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Abstract

Previously [4], Orbis Labs presented a method for compiling (“arithmetizing”) relations, expressed
as Σ1

1 formulas in the language of rings, into Halo 2 [1, 2, 3] arithmetic circuits. In this research, we
extend this method to support polynomial quantifier bounds, in addition to constant quantifier bounds.
This allows for more efficient usage of rows in the resulting circuit.
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1 Introduction

A proof is traditionally defined as a sound argument. A sound argument is a valid argument with true
premises. An argument is a series (or sometimes a tree or another structure) of statements which relates a
set of zero or more premises to a conclusion. A valid argument is an argument which is truth-preserving,
in the sense that in any “model” or possible reality where the premises of the argument are all true, its
conclusion is also true. As a corollary of these definitions, the conclusion of a sound argument is true.

Proof theories state rules for constructing valid arguments. A proof theory is a game with symbols
which describes processes of truth-preserving inference.

Model theories state rules for interpreting the meaning of a statement. Using model theory, the meaning
of a statement can be understood as its truth conditions, or the set of “models” or possible realities where
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the statement is true. A model determines a unique truth value (e.g., “true” or “false”) for each statement
in the language of the model.

The concept of soundness can be defined formally using model theory. The general idea is as follows.
A sound argument is an argument A such that for all models M , if all of the premises of A are true in M ,
then the conclusion of A is true in M .

Probabilistic proof systems differ from traditional proof systems in that they use a different defini-
tion of soundness. In the context of probabilistic proof systems, soundness is the property that every
computationally feasible algorithm has a negligible probability of finding a proof of a false statement.

Why would one use a probabilistic proof system, which does not confer absolute certainty, when tradi-
tional proof systems provide certainty? Probabilistic proof systems confer benefits that traditional proof
systems do not: in particular, succinct proofs, succinct verification, and information hiding.

A succinct proving system produces proofs which are in many cases much shorter than the shortest
proof of the same statement would be using a traditional proof theory. Furthermore, they allow for the
proof size to be decoupled from the amount of information required to construct the proof in the first place.
The ideal of succinct proofs is that proofs are O(1) in size, meaning that a constant number of bits suffice
to represent proofs of all provable statements.

We can quantify succinctness by considering maximum proof length as a function of statement length.
Given a proof system S, consider the function fS : N→ N defined as follows. fS(n) is the largest number
y such that for some statement φ of n symbols or less, y is the minimum length of a proof of φ in system
S. For an ideally succinct proof system S, fS is O(1). If fS is O(n), that also qualifies as a succinct proof
system.

Gödel’s speed-up theorem demonstrates that traditional proof theories capable of representing the
statements and proving the theorems of Peano arithmetic are unable to be succinct. Quite the opposite is
the case.

The proof of Gödel’s speed-up theorem relies on constructing a self-referential statement, such as “this
statement cannot be proved in system S in less than a googolplex symbols.” If such a statement could be
proved in system S in less than a googolplex symbols, then it would be provable in system S but not true,
and thus S would be unsound, and in fact S would be logically inconsistent. Therefore, if S is consistent,
then the statement is true, and it can be proven in S by enumerating all proofs of less than a googolplex
symbols and checking that none of them are a proof of the statement. Therefore, S is not succinct; there
is a fairly short statement which it can prove, such that the shortest proof in system S of that statement
is no less than a googolplex symbols.

The speed-up theorem shows that fS is a mind bogglingly fast-growing function when S is a proof
system that is absolutely sound and capable of representing the statements and proving the theorems of
Peano arithmetic. In such cases fS is not O(1), nor O(n), nor O(g(n)) for any computable function g; it
grows faster than all of these. To see this, consider φ(n) as the self-referential statement “this statement
is not provable in system S in less than n symbols.” How large can the shortest proof of φ(n) be, as a
function of the length of φ(n)? This just depends on the largest number we can refer to in a given number
of symbols.

We could allow for a particular self-referential statement φ(n) to be proven succinctly by defining a
system S′ which consists of S plus the axiom φ(n). However, Gödel’s speed-up theorem also applies to
system S′, meaning there is another statement which can be proven in system S′ but not in less than a
googolplex symbols.

In contrast to traditional proof systems which are absolutely sound, probabilistic proof systems are able
to be succinct. By relaxing the requirement for absolute soundness to the requirement for probabilistic
soundness, we obtain the capability of succinct proofs.

Probabilistic proof systems are also able to have succinct verification, meaning that proofs can be
verified efficiently and in some cases with O(1) time and space complexity. This is not possible with
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traditional proof theories, because by nature, proof checking needs to look at each symbol in the proof.
Finally, probabilistic proof systems are able to have information hiding, meaning that they do not reveal

certain information required to construct the proof. This is most often expressed as “zero knowledge,” which
is roughly the property that having a proof p of a statement x does not reduce the computational difficulty
of finding a secret s which was used as an input to the process which resulted in p.

For all of these reasons, probabilistic proof systems are useful in various applications. For example,
the Zcash cryptocurrency protocol uses succinct, zero-knowledge probabilistic proofs to verify private
transactions. The latest and greatest version of Zcash’s probabilistic proving is based on Halo 2. [1, 2, 3]

Orbis Labs’ previous research on Σ1
1 arithmetization [4] demonstrated the concept of translating a

bounded-quantifier formula of second-order arithmetic to a Halo 2 circuit denoting an equivalent relation.
Orbis Labs’ ongoing research and development on the Orbis Specification Language (OSL) builds on Σ1

1
arithmetization by providing a high level specification language which can be compiled into second order
arithmetic formulas. [6]

The previous research on Σ1
1 arithmetization presented two practical difficulties: it is defined in a way

that is complex and difficult to work with, and it is inefficient in its usage of rows. To see how its row usage
is inefficient, consider quantifying over the elements of a list. All quantifiers are bounded by constants,
and the constant in this case will be the maximum length of the list. Arithmetizing such a formula will
require at least as many rows as the maximum length of the list. Now suppose that the list is a list of
lists. Each list in the list of lists may be of a different length. Now suppose that in addition to quantifying
over elements of the list, the formula quantifies over elements of elements of the list. That inner quantifier
will be bound by a constant. If the bound on the length of the list is b0, and the bound on the length of
any element of the list is b1, then such a formula will require at least b0 · b1 rows to arithmetize. However,
we could achieve more efficient row usage if instead the number of rows was a bound on the sum of the
lengths of the elements of the list.

This paper provides a new definition of Σ1
1 arithmetization. The goals of this research are twofold:

1. Allow for efficient usage of rows when nested quantifiers are present, by allowing for quantifier bounds
to be variable instead of always constant.

2. Provide a clearer and simpler definition of Σ1
1 arithmetization which is more amenable to formaliza-

tion.

No effort is made in this paper to prove that this definition of Σ1
1 arithmetization is correct. For-

malization [5] work on Σ1
1 arithmetization is ongoing. That formalization work will define and prove the

correctness of Σ1
1 arithmetization.

2 Σ1
1 formulas with polynomial quantifier bounds

This section gives a new definition of Σ1
1 formulas over the language of rings with polynomial quantifier

bounds (henceforth just “Σ1
1 formulas”), as well as a denotational semantics for these formulas. Apart from

the polynomial bounds, the definitions in this section are otherwise similar to the definitions given in [4],
Section 3.

The first step in defining Σ1
1 formulas is to define a language of terms. A term is a syntactic object

which denotes a number, given a context which bestows values to the variables it contains. Terms are
defined by the following recursive definition.

1. For each positive integer i, xi is a term. xi is called a first-order variable.
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2. For each positive integer i and all sequences of terms τ1, ..., τn, fni (τ1, ..., τn) is a term. fni (τ1, ..., τn)
is called a function application. Notice that in this definition, second order variables contain their
arity as part of their name.

3. For all terms τ, µ:

(a) (τ + µ) is a term.
(b) (τ · µ) is a term.
(c) ind<(τ, µ) is a term. ind< is called the comparison indicator function; it returns 1 when τ is

less than µ and 0 otherwise.

4. 0 is a term. 1 is a term. −1 is a term. These are called constant symbols.

A “polynomial term,” by definition, is a term which is constructed using only rules 1, 2, 3a, 3b, and 4
above: in other words, it is built out of variables, function applications, and constants using only addition
and multiplication.

First-order formulas (over the language of rings) are defined by the following recursive definition.

1. For all terms τ, µ,
(τ = µ) (1)

is a first-order formula. τ = µ is called an atomic formula or an equation.

2. For all first-order formulas φ,
¬φ (2)

is a first-order formula. ¬φ is called a negation.

3. For all first-order formulas φ, ψ,
(φ ∧ ψ) (3)

is a first-order formula. (φ ∧ ψ) is called a conjunction.

4. For all first-order formulas φ, ψ,
(φ ∨ ψ) (4)

is a first-order formula. (φ ∨ ψ) is called a disjunction.

5. For all first-order formulas φ, ψ,
(φ→ ψ) (5)

is a first-order formula. (φ→ ψ) is called an implication.

6. For all first-order formulas φ and polynomial terms β,

∀ < β. φ (6)

is a first-order formula. ∀ is called the universal quantifier. β is called the quantifier bound.

7. For all first-order formulas φ and polynomial terms β,

∃ < β. φ (7)

is a first-order formula. ∃ is called the first-order existential quantifier. β is called the quantifier
bound.
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Σ1
1 formulas (over the language of rings) are defined by the following recursive definition.

1. Every first-order formula is a Σ1
1 formula.

2. For all Σ1
1 formulas φ and polynomial terms γ and non-empty sequences of polynomial terms β1, ..., βn,

∃f < γ(< β1, ..., < βn). φ (8)

is a Σ1
1 formula. ∃f is called the second-order existential quantifier. n is called the arity of the

function. β1, ..., βn are called the bounds of the dimensions of the domain of the function. γ is called
the bound of the codomain of the function.

Without loss of generality, we will assume that all formulas under consideration reference each quantified
variable that they contain.

It is often useful to know the set of variables which are free in a given formula. How is this set defined
when variables are denoted by de Bruijn indices, which can denote different variables in different contexts?
Even two free occurrences of the same de Bruijn index in the same formula can denote different variables
if they are in different contexts with different levels of quantifier nesting. The trick here is to define the
set of free variables as the de Bruijn indices, relative to the outermost scope of the formula (outside of all
the quantifiers), of all the free variables referenced in the program, regardless of which de Bruijn indices
denote those variables in the context(s) in which those variables are referenced. The following recursive
equations define the set of free variables in a Σ1

1 formula or a term. P denotes the power set function:
P(X) := {Y : Set | Y ⊆ X}.

free : {φ | φ is a Σ1
1 formula} ⊕ {τ | τ is a term} → P({xi}i∈Z+ ⊕ {fi}i∈Z+) (9)

free(xi) := {xi} (10)

free(fni (τ1, ..., τn)) := {fni } ∪
⋃
i∈[n]

free(τi) (11)

free(τ + µ) := free(τ) ∪ free(µ) (12)

free(τ · µ) := free(τ) ∪ free(µ) (13)

free(ind(τ, µ)) := free(τ) ∪ free(µ) (14)

free(0) = free(1) := free(−1) = ∅ (15)

free(τ = µ) := free(τ) ∪ free(µ) (16)

free(¬φ) := free(φ) (17)

free(φ ∧ ψ) := free(φ) ∪ free(ψ) (18)
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free(φ ∨ ψ) := free(φ) ∪ free(ψ) (19)

free(φ→ ψ) := free(φ) ∪ free(ψ) (20)

free(∀ < β. φ) := free(β) ∪ {xi | xi+1 ∈ free(φ)} ∪ {fni | fni ∈ free(φ)} (21)

free(∃ < β. φ) := free(β) ∪ {xi | xi+1 ∈ free(φ)} ∪ {fni | fni ∈ free(φ)} (22)

free(∃f < γ(< ~β). φ) := free(γ) ∪
(⋃

i

free(βi)
)
∪ {xi | xi ∈ free(φ)} ∪ {fni | fni+1 ∈ free(φ)} (23)

Relative to a suitable model, it is possible to define whether any given Σ1
1 formula is true or false. For

this context, a model, by definition, is a tuple

M = (R, ·,+, 0, 1,−1, <, F, S), (24)

where:

1. (R, ·,+, 0, 1,−1) is a ring:

(a) R is a set.
(b) · : R×R→ R is a binary operation.
(c) + : R×R→ R is a binary operation.
(d) 0, 1,−1 ∈ R.
(e) + is associative and commutative, meaning, for all x, y, z ∈ R,

(x+ y) + z = x+ (y + z), (25)

x+ y = y + x. (26)

(f) Each element of R has an additive inverse, meaning, for each x ∈ R there is y ∈ R such that
x+ y = 0.

(g) · is associative, meaning, for all x, y, z ∈ R,

(x · y) · z = x · (y · z) (27)

(h) 0 is the additive identity, meaning, for each x ∈ R,

x+ 0 = x = 0 + x. (28)

(i) 1 is the multiplicative identity, meaning, for each x ∈ R,

x · 1 = x = 1 · x. (29)

(j) −1 is the additive inverse of 1, meaning 1 + (−1) = 0.
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(k) The distributive law holds, meaning, for all x, y, z ∈ R,

x · (y + z) = (x · y) + (x · z), (30)

(y + z) · x = (y · x) + (z · x). (31)

2. < ⊆ R×R is a strict total ordering relation on R with a least element:

(a) < is antisymmetric, meaning there is no x ∈ R such that x < x.
(b) < is transitive, meaning for all x, y, z ∈ R, if x < y and y < z then x < z.
(c) < is connected, meaning for all x, y ∈ R, if x 6= y then either x < y or y < x.
(d) < has a least element, meaning there exists a z ∈ R such that for all x ∈ R, if x 6= z then z < x.

(Such a z is necessarily unique.)

3. F : Z+ → R is a partial function mapping de Bruijn indices naming first-order variables to their
corresponding values (if any).

4. S : Z+ →
∑
i∈Z+(Ri → R) is a partial function mapping de Bruijn indices naming second-order

variables to their corresponding values (if any). The values are partial functions of variable arity
from R to R. Here

∑
i∈Z+ denotes the indexed coproduct or disjoint union operation with i ranging

over the positive integers.

By definition, M is an “integral model” when

(R,+, 0, 1,−1) = (Z,+, 0, 1,−1) (32)

is the standard ring of integers and < puts the integers into the following order:

1, 2, ..., 0,−1,−2, ... (33)

Let M = (R, ·,+, 0, 1,−1, <, F, S) be a model. Let y ∈ R. Define the model

M [x1 7→ y] = (R, ·,+, 0, 1, <, F ′, S) (34)

by letting

F ′(1) = y,
F ′(n+ 1) = F (n). (35)

Let n be a positive integer. Let g : Rn → R be a partial function. Define the model

M [f1 7→ g] = (R, ·,+, 0, 1, F, S′) (36)

by letting

S′(1) = g,
S′(n+ 1) = S(n). (37)

The definitions just given of M [x1 7→ y] and M [f1 7→ g] explain how to update a model with a new
variable mapping at the least de Bruijn index, pushing up all the existing de Bruijn index mappings. These
operations are useful for dealing with quantification in the denotational semantics which follows below.

Also helpful for defining the denotational semantics will be an extension of the [i] notation previously
defined. Previously, [i] was defined as {1, ..., i} for a positive integer i. Generalizing this to a ring R for an
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arbitrary model M , let [i] be defined as {x ∈ R | z ≤ x ≤ i}, where z is the least element of R under <
and ≤ is the non-strict version of <.

Given a model,

M := (R, ·,+, 0, 1,−1, <, F, S), (38)

it is possible to define the denotations of terms and formulas, such as by the following recursive def-
inition. The denotation of a term is an element of R, whereas the denotation of a formula is a truth
value. The set of truth values is the set {0, 1}, where 0 represents false and 1 represents true. Due to the
partiality of F , S, and the functions in the codomain of S, not every term or formula has a denotation
in every model. The following recursive clauses define the denotation δM (τ) for each term τ which has a
denotation in M and the denotation δM (φ) for each term φ which has a denotation in M .

1. For all positive integers i,
δM (xi) := F (i), (39)

if F (i) is defined.

2. For all positive integers i and non-empty sequences of terms τ1, ..., τn,

δM (fi(τ1, ..., τn)) := S(i)(δM (τ1), ..., δM (τn)), (40)

if S(i) is defined, and δM (τi) is defined for each i, and

S(i)(δM (τ1), ..., δM (τn)) (41)

is defined.

3. For all terms τ, µ,
δM (τ + µ) := δM (τ) + δM (µ), (42)

if δM (τ) and δM (µ) are defined.

4. For all terms τ, µ,
δM (τ · µ) := δM (τ) · δM (µ), (43)

if δM (τ) and δM (µ) are defined.

5. For all terms τ, µ,

δM (ind<(τ, µ)) :=
{

1 δM (τ) < δM (µ),
0 otherwise.

(44)

6. δM (0) := 0.

7. δM (1) := 1.

8. δM (−1) := −1.

9. For all terms τ, µ,
δM (τ = µ) := 1 (45)

if δM (τ) and δM (µ) are defined and
δM (τ) = δM (µ). (46)
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10. For all terms τ, µ,
δM (τ = µ) := 0 (47)

if δM (τ) and δM (µ) are defined and
δM (τ) 6= δM (µ). (48)

11. For all first-order formulas φ,
δM (¬φ) := 1− δM (φ), (49)

if δM (φ) is defined.

12. For all first-order formulas φ, ψ,

δM (φ ∧ ψ) := min{δM (φ), δM (ψ)}, (50)

if δM (φ) and δM (ψ) are defined.

13. For all first-order formulas φ, ψ,

δM (φ ∨ ψ) := max{δM (φ), δM (ψ)}, (51)

if δM (φ) and δM (ψ) are defined.

14. For all polynomial terms β and first-order formulas φ,

δM (∀ < β. φ) := min({δM [x1 7→i](φ)|i ∈ [δM (β)]} ∪ {1}), (52)

if δM [x1 7→i](φ) is defined for each i.

15. For all polynomial terms β and first-order formulas φ,

δM (∃ < β. φ) := max({δM [x1 7→i](φ)|i ∈ [δM (β)]} ∪ {0}), (53)

if δM [x1 7→i](φ) is defined for each i.

16. For all polynomial terms γ and non-empty sequences of polynomial terms β1, ..., βn and Σ1
1 formulas

φ,
δM (∃f < γ(< β1, ..., < βn). φ) := max

g∈[δM (γ)]
∏
j∈[n][δM (βj)]

δM [f1 7→g](φ), (54)

if δM [f1 7→g](φ) is defined for each g.
Note: this truth condition cannot assign a truth value to the formula when δM (γ) < 1. In such a case,
the only value that g can take is the empty set, and if the formula φ references f1, then δM [f1 7→∅](φ)
is undefined. Since we do not care about cases where φ does not reference all quantified variables, it
is not important for our purposes that this truth condition fails to apply when δM (γ) < 1. The same
comments apply when δM (βi) < 1 for some i.
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3 Semicircuits

For the purposes of simplifying the presentation of the arithmetization, we introduce an intermediate
representation called a “semcircuit” which disintegrates the structure of Σ1

1 formulas while maintaining
abstractness.

For any i ∈ N, the notation [i] denotes the set {j ∈ N | 1 ≤ j ≤ i}. Z+ denotes the set of positive
integers.

Given a model,

M := (R, ·,+, 0, 1,−1, <, F, S), (55)

a semcircuit consists of the following data:

1. A non-negative integer n, the number of first-order free variables.

2. A vector ~a of positive integers, the vector of arities of second-order free variables.

3. A non-negative integer m, the number of first-order existentially quantified variables.

4. A vector ~b of positive integers, the vector of arities of second-order existentially quantified variables.

5. A non-negative integer u, the number of universally quantified variables.

6. A (non-strictly) increasing vector ~ν = ν1, ..., νm of non-negative integers such that ∀i, 0 ≤ νi ≤ u.
This stores the number of universal quantifiers mentioned prior to a particular existential quantifier.

7. A vector ~r = r1, ..., r|~a| of non-negative integers representing the number of function calls to each free
function.

8. A vector ~q = q1, ..., q|~b| of non-negative integers representing the number of function calls to each
existentially quantified function.

9. A vector ~P = P1, ...,P|~P| of syntactic descriptions of ring terms. These include expressions appearing
as arguments to functions and bounds. The elements of ~P are generated by the following grammar;
〈P〉 ::= 0 | 1 | −1 | 〈P〉+ 〈P〉 | 〈P〉 · 〈P〉 | ind<(〈P〉, 〈P〉)| ~vn | ~u〈u〉 | ~s〈s〉 | ~o〈o〉 | ~σ〈σ〉
〈v〉 := [n], 〈u〉 := [u], 〈s〉 := [m], 〈o〉 := {(i, j) | i ∈ [ |~a| ]∧j ∈ [ri]}, 〈σ〉 := {(i, j) | i ∈ [ |~b| ]∧j ∈ [qi]}
~v〈v〉, ~u〈u〉, ~s〈s〉, ~o〈o〉, and ~σ〈σ〉 act as references to the addresses of pre-computed values stored elsewhere
in the circuit.

10. A vector of vectors of vectors ~w = w1,1,1, ..., w1,1,a1 , ..., w1,r1,a1 , ..., w|~a|,r|~a|,a|~a| of elements taken from
[ |~P| ]. wi,j,k corresponds to the kth argument to the jth function call to the ith function. These link
argument calls to free functions to their corresponding ring terms.

11. A vector of vectors of vectors ~ω = ω1,1,1, ..., ω1,1,b1 , ..., ω1,s1,b1 , ..., ω|~b|,s|~b|,b|~s|
of elements taken from

[ |~P| ]. ωi,j,k corresponds to the kth argument to the jth function call to the ith function. These link
argument calls to existentially quantified functions to their corresponding ring terms.

12. A vector ~V = V1, ..., Vu of elements taken from [ |~P| ]. These link the bounds for each universally
quantified variable to their corresponding ring term.
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13. A vector ~S = S1, ..., Sm of elements taken from [ |~P| ]. These link the bounds for each existentially
quantified first-order variable to their corresponding ring term.

14. A vector ~G = G1, ..., G|~b| of elements taken from [ |~P| ]. These link the bounds for the outputs of each
existentially quantified second-order variable to their corresponding ring term.

15. A vector of vectors ~B = B1,1, ..., B1,b1 , ..., B|~b|,b|~b|
of elements taken from [ |~P| ]. These link the bounds

for the inputs of each existentially quantified second-order variable to their corresponding ring term.

16. A set S which is either empty or contains exactly one element generated by the following grammar:
〈S〉 ::= ¬〈S〉 | 〈S〉 ∧ 〈S〉 | 〈S〉 ∨ 〈S〉 | 〈S〉 → 〈S〉 | 〈P 〉 = 〈P 〉

Let C = (n,~a,m,~b, u, ~ν, ~r, ~q, ~P, ~w, ~ω, ~V , ~S, ~G, ~B,S) be a semicircuit. An instance value for C consists of:

1. A vector ~v = v1, ..., vn of R elements which act as instance values for all n free first-order variables.

2. A vector ~f = f1, ..., f|~a| of sets such that

∀i ∈ [ |~a| ], fi ⊆ (Rai ×R) ∧ ∀t ∈ Rai ,∀e1 ∈ R,∀e2 ∈ R, (t, e1) ∈ f ∧ (t, e2) ∈ fi → e1 = e2. (56)

In other words, each fi is a partial function of arity ai over R. These act as lookup table instances
for all free second-order functions.

Advice values for S consists of:

1. A vector ~g = g1, ..., g|~b| of sets such that

∀i ∈ [ |~b| ], gi ⊆ (Rbi ×R) ∧ ∀t ∈ Rbi , ∀e1 ∈ R,∀e2 ∈ R, (t, e1) ∈ f ∧ (t, e2) ∈ gi → e1 = e2. (57)

In other words, each gi is a partial function of arity bi over R. These act as lookup table instances
for all existentially quantified second-order functions.

2. A set U ⊆ Ru of u-tuples. Conceptually, U must contain all and only the possible combinations of
values which the universal variables may take. From this, one may be tempted to define U uniquely
upfront, but this leads to circular definitions stemming from polynomial constraints on universally
quantified variables needing to reference other bound variables. As such, U will be forced to be a
unique set later by constraint 67. The order of each entry within an element of U corresponds to the
order in which each corresponding universally quantified variable appears in the original formula.

3. A vector ~s = s1, ..., sm of functions taken from U → R, where m is the number of existentially
quantified first-order variables. Each s can be thought of as something like a Skolem function in
spirit, though skolemization is not actually possible on Σ1

1 formulas with polynomial bounds. 1 The
ordering of ~s corresponds to the order in which each corresponding existentially quantified variable
appears in the original formula.

1To see this, consider the following. We first replace the first-order existential quantifiers with second-order existential
quantifiers asserting the existence of a Skolem function. These second-order quantifiers will share bounds with the universal
quantifiers they expect as arguments. These bounds may reference other universally quantified variables. This prevents us
from moving the second-order quantifiers out of scope of the first-order universal quantifiers, thus preventing the skolemization
from completing. One cannot, in general, specify the domain of the Skolem functions without referencing universally quantified
variables.
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4. A vector of vectors ~o = o1,1, ..., o1,r1 , ..., o|~a|,r|~a| of functions taken from U → R. oi,n corresponds to
the nth function call to the free function corresponding to fi. These correspond to the output
values of each function call.

5. A vector of vectors ~σ = σ1,1, ..., σ1,q1 , ..., σ|~b|,q|~b|
of functions taken from U → R. σi,n corresponds

to the nth function call to the existentially quantified function corresponding to gi. These
correspond to the output values of each function call.

Before the semantics can be defined, evaluation functions for the syntactic descriptions are required.
From a syntactic description of ring terms, we may produce a function U → R via;

evalR(0) := λx.0

evalR(1) := λx.1

evalR(−1) := λx.−1

evalR(a+ b) := λx.evalR(a)(x) + evalR(b)(x)

evalR(a · b) := λx.evalR(a)(x) · evalR(b)(x)

evalR(ind<(a, b)) := λx.ind<(evalR(a)(x), evalR(b)(x))

evalR(~vi) := λx.vi

evalR(~ui) := λx.xi

evalR(~si) := si

evalR(~o(i,j)) := oi,j

evalR(~σ(i,j)) := σi,j

From a syntactic description of propositions, we may produce a function U → B via;

evalB(¬a) := λx.¬evalB(a)(x)

evalB(a ∧ b) := λx.evalB(a)(x) ∧ evalB(b)(x)

evalB(a ∨ b) := λx.evalB(a)(x) ∨ evalB(b)(x)

evalB(a→ b) := λx.evalB(a)(x)→ evalB(b)(x)

evalB(a = b) := evalR(a) = evalR(b)

Let
C = (n,~a,m,~b, u, ~ν, ~r, ~q, ~P, ~w, ~ω, ~V , ~S, ~G, ~B,S) (58)

be a semicircuit. Let
X = (~v, ~f) (59)

be an instance value for C. We say that X is true, or in other words C is satisfiable on X, if and only if
there exists

Y = (~g, U,~s, ~o, ~σ), (60)

an advice value for C, such that the following hold:
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1. The main proposition must be true;

∀x ∈ U,∀e ∈ S, evalB(e)(x) = 1 (61)

2. Each call to every free function must be a valid input-output pair.

∀x ∈ U,∀i ∈ [ |~f | ],∀j ∈ [ri], ((evalR(Pwi,j,1)(x), ..., evalR(Pwi,j,ai )(x)), oi,j(x)) ∈ fi (62)

3. Each call to every existentially quantified function must be a valid input-output pair.

∀x ∈ U,∀i ∈ [ |~g| ], ∀j ∈ [qi], ((evalR(Pωi,j,1)(x), ..., evalR(Pωi,j,bi )(x)), σi,j(x)) ∈ gi (63)

4. Every existentially quantified first-order variable must be within its declared bounds.

∀x ∈ U,∀i ∈ [ |~s| ], si(x) < evalR(PSi)(x) (64)

5. Every possible output of each second-order existentially quantified function must be within its de-
clared bounds.

∀i ∈ [ |~g| ],∀k ∈ gi, ∀x ∈ U, π2(k) < evalR(PGi)(x) (65)

6. Every possible input of each second-order existentially quantified function must be within its declared
bounds.

∀i ∈ [ |~g| ],∀j ∈ [bi], ∀k ∈ gi,∀x ∈ U, π1(k)j < evalR(PBi,j )(x) (66)

7. U contains exactly those combinations of values which are within each universally quantified variable’s
declared bounds.

U = {t ∈ Ru | ∀i ∈ [u], ti < evalR(PVi)(t)} (67)

8. Values of existentially quantified variables should be constant with respect to universally quantified
variables appearing later in a formula.

∀i ∈ [ |~s| ], ∀m ∈ Rνi , ∃c ∈ R,∀n ∈ Ru−νi ,m_n ∈ U → si(m_n) = c (68)

where m_n denotes the concatenation of the tuples m and n.

Given instance values and some of our advice values, we can derive the rest of our required advice
automatically. The advice which needs to be provided is called the “nondeterministic” advice. Only ~g and
~s are nondeterministic. All other advice can be derived automatically and are called “deterministic.” The
deterministic advice consists only of U , ~o, and ~σ.

Assuming our circuit was constructed from a Σ1
1 formula, U ’s contents can be constructed in pieces

based on the bounds of the universal quantifiers. We start with u = 0 and U = {}, which makes condition 67
hold trivially. We can note that the polynomials appearing within the bounds of universal quantifiers must
be constant with respect to later universally quantified variables. This allows us to treat each polynomial
bound as a function of only the universally quantified variables appearing before the one we are currently
adding. Assuming U already incorporates all the quantifiers prior to the uth, we can incorporate the uth
by the replecement

U := {(t1, ..., tu−1, x) | (t1, ..., tu−1) ∈ U ∧ x < evalR(PVu)(t1, ..., tu−1)} (69)

Note that t = (t1, ..., tu−1) being within the old U implies that ∀i ∈ [u − 1], ti < evalR(PVi)(t). To
satisfy ∀i ∈ [u], t′i < evalR(PVi)(t′) where t′ = (t1, ..., tu−1, x) we only need to additionally satisfy x <
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evalR(PVu)(t′), which is guaranteed as a consequence of the second conjunct in the formula defining U ’s
replacement. This ensures that condition 67 holds at each step. We continue this procedure until all
universal quantifiers are incorporated into U .

The values for ~o and ~σ can be calculated automatically by setting

oi,j(x) := fi(evalR(Pwi,j,1)(x), ..., evalR(Pwi,j,ai )(x)) (70)

and
σi,j(x) := gi(evalR(Pωi,j,1)(x), ..., evalR(Pωi,j,bi )(x)) (71)

These are the unique values which guarantee that conditions 62 and 63 are satisfied.

4 Translating Σ1
1 Formulas into Semicircuits

Assume, without loss of generality, that our Σ1
1 formula is of the form

ΣΦψ (72)

where Σ represents the second-order existential quantifiers, Φ represents the first order (existential and
universal) quantifiers, and ψ represents the internal (quantifier-free) proposition of the formula. This form
allows us to separate the translation into stages.

Before the first stage, we must start with an empty semicircuit. This circuit contains the following;

1. The number, n, of free first-order variables consistent with those appearing in ΣΦψ.

2. The vector, ~a, of arities of free second-order variables consistent with those appearing in ΣΦψ.

3. m = 0, u = 0, and ~b, ~ν, ~r, ~q, ~P, ~w, ~ω, ~V , ~S, ~G, ~B, S are all empty.

We next need to define how to add a ring/poly term into an already existing semicircuit. We will define
a procedure which will manipulate and access the existing semicircuit, as a global variable called C. The
procedure for ring/poly terms will be referred to as “RingProc.”

Given a ring/poly term, we will need to build up a syntactic representation of that term to store in ~P.
We define this recursively in a mostly obvious way;

encodeR(0) := 0

encodeR(1) := 1

encodeR(−1) := −1

encodeR(a+ b) := encodeR(a) + encodeR(b)

encodeR(a · b) := encodeR(a) · encodeR(b)

encodeR(ind<(a, b)) := ind<(encodeR(a), encodeR(b))

encodeR(xi) :=
if xi is free
then ~v|~v|−(i−|~s|)
else if xi is universally quantified
then let j be the index of xi within the tuple of universally quantified variables in ~uj
else if xi is existentially quantified then ~s|~s|−i−ν|~s|−i
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encodeR(fni (τ1, ..., τn)) :=
run RingProc on τi for all i
let ti ∈ [ |~P| ] be the index of the ring term for τi
if fni is free
then

increment r|~f |−(i−|~g|)
append (t1, ..., t2) to w|~f |−(i−|~g|)
~f|~f |−(i−|~g|)

else if fni is existentially quantified then
increment σ|~g|−i
append (t1, ..., t2) to ω|~g|−i
~g|~g|−i

Notice that encodeR will modify C and make a call to the (yet to be defined) RingProc procedure if it
encounters a function variable. We can now define RingProc as.

RingProc(r) := append encodeR(r) to ~P

Note that RingProc will end up running encodeR and therefore modify C prior to the append operations
completing. With this in hand we can describe the first stage of translation which incorporates second-order
quantifiers into the circuit. We start with an empty semicircuit and run the following procedure;

2ndOrderProc(∃f < γ(< β1, ..., < βn).φ) := append n to ~b
run RingProc(γ)
let pγ ∈ [ |~P| ] be the index of the ring term for γ
append pγ to ~G

run RingProc(βi) for each i

let pβi ∈ [ |~P| ] be the index of the ring term for βi
append (pβ1, ..., pβn) to ~B

2ndOrderProc(φ)
2ndOrderProc(φ) := if φ is a first-order formula then 1stOrderProc(φ)

The second stage of translation incorporates first-order quantifiers into the circuit.
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1stOrderProc(∃ < γ.φ) := increment m
run RingProc(γ)
let pγ ∈ [ |~P| ] be the index of the ring term for γ
append pγ to ~S

append u to ~ν
1stOrderProc(φ)

1stOrderProc(∀ < γ.φ) := increment u
run RingProc(γ)
let pγ ∈ [ |~P| ] be the index of the ring term for γ
append pγ to ~V

1stOrderProc(φ)
1stOrderProc(φ) := if φ is a quantifier free order formula then PropProc(φ)

The final stage of the translation incorporates the quantifier-free sub-formula into the circuit. The
procedure, PropProc, which does this is defined as;

PropProc(φ) := append encodeP (φ) to S (73)

It just makes a call to encodeP , which will convert φ into a syntactical representation.
encodeP can be defined recursively as

encodeP (¬φ) := ¬encodeP (φ)

encodeP (a ∧ b) := encodeP (a) ∧ encodeP (b)

encodeP (a ∨ b) := encodeP (a) ∨ encodeP (b)

encodeP (a→ b) := encodeP (a)→ encodeP (b)

encodeP (x = y) := encodeR(x) = encodeR(y)

This completes the algorithm translating Σ1
1 formulas into semicircuits.

5 Circuits and logic circuits

In order to simplify the presentation, we will look at the arithmetization process in stages. In the first
stage, a Σ1

1 formula gets transformed into a semicircuit. In the second stage, a semicircuit is converted into
an arithmetic-circuit-like structure with an enriched constraint language; we call these structures “logic
circuits.” In arithmetic circuits, gate constraints are local: they apply to each row and they involve variables
in the same row and nearby rows. Also, in arithmetic circuits, constraints are polynomial equations. In logic
circuits, gate constraints are still local, but they are generalized from polynomial equations to polynomial
equations and inequalities combined by logical connectives.

In order to simplify defining arithmetic circuits and logic circuits, we first look at a definition of what
they both are, which we call an abstract circuit. An abstract circuit is an instantiation of an abstract circuit
scheme. These notions will be defined after some intervening definitions.
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Let F,A, I, E, and N be distinct constants. These constants are used to symbolize column types. A
column is either fixed, advice, or instance. Separately, a column is either equality constrainable or not
equality constrainable. Thus, the set of column types is:

ColType := {F,A, I} × {E,N}. (74)

Let ColTypes denote the set of vectors of column types.
Let PolyBound denote the set of polynomial degree bounds:

PolyBound := N. (75)

By definition, an “abstract circuit scheme” is a tuple (D,Constraint, Sat), where:

1. D is a ring. D is called the domain.

2. Constraint is a set family parameterized by a ring, and element from PolyBound, and another set act-
ing as formal variables. In practice, Constraint will be a set of syntactical descriptions of constraints
involving elements from the ring and variables which can be filled in from elsewhere.

3. Satdn : Constraint(D, d, [n]× Z)→ D[n]×[r] → B
is a function interpreting a constraint as a predicate over matrices. The formal variables (j, k) ∈ [n]×Z
act as coordinates within the matrix with j as a column index and k as a relative row reference.

Let S = (D,Constraint, Sat) be an arbitrary abstract circuit scheme. An “S-circuit,” by definition, is
a tuple

C := (~c, d,~g, ~̀, r, ~e,X), (76)

where:

1. ~c = c1, ..., cn is a vector of column types.

2. d ∈ PolyBound.

3. ~g = g1, ..., gm is a vector of gate constraints; gi ∈ Constraint(~c, d) for each i ∈ [m].

4. ~̀ = `1, ..., `k is a vector of lookup constraints. For all i ∈ [k], `i is a tuple (~x,~a), where for some
positive integer q:

(a) ~x = x1, ..., xq, where for all j ∈ [q], xj is a polynomial of degree ≤ d with coefficients in D, where
variables are pairs (k, l) ∈ [n]×Z where k is a column index and l is a relative row reference. ~x
is called the input expression. l = 0 refers to the current row, and in general, if i is the current
row index, then l refers to row i+ l.

(b) ~a = a1, ..., aq, where for all j ∈ [q], aj is a column index: aj ∈ [n]. ~a is called the vector of
lookup table columns.

~̀ is called the sequence of lookup arguments.

5. r is a positive integer. r is called the number of rows.

6. ~e = e1, ..., et, where for all i ∈ [t], ei ∈ ([n]× [r])2 is a pair of pairs of indices, representing an equality
constraint in the form of absolute cell references.

7. X ∈ D[u]×[r], where u is the number of fixed columns, contains the values of each fixed column in
each row.
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The denotational semantics for abstract circuits is defined as follows. An S-circuit C denotes a relation,
a subset of D[v]×[r], where v is the number of instance columns. This relation is the set of all Z ∈ D[v]×[r]

such that there exists a Y ∈ D[n]×[r] such that:

1. Let i ∈ [v]. Let j be the index of the ith instance column. For all k ∈ [r],

Yj,k = Zi,k. (77)

2. Let i ∈ [u]. Let j be the index of the ith fixed column. For all k ∈ [r],

Yj,k = Xi,k. (78)

3. For all i ∈ [m],
Satdn(gi, Y ) = 1. (79)

4. Let i ∈ [k]. Let ((x1, ..., xq),~a) = `i. For all j ∈ [r],

(x1(Y, j), ..., xq(Y, j)) ∈ {(Ya1,k, ..., Yaq ,k) | k ∈ [r]}. (80)

5. Let i ∈ [t]. Let ((x0, y0), (x1, y1)) = ei. Then:

Yx0,y0 = Yx1,y1 . (81)

By definition, an “arithmetic circuit scheme” is an abstract circuit scheme (F,Constraint, Sat) with a
fixed d ∈ PolyBound such that:

1. F is a finite field.

2. For all D, d, and V , Constraint(D, d, V ) is the set D[V ] of polynomials of degree ≤ d.

3. For all d, n, and p, Satdn(p) maps Y ∈ F[n]×[r] (for any r ∈ N) to the truth value for ∀i ∈ [r], p(Y, i) = 0.

Here p(Y, i) denotes the result of evaluating the polynomial p over the matrix Y at row i. This notation
can be defined recursively, for all polynomials, as follows:

1. For a constant c, c(Y, i) := c.

2. For a variable (j, k), (j, k)(Y, i) := Yj,i+k.

3. For a polynomial x+ y, (x+ y)(Y, i) := x(Y, i) + y(Y, i).

4. For a polynomial x · y, (x · y)(Y, i) := x(Y, i) · y(Y, i).

For every field F there is a unique arithmetic circuit scheme (F,Constraint, Sat). We refer to this
arithmetic circuit scheme as Arith(F).

By definition, an “arithmetic circuit” is a tuple

C := (F,~c, d, ~p, ~̀, r, ~e,X), (82)

such that F is a finite field and (~c, d, ~p, ~̀, r, ~e,X) is an Arith(F)-circuit.
Defining logic circuits is a bit more involved, because the gate constraint type first needs to be defined.

The logic gate constraint type is parameterized by D, the type of constants, V , the type of variables (which
are relative cell indices when this definition is used in context), and d, the polynomial degree bound.

Let D be a ring. Let V be a set. Let d ∈ PolyBound. By definition, a “(D,V, d) logic constraint” is
any expression generated by the following recursive clauses, where we shorten “(D,V, d) logic constraint”
to just “constraint” since context makes it clear.
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1. τ = µ and τ < µ are constraints, where τ and µ are polynomials of degree ≤ d with coefficients in D
and variables in V .

2. ¬φ is a constraint, where φ is a constraint.

3. φ ∧ ψ, φ ∨ ψ, and φ→ ψ are constraints, where φ and ψ are constraints.

By definition, a “logic circuit scheme” is an abstract circuit scheme (D,Constraint, Sat) such that:

1. For all D, d, and V , Constraint(D, d, V ) is the set of (D,V, d) logic constraints.

2. For all d, n, and g, Satdn(g) maps a matrix Y ∈ D[n]×[r] (for any r ∈ N) to the truth value for
∀i ∈ [r], g(Y, i) = 1.

The notation g(Y, i) denotes the truth value of g at row i over the matrix Y . This can be defined recursively
for all (D, [n]× Z, d) logic constraints as follows:

(τ = µ)(Y, i) :=
{

1 τ(Y, i) = µ(Y, i),
0 otherwise.

(83)

(τ < µ)(Y, i) :=
{

1 τ(Y, i) < µ(Y, i),
0 otherwise.

(84)

(¬φ)(Y, i) := 1− φ(Y, i). (85)

(φ ∧ ψ)(Y, i) := φ(Y, i) · ψ(Y, i). (86)

(φ ∨ ψ)(Y, i) := φ(Y, i) + ψ(Y, i)− (φ(Y, i) · ψ(Y, i)). (87)

(φ→ ψ)(Y, i) := (¬φ ∨ ψ)(Y, i). (88)

For every ring D there is a unique logic circuit scheme (D,Constraint). We refer to this logic circuit
scheme as Logic(D).

By definition, a “logic circuit” is a tuple

C := (D,~c, d,~g, ~̀, r, ~e,X), (89)

such that D is a ring and (~c, d,~g, ~̀, r, ~e,X) is a Logic(D)-circuit.
As defined in this paper, Σ1

1 arithmetization consists of two steps: compiling a Σ1
1 formula to a logic

circuit, and then compiling the logic circuit to an arithmetic circuit. These translations are required to be
semantics preserving.

6 Compiling semicircuits to logic circuits

This section describes a semantics preserving process for compiling semicircuits to logic circuits over Z.
The process is semantics preserving in the sense that the source formula which produced the semicircuit
is true on a given input if and only if the resulting logic circuit is satisfiable on the instance corresponding
to the input.

An input to a semicircuit, C, consists of a value for each free variable. A value for a first-order free
variable is an integer, while a value for a second-order free variable is a function table which defines all
inputs to the function that are used in evaluating the truth value of C. These correspond to one instance
column for each free first-order variable, for each entry in ~v, and n + 1 instance columns for each free
second-order variable, for each entry in ~f , of arity n. In this instance, the value of a free first-order variable
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is duplicated at each row in its instance column, and the value of a free second-order variable is stored in
its instance columns, with duplicate rows as needed to fill up the function table in the instance.

Every logic circuit has a fixed number of rows. This limits the inputs for which we can have semantics
preservation to those where the function tables fit into the instance table.

The advice columns of a circuit compiling a semicircuit to a logic circuit hold the values of the universally
and existentially quantified variables as well as precomputed values for some subexpressions. For each first-
order quantified variable, we have one advice column. For each n-ary second-order (existentially) quantified
variable in ~g, we have (n+1) advice columns, holding the function table of the witness. U will be converted
into u advice columns containing all the tuples within U stored in lexicographic order. Each term depending
on a tuple t ∈ U will become one advice column with the value corresponding to t being stored in the
same row as the tuple t. This applies to ~s, ~o, and ~σ. This allows the values within ~w, ~ω, ~G, ~B, ~S, and ~V
to be replaced with matrix coordinates/relative row references. These data, along with ~P and S will be
incorporated into the circuit constraints. Additionally, every call to ind< within any term in ~P will also
need an additional column for its precomputed values.

The columns for U , which will later be called ~ui for each universally quantified variable i, are not
generally going to be the contents of U on the nose. Instead, it may also contain additional “dummy” rows
which facilitate completeness checking. These dummy rows will contain values which produce a bound of
0. Such cases denote empty quantifier occurrences. There will also be an additional column, denoted ~δ,
containing a flag indicating if a row is a dummy.

We can construct the ~uis and ~δ algorithmically. First, we need a function which can lexicographically
increment a prefix of us.

inc1((u1)) := (u1 + 1) (90)

incj((u1, ..., uj)) := if uj + 1 = eval(PVj )(u1, ..., uj−1)
then incj−1((u1, ..., uj−1))_(0)
else (u1, ..., uj + 1)

(91)

We start with ui,1 = 0 for all i. If row k has already been added and we are adding row k + 1, we do
one of the following;

1. If j is the smallest index such that eval(PVj )(u1,k, ..., uj,k) = 0, then set (u1,k+1, ..., uj−1,k+1) :=
inc(u1,k, ..., uj−1,k) and set ul,k+1 := 0 for all l between j and u, inclusive.

2. If none of the bounds are 0, we simply set (u1,k+1, ..., uu,k+1) := inc(u1,k, ..., uu,k).

If we reach a point where we need to call inc1((u1)) while u1 + 1 = eval(PV1) then we are done filling
out us.

We fill out ~δ by checking at each row if there is an index j such that eval(PVj )(u1,k, ..., uj,k) = 0. If so,
δk = 1, otherwise δk = 0.

Whenever we have a dummy row, the entries for ~o and ~σ get filled with a default value of 0. ~s is a
bit more complicated as its correctness criterion relates values between subsequent rows. For ~si, all non-
dummy rows will be equipped with values such that ∀k, l ∈ [r], (∀j < νi, ~uj,k = ~uj,l) → ~si,k = ~si,l. Given
a dummy row k and non-dummy row l satisfying ∀j < νi, ~uj,k = ~uj,l, sk will have the value of sl. Any
dummy rows not covered by this will have their value filled in with 0.

Define a logic circuit C, which arithmetizes the semicircuit C, as follows:

1. The number of instance columns of C is

|~v|+
∑
i∈|~f |

(ai + 1). (92)
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The instance columns are named as follows:

~vi column of values of vi
~ai,j jth input column of fi
~bi output column of fi

(93)

This naming scheme assumes a total ordering of the free variables, so their arities and de Bruijn
indices can be indexed by indices. Any total ordering will do.

2. The number of advice columns of C is∑
i∈|~g|

(bi + 1) + u+ 1 + |~s|+ |~o|+ |~σ|+ l. (94)

Where l denotes the number of calls to ind<.
The advice columns are named as follows:

~ci,j jth input column of gi
~di output column of gi
~ui column of values of ith universal variable
~δ column of flags indicating if we are at a dummy row
~si column of values of ith existential variable si
~oi,j column corresponding to the free function application subterms oi,j
~σi,j column corresponding to the existential function application subterms σi,j
~li output column of ith ind< application subterm

(95)

3. There is one fixed column equal to the zero vector and written as ~0. There is one fixed column equal
to one at all rows and written as ~1. There is one fixed column equal to one at all rows except for the
last row, where it is equal to one; this is written as ι.

4. The row count is r. Choose r such that there are enough rows to represent witnesses for all true
instances for which semantics preservation is required.

5. The equality constrainable columns are {~0} ∪ {~ui}|~u|i=1.

6. The equality constraints set ui,1 = 0 for all i ∈ [m].

7. There are the following gate constraints checking that our data have the correct structure;

(a) Instance function tables define functions. For all i ∈ [1, n] and j ∈ [r],

ιj = 1
∨ (ai,1,j = ai,1,j+1 ∧ · · · ∧ ai,ki,j = ai,ki,j+1 ∧ bi,j = bi,j+1)
∨ Lex<((ai,1,j , ..., ai,ki,j), (ai,1,j+1, ..., ai,ki,j))

(96)

The relation Lex< is defined, by recursion on the length of the input vectors, as follows:

Lex<((x), (y)) = x < y (97)

Lex<((w, ~x), (y, ~z)) = w < y ∨ (w = y ∧ Lex<(~x, ~z)). (98)
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(b) Existential function tables define functions. For all i ∈ [1,m] and j ∈ [r],

ιj = 1
∨ (ci,1,j = ci,1,j+1 ∧ · · · ∧ ci,ki,j = ci,ki,j+1 ∧ di,j = di,j+1)
∨ Lex<((ci,1,j , ..., ci,ki,j), (ci,1,j+1, ..., ci,ki,j))

(99)

(c) First-order instance variable column values are uniform. For all i ∈ [ |~v| ] and j ∈ [r],

vi,j = vi,j+1. (100)

8. Every expression in P gets converted into a polynomial

evalk(0) := 0
evalk(1) := 1
evalk(−1) := −1
evalk(a+ b) := evalk(a) + evalk(b)
evalk(a · b) := evalk(a) · evalk(b)
evalk(ind<(a, b)) := ~lw,k where w is the column associated with this respective ind< call.
evalk(~vi) := ~vi,k

evalk(~ui) := ~ui,k

evalk(~si) := ~si,k

evalk(~o(i,j)) := ~oi,j,k

evalk(~σ(i,j)) := ~σi,j,k

9. S gets converted into a logic constraint through the map

evalk(¬a) := ¬evalk(a)
evalk(a ∧ b) := evalk(a) ∧ evalk(b)
evalk(a ∨ b) := evalk(a) ∨ evalk(b)
evalk(a→ b) := evalk(a)→ evalk(b)
evalk(x = y) := evalk(x) = evalk(y)

Constraint 61 stating that the quantifier-free proposition is true becomes the gate constraint

∀k ∈ [r], δk = 1 ∨ evalk(S) = 1 (101)

10. We need a constraint declaring that the values of ~δ are correct.

∀k ∈ [r], (δk = 0 ∧ ¬
u∨
i=1

evalk(~PVi) = 0) ∨ (δk = 1 ∧
u∨
i=1

evalk(~PVi) = 0) (102)

11. We introduce the additional gate constraint guaranteeing that precomputed values for the calls to
ind< are correct.

∀i ∈ [ |~l| ], ∀k ∈ [r], (~li,k = 0 ∧ ¬(evalk(I1
i ) < evalk(I2

i ))) ∨ (~li,k = 1 ∧ evalk(I1
i ) < evalk(I2

i )) (103)

where I1
i and I2

i are the syntactical descriptions of the left and right arguments, respectively, to the
ith call to ind<.

22



12. Constraint 62 stating that the precomputed input and output values for every free function call is a
valid input-output pair becomes the lookup argument

∀k ∈ [r], ∀i ∈ [ |~f | ],∀j ∈ [ |oi| ], δk = 1 ∨ (evalk(~Pwi,j,1), ..., evalk(~Pwi,j,bi ), ~oi,j,k) ∈ (~ai,1, ...,~ai,ai ,~bi)
(104)

13. Constraint 63 stating that the precomputed input and output values for every existentially quantified
function call is a valid input-output pair becomes the lookup argument

∀k ∈ [r],∀i ∈ [ |~f | ],∀j ∈ [ |oi| ], δk = 1 ∨ (evalk(~Pωi,j,1), ..., evalk(~Pωi,j,bi ), ~σi,j,k) ∈ (~ci,1, ...,~ci,bi , ~di)
(105)

14. Constraint 64 stating that every existentially quantified first-order variable is in bounds becomes the
gate constraint

∀k ∈ [r], ∀i ∈ [ |~s| ], δk = 1 ∨ si,k < evalk(~PSi) (106)

15. Constraint 65 stating that every output of every existentially quantified second-order function is
within bounds becomes the gate constraint

∀k ∈ [r], ∀i ∈ [ |~g| ], ~di,k < evalk(~PGi) (107)

16. Constraint 66 stating that every input of every existentially quantified second-order function is within
bounds becomes the gate constraint

∀k ∈ [r],∀i ∈ [ |~g| ],∀j ∈ [bi],~ci,j,k < evalk(~PBi,j ) (108)

17. Constraint 67, stating that the values for universally quantified variables are exactly those within
bounds, requires a relation stating that some prefix of us, (~u1,k, ~u2,k, ..., ~uj,k) is lexicographically one
less than (~u1,k+1, ~u1,k+1, ..., ~uj,k+1).

Next1,k := ~u1,k + 1 = ~u1,k+1 (109)

Nextj,k :=

j−1∧
i=1

~ui,k = ~ui,k+1

 ∧ ~uj,k + 1 = ~uj,k+1

∨(~uj,k+1 = evalk(~PVj )∧~uj,k+1 = 0∧Nextj−1,k)

(110)
This is essentially equations 90 and 91 recast as a relation. We can use this to check the correctness
of the U table via

∀k ∈ [r], ιk = 1 ∨
(

u∨
i=1

evalk(~PVi) = 0 ∧Nexti−1,k ∧
u∧
l=i
~ul,k = ~ul,k+1 = 0

)
∨Nextu,k (111)

18. Constraint 68 stating that values of existentially quantified variables do not depend on universal
quantifiers later in the formula becomes the gate constraint for all k ∈ [r] and all i ∈ [ |~s| ]

ιk = 1 ∨

 νi∧
j=1

~uj,k = ~uj,k+1

→ ~si,k = ~si,k+1

 . (112)
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7 Compiling logic circuits to arithmetic circuits

This section describes a semantics preserving process for compiling logic circuits over Z to arithmetic
circuits over a sufficiently large field. This translation is semantics preserving for instances within defined
bounds.

This process uses lookup tables and byte decompositions to model truth tables for comparison oper-
ations, which allows for logical operations to be defined as polynomials, embedding Boolean algebra into
the field algebra. Each subformula of the form τ = µ or τ < µ in a gate constraint of the source circuit
gives rise to advice columns in the resulting circuit:

1. A vector of advice columns holding the byte decompositions of the values of µ− τ at each row.

2. A vector of advice columns holding the truth values of the statements (µ−τ)i = 0 at each row, where
(µ− τ)i denotes the ith byte of the byte decomposition of µ− τ .

These advice columns are sufficient to compute the truth value of each subformula of each gate constraint
as a polynomial. In addition to polynomial gate constraints expressing that each logic gate constraint
in the source circuit is satisfied based on the mentioned advice columns, there are polynomial gate and
lookup constraints expressing that the values of the mentioned advice columns are consistent and correct.
The correctness of byte decompositions is checked using a polynomial gate constraint, and range checks
implemented using lookup constraints. The correctness of the (µ − τ)i = 0 truth value advice columns is
checked using a truth table implemented using a lookup constraint.

All fixed, instance, and advice columns from the source circuit carry over into the resulting circuit. All
equality and lookup constraints from the source circuit carry over into the resulting circuit. The number
of rows stays the same, while the polynomial degree bound increases. That sums up the construction.

Let
C := (Z, (c1, ..., cn), d, (g1, ..., gm), (`1, ..., `k), r, (e1, ..., et), X) (113)

be a logic circuit, the source circuit.
Choose a word size W . The resulting arithmetic circuit will use (W +1)-bit signed words (with a W -bit

unsigned part and a sign bit). Choose a byte size B. The resulting arithmetic circuit will use B-bit bytes.
Let N = W/B. The resulting arithmetic circuit will use W -bit words.

The word size W needs to be chosen to be large enough that it provides enough headroom to hold all
possible values of µ− τ for all subformulas of the form τ = µ or τ < µ in all gate constraints of the source
circuit, when the instance and advice values from the source circuit are small enough. What does small
enough mean? For instance values, it means within bounds that define which instances we need semantics
preservation for. For advice values, it means within some bounds that are large enough to guarantee the
existence of in-bounds satifying advice values for all satisfiable instances.

Choose bounds BI : [v] → N2, where v is the number of instance columns. These bounds define
which instances we require semantics preservation for. Choose bounds BA : [w] → N2, where w is the
number of advice columns. Choose BA such that, for all instances Z ∈ Z[v]×[r], if for all i ∈ [v], j ∈ [r],
Zi,j ∈ (−π1(BI(i)), π2(BI(i))), and Z is in the denotation of C, then there is some Y ∈ Z[n]×[r] witnessing
this fact, such that for all i ∈ [w], letting j be the index of the ith advice column, for all k ∈ [r],
Yj,k ∈ (−π1(BA(i)), π2(BA(i))).

Choose a finite field F. Choose F such that |F| > 2W+1, so that each (W + 1)-bit word has a distinct
representation. Also choose F so that |F| has enough headroom to compute all intermediate results in gate
constraints without arithmetic overflow.

Create a total ordering of the subformulas τ = µ or τ < µ in the gate constraints ~g, so that the
polynomials of each such subformula are assigned indices, e.g. τi = µi or τi < µi. Let s be the total
number of such subformulas. Therefore we have two sequences of formulas, ~τ and ~µ, each of length s.

24



Define the resulting circuit D as follows.

1. The domain of D is F.

2. The number of rows of D is r (same as C).

3. The number of instance columns of D is v (same as C).

4. The fixed columns of D are those in C (values given by X), plus the fixed columns required for the
byte decomposition range checks and equality statement truth tables:

(a) ~β0 := 0, 1, 2, ..., 2B − 1, 2B − 1, 2B − 1, ...
This column enumerates all the numbers 0 through 2B − 1, and then repeats 2B − 1, r − 2B
times.

(b) ~β1 := 1, 0, 0, 0, ....
This column has a one in row zero and a zero in all other rows.

5. The advice columns of D are those in C, plus, for each subformula τi = µi or τi < µi in a gate
constraint in C:

(a) N + 1 advice columns, ~σi, ~δi,0, ..., ~δi,N−1. These are supposed to hold the byte decomposition of
the value of µi − τi at each row. ~σi holds the sign bit (−1 or 1), and ~δi,j holds the jth byte of
the unsigned part (in big endian notation).

(b) N advice columns, ~γi,0, ..., ~γi,N−1. These are supposed to be set as follows, for all j ∈ [N ], k ∈ [r]:

γi,j,k =
{

1 ~δi,j,k = 0,
0 otherwise.

(114)

6. The gate constraints are as follows:

(a) For all i ∈ [s],

(µi − τi) = ~σi ·
N∑
j=0

2j · ~δi,N−1−j . (115)

Here µi − τi is interpreted as a polynomial where the variables denote column vectors: the
column vectors referred to by the variable names, rotated by the row offsets in the variable
names.
This constraint checks the correctness of the byte decompositions.

(b) For all i ∈ [m],
eval(gi) = ~1, (116)

where eval is defined for all subformulas of the source gate constraints ~g, by the following
recursive clauses:

i. eval(τi = µi) := (1
2 · (~σi + 1)) ·

∏
k∈[N ] ~γi,k.

ii. eval(τi < µi) := (1
2 · (~σi + 1)) · some(~γi,0, ..., ~γi,N−1).

iii. eval(¬φ) = 1− eval(φ).
iv. eval(φ ∧ ψ) := eval(φ) · eval(ψ).
v. eval(φ ∨ ψ) := eval(φ) + eval(ψ)− (eval(φ) · eval(ψ)).
vi. eval(φ→ ψ) := eval(¬φ ∨ ψ).
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The function some, which takes any number of column vectors and returns a polynomial, is
defined on arguments by recursion on the number of arguments:

some(~x) := ~x. (117)

some(~x, ~~y) := ~x+ some(~~y)− (~x · some(~~y)). (118)

7. The lookup constraints are ~̀ (those of C), plus the following additional lookup constraints. For all
i ∈ [s], j ∈ [r]:

(a) For all i ∈ [s], j ∈ [r],
1
2(σi,j + 1) ∈ β1. (119)

This ensures that σi,j ∈ {−1, 1}.
(b) For all i ∈ [s], j ∈ [N ], k ∈ [r],

(δi,j,k, γi,j,k) ∈ (β0, β1). (120)

This is the equality statement truth table check and the byte range check, combined into one
constraint.

8. The equality constraints of D are ~e (same as C).
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