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Abstract. Automated cryptanalysis has taken center stage in the arena
of cryptanalysis since the pioneering work by Mouha et al. which show-
cased the power of Mixed Integer Linear Programming (MILP) in solving
cryptanalysis problems that otherwise, required signi�cant e�ort. Since
the inception, research in this area has moved in primarily two directions.
One is to model more and more classical cryptanalysis tools as optimiza-
tion problems to leverage the ease provided by state-of-the-art solvers.
The other direction is to improve existing models to make them more
e�cient and/or accurate. The current work is an attempt to contribute
to the latter. In this work, a general model referred to as DEEPAND has
been devised to capture the correlation between AND gates in NLFSR-
based lightweight block ciphers. DEEPAND builds upon and generalizes
the idea of joint propagation of di�erences through AND gates captured
using re�ned MILP modeling of TinyJAMBU by Saha et al. in FSE 2020.
The proposed model has been applied to TinyJAMBU and KATAN and
can detect correlations that were missed by earlier models. This leads to
more accurate di�erential bounds for both the ciphers.
In particular, a 384-round (full-round as per earlier speci�cation) Type-
IV trail is found for TinyJAMBU with 14-active AND gates using the new
model, while the re�ned model reported this �gure to be 19. This also
rea�rms the decision of the designers to increase the number of rounds
from 384 to 640. Moreover, the model succeeds in searching a full round

Type-IV trail of TinyJAMBU keyed permutation P1024 with probability
2−108(≫ 2−128). This reveals the non-random properties of P1024 thereby
showing it to be non-ideal. Hence it cannot be expected to provide the
same security levels as robust block ciphers. Further, the provable secu-
rity of TinyJAMBU AEAD scheme should be carefully revisited.
Similarly, for KATAN32, DEEPANDmodeling improves the 42-round trail
with 2−11 probability to 2−7. Also, for KATAN48 and KATAN64, this
model respectively improves the designer's claimed 43-round and 37-
round trail probabilities. Moreover, in the related-key setting, the DEEPAND
model is able to make a better 140-round boomerang distinguisher (for



both the data and time complexity) in comparison to the previous boomerang
attack by Isobe et al. in ACISP 2013. In summary, DEEPAND seems to
capture the underlying correlation better when multiple AND gates are
at play and can be adapted to other classes of ciphers as well.

Keywords: MILP · KATAN · TinyJAMBU · Symmetric-Key Crypt-
analysis

1 Introduction

One of the fundamental decisions in any iterative block cipher design, once we
have a good round function, is the number of rounds. This decision is a trade-o�
between security and e�ciency and plays an even more critical part in the context
of Lightweight Cryptography which is referred to as crypto tailored for resource
contained environments. A typical way to decide this is to take into account the
penetration of best attack available and then adding some more rounds as the
so-called security-margin. Traditionally, designers try to prove how many rounds
are su�cient to resist a certain kind of attack. This in general is a rigorous task
and primarily limited to a speci�c construction. For instance resistance against
di�erential cryptanalysis [3] relies on the number of active sboxes in the best
available di�erential trail. It has been a long standing question if these seeming
critical task of cryptanalysis could be automated or aided in some generic way.
Though there have been initial attempts in this direction but the �rst major
breakthrough in this direction is attributed to Mouha et al. [7] who was one
of the �rst to demonstrate how the cryptanalytic problem of determining min-
imum number of active sboxes could be modeled as an optimization problem
which could in turn be solved by automated solvers. In particular, the authors
showcased how Mixed Integer Linear Programming (MILP) can be leveraged as
an ingenious cryptanalysis aid. This seminal work spawned an entirely new line
of research where the goal is at one hand to increase the breadth of the strat-
egy with new modelings (applications to linear, division, impossible di�erential
cryptanalysis). On the other hand the idea is to improve upon the existing mod-
els to capture the underlying crypto property as closely as possible. The current
work aims to add to state-of-art with better MILP modeling.

Interestingly, researchers have shown that there are mechanisms to precisely
model valid transition for many crypto properties [13,12,11]. However, the catch
is that this results in models becoming over-constrained thereby infeasible to be
solved in reasonable time. On the other end of the spectrum is an over simpli-
�ed model which might lead to invalid transitions. There is a rich body of work
that tries to reach a middle ground by what can perhaps be referred to as bal-
anced modeling [4,2]. In FSE 2020, Saha et al. made an interesting observation
in this line of balanced modeling for the NIST-LWC [8] competition �nalist Tiny-
JAMBU [1]. The authors pointed out that correlation between multiple AND

gates could lead to them becoming dependent leading to joint propagation of
di�erential characteristics. Our research pushes the boundaries to reveal that
further re�nement is possible and a generalized model can be devised to extend
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the �ndings to a class of Non-Linear Feedback Shift Register (NLFSR) based
lightweight block ciphers with speci�c results on KATAN [5] and TinyJAMBU [1].

1.1 Our Contributions

Generalizes AND Modeling Framework The current work proposes a gen-
eralized model to capture �rst-order correlation in single as well as multiple
AND gates. This is a direct improvement over the recent work [9] by Saha et
al. where a new MILP model was developed leveraging AND gate correlations.
To be precise, the analysis by Saha et al. exploits two subsequent AND com-
putations with a common input position (for e.g the middle bit position b out
of three inputs a, b, c to the subsequent ANDs). The present work provides fur-
ther insight into this interesting correlation by extending it to multiple AND

gates. The �ndings show signi�cant impact on the actual probabilities of the
di�erential trails. More speci�cally, the common input position in the two sub-
sequent ANDs will be revealed when a particular di�erence pattern. For instance
if (∆a,∆b,∆c) = (1, 0, 1)) one has to pay a probability for only the �rst AND
whereas the second AND will pass freely. We further re-investigate this case and
observe that due to the di�erence (∆a,∆b) = (1, 0), the output di�erence (∆z1)
of the �rst AND directly reveals the bit b, i.e., ∆z1 = b. Once ∆z1 is �xed,
passage through the second AND is for free. From another perspective, for an
AND gate with two inputs a, b, if we know the bit value of a, then for a given
di�erence pattern (∆a,∆b) = (0, 1), the output di�erence ∆z = a will become
deterministic. We would like to emphasize that the distribution of di�erences in
AND gates under conditionally known inputs might be well-known. However, in
the current work we revisit this in the light of correlations that develop and can
hence be exploited in MILP modelings.

Improved Bounds for TinyJAMBU and KATAN Our research constitutes a
comprehensive study of all correlation that develop (and were perhaps missed in
earlier attempts) with or without conditionally known inputs. These correlations
when incorporated inMILPmodels lead to the best trails known on NLFSR-based
ciphers TinyJAMBU and KATAN which in-turn can be exploited to mount distin-
guishing and forgery attacks. It is worth noting that correlated AND, though not
a new observation, earlier results were only restricted to the single AND gates.
For NLFSR-based ciphers employing multiple ANDs, the current work adds newer
cases there also bettering the size of the di�erential trail clusters generated. All
�nding are consolidated a new generalized re�ned model. Finally, we apply this
new model in the keyed-permutation of TinyJAMBU AE and to all the KATAN
-variants and show that our model captures all possible correlations between
ANDs and provides a better optimal di�erential trails in comparison to previous
models.

Notion of Conditionally Free Rounds The work builds upon two funda-
mental observations which are looked at from an information theoretic way in
terms of conditionally known inputs and how much reduction it leads to in terms
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of the overall entropy of the values and di�erences that related to one/multiple
AND gates. The Observations 2 and 3 help identify the underlying principle
behind the chained (a term introduced in [9]) AND gates by introducing the
notion of what we refer as conditionally free rounds. The primary motivation
is to rede�ne the notion of correlated AND operations (Lemma 1) using these
observations referred above. The proof idea stems form the fact that for some
speci�c di�erential inputs and output of the AND gate, we gain some extra infor-
mation about the actual bits of the internal state thereby reducing the entropy.
The observations are further exploited to develop a generalized MILP model for
di�erential cryptanalysis, referred to as DEEPAND, which has the potential to
captures all possible correlations between multiple ANDs in NLFSR-based (AND
based) block ciphers. Consider a NLFSR-based block cipher with h AND gates.
Suppose, the AND gates compute (a11 ·b), (b ·a21), · · · , (a1h ·b), (b ·a2h) across some
rounds. Using Observation 2 and 3, we have proved that these 2h AND opera-
tions are correlated. Essentially, if b = 0 and out of these 2h AND computations,
m AND gates are active, then due to the correlated nature between the AND
gates the output of these AND computations can be �xed with probability 2−1

instead of 2−m. The proposed DEEPAND model employs the following properties
to �nd di�erential trails

1. Captures all possible correlations between several AND computations
2. It also exploits Observation 2 and 3 independently to gain advantage to

penetrate some extra rounds freely in the di�erential trails.

As an immediate application, the DEEPAND model is applied on KATAN

block cipher to �nd di�erential trails which are better than existing ones. We
have explicitly shown trails where the dependency between several AND compu-
tations are captured. The model is also able to improve the related-key boomerang
attacks on KATAN. To show the versatility of the model, it is also employed on
keyed permutation of TinyJAMBU. The model is able to improve the di�erential
trails of TinyJAMBU in comparison to the ones retrieved by the re�ned model
due to fact of employing Observation 2 and 3. Finally, a forgery attack on
TinyJAMBU is mounted with a probability of 2−67.88.

1.2 Outline of the Paper

This paper is organized as follows. First, the description of TinyJAMBU and
KATAN are given in Section 2. In Section 3, DEEPAND model is introduced and
we revisit the correlation between two subsequent AND gates in the previous
re�ned MILP model and further, we have shown some observations regarding
the non-uniform behaviour of the output distribution of the AND gate. Based on
our observations, we propose a framework to capture the dependency between
multiple AND gates in Section 4. Section 5 deduces a new MILP model for a
class of NLFSRs with a single/multiple AND in the feedback function to e�ciently
search for di�erential trails. Our results on di�erential cryptanalysis for the keyed
permution of TinyJAMBU and KATAN family of ciphers is described in Section 6
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Fig. 1: The Permutation P ki

and Section 7, respectively. Finally, the concluding remarks are furnished in
Section 8.

2 Preliminaries

In this section, �rst of all, the notations used in the paper is described. Then a
brief description about TinyJAMBU and KATAN have been provided.

Table 1: TinyJAMBU Variants
AEAD Variants of Size in bits Number of Rounds in

TinyJAMBU Mode State Key Nonce Tag Pl P̂l

TinyJAMBU-128 128 128 96 64 640 1024
TinyJAMBU-192 128 192 96 64 640 1152
TinyJAMBU-256 128 256 96 64 640 1280

2.1 TinyJAMBU
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Fig. 2: The Initialization of TinyJAMBU [9]
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TinyJAMBU is a variant of JAMBU that was selected as a �nalist in the
NIST Lightweight Cryptography competition. It uses a 128-bit NLFSR-based
keyed permutation with 128-bit state size and 32-bit message block size. It of-
fers better security than JAMBU and duplex mode with nonce reuse. The per-
mutation, denoted by PK

l , has l rounds and supports key sizes of 128, 192,
or 256 bits. In short, we use Pl to denote an l-round keyed permutation of
TinyJAMBU throughout the paper. The ith round of the Pl permutation trans-
forms a 128-bit state to another 128-bit state. The transformation is de�ned by
sf = s0 ⊕ s47 ⊕ s70s85 ⊕ s91 ⊕ ki mod |K|, where sf is the transformed state and
ki mod |K| is the secret key. The permutation is shown in Figure 1. The Tiny-
JAMBU mode has three variations named TinyJAMBU-128, TinyJAMBU-192,
and TinyJAMBU-256, with speci�cations listed in Table 1.
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Fig. 3: The Description of TinyJAMBU Mode [9]

The TinyJAMBU encryption process has four stages: Initialization, Associ-
ated Data Processing, Encryption, and Finalization. In the Initialization stage,
the state is initialized through key and nonce setup. In the Associated Data Pro-
cessing stage, each data block is processed by XORing with the state, updating
the state with Pl, and XORing the associated data block with the updated state.
In the Encryption stage, each message block is encrypted by XORing with the
state, updating the state with P̂l, injecting the message block into the �rst block
of the state, and producing the ciphertext by XORing the message block with
the second block of the state. In the Finalization stage, the authentication tag
T = T0||T1 is generated by XORing with the state, updating the state with P̂l,
extracting T0 from the state, XORing again with the state, updating the state
with Pl, and extracting T2 from the resulting state. The overall structure of the
TinyJAMBU mode is depicted in Figure 3, where the permutations Pl and P̂l are
speci�ed in Table 1.

2.2 KATAN

The KATAN family is a very e�cient NLFSR-based hardware-oriented block ci-
pher with three variants, namely KATAN32, KATAN48, KATAN64 correspond to
32, 48, and 64-bit block sizes. All these variants have 254 rounds and use the
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non-linear functions NF1 and NF2. Also, they use the same LFSR-based key
schedule which takes an 80-bit key as an input. The general structure of the
KATAN cipher is as follows. First, the plaintext is loaded into two registers L1

and L2. In each round, several bits are taken from the registers to fed into the
non-linear functions, and �nally, the output of NF1 and NF2 is loaded to the
least signi�cant bits to the registers. The key schedule function expands an 80-
bit user-provided key ki (0 ≤ i < 80) into a 508-bit subkey ski (0 ≤ i < 508) by
the following linear operations,

ski =

{
ki, 0 ≤ i < 80

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13, 80 ≤ x < 508.

Also, the two non-linear functions are de�ned as follows:

NF1(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka

NF2(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6]))⊕ kb,

where IR is the pre-de�ned round constant value (see the speci�cation in [5]),
and ka, kb are the two subkey bits. The selection of the bits xi, 1 ≤ i ≤ 5 and
yi, 1 ≤ i ≤ 6 are de�ned for each variant independently, and are listed in Table 2.
For KATAN32, the i-th round function is depicted in Figure 4, where ka ← k2i
and kb ← k2i+1. Finally, after 254 rounds, the values of registers are output as a
ciphertext. For KATAN48, the non-linear functions NF1 and NF2 are applied
twice in one round of the cipher, i.e., the �rst pair of NF1 and NF2 is applied,
and then after the update of the registers, they have applied again using the same
subkeys. Similarly, in KATAN64, each round applies NF1 and NF2 three times
with the same key bits. More details about the speci�cation of KATAN-family of
ciphers can be found in [5].

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12

IR

ka

kb

Fig. 4: Round Function of KATAN32
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Table 2: Parameters of KATAN Variants
KATAN Variants | L1 | | L2 | x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6

KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3

KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6

KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

3 Introducing DEEPAND Modeling

In this section, we introduce the basic idea behind DEEPAND which attempts
to generalize the way AND gates are modeled by proposing a systematic way
to capture the correlation between AND gates. We �rst revisit the di�erence
distribution of the output of an AND gate under certain restrictions on the
inputs. We then show how the re�ned model given in [9] can be interpreted as
a special case of DEEPAND. We later show how DEEPAND can better capture
correlations in both single and multiple AND based NLFSRs.

Our �rst goal is to look at the di�erence distribution of an AND gate. Consider
an AND gate A1 with (a, b) as its input, (∆a,∆b) as its input di�erence, and
∆z as its output di�erence. Then, the output di�erence ∆z can be expressed as
shown in Equation 1.

∆z = A1(a, b)⊕A1(a⊕∆a, b⊕∆b)

= (a · b)⊕ (a⊕∆a) · (b⊕∆b)

= (a ·∆b)⊕ (b ·∆a)⊕ (∆a ·∆b) (1)

The distribution of ∆z corresponding to all values of (a, b) and (∆a,∆b),
is shown in Table 3 from where it is evident that for a given non-zero input
di�erence (∆a,∆b) of A1, Pr(∆z = 0) = Pr(∆z = 1) = 2−1, i.e., it behaves
uniformly. However, under certain conditions, ∆z behaves non-uniformly An
example for this non-uniform behavior is shown in Example 1. From Table 3,
the following observations have been made4.

Example 1. Pr[∆z = 0|(a = 0,∆a = 0,∆b = 1)] = 1

Observation 1. If the value of a, b, ∆a, and ∆b are known, then ∆z becomes
deterministic.

Observation 2. If ∆a = 0, ∆b = 1 and the value of a is known, then ∆z can
be determined with probability 1. Similarly, if ∆a = 0, ∆b = 1 and the value of
∆z is known, then `a' can be guessed deterministically.

Remark. If ∆a = 0, ∆b = 1, then from Equation 1, ∆z = a. This means, for
an input di�erence (∆a,∆b) = (0, 1), if a is known, then ∆z is also known and
vice versa.

4Observation 1 may seem trivial but it has been included for the sake of complete-
ness.
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Table 3: Di�erence Distribution of AND Gate
a b ∆a ∆b ∆z

0 0

0 0 0
0 1 0
1 0 0
1 1 1

0 1

0 0 0
0 1 0
1 0 1
1 1 0

1 0

0 0 0
0 1 1
1 0 0
1 1 0

1 1

0 0 0
0 1 1
1 0 1
1 1 1

Observation 3. If ∆a = 1, ∆b = 0 and the value of b is known then ∆z can
be determined with probability 1. Similarly, if ∆a = 1, ∆b = 0 and the value of
∆z is known, then b can be guessed deterministically.

Remark. The explanation is similar to the explanation of Observation 2.

Based on the above observations from Table 3, it is evident that the dis-
tribution ∆z directly depends on the input bits a, b when the input di�erence
(∆a,∆b) is �xed. According to Equation (1), the ∆z can be re-written in the
following way.

∆z =


0, if (∆a,∆b) = (0, 0),

a, if (∆a,∆b) = (0, 1),

b, if (∆a,∆b) = (1, 0),

a⊕ b⊕ 1, if (∆a,∆b) = (1, 1),

(2)

We refer to the view captured by Equation (2) as DEEPAND. With the DEEPAND
view of ∆z in place, we are in a position to revisit the re�ned model proposed
by Saha et al. [9] for TinyJAMBU.

3.1 Re�ned Modeling as a Special Case of DEEPAND

We start by restating the observation made by Saha et al. in the so-called Re�ned
Model. Consider two AND gates A1 with (a, b), and A2 with (b, c) as their inputs,
i.e., they both share a common input as b and hence referred to as correlated.
Also, let (∆a, ∆b), (∆b, ∆c) are the input di�erences, and ∆z1, ∆z2 are the
output di�erences of A1, A2 respectively. The primary observation in [9] was that
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when (∆a,∆b) = (1, 0) and (∆b,∆c) = (0, 1) then ∆z1 = ∆z2 = b. This implies
that, for two correlated AND gates A1 and A2, when (∆a,∆b,∆b) = (1, 0, 1),
then both the output di�erences are 0 with probability 2−1 or 1 with probability
2−1. Whereas, for two un-correlated AND gates this �gure would have been 2−2.
Lemma 1 gives a separate perspective on the two correlated AND gates based
on the Observations 2 and 3.

Lemma 1. Let the input di�erence to two correlated AND gates be (∆a, ∆b)
and (∆b, ∆c) respectively and corresponding output di�erences be ∆z1 and ∆z2
respectively. If ∆a = 1, ∆b = 0, ∆c = 1, then Pr[∆z1 = ∆z2] = 2−1.

Proof. First of all, the value of∆z1 is computed �rst. Thus, for (∆a,∆b) = (1, 0),
it can be concluded that∆z1 = b according to Observation 3. Also, for the second
AND gate with (∆b,∆c) = (0, 1), ∆z2 = b (from Observation 2). Hence, we have,
Pr[∆z1 = ∆z2] = Pr(b) = 2−1.

Remark. It is worth mentioning that despite being one of �rst attempts In [9],
the authors do not explicitly give a systematic way to capture the correlation
between two AND gates. Moreover, the authors have not considered the Ob-
servations 2 and 3 in their re�ned model. In this work, these two observations
along with Observation 1 are exploited to penetrate more number of rounds for
NLFSR-based ciphers.

4 DEEPAND Modeling of NLFSR-based Ciphers

A NLFSR is a shift register whose input bit, often called a feedback bit, is a non-
linear function of its previous state. In this section, we will �rst review some
di�erent classes of NLFSRs based on the number of AND gates that are used
to de�ne a non-linear feedback function. We will then state the explicit form of
these NLFSRs. Finally, we will describe how DEEPAND leads to a general attack
framework to capture correlations among single and multiple AND gates.

4.1 Case-1: Single AND Based NLFSR

Any n-bit cipher based on the NLFSR-based keyed permutation with single AND
gate can be further classi�ed into two cases. In each round of the cipher, the
�rst one is to feed the the feedback bit using non-linear function to the most
signi�cant bit (msb) in the state and then shift each bit towards the least signi�-
cant bit (lsb) (see Figure 1). Similarly, for the second one, compute the feedback
bit and feed into the lsb and then shift each bit towards msb. We now give the
explicit form of these two NLFSRs.

4.1.1 Computing Forward Di�erential Consider an n-bit NLFSR-based

cipher
←
C with s0 being its initial state value, where s0 = (s00, s

0
1, · · · , s0n−1).

Then, for each round number i, 1 ≤ i ≤ l, the feedback bit f i is computed �rst,
in the following way:
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f i ← si−10 ⊕ si−1j1
⊕ · · · ⊕ si−1jm

⊕ si−1u1
si−1v1 ⊕K(i−1) mod |K|.

where 0, j1, · · · , jm are the tap bit positions of the NLFSR and u1, v1 (u1 < v1)
are the input bits to the AND gate. Then, the state bits in the next round (round
i+ 1) are updated as follows:

sij =

{
si−1
j+1, for 0 ≤ j ≤ (n− 2)

f i, for j = n− 1

Consider a similar cipher
→
C , whose tap bits are the same as that of

←
C . The

only di�erence is that the bits are shifted in opposite direction as that of
←
C and

in the feedback function si−1n−1 is XOR-ed instead of si−10 . The cipher
→
C is called

reverse-fed cipher of
←
C . The feedback bit f i for

→
C is computed as follows:

f i = si−1j1
⊕ · · · ⊕ si−1jm

⊕ si−1n−1 ⊕ si−1u1
si−1v1 ⊕K(i−1) mod |K|.

and

sij =

{
si−1
j−1, for 1 ≤ j ≤ (n− 1)

f i, for j = 0

To �nd the di�erential trails for such ciphers
←
C ,
→
C , the probability is only paid

for the active AND gates through rounds. Thus, given an l round di�erential trail,
the overall probability can be calculated by counting only the total number of
active ANDs in the trail. Also, it is to be noted that, the whole state bits become
unknown after n number of rounds. In another way, we can say that exactly
n − i number of state bits are still known for the initial i (1 ≤ i ≤ n) rounds.
Therefore, in chosen plaintext scenario, we can deterministically bypass some of
the active AND gates by �xing the message bits for up to some initial i (≤ n)

rounds. This characteristic of any NLFSR-based ciphers
←
C ,
→
C is described in the

following lemma.

Lemma 2. For cipher
→
C , forward di�erential trail for the �rst (u1+1) rounds is

completely free. For the next (v1−u1) rounds, if the input di�erential to the AND
gate is 0 and 1 (i.e., ∆su1 = 0, ∆sv1 = 1) then the output of the AND gate can
be determined with probability 1 (conditionally free). Similarly, for a cipher
←
C , (n − v1) rounds are completely free and (v1 − u1) rounds are conditionally
free.

Proof. As both the inputs to AND gate are known for the �rst (u1 + 1) rounds,
the output di�erence of the AND gate can be bypassed with probability 1. For
the next (v1−u1) rounds, the u1-th bit in the state, i.e., su1

is still known to us
from the given input message. Therefore, at the intermediate rounds i (u1+1 <
i ≤ v1) if the input di�erence corresponding to the AND gate becomes (0, 1),
i.e., ∆su1 = 0 and ∆sv1 = 1, then by Observation 2 the output di�erence of the

AND gate can be deterministically bypassed. The proof for the cipher
←
C follows

a similar approach.
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Note that, in the chosen plaintext attack model (CPA), Lemma 2 can be ex-
ploited by carefully choosing the message bits. This, in turn, reduces the degrees
of freedom of the message space.

4.1.2 Computing Backward Di�erential While computing the backward

di�erential for a cipher
←
C , the feedback function remains almost the same except

only the index of the bits are changed. Consider that the initial state is t0 and
the intermediate state after the ith round is ti. Then the feedback bit, f i for the
ith round is computed in the following way:

f i ← ti−1j1−1 ⊕ · · · ⊕ ti−1jm−1 ⊕ ti−1n−1 ⊕ ti−1u1−1t
i−1
v1−1 ⊕K(i−1) mod |K|

and the state bits are updated as follows:

tij =

{
ti−1
j−1, for 1 ≤ j ≤ (n− 1)

f i, for j = 0.

Similarly, for cipher
→
C , the feedback bit is computed as

f i = ti−1j1+1 ⊕ · · · ⊕ ti−1jm+1 ⊕ ti−10 ⊕ ti−1u1+1t
i−1
v1+1 ⊕K(i−1) mod |K|

and

tij =

{
ti−1
j+1, for 0 ≤ j ≤ (n− 2)

f i, for j = n− 1.

Lemma 3. For cipher
→
C , backward di�erential trail for �rst (n−v1−1) rounds

is completely free. The next (v1−u1) rounds are conditinally free. Similarly, for

cipher
←
C , the �rst (u1− 1) rounds are completely free whereas the next (v1−u1)

rounds are conditionally free.

Proof. The proof is quite similar to that of Lemma 2

4.2 Case-2: Multiple AND Based NLFSR

Consider an n-bit NLFSR-based block cipher
→
D with the initial state value as

s0 = (s00, s
0
1, · · · , s0n−1). At each round i, the feedback bit f i is computed in the

following way.

f i ← si−1j1
⊕ · · · ⊕ si−1jm

⊕ si−1n−1 ⊕ si−1u1
si−1v1 ⊕ · · · ⊕ si−1uh

si−1vh
⊕Ki−1,

where

� ki−1 is the key bit used in the ith round,
� j1, · · · , jm, n− 1 are the taps of the NLFSR,
� uj , vj are the inputs to the AND gate Aj such that uj < vj ≤ n−1, 1 ≤ j ≤ h,
� j1 < j2 =⇒ uj1 < uj2 .

12



Also, the state in the next round is updated in the following way.

sij =

{
si−1
j−1, for 1 ≤ j ≤ (n− 1)

f i, for j = 0.

Lemma 4. For a cipher
→
D, in the forward di�erential, the output of gate Aj is

deterministic for the �rst (uj+1) rounds. For the next (vj−uj) rounds, the output

of the AND gate is conditionally free. Similarly, for a cipher
←
D, the reverse-feed

cipher of
→
D, the output of gate Aj is deterministic for the �rst (n− vj) rounds

and conditionally free for the next (vj − uj) rounds.

Proof. For cipher
→
D, as siuj

and sivj are known for 0 ≤ i ≤ uj , so ∆Aj can be
deterministically computed for the �rst (uj+1) number of rounds as both inputs
to the AND gate are known.

Suppose, during the intermediate rounds, sivj is known and siuj
is unknown

for uj + 1 ≤ i ≤ vj (round number uj + 2 to vj + 1). If ∆sivj = 0 and ∆siuj
= 1,

then by Observation 3, ∆Aj = sivj . Hence, for round uj + 1 to vj , ∆Aj can be
determined with probability 1 when such conditions are met.

For cipher
←
D, siuj

and sivj are known for 0 ≤ i ≤ (n−vj−1). Hence, ∆Aj can

be determined completely free for �rst (n− vj) rounds. s
i
uj

is known and sivj is
unknown for (n−vj) ≤ i ≤ (n−uj −1) (round number (n−vj +1) to (n−uj)).
If ∆sivj = 1 and ∆siuj

= 0, then by Observation 2, ∆Aj = siuj
. Therefore, for

next (vj − uj) rounds, ∆Aj can be determined with probability 1 when such
conditions are met.

In the same fashion, computing the backward di�erential, the feedback bit
f i for ith round is computed as

f i ← ti−1l1+1 ⊕ · · · ⊕ ti−1lm+1 ⊕ ti−10 ⊕ ti−1u1+1t
i−1
v1+1 ⊕ · · · ⊕ ti−1uh+1t

i−1
vh+1 ⊕ k′i−1

and the state in the next round is updated as

tij =

{
ti−1
j−1, for 0 ≤ j ≤ (n− 2)

f i, for j = n− 1.

Lemma 5. For cipher
→
D, in the backward di�erential, the output of gate Aj is

deterministic for �rst (n − vj − 1) rounds. For the next (vj − uj) rounds, the

output of the gate is conditionally free. Similarly, for a cipher
←
D, the reverse-feed

cipher of
→
D, in the backward di�erential the output of gate Aj is deterministic

for �rst (uj) rounds and conditionally free for next (vj − uj) rounds.

Proof. For cipher
→
D, as tiuj+1 and tivj+1 are known for 0 ≤ i ≤ n − vj − 2, so

∆Aj can be deterministically computed for �rst (n− vj − 1) number of rounds
as both inputs to the AND gate are known.
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tivj+1 is known and tiuj+1 is unknown for n− vj − 1 ≤ i ≤ n− uj − 2 (round

number n−vj to n−uj−1). If ∆tiuj+1 = 0 and ∆tivj = 1, then by Observation 2,

∆Aj = tiuj+1. Hence, for round n − vj to n − uj − 1, ∆Aj can be determined
with probability 1 when such conditions are met.

In similar way, it can be proved for
←
D.

4.3 Generalization of Chained ANDs

Consider an n-bit cipher C with (su1 , su2), (su2 , su3) and (∆su1 = 1, ∆su2 =
0), (∆su2 = 0, ∆su3 = 1) are respectively two sequential inputs and their di�er-
ences to the AND gate. Suppose we have di�erential trail and at the round i, we
see that the input di�erence ∆su1

= 1, ∆su2
= 0 happens at the AND gate and

∆z be the coresponding output di�erence. Then, according to Observation 3,
the internal state bit su2 will be revealed due to the relation ∆z = su2 . Thus,
after the (u2 − u1 − 1) number of rounds, i.e., at the round i + (u2 − u1 − 1),
∆su2

= 0, ∆su3
= 1 becomes the input di�erence to the AND gate. In this case,

by Observation 2, this active AND gate will be freely bypassed as we know the
bit value su2

. Therefore, if the subsequent input di�erences to the AND gate
are 1, 0, 1 then instead of paying the probability of 1

4 , we only have to pay the
probability of 1

2 . In another way, we can say that when this subsequent 1, 0, 1 bit
di�erence arise in the AND gate, we will count it as one active AND. Because,
out of two subsequent active ANDs, we only pay the probability for the �rst one
(i.e., when ∆su1

= 1, ∆su2
= 0) whereas the second (where ∆su2

= 0, ∆su3
= 1)

one will pass with probability 1.
In the re�ned modeling paper [9] introduced for TinyJAMBU, the authors

added some extra constraints in the simple MILP model and recorded all the
two subsequent ANDs with 1, 0, 1 bit di�erences which helps to increase the
overall probability of the di�erential trail. We named this kind of two subsequent
ANDs with 1, 0, 1 bit di�erences as Chained AND Bit Pattern (BAND). Now,
if we consider a NLFSR with multiple ANDs-based cipher, then there might
arise more than two subsequent ANDs with various bit di�erence patterns that
might signi�cantly increase the overall probability of the trail and we named it
as Multiple AND Bit Pattern (MAND). Before going to de�ne it, we give one
example to show how MAND increases the probability in the trail.

Example 2. Suppose, we have an n-bit cipher
→
D with two ANDs, where n = 32

and (3, 8), (10, 12) are the two di�erent AND's input positions in the NLFSR

state. At the round i, we assume that a particular bit di�erence ∆s8 = 1, ∆s5 =
1, ∆s3 = 0, ∆s1 = 1, and ∆s-2 = 0 happens in the state. Also, we choose the
bit di�erence 0 at the third position in the state as a pivot. In the subsequent
rounds, this pivot will activate some related AND gates, and then it helps to
freely pass some subsequent ANDs in the following way.

1. At round i, since ∆s8 = 1, ∆s3 = 0 happens, we get the information of the
state bit at the pivotal position according to Observation 2.
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2. Then, at the round i + 7, the pivot goes to the bit position 10 and acti-
vate the second AND gate as ∆s12 = 1, ∆s10 = 0. Thus, according to the
Observation 3, this active AND will be freely passed.

3. Similarly, when the pivot goes to the 12-th position in the state at the round
i+9, the AND will be passed detrministically according to the Observation 2.

The above steps are summarized in the Table 4a. In this example, we have
to only pay the probability of 2−1 instead of 2−3, as the total number of active
ANDs subject to the pivot is 3.

Table 4: Examples of MAND and BAND

(a) An Example of MAND

Round
NLFSR State Bit Positions1

∆s12 ∆s10 ∆s8 ∆s5 ∆s3 ∆s1 ∆s−2

i 0 0 1 1 0 1 0

i+ 5 0 1 0 - 0 - -

i+ 7 1 0 1 0 - - -

i+ 9 0 1 - - - - -

(b) An Example of BAND

Round
NLFSR State Bit Positions2

∆s21 ∆s24 ∆s27
i 1 0 1

i+ 3 - 1 0

Let us denote ∆sij to be the state di�erence ∆sj at round i and sij to be

the state value sj at round i. Also, for ciphers like
→
C and

→
D, we use ∆siu1

to
be the the pivotal bit di�erence at the position u1, the �rst AND bit position.

We now furnish the formal de�nitions of BAND and MAND for ciphers
→
C and

→
D respectively. They can be de�ned similarly for ciphers like

←
C and

←
D.

De�nition 1 (Bi-AND Bit Pattern - BAND). Consider the cipher
→
C with

(u1, v1) as its input position of the AND gate. BAND of a pivotal bit di�erence

(∆siv1 = 0) is denoted by B
→
C
i and is de�ned as a bit string in the following way.

B
→
C
i = l1

pivot︷ ︸︸ ︷
∆siu1

r1, where

{
l1 = ∆siu1

when ∆siu1
is at u1

r1 = ∆s
i+(v1−u1)
u1 when ∆siu1

is at v1

Example 3. Consider an NLFSR-based block cipher
→
C with n = 32 and (24, 27) as

the inputs to the AND gate A1. Let us assume that, at round i(> 42), particular

1The bit values in ∆s8,∆s5,∆s3,∆s1, and ∆s−2 are shown in orange, green, red,
violet, and brown colors respectively.

2The bit values in ∆s21,∆s24, and ∆s27 are shown in blue, red, and green colors
respectively.
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bit di�erences of ∆s21 = 1, ∆s24 = 0, and ∆s27 = 1 occur in the state (see

Table 4b). Then the BAND of the pivot ∆si24 = 0, B
→
C
i is given as below.

B
→
C
i = l1∆si24 r1 = ∆si+3

24 ∆si24 ∆si27

= ∆si21 ∆si24 ∆si27, [∵ ∆si+a
b = ∆sib−a]

De�nition 2 (Multiple AND Bit Pattern - MAND). Consider the cipher
→
D with (u1, v1), · · · , (uh, vh) denoting respectively input positions to h number
of AND gates. The MAND of a pivotal bit di�erence (∆siu1

= 0) is denoted by

M
→
D
i and is de�ned as a (2h+ 1)−bit string in the following way:

M
→
D
i = lh lh−1 · · · l1

pivot︷ ︸︸ ︷
∆siu1

r1 · · · rh−1 rh, where, ∃ some p ∈ {1, · · · , h}

such that

{
lp = ∆s

i+(up−u1)
vp when ∆siu1

is at up

rp = ∆s
i+(vp−u1)
up when ∆siu1

is at vp

When there is exactly a single p ∈ {1, · · · , h} such that lp = rp = 1, M
→
D
i

collapses to a BAND which can hence be interpreted as a speci�c instance of
a MAND. With the above formalisms in place, we can now revisit Example 2
where the MAND of the pivot ∆si3 = 0 can be captured as below.

M
→
D
i = l2l1∆si3 r1r2 = ∆si+9

10 ∆si+5
3 ∆si3 ∆si8∆si+7

12

= ∆si1∆si−2 ∆si3 ∆si8∆si5, [∵ ∆si+a
b = ∆sib−a]

We can demonstrate that the probability of a particular trail in an AND-based

cipher (
→
D) can be signi�cantly increased due to the occurrence of MANDs. To

detect the MANDs, we need to introduce variables that represent the output
di�erences of the AND gates in the intermediate rounds. For p ∈ {1, · · · , h}, we
de�ne∆A

i,up
p and∆A

i,vp
p as the output di�erences of AND gate Ap when the piv-

otal bit di�erence ∆su1
i moves to positions up and vp, respectively. When certain

MANDs occur at the intermediate rounds (out of a total of 2h+1 bit patterns),

we can establish relationships among siu1
, ∆A

i,up
p , and ∆A

i,vp
p . These relation-

ships can help us understand how the occurrence of MANDs a�ects the trail
probability. We have already established how BAND is a special case of MAND.
The following lemma captures the behavior of BAND with regards to variables

∆A
i,up
p , and ∆A

i,vp
p introduced above. Later we use the notion of M

→
D
i -weight

in subsequent lemmas to highlight the gain in trail propagation probability that
ensues due to MANDs.

Lemma 6. Consider a BAND with B
→
C
i = l1 ∆siu1

r1. If l1 = r1 = 1, then

∆Ai,u1

1 = ∆Ai,v1
1 .
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Proof. According to the Observation 3, if l1 = 1 and ∆siu1
= 0, then ∆Ai,u1

1 =

siu1
. Similarly, as r1 = 1 and ∆siu1

= 0, we have ∆Ai,v1
1 = siu1

. Hence, we can

conclude that ∆Ai,u1

1 = ∆Ai,v1
1 .

De�nition 3 (MAND-weight). The weight of aMANDM
→
D
i , denoted by wt(M

→
D
i )

captures its Hamming-weight.

Lemma 7. Consider a MAND with M
→
D
i = lh · · · l1 ∆siu1

r1 · · · rh and

wt(M
→
D
i ) = p+ q. For {w1, · · · , wp} and {y1, · · · , yq} ⊂ {1, · · · , h},

lw1
= · · · = lwp

= ry1
= · · · = ryq

= 1

=⇒ ∆A
i,uw1
w1 = · · · = ∆A

i,uwp
wp = ∆A

i,vy1
y1 = · · · = ∆A

i,vyq
yq

Proof. By Observation 3, if lwg
= 1 and ∆siu1

= 0 then ∆A
i,uwg
wg = siu1

holds

∀g ∈ {1, · · · , p}. Similarly, as ryg = 1 and ∆siu1
= 0, A

i,uyg
yg = siu1

holds ∀g ∈
{1, · · · , q}. Hence, we can conclude that ∆A

i,uw1
w1 = · · · = ∆A

i,uwp
wp = ∆A

i,vy1
y1 =

· · · = ∆A
i,vyq
yq .

Lemma 8. Let wt(M
→
D
i ) = m and m ≥ 2. Then the subsequent output di�er-

ences of m active AND gates can be restricted to probability 2−1 instead of 2−m.

Proof. As wt(M
→
D
i ) = m, then Lemma 7 implies that output di�erences of m

AND gates should be equal to siu1
. Thus the output di�erences are correlated

and the joint propagation probability increases from 2−m to 2−1.

4.4 Experimental Evidence of MAND

The e�ect of MAND is observed in the 60-round related-key di�erential trail of
KATAN48. The trail is listed in Table 15 with input di�erence 0x820031400000
and output di�erence 0x00018000c000.

The feedback function fb(L2) of KATAN48 consists of two AND gates. L2[6]
and L2[15] are inputs to one AND gate whereas L2[13] and L2[21] are inputs to
another AND gate. Using the NLFSR description from Section 4.2, the following
values can be �xed.

u1 = 6 v1 = 15 u2 = 13 v2 = 21

Now we �nd theMAND with respect to the pivot∆s103u1
(= ∆s1036 ). In particu-

lar, we are �nding the expression forM
→
D
103. (

→
D = KATAN48). From De�nition 2,

M
→
D
103 = l2l1s

103
6 r1r2

The values for l2, l1, r2, r1 are needed to be computed. Again from De�nition 2,
in this case p ∈ {1, 2}. Thus,
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l2 = ∆s103+(u2−u1)
v2 = ∆s

103+(13−6)
21 = ∆s11021 = 0

r2 = ∆s103+(v2−u1)
u2

= ∆s11813 = 1

l1 = ∆s103+(u1−u1)
v1

= ∆s10315 = 0

r1 = ∆s103+(v1−u1)
u1

= ∆s1126 = 1

Hence,M
→
D
103 = 00011. Now using Lemma 7, we have y1 = 1 and y2 = 2 and

the following,

∆A103,v1
1 = ∆A103,v2

2 =⇒ ∆A103,15
1 = ∆A103,21

2

The above equality can also be veri�ed from the trail given in Fig. 5 (in both

the cases, the key di�erence is 0). Now, as wt(M
→
D
103) ≥ 2, thus from Lemma 8 it

can be concluded that MAND is able to deliver a probabilistic advantage. Note
that, the above pattern 00011 can only be captured through MAND. BAND will
not be able to capture such patterns.

Fig. 5: Experimental demonstration of a MAND occurrence. The �gure shows
the last few rounds trail of the 60-round (120 iterations) KATAN48 related-key
distinguisher. In the �gure, left, middle and right columns refer to the iteration
number, bit-di�erences in L2 and L1 register respectively. In the L2 register, the
red-colored bits denote the position 6, 13, 15 and 21 (starting from left).

In the next section, we showcase, how the advantage that MAND provides
can ve leveraged in the DEEPAND modeling of NLFSR based ciphers using MILP.
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5 MILP Based DEEPAND Modeling for NLFSR

For a given di�erential trail in NLFSR based ciphers, the probability is calculated
by counting the total number of active AND gates in each round. The objective
is to �nd the optimal trail with the minimum number of active AND gates in
a �xed number of rounds. In the simple MILP model, the goal is to minimize
the number of non-zero input di�erences to the AND gates in each round. The
authors of [9] studied the impact of AND gates on the trail probability for the
single AND-based NLFSR cipher TinyJAMBU. They found that subsequent AND
gates may depend on each other and form what we in the current work de�ned
as a BAND, which has a signi�cant e�ect on the trail probability. To capture
such a BAND, they proposed a re�ned MILP model for TinyJAMBU. However, as
per our investigations, it has been observed that further re�nement is possible
and a generalized model can be devised to extend the �ndings to a class of
NLFSR based ciphers. The re�ned model for capturing BANDs is described in
Section 5.1. In Section 5.2, we describe how to capture MAND for multiple AND
based NLFSR ciphers, which automatically includes BAND.

5.1 MILP Modeling of BAND

To model
→
C leveraging the BAND B

→
C
i , we use γi to capture the correlation

among two subsequent active AND gates. For each round, we compute γi as
γi = l1 ∆siu1

r1. According to Lemma 6, we have ∆Ai,u1

1 = ∆Ai,v1
1 . Thus

for the pivot postion at u1 in the consecutive rounds of the state, the following
constraints will be added to theMILP model to capture the correlation in BAND.

γi = l1 ∆siu1
r1, ∆Ai,u1

1 −∆Ai,v1
1 ≤ 1− γi, ∆Ai,v1

1 −∆Ai,u1

1 ≤ 1− γi

5.2 MILP Modeling of MAND

The number of valid patterns of MAND, which captures the dependency among
the output di�erences of subsequent active AND gates, is described in the fol-
lowing Lemma 9.

Lemma 9. The number of valid patterns (λ) of a MAND M
→
D
i of an NLFSR-

based cipher
→
D with h AND gates is equal to

2h∑
m=2

(
2h
m

)
= 4h − 2h− 1.

Proof. Consider a MAND with wt(M
→
D
i ) = m. There are

(
2h
m

)
valid patterns of

M
→
D
i which shows the dependency between m subsequent active AND gates. By

Lemma 8, for a MAND, if m ≥ 2, then we have shown a dependency between
the output di�erences of AND gates. Therefore, the total number of valid MAND

will be
(
2h
2

)
+
(
2h
3

)
+ · · ·

(
2h
2h

)
= 4h − 2h− 1.
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For modeling the dependency among the subsequent active AND gates, the
approach is quite similar to the model given in [9]. To do so, �rst, a constraint is
used to identify which AND gates are correlated and then pairs of AND gates are
considered to model the dependency between them. So, to capture any bit dif-
ference pattern in the MAND with m ≥ 2, we have added some extra constraints
corresponding to the chained active AND gates in the simple MILP modeling. As

the MANDM
→
D
i has λ di�erent valid patterns, we take γz, 1 ≤ z ≤ λ to capture

the correlation among wt(M
→
D
i ) number of active AND gates.

Thus for the pivot postions at u1 in the consecutive rounds i of the state, we
have λ number of γz and compute them in the following way.

γz = lw1 · · · lwp
lw′

1
· · · lw′

p
′
∆siu1

ry1
· · · ryq

ry′
1
· · · ry′

q
′

Where,



lw1
= · · · = lwp

= ry1
= · · · = ryq

= 1

lw′
1
= · · · = lw′

p′
= ry′

1
= · · · = ry′

q′
= 0

Such that


{w1, · · · , wp} ∪ {w

′

1, · · · , w
′

p′ } = {u1, · · · , uh},
{w1, · · · , wp} ∩ {w

′

1, · · · , w
′

p′} = ∅,

{y1, · · · , yq} ∪ {y
′

1, · · · , y
′

q′
} = {v1, · · · , vh},

{y1, · · · , yq} ∩ {y
′

1, · · · , y
′

q′
} = ∅

Lemma 7 implies that ∆A
i,vw1
w1 = · · · = ∆A

i,vwp
wp = ∆A

i,vy1
y1 = · · · = ∆A

i,vyq
yq .

Therefore, for each of λ valid bit di�erence patterns of a MAND, the correlation
is captured by the constraints given in Table 5. There constraints constitute
the DEEPAND model for MILP that is used to �nd the better di�erentials for
KATAN and TinyJAMBU leading to improved attacks on both the lightweight
ciphers which are discussed in the subsequent sections.

Table 5: MILP Constraints Pertaining to DEEPAND

γz = lw1 · · · lwp lw′
1
· · · l

w
′
p
′
∆siu1

ry1 · · · ryqry′
1
· · · r

y
′
q
′

∆A
i,uwt
wt −∆A

i,uwx
wx ≤ 1− γz,

∆A
i,uwx
wx −∆A

i,uwt
wt ≤ 1− γz,

 1 ≤ t < x ≤ p

∆A
i,uwt
wt −∆A

i,vyx
yx ≤ 1− γz,

∆A
i,vyx
yx −∆A

i,uwt
wt ≤ 1− γz

 1 ≤ t ≤ p, 1 ≤ x ≤ q

6 Attacks on TinyJAMBU

The DEEPAND model has been applied to mount attacks on variants of keyed
permutation Pl, P̂l of TinyJAMBU. We start with a brief discussion of the rele-

20



vant previous attacks before sharing the results obtained in this work to give a
perspective on the degree of improvement.

6.1 Attacks on Keyed Permutation Pl

In their security analysis of the mode, the designers consider Pl to be an ideal
keyed-permutations which means under a chosen plaintext attack, Pl cannot
be distinguished from a random permutation. This gives us a motivation to
evaluate the security of Pl against di�erential cryptanalysis as a stand-alone
keyed-permutation. Furthermore, based on our proposed DEEPAND model, we
show that the keyed permutations Pl and P̂l do not behave as a pseudo-random
permutations.

6.1.1 MILP Modeling for Finding Di�erential Trail As the design of
TinyJAMBU is similar to the cipher described in Section 4.1, from Lemma 2 it
can be concluded that the �rst (128 − 85 − 1) = 42 rounds are completely free
and the next (85−70) = 15 rounds are conditionally free. For the rest number of
rounds re�ned modeling [9] is employed. It is worth mentioning that our �ndings
with complete and conditionally free rounds lead to improvements of the results
reported in [9].

To �nd the di�erential characteristics of Pl, in addition to the re�ned model,
the Observation 1 and Observation 2 are employed to improve the probability.
By Lemma 2, it can be concluded that the �rst (128 − 85 − 1) = 42 rounds is
completely free, but some of the next (85−70) = 15 rounds are conditionally free
when a particular di�erence pattern (∆s70, ∆s85) = (0, 1) occurs in the input
to the AND gate and s70 is completely known. This conditional free scenario is
demonstrated in Table 6.

Consider the bits 70 and 85 in round number 43 to 57 of the trail given in
Table 7. It is evident from the table that in round 49 and 52, ∆s4970 = ∆s5270 =
0 and ∆s4985 = ∆s5285 = 1. As s4970 and s5270 are known, the output di�erence
of the corresponding AND gate is deterministic. Hence, this gives a factor of

Table 6: Part of di�erential trail of TinyJAMBU showing the e�ect of Observa-
tion 2.

#Rnd ∆s70···85 Conditionally Free
42 0000000000000000 No
43 0000000000000000 No
...

...
...

48 0000000000000000 No
49 0000000000000001 Yes
50 0000000000000010 No
51 0000000000000100 No
52 0000000000001001 Yes
...

...
...

57 0000000100100000 No
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22 advantage in the probability. Notice that, although it gives a factor of 22

advantage in the probability, parallely it also decreases the message space by the
factor of 22. However, in general, in both the free and conditionally free cases,
the trail probability can be increased by �xing some of the input message bit
values. So, for the di�erential attack, we need a trade-o� between the probability
and the message space (the data complexity of the attack).

Table 7: Type 4 Di�erential Trails of P384 with Probability 2−14

Input: ∆S127···0 0x00000000 0x88040000 0x00000248 0x02000043

∆S255···128 0x00000000 0x80000000 0x00010000 0x00000012

∆S383···256 0x00000000 0x80000000 0x00000000 0x00000000

Output: ∆S511···384 0x04080000 0x80004000 0x00010200 0x00000010

Discussion It should be noted that the use of a single AND gate in TinyJAMBU

means that the dependencies between the AND gates (BAND) will remain the
same. Our analysis took into account the keyed-permutation of TinyJAMBU, so
these conditions will remain unaltered. A similar type of di�erential analysis was
performed in [10] using a re�ned MILP model, which showed that the �rst 43
rounds are free when both inputs to the AND gate are known. Additionally, we
have shown that even when only one input bit of the AND gate is known, the
output di�erence of the AND gate can be deterministic (for rounds 43 to 57).
This property was not captured in previous works [9,10], but we have identi�ed
it as the underlying factor behind the DEEPAND model. This same property
leads to the modeling of the correlation among multiple AND gates when used
in a block cipher like KATAN. If we compare our model with [9], we need to omit
the initial free rounds and our model will be similar to theirs. However, if we
want to take advantage of the known plaintext scenario, then our model can be
better or at least as good as that of [10].

6.1.2 Cluster Di�erential Trail of P384 By employing the DEEPAND

model in MILP, we are able to �nd better di�erential trails. A comparison of
these three models for both Type-IV and Type-I di�erences with respect to di�er-
ent rounds is summarized in Table 8. For 320 rounds, our model gives a di�er-
ential trail with probability 2−8 which is much better than previously reported
results. For P384, a Type-IV di�erential trail with probability 2−14 is found. The
trail is shown in Table 7. We obtained 4 di�erential trails with the same input
and output di�erence as shown in Table 7 each with probability 2−14, 2−15, 2−16

and 2−17. Thus the overall probability for the di�erential trail is 2−13.17.
Also, using the DEEPAND model, we have found a Type-III di�erential trail5

of P384 with probability 2−71. The input and output di�erences are given in

5We have found a 384 round Type-III di�erential trails with probability 2−71 by
running our DEEPAND model. Meanwhile, we don't know why we did not get this trail
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Table 8: Best Results for Type-IV and Type-I Trails of TinyJAMBU Correspond
to Di�erent MILPModels. �?� denotes that the solver has not stopped. Here each
entry equals − log2(TrailProbability)
Number of Simple Model [1] Re�ned Model [9] DEEPAND Model
Rounds Type-IV Type-I Type-IV Type-I Type-IV Type-I

128 2 6 2 6 0 5

192 4 13 4 12 2 11

256 8 22 8 20 5 19

320 13 33 12 29 8 28

384 � 45 19 41 14 40?

480 � � 29? � 22 �

640 � 88 53? � 42? 79?

1024 � � � � 108? �

Table 9 that consists of total 84 active active AND gates among which 6 gates
are completely free, 0 gates are conditionally free, and 13 gates are correlated.
Therefore to satisfy this Type-III trail with probability 2−65, we need to �x pre-
cisely 6 bits in the input message. As a result, the message space will become
reduced from 2128 to 2122. We then evaluated its probability by �nding multiple
di�erential trails with the same input and output di�erence, given in Table 9.
We found 50 distinct trails with probability 2−70 or more, whose distribution
is listed in Table 10. By taking account of all these distinct trails, the overall
probability to satisfy this Type-III trail will become 2−61.88

6.1.3 Di�erential Trail of P640,P1024 The MILP model developed in this
work has also been applied on the keyed permutations P640 and P1024 to �nd the
best Type-IV di�erential trail. For, P640, we have found Type-IV and Type-I dif-
ferential trails with probabilities of 2−42 and 2−79 respectively. We also searched

Table 9: Di�erential Trails of the TinyJAMBU Keyed Permutation Pl

Keyed Di�erential Trail

Permutation Type probability Masks

P384
Type-III 2−65 Input Di�erence: 0x048a2000 0x00000000 0x00000000 0x00000000

Output Di�erence: 0x40800441 0x00000000 0x00000000 0x00000000

P640
Type-III 2−93 Input Di�erence: 0xc3804381 0x00000000 0x00000000 0x00000000

Output Di�erence: 0x00000100 0x00000000 0x00000000 0x00000000

P640
Type-IV 2−42 Input Di�erence: 0x00000204 0x10000080 0x00412000 0x01020800

Output Di�erence: 0x20409200 0x88000480 0x00001020 0x00024001

P1024
Type-IV 2−108 Input Di�erence: 0x00308080 0x00002129 0x00000808 0x00420000

Output Di�erence: 0x40110000 0x02040920 0x00800048 0x00000102

by using the implementation provided in [9]. One possible reason is that in both models
the MILP solver did not stop to provide the best trails. In conclusion, this is not an
advantage of the DEEPAND model but perhaps was not captured in [9].
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Table 10: Multiple Type-III Paths and Their Probabilities of P384

Probability 2−65 2−66 2−67 2−68 2−69 2−70

Number of Trails 3 3 7 10 13 14

for the best Type-III trail of P640 and were able to �nd a trail with probability
2−93 (see Table 9). However, for P1024, we could only �nd a di�erential trail with
probability 2−108. Note that the solver is unable to �nd the best trails due to a
higher number of rounds in both the permutations P640,P1024.

6.1.4 Related-key Di�erential Trail of P128
1024,P192

1152, and P256
1280 The de-

signers have mentioned that if two related keys are available, then TinyJAMBU

has the sliding property which can be prevented by adding the frame bits to the
state. Although, for the keyed permutations Pl in the TinyJAMBU mode, the
related-key di�erential attack is less practical compare to the single-key di�er-
ential attack, we have applied our DEEPAND model for the keyed permutations
P128
1024,P192

1152, and P256
1280 in the related key setting and found trails which are

summarized in Table 11.

Table 11: Related-key Di�erential Trails of the TinyJAMBU Keyed Permutations
P128
1024,P192

1152, and P256
1280

Keyed Di�erential Trail

Permutation Type probability Masks

P128
1024

Input Di�erence: 0x00000000 0x00000000 0x00000004 0x00000000

Type-IV 2−14 Output Di�erence: 0x00000000 0x00000000 0x00000004 0x00000000

Key Di�erence: 0x20000000 0x00020000 0x00000000 0x00000000

P192
1152

Input Di�erence: 0x00000000 0x00000000 0x00000000 0x20000000

Type-IV 2−10 Output Di�erence: 0x00000000 0x00000000 0x00000000 0x20000000

Key Di�erence: 0x01000000 0x00001000 0x00000000 0x20000000

0x00000000 0x20000000

P256
1280

Input Di�erence: 0x00000004 0x00000000 0x00000000 0x10000000

Type-IV 2−8 Output Di�erence: 0x00000000 0x00000000 0x00000000 0x10000000

Key Di�erence: 0x00800004 0x00000800 0x00000000 0x10000000

0x00000000 0x00000000 0x00000000 0x10000000

6.2 Fixing Saha et al.'s Forgery Attack [9]

In this subsection, we show that the forgery attack furnished in [9] has a �aw
which makes it ine�ective. To be precise, the �aw originates from the lack of
entropy or degrees of freedom in generating su�cient messages to create a favor-
able event for the forgery. We restate the attack in order to highlight �aw in the
arguments furnished in [9] followed by our �x. In their work Saha et al. discuss
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the forgery attack that can occur during the nonce setup or data processing
phase. The attack involves injecting a 32-bit di�erence ∆i into the i-th input
block and then cancelling the state di�erences by injecting another 32-bit state
di�erence ∆i+1 into the (i+1)-th input block, which maps to Type-III di�erence.
The attack is based on the existence of a di�erential trail that maps the state
di�erence (∆i||096) to (∆i+1||096) through Pl with probability p.

There are two types of attacks mentioned in the paper. The �rst one is called
the �probabilistic nonce-reuse almost universal forgery� where the length of the
associated data must be at least two blocks. The attacker repeatedly makes
queries to the encryption oracle with the same nonces to observe the tag T . If
the observed tag T

′
is matched with the tag T , the attacker succeeds in making a

forgery. This attack breaks the 64-bit security if the di�erential trail ∆i → ∆i+1

of Pl has a probability p ≥ 2−64. The second attack is called the �nonce-respect
almost universal forgery with reforgeability� where the attacker can choose the
�rst 64 bits (out of 96 bits) of the nonce N = N0||N1||N2, and can make a forgery
for any (A,M) immediately after �nding N and T that satisfy the nonce-respect
requirement. The attacker repeatedly makes queries to the encryption oracle
with di�erent nonces to observe the tag T . If the observed tag T

′
is equal to T ,

the attacker succeeds in making a forgery. The success probability of this attack
is D × p, where D is the number of distinct nonces examined by the attacker.
Once the attacker �nds a collision, they can obtain a valid tag for any (A,M)
by choosing the last 32 bits of the nonce arbitrarily.

Now to satisfy the trail ∆i → ∆i+1 for Pl, the number of distinct state pairs
(D) should be at least 1

p . In another way, we can say that the expected number of
state pairs to satisfy a given trail∆i → ∆i+1 will beD×p. For the second forgery
attack, by choosing di�erent N0, the number of distinct state pairs (S, S

′
) with

S⊕S′
= ∆i at the processing of the �rst nonce block will be D = 231. Note that,

in this case, varying N1 does not have any e�ect to increase the number of state
pairs (D). In [9], the authors found a di�erential trail ∆i → ∆i+1 for P338 with
probability p = 2−62.68 (by considering multiple paths). Thus, for P338, using the
second forgery attack, the attacker can �nd a state collision after exhausting the
�rst two nonce blocks with probability 231 × 2−62.68 ≈ 2−31.68(≪ 1). Therefore,
for P338, the proposed attack cannot e�ectively �nd a state collision to break
the 64-bit authentication security, i.e., the probability to make a state collision
at the �rst two nonce processing blocks will be 2−31.68 even though the attacker
can make 231 × 231(= 262) number of Q1 and Q2 queries.

In order to carry out a forgery attack in the nonce-respect scenario, the
attacker needs to perform two queries repeatedly:

Q1: The attacker makes a query to the encryption oracle with inputs (N0||N1

||N2, A
∗,M∗) in order to observe the tag T .

Q2: The attacker makes a related query to the encryption oracle with inputs
(N0||N1 ⊕∆i||N2 ⊕∆i+1, A

∗,M∗) in order to achieve a successful forgery if
the observed tag T

′
is equal to T .

In this scenario, the number of chosen state pairs at the input of the second
nonce block for Pl would be 232 × 231 = 263. This means that if a given trail
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∆i → ∆i+ 1 has a probability p ≥ 2−63, then after making queries of Q1
and Q2 for all nonces N0, N1, it is expected that there will be at least one
state collision at the third nonce block position, which will immediately lead
to the forgery. Additionally, if N0||N1||N2 and N0||N1 ⊕∆i||N2 ⊕∆i+1 are two
96-bit nonces that result in a state collision, then the attacker can choose the
last 32 bits of nonce Ñ2 ( ̸= N2, N2 ⊕ ∆i+1) arbitrarily to obtain a tag T for
(N0||N1||Ñ2, A

∗,M∗) through an encryption query. Then T will also be valid for
(N0||N1 ⊕∆i||Ñ2 ⊕∆i+1, A

∗,M∗) implying a forgery.
According to our analysis using the DEEPAND model for P384, we discovered

a di�erential trail with a probability6 of 2−65 when an attacker has the ability
to manipulate 6 bits in the input message during encryption. After taking into
account multiple paths for this trail, the probability increases to 2−61.88. How-
ever, in this forgery attack, the attacker has no control over the initial bits in
the message and cannot freely bypass some initial AND gates. Therefore, by not
considering the manipulation of the message bits at the initial 57 rounds of Tiny-
JAMBU state, the overall probability decreases to 2−67.88, which is higher than
the original estimations made by Saha et al. and the designers. Our DEEPAND
model analysis for P384 suggests that the security margin against di�erential
cryptanalysis is less than 4 bits.

7 Attacks on KATAN

In this section, to �nd the best di�erential trails of any rounds in the KATAN
ciphers, we will show that how the DEEPAND model e�ciently captures the
correlated ANDs and signi�cantly increase their trail probability. First, we will
show that the di�erential characteristics using our DEEPAND model for some
initial rounds of KATAN give a much better probability than the designer's claims
in [5]. Then, we show that the related key boomerang attack on KATAN in [6]
can also be improved by employing this new model.

7.1 Improved Di�erential Cryptanalysis of KATAN

7.1.1 MILP Modeling of Free Rounds. In KATAN, there are three AND
gates where the tuples (y3, y4), (y5, y6), and (x3, x4) represent the input bit-
positions to the AND gates A1, A2, and A3 respectively. Then by Lemma 4, the
di�erential output of the gates A1, A2 and A3 in the forward di�erential trail
are deterministic for the �rst (y4+1), (y6+1), and (x4+1) rounds respectively.
Also, they are conditionally free from the round number (y4 + 2) to (y3 + 1),
(y6 + 2) to (y5 + 1), and (x4 + 2) to (x3 + 1) respectively.

Similarly, by Lemma 5, it can be concluded that in the backward di�erential
trail, the output di�erences of the gates A1, A2 and A3 are deterministic for the
�rst (n− y3 − 1) rounds, �rst (n− y5 − 1) rounds and �rst (n− x3 − 1) rounds

6The attack scenario does not allow for the attacker to control the input message
bits in the encryption process, thus we have taken into account the cost of �xing the
message bits by multiplying the overall probability by 2−6.
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respectively and conditionally free from round number (n− y3) to (n− y4 − 1),
(n− y5) to (n− y6− 1) and (n−x3) to (n−x4− 1) respectively. Here n denotes
the state-size of KATAN.

7.1.2 Modeling the Dependency Between AND Gates For KATAN,
there is only one AND gate in the L1 register. In this case, a BAND can hap-
pen during intermediate rounds. To capture all the BANDs in rounds, we have
to track the BAND for each round and then we add the respective constraints
according to the MILP model discussed in Section 5.2.

In L2 register, there are two AND gates and the dependency between two
di�erent AND gates is not captured in the re�ned model. Consider a bit si3 in
register L2. For KATAN32, the MAND of the pivotal di�erence ∆si3 = 0 is

MKATAN32

i = ∆si+9
10 ∆si+5

3 ∆si3 ∆si8∆si+7
12 = ∆si1∆si−2 ∆si3 ∆si8∆si5

Now by Lemma 9 there are
(
4
4

)
+

(
4
3

)
+

(
4
2

)
= 11 patterns for which output

di�erential of several AND computations are inter-related. The MAND and its
corresponding di�erential bit patterns with re�ned probabilities are shown in
Table 12.

Table 12: MAND of ∆si3 and the corresponding di�erential value of related bits.
MAND ∆si8 ∆si5 ∆si3 ∆si1 ∆si−2 Naive Prob. Improved Prob.

11 0 11 1 1 0 1 1 2−4 2−1

11 0 10 1 1 0 1 0 2−3 2−1

11 0 01 1 1 0 0 1 2−3 2−1

10 0 11 1 0 0 1 1 2−3 2−1

01 0 11 0 1 0 1 1 2−3 2−1

11 0 00 1 1 0 0 0 2−2 2−1

10 0 10 1 0 0 1 0 2−2 2−1

01 0 10 0 1 0 1 0 2−2 2−1

10 0 01 1 0 0 0 1 2−2 2−1

01 0 01 0 1 0 0 1 2−2 2−1

00 0 11 0 0 0 1 1 2−2 2−1

7.1.3 DEEPAND Based New Di�erential Trails for KATAN In [5], the
designers have claimed that for 42-round KATAN32, the best di�erential charac-
teristic has probability 2−11. However, for the initial 42 rounds, the DEEPAND
MILP model is able to �nd two identical di�erential trails with probability 2−7.

For 43-round KATAN48 and 37-round KATAN64, the best di�erential trail, as
claimed by the designers, can be found with probability 2−18 and 2−20 respec-
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tively whereas for both variants our model �nds di�erential trails with probabil-
ity 2−14.

Table 13: Di�erential Properties of KATAN Variants. #R ← number of rounds,
fr ← number of ANDs to be freely passed, Cfr ← number of conditionally free
ANDs, CA → number of correlated ANDs, t ← number of required ANDs where
probability should be paid, pα and p → refer to probabilities with and without
bit-�xing.
Cipher #R Active Gates Di�erence Probability

t fr Cfr CA Input Output pα p

KATAN32

42 7 4 1 0 0x08020040 0x00200420 2−7 2−11

74 29 2 0 0 0x0000c010 0x40880101 2−29 2−31

81† 29 5 0 4 0x10802004 0x00000800 2−29 2−34

KATAN48 43 14 10 0 0 0x000008442c10 0x040000000229 2−14 2−24

KATAN64 37 17 3 2 0 0x4000002001000800 0x0444200000001000 2−17 2−20

†Note that, this trail has the probability 2−34 if we do not consider any message bit �xing.

So, this 81-round trail can not be veri�ed because the message space for KATAN32 is 232.

7.2 Related Key Di�erential Attack

In the related-key setting, the DEEPAND model was applied to the KATAN32
cipher, and the best trail probabilities for various rounds are summarized in
Table 14. This model outperforms previous simple and re�ned models in cap-
turing multiple correlated ANDs. These correlated ANDs not only increase the
trail probability but also aid in �nding longer di�erential trails. As a result,
this model can be used to identify better related-key di�erential trails for the
KATAN48 and KATAN64 ciphers compared to the simple and re�ned models.

7.2.1 Improving Isobe et al.'s Related Key Boomerang Attack [6]
The related-key boomerang attack is a combination of the boomerang attack
and the related-key di�erential attack. Such attacks are useful to build a distin-
guishers when it consists of two shorter di�erential trails with high probabilities.

In [6] for KATAN32 (= E1 ◦E0), the authors devise a 140-round boomerang
distinguisher, where both E0 and E1 have 70-rounds. Based on their e�cient
di�erential characteristics search for both E0 and E1, the authors provided max-
imum probability di�erential characteristics of each set in [6, Table 5,6]. In the
construction of the boomerang distinguisher, the authors choose a di�erential
characteristic of E0 corresponding to the set 8 [6, Table 4] with probability 2−9

7Note that, for larger rounds, the DEEPAND model could not �nd the best trails
due to too many constraints in the model.
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Table 14: Related-key Di�erential Properties of KATAN. #R ← number of
rounds, fr ← number of ANDs to be freely passed, Cfr ← number of condi-
tionally free ANDs, CA → number of correlated ANDs, t ← number of required
ANDs where probability should be paid, pα and p → refer to probabilities with
and without bit-�xing.

Cipher #R
Active Gates Di�erence7 Probability

t fr Cfr CA Input Output Key pα p

KATAN32

60 3 0 0 0 0x00004000 0x00b80084 ∆k[9, 39, 50, 54, 64] = 1 2−3 2−3

70

7 0 0 0 0x00042000 0x00880801 ∆k[1, 11, 53, 64, 68, 78] = 1 2−7 2−7

6 1 0 0 0x80031000 0x01200400 ∆k[0, 3, 5, 13, 55, 70, 72] = 1 2−6 2−7

4 3 0 0 0xa4020010 0x00b80084 ∆k[3, 4, 7, 10, 17, 2−4 2−7

29, 59, 70, 74] = 1

84 16 0 1 1 0xa0048000 0x01180263 ∆k[1, 4, 23, 31, 42, 61] = 1 2−16 2−17

KATAN48

50 0 7 0 0 0x000000301800 0x000180000000 ∆k[17] = 1 20 2−7

59
6 3 0 0 0x000003018000 0x000000001460 ∆k[13] = 1 2−6 2−9

6 2 3 0 0x820031400000 0x000060003000 ∆k[5, 24] = 1 2−6 2−11

60
7 2 3 1 0x820031400000 0x00018000c000 ∆k[5, 24] = 1 2−7 2−12

6 14 0 0 0xdb0000643018 0x180000000005 ∆k[6, 25] = 1 2−6 2−20

KATAN64
56 11 4 0 0 0x0000001c00e00000 0x000020000001cce0 ∆k[11] = 1 2−11 2−15

57 13 3 0 1 0x0000004801c00000 0x00000380001c0e00 ∆k[1, 7, 20, 26] = 1 2−13 2−16

and of E1 for the set 10 [6, Table 4] with probability 2−8. Thus the the prob-
ability to form a simple boomerang will be (2−9)2 × (2−8)2 = 2−34. Whereas
for KATAN32, the attacker only has 231 number of input message pairs with a
�xed di�erence. To reduce the data complexity for this boomerang attack, the
authors have considered multiple trails with the same input and output di�er-
ence. As a result, the overall probability for the trails in E0 and E1 improves to
2−7.1 and 2−6.5 respectively. Therefore by combining these two di�erential char-
acteristics, the overall probability of the above 140-round related-key boomerang
distinguisher is increased to (2−7.1)2 × (2−6.5)2 = 2−27.2.

Table 15: Sets of key di�erence considered in [6].

Set 0 1 2 3 4 5 6 7 8 9 10

Key

Di�erence
0,19 1,20 2,21 3,22 4,23 5,24 6,25 7,26 8,27 9,28 10,29

Plaintext

Di�erence

L2[9]

L1[12]

L2[18]

L1[2, 7, 12]

L2[8]

L1[11]

L2[17]

L1[1, 6, 11]

L2[7, 18]

L1[10]

L2[16]

L1[0, 5, 10]

L2[6, 17]

L1[9]

L2[15, 18]

L1[4, 9]

L2[5, 16]

L1[8]

L2[14, 17]

L1[3, 8]

L2[4, 15]

L1[7, 12]

Using the DEEPAND model, we have veri�ed all the trails corresponding to
the di�erential characteristics of each set in [6, Table 5]. For set 0 and set 10,
we have respectively identi�ed three and one correlated AND gates in the trails
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Table 16: Veri�ed Related-key Boomerang Distinguisher of KATAN32 . In hex-
adecimal notation, the most signi�cant bit (MSB) is placed on the right side and
the least signi�cant bit (LSB) is located on the left side.

KATAN32

No. Prob.
Input Di� Output Di� Key Di�erence

Upper Lower Upper Lower

1. 2−22 0x00026000 0x48008b00 0xa0800000000002001504 0x52c0a267036154fc4c36

with probabilities 2−12 and 2−10 (without considering free and conditionally free
AND gates). Whereas, according to their search strategy, the trail probabilities
for set 0 and set 10 are 2−15 and 2−12. For other sets, the DEEPAND model did
not �nd any extra advantage in the trails. Moreover, if we do not consider the
prede�ned sets in Table 15, the DEEPAND model is able to �nd much better
70-round trails of probability 2−7 (> 2−9). So, by choosing two trails of proba-
bilities 2−7, 2−7 for both E0, E1, we can form a boomerang distinguisher with
probability (2−7)2 × (2−7)2 = 2−28. Also, in the similar fashion, we can further
reduce the data complexity of this 140-round boomerang attack by choosing the
multiple di�erentials correspond to the same input/output di�erence. For the
�rst boomerang in Table 16, the input and key di�erence of E0 is represented
by 4 trails of probability 2−7, 8 trails of probability 2−8, 16 trails of probability
2−9, and 32 trails of probability 2−10. Similarly, the output and key di�erence of
E1 is represented by 4 trails of probability 2−7, 8 trails of probability 2−8, and
32 trails of probability 2−9. The overall probabilities of E0 and E1 are approxi-
mately 2−5.52 and 2−5.5, respectively. The overall probability of the boomerang
distinguisher can be calculated as (2−5.52)2× (2−5.5)2 = 2−22.04 which is greater
than 2−27.2. Note that for the distinguishers given in Table 16, we have not
considered any message-bit �xing in order to take advantage of the cluster of
trails.

8 Conclusion

In this work, we have developed DEEPAND, a new generalized MILP model to
capture the �rst-order correlation in single/multiple AND-based (NLFSR) ci-
phers. The model is developed primarily on the basis of three Observations 1, 2, 3
and introduces the notion of conditionally free rounds. In this model, it is shown
that there can be dependencies among multiple AND gates in NLFSR-based ci-
phers. To capture the dependencies in a proper way, BAND has been introduced.
In addition, it is also shown that if one of the inputs of AND gate is known, then
for certain values of input di�erences of the AND gate, the output di�erence is de-
terministic. Using the DEEPAND model, we have primarily investigated the dif-
ferential properties of the TinyJAMBU's keyed permutations. For the full-round
of P1024, we found a di�erential trail (Type-IV) with probability 2−108 highlight-
ing its non-ideal nature. For P640, the �gure is 2

−42. For KATAN, we report the
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best di�erential trail (veri�ed7) for 42-rounds with a practical probability of 2−7

breaking the designer's claim. We have also bettered the related-key boomerang
attack by Isobe et al. using DEEPAND. Finally, the designer's di�erential trail
for 43-round KATAN48 and 37-round KATAN64 is also improved showing the
widespread applicability of the new model DEEPAND. Finally, DEEPAND model
developed in this work appears like an e�ective tool to probe into the corre-
lations that develop during the di�erential propagation and warrants further
investigation.
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