a user’s tokens.
Instead, at any time, a given token balance is held by a given
Vault. As such, if a user A holding a balance with Vault V1

wishes to send tokens to user B whose primary balance is
secured by Vault V2, the Transfer executed by A will create
a new account for B with V1, effectively splitting B’s funds
across two vaults.

This introduces two new considerations: firstly, B might
not wish to do business with A’s Vault, or A’s Vault might
intend to censor B. Secondly, even if no such problems arise,
B would then have to pay fees to both vaults for maintaining
his backing funds and monitor multiple locations to ensure
funds are collateralised during checkpoint security periods.

This fragmentation can be fixed by transferring funds be-
tween vaults. This can be modelled as tokens simultaneously
being redeemed at one Vault, and issued at another. This
can be executed as a single transaction spending from the
multisignature checkpoint output at V1, and with its output
being a well-formed Issue transaction for V2. Incidentally, this
does not require collateralization from either Vault.

C. Personal vaults

While we discuss vaults as dedicated parties providing a
service to multiple users, it is worth mentioning that it is
possible for a single user to operate their own Vault. This
has identical security implications as a user colluding with a
Vault, which is permitted by the threat model.

This offers the advantage of near-total decentralisation, as
well as reduced costs to the user as the "Vault" in such a system
would not be operating for profit. The disadvantage, however,
is that transferring tokens will generally require a transaction
in the backing chain, as described above; this precludes this
model from being used in use cases involving frequent trading
of CBAs. However, this could still be suitable for cases where
CBAs are not intended to be transferred, e.g. when a user
only wishes to use them to invest into a DeFi contract - or for
constructing physically settled call and put cross-chain option
contracts for the backing asset.

VIII. IMPLEMENTATION AND EVALUATION

This chapter discusses the proof-of-concept implementation
of XCC that was completed as part of this project, using
Bitcoin as the backing blockchain and Ethereum as the is-
suing chain. A technical summary of the implementation is
presented, followed by an analysis of the running costs.

Note that at the time of writing, the Ethereum network is
highly congested, leading to high costs for most smart contract
operations. As the XCLAIM protocol is generic, it can be im-
plemented on any pair of chains that satisfy the requirements
laid out as part of the Weak Compatibility protocol property,
defined in Section III-F; for instance, Polkadot [34] [18] could
be used as the issuing chain, which may result in significantly
lower costs than those obtained from the proof of concept
Ethereum implementation.

A. Implementation

The smart contract functionality, as detailed in Figure 5, was
implemented in Solidity for the Ethereum blockchain, in about
620 lines of code total. The Interlay Solidity implementation
[11] of BTCRelay [10] was used to verify transaction inclusion
in the Bitcoin blockchain, and parse Bitcoin transaction data.
The bitcoin-spv library [14] was used for utilities helping
manipulate Bitcoin transactions.

The resulting tokens are not strictly compatible with the
ERC-20 standard, due to the possibility that they make become
unusable at any time (if a user executes Recovery). This is a
drawback in comparison with XCLAIM, the tokens in which
are fully ERC-20 compliant.

B. Costs Evaluation

Protocol execution entails costs in fees on both blockchains.
On Bitcoin, where the fee depends on the transaction size
in bytes, we use a rate of 6 satoshi per byte, which should
provide prompt confirmation in the majority of cases [2]. For
Ethereum, where fees are determined in gas which depends on
both the data size and computation required for a transaction, a



conservative gas price of 140 Gwei is used, based on historical
data [5].

For the Register and UpdateHashlist protocols, we assume
4 new (previously unset) hashes are set by the user in each
case.

At the time of writing, the BTC exchange rate was ap-
proximately 35400.00 USD, and the ETH exchange rate was
approximately 2440.00 USD. [4]. Based on these figures, the
following costs are incurred by users:

Protocol USD cost

Issue $69.70
Transfer $18.40
Redeem $38.80
Recover $38.80

Finally, we consider the Checkpoint protocol. The costs of
broadcasting and verifying scale with the number of users.
However, since for every user a checkpoint entails identical
transaction sizes (on Bitcoin) and identical operations (on
Ethereum), the costs scale close to linearly. Thus, the cost
was found to be approximately $9.24 per checkpoint per user.

C. Feasibility

The above results show that the protocol is feasible to
implement on BTC-ETH. The overall costs for a user will
vary greatly depending on their usage pattern.

The greatest contributor to checkpoint costs are the Bitcoin
fees. However, the Ethereum block gas limit provides a cap on
maximum practical checkpoint sizes: at the time of writing, the
limit for a single block is slightly above 12,000,000 gas [6],
meaning a 500 user checkpoint would consume over a third of
a block. Thus, the expected method for vaults to operate would
be to limit their checkpoints to a few hundred users and instead
broadcast them more frequently. At an average of 500 users
per checkpoint, a single Vault broadcasting hourly checkpoint
transactions for users scheduled for daily checkpoints could
serve around 12000 users. In practice, this number might differ
due to users selecting different checkpoints, or being involved
in an earlier checkpoint due to collateralization/trading.

If a party operating a Vault finds it must handle more users
every round than is practical to handle in a single transaction,
the checkpoints can be effectively "split" simply by registering
a new Vault with the smart contract. Recall: any user can create
an unlimited number of Vaults - the bottleneck is merely the
transaction throughput of Bitcoin and Ethereum. For example,
100 such Vaults can cater to 1.2 million users, broadcasting
merely 100 Bitcoin transactions per hour in total.

D. Costs in Practice

The primary other scheme for cryptocurrency backed assets
is XCLAIM [37], which XCC extends. Thus, we compare
the costs associated with the two frameworks, as well as the
collateral required for operation.

The cost of running the basic protocols — Issue, Transfer,
Redeem — is nearly identical to XCLAIM, comprising the cost

of broadcasting a Bitcoin transaction in the cases of Issue and
Redeem, followed by an Ethereum contract invocation. Using
the same fee price assumptions presented in the XCLAIM
analysis [37], namely, a gas cost of 9 Gwei and Bitcoin fees
of 40 satoshi/byte, an ETH cost of $105.71 and a BTC cost
of $3717.38:
• Issue costs $0.40, or 15% cheaper
• Redeem costs $0.37, or 24% cheaper
The basic Transfer protocol in XCC has less functionality
than the atomic Swap implemented in XCLAIM, and thus
they cannot be directly compared. The differences observed
are small enough that they may be down to implementation
differences, as the core protocols are very similar.

The primary difference comes from the cost of the Check-
point transaction. The costs of XCC vary greatly depending on
the usage pattern, hence we consider several example scenarios
and determine the costs and benefits of XCC in each case.

Frequent trader. Consider a user executing a large number
of Transfers per day. Under such a scenario, the user would
require near-constant collateralization of funds. In this case,
the primary benefit brought on by checkpoints is that collateral
is only ever locked for predetermined periods of time, reducing
uncertainty and lowering the need for overcollateralization:
at regular intervals, the user may choose to be included in
a checkpoint, incurring a cost of approximately $1.30 (plus
any Vault profit margins) under the assumptions above, and
"locking in" an updated exchange rate for the collateral.

Additionally, XCC can fall back to emulating XCLAIM,
simply by not scheduling a checkpoint and fully collateralising
a user’s funds, if desired.

The first two rows in Table I illustrate the costs and benefits
of XCC for this use case.

Occasional trader. Consider next a user executing a trade
twice a week on average, using a mixture of instant (collater-
alised) and delayed transfers, and who have in turn scheduled
to be included in checkpoints at weekly intervals — resulting,
on average, in each user being collateralised half the time
between checkpoints. Assuming there are multiple such users
registered with the Vault, the Vault would then be able to take
advantage of fractional collateralization, reducing collateral
required by up to 50% in an ideal scenario. Additionally,
the benefits of reducing overcollateralization mentioned above
would still apply, resulting in the Vault requiring to put
down only 30% of the collateral which would be required
by XCLAIM in a similar scenario. This is summarised in the
third row of Table I.

Static user. Finally, consider a user who has either issued
or received XCC tokens, but does not regularly use them,
only rarely executing Transfer. Such a user could safely be
placed on a schedule of extremely far-removed checkpoints
— such as monthly, or even less frequently. This reduces
the collateral required to almost nothing; the user’s funds
need only be collateralised for the duration of the security
period every month, which may last a few hours. And in
turn, overcollateralization is nearly eliminated, as exchange
rate fluctuations are minimal in the span of a few hours, except



TABLE I: Summary of example XCC operation costs, relative
to XCLAIM

Use case Cost XCC extra cost Collateral
XCLAIM equivalent $20.58/week $0 200%

Frequent trading $30.38/week $9.80/week 110%
Moderate transfers $4.34/week $1.40/week 60%

Non-trader $2.87/transfer $1.40/transfer ≤ 1%

during periods of extreme volatility. Meanwhile, the extra cost
is compared to XCLAIM is negligible.

The drawback of such an arrangement is that should such a
user wish to execute Transfer, they will almost certainly incur
the cost of an extra checkpoint transaction as part of that.

E. Summary

In summary, XCC provides significantly improved flex-
ibility to aid in reducing the collateral required, with the
associated cost of including a user in a checkpoint transaction.
Outside of checkpoints, the costs of XCC are extremely similar
to those of XCLAIM; and if desired, XCC can fall back to
an XCLAIM-like mode of operation. However, even where
that would be advantageous, XCC provides the option to
ensure regular re-collateralization of the funds, reducing the
overcollateralization factor required. In other scenarios, espe-
cially when users do not frequently trade their tokens, using
fractional collateralization can allow the Vault to significantly
reduce collateral usage.

Ultimately, whether taking advantage of checkpoints is
profitable depends on how much the Vault values freeing up
collateral, which will be reflected in user fees. The expectation
is that low volume users may see little benefit from participat-
ing in checkpoints, and may prefer to fall back to XCLAIM-
like usage, including full overcollateralization for extended
periods of time. However, for users storing significant amounts
of value, the reduction in required collateral is very likely to
be worth the cost of broadcasting the checkpoint transactions,
not least because it will allow vaults to serve a significantly
higher amount of users using the same amount of available
liquid collateral.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented the XCLAIM Commit frame-
work, utilising a checkpointing scheme inspired by commit
chains to extend XCLAIM and achieve significant collat-
eral reduction. A contract for non-Turing-complete backing
blockchains such as Bitcoin was described, enabling improved
theft prevention in the new round-based setting. The regular
checkpoints were used to define several ways in which col-
lateral could be reduced depending on usage patterns down
to a fraction of that required by XCLAIM. We conducted a
security analysis of the protocol by modelling the system as
a state machine. The economic security of the system was
demonstrated, ensuring that no honest party can lose funds
during its operation. We implemented and evaluated a proof
of concept of XCC. Its operation is not more expensive than
the equivalent XCLAIM operations where those exist. When

making full use XCC, the potential for significant reduction
in collateral required was demonstrated.

Possibly the most promising future work on XCC would
be a reduction in the size of checkpoint transactions and
hence their cost, by avoiding the need to include an input
and an output for every user. The primary difficulty, in this
case, arises from the need to provide a recovery mechanism.
One promising avenue for implementing this is a mecha-
nism to allow users to trigger the creation of a full-sized
checkpoint with individual outputs when they detect misbe-
haviour from the Vault; on Bitcoin, this would require the
OP_CHECKTEMPLATEVERIFY opcode introduced by BIP-
119 [1], currently in the draft stage.

Additionally, XCC provides for flexible usage, ranging from
emulating round-less XCLAIM to allowing users to lock funds
practically indefinitely with no collateral required. In turn,
vaults have some flexibility in how they manage the funds
they are holding; in other matters, in particular checkpoint fre-
quency, they can influence users by setting their fee schedule to
encourage certain behaviours. Thus, there is a lot of potential
for Vault implementations to optimise their behaviour. A
detailed economic analysis of the incentives involved would
be of great use to inform a profitable Vault design.
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APPENDIX A
SYMBOLS TABLE

Table II provides an overview of the symbols and notation
used in this paper.

TABLE II: Summary of used symbols and notation.

Symbol Description
ε Exchange rate between the issuing and backing

chains
E(t) Maximum assumed change in exchange rate during

time t
Tt Transaction t; refer to Section III-B for full trans-

action notation
σA Signature of A
H(s) Cryptographic hash digest, with preimage s
L A distributed ledger; refer to Section III-A for

more details on the ledger notation
Lb The distributed ledger corresponding to B
Li The distributed ledger corresponding to I
τ(r) Function mapping round r on any ledger to a

global clock; refer to Section III-A for more details
CPi Checkpoint transaction i
∆Rec Time period after a Checkpoint (or Issue) trans-

action is broadcast, after which the multisignature
condition becomes spendable: also recovery delay;
defined in number of rounds on Lb

∆V Time period after a Checkpoint (or Issue) trans-
action is broadcast, after which the Vault gains
custody of the funds: also checkpoint duration;
defined in number of rounds on Lb

∆CP Time period after a Checkpoint (or Issue) trans-
action is broadcast, after which that checkpoint is
considered expired; defined in number of rounds
on Lb

B The backing chain
b Cryptocurrency unit on B
block

A Quantity of funds user A owns (and has locked)
on B, corresponding to i(b)A

block
A(CPi) Quantity of funds A owned on the backing chain

at the time round i ended
I The issuing chain
i Cryptocurrency unit on I
icol

A , icolA(CPi) Quantity of funds on the issuing chain that are
collateralising block

A , and similarly at the time
round i ended

i(b)A , i(b)A(CPi) Number of CBA tokens user A owns, and similarly
at the time round i ended

RecA
i Recovery transaction for user A, corresponding to

the checkpoint at the end of round i
rA
i The recovery hashlock preimage for RecA

i (which
will have H(rA

i ) as the hashlock)
RedA

i The redeem transaction for user A, spending from
the checkpoint at round i

EscA
i The escape transaction for user A, spending from

the checkpoint at round i
S∆ The time during which the funds are considered

secured from theft, according to the Theft Pre-
vention property

T∆ The time during which the funds can be stolen,
according to the Theft Prevention property

APPENDIX B
REDUCING CHECKPOINT SIZE

One bottleneck in the scaling of XCC is the size of the
checkpoint transactions on the backing blockchain, and hence
their cost. Several avenues for reducing this were explored,
though none led to a feasible solution.

The most straightforward way to reduce checkpoint sizes
is to avoid creating separate outputs for every user in the
transaction. Thus in the ideal case, the checkpoint might
instead have a single input and a single output, drastically
reducing costs; more practically, users would be grouped by
their set checkpoint frequency, with different timelocks for
each, giving perhaps a dozen inputs/outputs. However, this
means that a user’s recovery transaction must spend from an
output containing coins belonging to many different users.
This leads to the primary difficulty with this approach: the
other users’ funds must be somehow redistributed securely by
the user executing their recovery, without incurring large costs
or inconvenience on the system.

A. Multi-user Recovery

A naive option is to simply trigger the recovery process for
all affected users. If recovering was limited to circumstances
where the Vault misbehaved, this would even be desirable;
however, currently, any user can execute their recovery at
any time (unless they have executed Transfer since the last
checkpoint). This leads to a very high griefing potential, as a
malicious user could bring the system to a halt by forcing large
numbers of users to go through the recovery process regularly.

B. Fallback to Large Checkpoint

A slightly improved alternative is to prepare full checkpoint
transactions, with individual outputs for every user, spending
from the output(s) of the condensed checkpoint transaction.
This would effectively allow small checkpoints to be used
whenever every party is honest, and when a user wishes
to dispute the Vault’s behaviour (or to inconvenience the
system), they would cause it to fall back to the normal XCC
large-checkpoint protocol. In the pessimistic case of malicious
griefers attempting to hinder the system, the outcome would
only be very slightly worse than just using XCC with large
checkpoints from the start: the only extra costs incurred would
be the additional small checkpoint transaction and the slightly
higher processing cost in the smart contract to verify the extra
complexity.

However, two issues arise with this. The first one is that
of transaction fees — it is unclear who should be responsible
for paying the cost of broadcasting the full checkpoint with a
large number of outputs, and in turn of broadcasting the next
contracted checkpoint which will require a correspondingly
large number of inputs. If the Vault is required to pay these
fees, then the cost of griefing the system is negligible com-
pared to the cost to the Vault. This means that the Vault must
then charge sufficient usage fees to cover the price of regular
large checkpoints, which defeats the purpose of attempting to
reduce costs. On the other hand, if the user must pay the cost,
then legitimate users attempting to recover funds are heavily
penalised.

A second issue with this scheme is that, on the Bit-
coin blockchain (which is the primary target for a backing
blockchain), there is currently no mechanism for a transaction



to restrict its output to be spent in a particular second trans-
action, with no malleable output in that second transaction.
As such, typically non-malleable contracts are achieved by
having a multisignature output, such that all parties must ratify
a transaction spending from it. However, in checkpoints that
may involve dozens of users, if not hundreds, this is infeasible.
Moreover, this would bloat the script sufficiently to largely
negate the benefits of having only a single output. On a
different blockchain, this issue may not be relevant. BIP-119
[1] proposes a Bitcoin opcode that would solve this issue.

APPENDIX C
POC IMPLEMENTATION DETAILS

The following Script was used as the output of checkpoints
(and Issue transactions) on Bitcoin:

<Vault public key> OP_CHECKSIGVERIFY
<user public key> OP_CHECKSIG
OP_IFDUP
OP_NOTIF

<locktime> OP_CHECKSEQUENCEVERIFY
OP_ENDIF

All transactions were implemented as Pay to Witness Script
Hash (P2WSH), allowing the scripts to be included as witness
data and reducing costs.

Additionally, we provide a table showing the breakdown of
the fees for the individual protocols:

Protocol BTC fees (sat) ETH fees (Gwei)

Register - 11418060
UpdateHashlist - 7261800
Recover 1230 6185640
Issue 1088 11853840
Transfer - 3313080
Redeem 1230 6185640
Checkpoint 1580 (approx.) 623200 (approx.)

APPENDIX D
STATE DIAGRAM

Figure 6 illustrates the possible state transitions of the
tokens during XCC operation.



Fig. 6: The state machine for the lifecycle of tokens. Not shown are: the ability to properly Redeem from the three Timelocked
and Collateralised states, which cleanly burns tokens with no inconsistent state; and the ability to properly Recover from both
the Timelocked and Collateralised (non-traded) states, which also cleanly burns tokens.
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