
Breaking Panther

Christina Boura1, Rachelle Heim Boissier1, and Yann Rotella1

Université Paris-Saclay, UVSQ, CNRS,
Laboratoire de mathématiques de Versailles, 78000,Versailles, France

christina.boura@uvsq.fr, rachelle.heim@uvsq.fr, yann.rotella@uvsq.fr

Abstract. Panther is a sponge-based lightweight authenticated en-
cryption scheme published at Indocrypt 2021. Its round function is based
on four Nonlinear Feedback Shift Registers (NFSRs). We show here that
it is possible to fully recover the secret key of the construction by using a
single known plaintext-ciphertext pair and with minimal computational
ressources. Furthermore, we show that in a known ciphertext setting an
attacker is able with the knowledge of a single ciphertext to decrypt all
plaintext blocks expect for the very first ones and can forge the tag with
only one call and probability one. As we demonstrate, the problem of
the design comes mainly from the low number of iterations of the round
function during the absorption phase. All of our attacks have been im-
plemented and validated.

Keywords: Cryptanalysis, Panther, Duplex construction, NFSR, Key
recovery, Forge

1 Introduction

Panther is a sponge-based lightweight AEAD scheme designed by Bhargavi,
Srinivasan and Lakshmy [3] and published at Indocrypt 2021. This construction
works on a 328-bit state, divided as an outer part of rate r = 64 bits and an inner
part of capacity c = 264 bits. The state is updated by iterating a function F
that is composed of four interconnected NFSRs of sizes 19, 20, 21 and 22 nibbles
respectively. This function is iterated 92 times for the initialization and the
finalization part and only 4 times after the absorption of associated data (AD) or
plaintext blocks or after the extraction of a block of the tag. The authors present
their construction as lightweight, even if no concrete performance comparison is
given with similar AEAD schemes.

A preliminary security analysis of Panther against various attacks is given
in the document and the authors conclude that their construction is immune
against all of the explored cryptanalysis techniques. They claim thus a security
of 2c/2 = 2132. However, we show in this article that Panther has an important
flaw that permits devastating attacks against it. More precisely, we demonstrate
that due to the low number of iterations of the function F in all the middle
computations, some public information goes directly into the inner state. This
fact has several consequences. In the known plaintext model, the attacker is for

2 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

example able to inverse the state and to recover the secret key. In the known
ciphertext (only) mode, it is possible to recover all plaintext blocks but the
first six ones and also to forge the tag. A particularity of all our attacks is
that they only need a single plaintext/ciphertext or a single ciphertext and the
computation time is equivalent (or sometimes even smaller) to one encryption
with Panther. As we will show, the main conclusion of this paper is that when
using shift registers to build permutation-based constructions, one should at
least take as many rounds as the size of the registers.

The rest of the paper is organized as follows. In Section 2 we provide the
specifications of Panther and introduce some notations. Next, in Section 3
we describe our central observation on the diffusion of the cipher. Section 4
is dedicated to our attacks and finally we briefly describe in Section 5 their
implementation.

2 Specification of Panther

The design of Panther is based on the sponge construction [1, 2]. Its central
component is a function called F that applies to a 328-bit state. The state S is
divided into a r-bit outer part S and a c-bit inner part Ŝ, where r = 64 is called
the rate and c = 264 the capacity. The encryption works as follows.

Initialization phase. First, in the initialization phase, the 128-bit key and the
128-bit initial value (IV) are loaded to the state. More precisely, if we denote
by ki, 0 ≤ i < 128, the 128 bits of the secret key K, by ivi, 0 ≤ i < 128, the
128 bits of the IV and by x the Boolean complement of the binary value x, the
initial state is loaded with the following vector:

(k0, . . . , k127, iv0, . . . , iv127, k0, . . . , k63, 1, 1, 1, 1, 1, 1, 1, 0).

The state is then updated 92 times by the function F .

Absorption phase. Both associated data and plaintexts are then processed
in the absorption phase. First, associated data (AD) are incorporated to the
state. This part processes data that only needs to be authenticated and not
necessarily encrypted. This is done by dividing the data into k blocks ADi of
64 bits each, XORing each block to the outer part of the state and by applying
next the permutation F four times. This is repeated until all the AD blocks have
been absorbed. This part can of course be omitted if there is no associated data
to authenticate. Next, plaintext blocks are processed and ciphertext blocks are
generated. For this, the plaintext is divided into n blocks of 64 bits and each
block is absorbed by the outer part of the state. Once a plaintext block Pi is
absorbed, a 64-bit ciphertext block Ci is immediately generated by outputting
the outer part of the state. Four iterations of the permutation F are next applied
for all blocks except for the last one.

Breaking Panther 3

Finalization phase. Once all plaintext blocks have been processed, the final-
ization mode is activated, during which the tag is generated. For this, 92 rounds
of the permutation F are first applied to the state. Then, the outer part of the
state is outputted as a first block of the tag and four rounds of the permutation
F are next applied. The other blocks of the tag are generated in the same manner
until a tag of the desired length is obtained. This procedure can be visualized in
Figure 1.

Fig. 1. Panther’s global structure

2.1 State update function F

The cipher’s function F applies to the 328-bit state. This state can be seen as
82 nibbles split into four unequally-sized registers P , Q, R and S. The register
P contains the 19 nibbles P18, . . . , P0, the register Q the 20 nibbles Q19, . . . , Q0,
the register R the 21 nibbles R20, . . . , R0 and finally the register S the 22 nibbles
S21, . . . , S0. The outer part S is composed by the last four nibbles of each register:

S = (P15, P16, P17, P18, Q16, Q17, Q18, Q19, R17, R18, R19, R20, S18, S19, S20, S21).

4 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

We use the following notation to denote an arbitrary state of Panther,

where everything left to the symbol‖is the outer state.

P18||P17||P16||P15‖P14||...||P0

Q19||Q18||Q17||Q16‖Q15||Q14||...||Q0

R20||R19||R18||R17‖R16||R15||R14...||R0

S21||S20||S19||S18‖S17||S16||S15||S14||...||S0

This state is then loaded into four interconnected NFSRs, each NFSR containing
the values of the registers P , Q, R and S respectively, as can be seen in Figure 2.
We provide here the full specification of the round function, even if most of these
details are not needed to understand our attack nor have any effect on it.

The function F can be described as follows. First the 4-bit values fp, fq, fr
and fs, each one corresponding to the feedback polynomial of the corresponding
NFSR are computed:

fp = P0 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18

fq = Q0 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7

fr = R0 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15

fs = S0 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18

Here, the symbol ⊗ corresponds to the multiplication in the field GF (24), where
the field is constructed by using the polynomial x4 + x3 + 1. Next, four inter-
connection polynomials, gp, gq, gr and gs, mixing nibbles from different registers
are computed:

gp = Q9 ⊕R10 ⊕ S12

gq = P4 ⊕R2 ⊕ S5

gr = P12 ⊕Q11 ⊕ S16

gs = P16 ⊕Q17 ⊕R2

Next one computes the 4-bit values `1, `2, `3 and `4, each one corresponding to
the XOR of the values f∗ and g∗ together with a constant rci:

`1 = fp ⊕ gp ⊕ rc1

`2 = fq ⊕ gq ⊕ rc2

`3 = fr ⊕ gr ⊕ rc3

`4 = fs ⊕ gs ⊕ rc4,

where the constant values are rc1 = 7, rc2 = 9, rc3 = b, rc4 = d given in hexadec-
imal notation. After this, the vector [`1, `2, `3, `4]

T is multiplied by a Toeplitz
MDS matrix Tp to create the 16-bit vector [d1, d2, d3, d4]T = Tp× [`1, `2, `3, `4]

T .

Breaking Panther 5

A 4-bit S-box Sb is then applied to each one of the nibbles d1, d2, d3 and d4 and
the resulting 16-bit vector is then multiplied again by the matrix Tp:

[t1, t2, t3, t4]
T = Tp × [Sb[d1), Sb(d2), Sb(d3), Sb(d4)]

T .

As the specification of the matrix Tp is not relevant to our attack, we omit its
description here. Finally, the registers P,Q,R and S are shifted by one nibble
to the right and the most-significant nibbles of each NFSR are updated by the
values t1, t2, t3 and t4:

P � 1, Q� 1, R� 1, S � 1

P18, Q19, R20, S21 = t1, t2, t3, t4

F is applied successively a certain number of times nr, where the value of nr

depends on the phase considered. In the initialization phase and before the first
block of tag is outputted, nr equals 92, while for all other applications of F , nr

equals 4.

Fig. 2. Function F

3 Main observation on Panther

In this section, we make an observation on Panther that is at the core of all
the attacks provided next. The property that we exhibit is, as we will show,

6 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

caused by the low number of applications of the state update function F in the
plaintext absorption and ciphertext generation phase and has as a consequence
to greatly alter the security of the cipher.

3.1 An observation on F 4

As stated above, our main observation stems from the very low number nr = 4
of times F is applied between each ciphertext output. We thus exhibit a very
simple observation on F 4.

We begin by studying one application of F . Let us denote the input nibbles
to F by:

P18||P17||P16||P15‖P14|| · · · ||P0 (1)

Q19||Q18||Q17||Q16‖Q15||Q14|| · · · ||Q0

R20||R19||R18||R17‖R16||R15||R14 · · · ||R0

S21||S20||S19||S18‖S17||S16||S15||S14|| · · · ||S0

As can be observed in Figure 2, because of the action of the four NFSRs to the
state, the output of F is of the form:

X0||P18||P17||P16‖P15|| · · · ||P1 (2)

Y0||Q19||Q18||Q17‖Q16||Q15|| · · · ||Q1

Z0||R20||R19||R18‖R17||R16||R15|| · · · ||R1

T0||S21||S20||S19‖S18||S17||S16||S15|| · · · ||S1

whereX0, Y0, Z0, T0 are 4-bit values depending on the input nibbles. As the exact
expression of these values has no impact on our attacks we do not provide their
details here, but those can be found in Section 2.1.

Thus, note that each time the state is updated, only one nibble per register
is modified. The values of the other nibbles remain unchanged, they are simply
shifted. As a consequence, after four state updates, only four nibbles per register
have been properly modified whilst all the others remain unchanged and are
simply shifted to the right. By repeating the same analysis for the following
rounds, we can see that the output of F 4 is of the form:

X3||X2||X1||X0‖P18|| · · · ||P4 (3)

Y3||Y2||Y1||Y0‖Q19||Q18|| · · · ||Q4

Z3||Z2||Z1||Z0‖R20||R19||R18|| · · · ||R4

T3||T2||T1||T0‖S21||S20||S19||S18|| · · · ||S4

Breaking Panther 7

where the Xi, Yi, Zi, Ti for 0 ≤ i ≤ 3 depend on the nibbles of the input state
(again, their actual expression is not of interest, for more details see the specifi-
cation of F in Section 2.1).

In particular, note that the outer part nibbles of the initial state are among
those nibbles that have not been modified, but simply shifted into the inner part.
For a more visual representation, we colour in red the nibbles of the outer part
of the input that have been moved to the inner part of the output of F 4:

X3||X2||X1||X0‖P18||P17||P16||P15|| · · · ||P4 (4)

Y3||Y2||Y1||Y0‖Q19||Q18||Q17||Q16||Q15|| · · · ||Q4

Z3||Z2||Z1||Z0‖R20||R19||R18||R17||R16||R15|| · · · ||R4

T3||T2||T1||T0‖S21||S18||S17||S16||S17||S16||S15|| · · · ||S4

3.2 Consequences in a known ciphertext only setting

At the end of the initialisation phase, the state is a priori unknown since the
key has been mixed in with the IV by the application of F 92. The absorption
of the associated data which follows does not reveal anything about the state
at the beginning of the plaintext absorption/ciphertext generation phase either.
However, as soon as ciphertext blocks start to be outputted, an attacker has
knowledge of the outer part of the input state to each application of F 4.

If we recall the observations on F 4 made above, the outer part of the in-
put state to F 4 is not modified but simply shifted into the inner state. Let
C = C0|| · · · ||Cn−1 be the known ciphertext of an unknown padded plaintext
M = M0|| · · · ||Mn−1 where |Ci| = |Mi| = 64 for 0 ≤ i < n. An output of one
ciphertext block Ci−1 thus not only leaks information on the outer part of the
state at the entry of F 4, but also on the inner part of the output of F 4. As
the next message block Mi is then XORed only to the outer part of the output
state, when the next ciphertext block Ci is outputted, the attacker knows not
only the outer part of the state but also 64 bits of the inner state. As more
ciphertext blocks are outputted, more information on the inner state is given
to the attacker. Once 6 consecutive ciphtertext blocks Ci−1, . . . , Ci+4 have been
outputted, the attacker knows the whole inner state and the whole outer state.
The property is illustrated in Figure 3 with C0, . . . , C5.

We show this property in a more formal way for the first ciphertext outputs
C0, . . . , C5. We consider the state at the beginning of the plaintext absorption
and ciphertext generation. In the following, we use the color blue to put forward
what the attacker knows (which corresponds to the ciphertext blocks). Once the

8 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

first ciphertext is outputted, the entry to F 4 is as follows:

C0
3 ||C0

2 ||C0
1 ||C0

0‖P14|| · · · ||P0

C0
7 ||C0

6 ||C0
5 ||C0

4‖Q15||Q14|| · · · ||Q0

C0
11||C0

10||C0
9 ||C0

8‖R16||R15||R14|| · · · ||R0

C0
15||C0

14||C0
13||C0

12‖S17||S16||S15||S14|| · · · ||S0

After the application of F 4, the state is of the following form:

X3||X2||X1||X0‖C0
3 ||C0

2 ||C0
1 ||C0

0 ||P14|| · · · ||P4

Y3||Y2||Y1||Y0‖C0
7 ||C0

6 ||C0
5 ||C0

4 ||Q15||Q14|| · · · ||Q4

Z3||Z2||Z1||Z0‖C0
11||C0

10||C0
9 ||C0

8 ||R16||R15||R14|| · · · ||R4

T3||T2||T1||T0‖C0
15||C0

14||C0
13||C0

12||S17||S16||S15||S14|| · · · ||S4

The message is then XORed to the nibbles in blue, and the outer part thus takes
the value of the outputted C1. Therefore, the state has the following form just
before the next application of F 4:

C1
3 ||C1

2 ||C1
1 ||C1

0‖C0
3 ||C0

2 ||C0
1 ||C0

0 ||P14|| · · · ||P4

C1
7 ||C1

6 ||C1
5 ||C1

4‖C0
7 ||C0

6 ||C0
5 ||C0

4 ||Q15||Q14|| · · · ||Q4

C1
11||C1

10||C1
9 ||C1

8‖C0
11||C0

10||C0
9 ||C0

8 ||R16||R15||R14|| · · · ||R4

C1
15||C1

14||C1
13||C1

12‖C0
15||C0

14||C0
13||C0

12||S17||S16||S15||S14|| · · · ||S4

As C2 is outputted, the attacker knows 128 bits of the inner state as well as
the whole outer state. This phenomenon goes on iteratively: as more consec-
utive ciphertexts get known, more information is given to the attacker. Once
the attacker knows the 6 first ciphertext blocks C0, . . . , C5, the attacker knows
the whole inner state and the whole outer state. For a visual representation of
the property, see Figure 3. In general, leaks on the value of the inner state of
a sponge-based cipher have a devastating effect on the security. In the case of
Panther, the attacker recovers the value of the whole inner state and, depend-
ing on the attack settings, controls or knows the outer state. Unsurprisingly,
this weakness will allow an attacker to mount extremely powerful key-recovery,
plaintext-recovery and forging attacks as described in the next section.

4 Cryptanalysis of Panther

In this section, we show how the observation of Section 3 allows us to mount three
attacks including a known plaintext key recovery attack, a known ciphertext-
only attack and a chosen ciphertext-only forge. Note that each of these three

Breaking Panther 9

Fig. 3. Attack on Panther. The blue nibbles correspond to the nibbles known to the
attacker, while the grey nibbles are values that are a priori unknown.

attacks is extremely powerful, as they simply require the knowledge of either
one plaintext/ciphertext pair or of a single ciphertext.

4.1 Key-recovery attack with one plaintext/ciphertext pair

We start by describing the most powerful of our attacks, namely a known plain-
text attack which recovers the full key with a single plaintext/ciphertext pair.
This attack, as also all the following ones, is memoryless and its time complexity
is equivalent to a single encryption or decryption with Panther. This attack is
a direct consequence of our observation from Section 3.

The only constraint on the pair is that the padded message M must contain
at least six 64-bit blocks. As shown in Section 3, the attacker recovers the full
state as soon as she knows six consecutive ciphertext blocks. Once the full state
is known, one can recover the full key as F is a permutation and its inverse
can be very easily computed. As the attacker can invert F and knows all the
message blocks Mi (and the optional associated data blocks), she can recover the
initial state and thus the key. The fact that F is a permutation is not explicitly
mentioned by the authors. Thus, we provide a short proof at the end of this
section. From this proof one can easily deduce how to invert F .

We’ve shown that with only one plaintext/ciphertext pair, an attacker can
recover the key with a very easy and straightforward procedure. The attack is
memoryless and, as for time, it is equivalent to a single encryption or decryption
with Panther.

10 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

Proof that F is a permutation. Let

I = P18|| · · · ||P0||Q19|| · · · ||Q0||S20|| · · · ||S0||R21|| · · · ||R0 ∈ F328
2

be an input to F , and let

O = P ′18|| · · · ||P ′0||Q′19|| · · · ||Q′0||S′20|| · · · ||S′0||R′21|| · · · ||R′0

be its image by F . We show that I is uniquely determined by O.
First, note that all Pi, 0 < i ≤ 18, Qj , 0 < j ≤ 19, Rk, 0 < k ≤ 20 and

S`, 0 < ` ≤ 21 are uniquely determined by O since

Pi = P ′i−1 for 0 < i ≤ 18

Qj = Q′j−1 for 0 < j ≤ 19

Rk = R′k−1 for 0 < k ≤ 20

S` = S′`−1 for 0 < ` ≤ 21

Thus, we now only need to show that P0, Q0, R0 and S0 are uniquely determined
by O. First, note that (P ′18, Q′19, R′20, S′21) uniquely determines the value of

`1 = P0 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18 ⊕Q9 ⊕R10 ⊕ S12 ⊕ rc1

`2 = Q0 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7 ⊕ P4 ⊕R2 ⊕ S5 ⊕ rc2

`3 = R0 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15 ⊕ P12 ⊕Q11 ⊕ S16 ⊕ rc3

`4 = S0 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18 ⊕ P16 ⊕Q17 ⊕R2 ⊕ rc4

as both the matrix Tp and the S-box Sb are invertible (Tp being MDS). Since
the Pi, 0 < i ≤ 18, Qj , 0 < j ≤ 19 Rk, 0 < k ≤ 20 and S`, 0 < ` ≤ 21 are also
uniquely determined by O as shown just above, it comes that

P0 = `1 ⊕ P7 ⊕ P10 ⊕ P6 ⊗ P18 ⊕Q9 ⊕R10 ⊕ S12 ⊕ rc1

Q0 = `2 ⊕Q4 ⊕Q6 ⊕Q7 ⊕Q15 ⊕Q3 ⊗Q7 ⊕ P4 ⊕R2 ⊕ S5 ⊕ rc2

R0 = `3 ⊕R1 ⊕R15 ⊕R17 ⊕R19 ⊕R13 ⊗R15 ⊕ P12 ⊕Q11 ⊕ S16 ⊕ rc3

S0 = `4 ⊕ S1 ⊕ S4 ⊗ S10 ⊕ S11 ⊗ S18 ⊕ P16 ⊕Q17 ⊕R2 ⊕ rc4

are also uniquely determined by O. We’ve shown that F is injective which is
sufficient to prove that it is a permutation. Further, it is easy to see from this
proof how to invert F .

4.2 Plaintext-recovery attack with one known ciphertext

In this section, we show how our observation on F 4 also allows one to mount at-
tacks in a known ciphertext only setting. Even if this attack does not recover the

Breaking Panther 11

secret key, it is nevertheless devastating as it allows the attacker to recover full
plaintext blocks. More precisely, for any padded message M = M0|| · · · ||Mn−1
where |Mi| = 64 for all i and such that n ≥ 6, one can fully recover all plaintext
blocks from the seventh on.

As shown in the previous sections, knowing the six first ciphertext blocks
allows one to recover the full state. Thus, the attacker also knows the full state
after another application of F 4, that is when the rest of the plaintext blocks
Mi, i ≥ 6 are absorbed. To recover these blocks, the attacker only needs to XOR
the known ciphertext block Ci, i ≥ 6 to the outer part of the state after each
application of F 4. With only known ciphertext of sufficient length, an attacker
can recover the whole plaintext except for the first 384 bits. This attack is also
memoryless and requires only one ciphertext. Concerning the time complexity, it
is striking that this attack is more efficient than a decryption since one does not
need to go through the initialisation phase and the absorption of the associated
data.

4.3 Forging attacks

Last but not least, our observation on F 4 can also allow one to launch forging
attacks both in a known plaintext and in a known ciphertext only setting.

To begin, an attacker with access to plaintext/ciphertext pairs can recover
the key with the method described in Section 4.1. Thus, she can generate a valid
tag for any chosen plaintext and any chosen ciphertext.

In the known ciphertext only setting, let us consider a ciphertext C composed
of n blocks of 64 bits with n ≥ 6 and let T be the valid tag for C. As explained
in Section 3.2, when six consecutive ciphertext blocks are outputted, the full
state is known by the attacker. In particular, the value of the last six ciphertext
blocks fully determines the state at the end of the absorption phase. Thus, for
any ciphertext C ′ composed of m blocks such that m ≥ 6, if the six last blocks
of C ′ are equal to those of C, the two states will fully collide at the end of the
ciphertext generation phase, and thus at the beginning of the tag generation
phase. It stems that T is also a valid tag for C ′.

As the other attacks presented above, this forging attack is very powerful
as it is memoryless and requires only one valid ciphertext/tag pair. The time
complexity is also negligible, as the attacker does not even need to apply F once.
The forged ciphertexts can have any length as long as they have at least 6 blocks,
and only the last 6 blocks are constrained. As a consequence, one can build as
many valid ciphertext/tag pairs as they wish. Forging is thus not only possible
but also very easy and with a large degree of freedom for the attacker.

12 Christina Boura, Rachelle Heim Boissier, and Yann Rotella

5 Implementation

All of the described attacks need negligible memory and computational ressources
and can thus easily be implemented. Therefore, we implemented all of them in
C in order to confirm their validity. Our code is accessible online1.

Our program works in the following way. First, a random 128-bit key, a
random 128-bit initial value (IV) and a random 512-bit plaintext are generated.
Since Panther has a rate of 64 bits, the plaintext is processed in 8 blocks.
The code does not generate associated data as our attacks work regardless. The
plaintext is then encrypted with the key and IV and the corresponding ciphertext
and tag are returned. The three attacks are then launched.

Key recovery. First, we implemented a function that takes as input the plain-
text/ciphertext pair and returns the secret key. The program verifies that the
key returned matches with the random secret key that was generated.

Plaintext recovery. Second, we implemented a function that takes as input the
ciphertext and returns all plaintext blocks but the first six. Once the plaintext
blocks are recovered, the program verifies that they match the actual plaintext
encrypted.

Forge. Lastly, we implemented a function that takes as input the ciphertext
and returns a forged ciphertext which has the same tag. We then implemented
a function that checks whether the forged ciphertext is valid. This function
takes as input the key and the IV. It works as a decryption function on the
forged ciphertext and returns the valid 128-bit tag for the forged ciphertext.
The program then verifies that the forged ciphertext tag matches the initial
ciphertext tag.

5.1 Repairing Panther

The main problem in the cipher’s design comes from the fact that the number
of rounds that the function F needs to be iterated in the middle computation
was wrongly estimated. While determining the least number of rounds for the
cipher to resist all known attacks is not an easy task, a minimum requirement is
that the function F r provides full diffusion, in the sense that at the end of the
computation every output bit depends on all input bits. Computing the minimal
round r ensuring a full diffusion for F r is an easy procedure that we implemented.
The code can be found together with the attacks code. This simple computation
permitted us to affirm that the minimal number of rounds for reaching full
diffusion is 46.

We can therefore conclude that at least 46 rounds are needed in the middle
part of the cipher in order to resist the presented attacks. Of course, this minimal

1https://github.com/panthercryptanalyst/Panther-cryptanalysis

Breaking Panther 13

number of rounds does not necessarily guarantee the resistance of the cipher
against other attacks, for example those exploiting a low algebraic degree. To
determine this, a more in-depth analysis of the structure of F is required but
such an analysis is out-of-scope of the current article.

6 Conclusion

In this paper we showed several devastating attacks in different scenarios against
the AEAD scheme Panther. All of our attacks are extremely powerful as they
are memoryless, require a single plaintext/ciphertext or a single ciphertext and
have negligible execution time. This work shows that this design cannot be used
in its current form to securely transmit data. We also demonstrate that special
care is required when combining the sponge construction with an NFSR-based
update function. More precisely, the inner part should always remain secret in
sponge-like constructions, hence, when using shift registers, the number of rounds
should at least be the size of the register, so that all bits in the inner part cannot
be deduced from the ciphertext.

We believe that modifying Panther in order for it to resist our attacks
requires to greatly increase the number of rounds of the update function (from
4 to at least 46) in order to get full diffusion. However, in this scenario, the
lightweight character of the cipher will very probably not be ensured any more,
limiting thus the interest of someone to use it.

Acknowledgements. The authors are partially supported by the French Agence
Nationale de la Recherche through the SWAP project under Contract ANR-21-
CE39-0012.

References

1. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge Func-
tions. Ecrypt Hash Workshop 2007 (May 2007), available at
https://keccak.team/files/SpongeFunctions.pdf

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions
(2011), https://keccak.team/files/CSF-0.1.pdf

3. Bhargavi, K.V.L., Srinivasan, C., Lakshmy, K.V.: Panther: A sponge based
lightweight authenticated encryption scheme. In: Adhikari, A., Küsters, R., Pre-
neel, B. (eds.) INDOCRYPT 2021. Lecture Notes in Computer Science, vol. 13143,
pp. 49–70. Springer (2021)

