On NTRU-v-um Modulo XN — 1

Marc Joye

Zama, Paris, France

Abstract

NTRU-v-um is a fully homomorphic encryption schemes making
use of NTRU as a building block. NTRU-v-um comes originally in
two versions: a first instantiation working with polynomials modulo
XN — 1 with N a prime [cyclic version] and a second instantiation
working with polynomials modulo XN + 1 with N a power of two
[negacyclic version|. The cyclic version is now deprecated.

This work shows that the cyclic version of NTRU-v-um is not
secure. Specifically, it does not provide indistinguishability of en-
cryptions. More critically, the scheme leaks the underlying private
LWE keys. Source code for mounting the attacks is provided. The
attacks were practically validated on the given parameter sets.

Keywords: NTRU-v-um - Fully homomorphic encryption - Key recov-
ery attack

1 NTRU-v-um

This section provides a brief description of the cyclic version of NTRU-v-um
(read NTRUnium). We refer to the original ePrint report [5]* for further
details. The scheme relies on the NTRU problem [?].

Let Rq = (Z/qZ)[X]/(XN — 1) with N prime. Following [>], an NTRU
sample is a polynomial ¢ € R of the form

€1
4 —t+tey+1n

f

'Report has been updated after the attacks were reported. The current version of the
report and companion paper [6] only contain the negacyclic version of the scheme.

where
f € Ry is the private key

e1,€3 € Ry are error polynomials

n € Ry is the encoding of a cleartext m

such that

e f is invertible in Ry and has random coefficients (uniformly) chosen
in {_1) O) 1 };

e ¢; and e, are drawn according to some distributions;

e 1 =Am with A= q/p for some p | qand m € R,.

The decryption of ¢ proceeds in three steps as:

1. Compute in Ry polynomial d < ¢ f = €1 +e2f +1uf;

2. Rescale and round d to get d € Ry as d [d/A] (mod p);
3. Multiply in R, by £~' and return m « d f~'.

Remark 1. Letting € = €1 + e, f, correctness of the decryption requires
that ||e]e < A/2.

Example parameters Taken from [5, Sect. 5], suggested parameters are q =
29 with 30 < Q <42, p =27 with 4 <P < 11, and N € {2039,4093, 8191,
16381} (primes).

2 Analysis

The blind rotation that is used in NTRU-v-um as part of the (programmable)
bootstrapping procedure takes as inputs an LWE ciphertext ¢ € (Z/NZ)™*!
and a collection of n bootstrapping keys, and outputs an NTRU ciphertext
¢’ € Rq. BEach bootstrapping key is a ‘gadget’ NTRU-type encryption of a
key digit of the LWE secret key. Specifically, given parameters B and ¢ such
that B¢ | g, the bootstrapping key corresponding to key digit s; € {0, 1} is
given by

bsk[i] < (NTRU(s; B/)) € (Rq)*

0ist—1
for 1 < i< n. An inspection of [5, Theorem 1| indicates that the variance
of the noise present in the output ciphertext has a term proportional to the

2

variance of the noise present in the input bootstrapping keys; the expansion
factor being given by
p=LnNEB*-1).

A similar analysis can be done for ternary LWE keys. In this case, expansion
factor p has an extra multiplicative factor of 2 (again see [5, Theorem 1J]).

Applied to the parameter sets with binary LWE keys and with ternary
LWE keys in [5, Table 1], this leads to:

Table 1: Values of /p for different parameter sets.

q N VP

Binary LWE keys
NTRU-v-um-C-11-B 230 211 _9 2l15.64
NTRU-v-um-C-12-B 238 2123 21814
NTRU-v-um-C-13-B 241 213 1 219.68
NTRU-v-um-C-14-B 242 214 3 2023

Ternary LWE keys
NTRU-v-um-C-11-T 230 211 _9 214.40
NTRU-v-um-C-12-T 238 2123 2046
NTRU-v-um-C-13-T 242 213 1 220.20
NTRU-v-um-C-14-T 242 214 3 2070

In all cases, if o denotes the standard deviation of the noise in the
bootstrapping keys then the noise in a ciphertext ¢’ resulting from the blind
rotation has a standard deviation which is lower-bounded by /p-opsc. That
noise should not “touch” the underlying cleartext, as otherwise decryption
would not be possible. In particular, this requires \/p - Opsx < A/2 (cf.
Remark 1), which limits the size of oy for the parameter sets of Table 1.

3 Attacks

In this section, we exhibit two attacks against NTRU-v-um modulo XN —1.
The first attack is a general ciphertext-only attack that breaks the semantic
security of NTRU-v-um encryption from mildly noisy ciphertexts. The
second attack targets NTRU-v-um as a fully homomorphic encryption. It
builds on the knowledge of the bootstrapping keys. This second attack is
a total break as it uncovers the underlying LWE private keys.

3.1 A General Attack from Mildly Noisy Ciphertexts

Quotient polynomial XN — 1 factors as (X — 1)®n(X) where @n(X) =
> No' XL Importantly, since X — 1 divides XN — 1, an NTRU sample
verifies
cf =e1+ef +tuf (mod (q,X—1))
e

or, equivalently,

(N (1) = (1) +ex(1) £(1) +1(1) £(1) (mod q) . (1)

~~

=e(1)

The right-hand side of Equation (1) contains two terms. First, there is
an error term, ¢(1) = e1(1) + e2(1) £(1). Letting € = e(X) = ZiN;(; e Xt
with E[e;] = 0 and Var(e;) = o7, it turns out that E[¢(1)] =0 and

Var(e(1)) = Var(¥ ' &)
= No? . (2)

The second term in Equation (1), u(1) £(1), satisfies

1(1) £(1) mod q = Am(1) £(1) mod q
=A- (m(1)£(1) mod p) . (3)

A useful observation Another way to look at Equation (1) is to view ¢(1) €
7/qZ as an NTRU encryption with N =1 of cleartext m (1) € Z/pZ. This
is a valid ciphertext, provided that the corresponding noise ¢(1) € Z is
smaller (in absolute value) than A/2. Schematically, together with Eq. (3),
we have:

ain - T

~

m(1)£(1) e(1)
Figure 1: Noisy value < (1) = A (m (1) £(1) mod p) +€(1) € Z/qZ match-

(m
ﬂ:)) € 7/q7, Where e(1) e1(1) +ex(1)£(T).

ing valid ciphertext ¢ (1)

We call ‘mildly noisy’ an NTRU sample ¢ € Ry whose noise ¢ € R
satisfies

lello < 5—=

2\/_

Informally, this means that more than log, v/N bits following (each coef-
ficient of) cleartext message m are “clean”; that is, are unaffected by the
noise. Such a ciphertext is a valid ciphertext modulo X — 1 and underlies,
modulo X — 1, the noisy value < (1) as illustrated in Fig. 1.

The notion of mildly noisy ciphertexts suggests the following attack.
The noise ¢(1), seen as a signed integer, is such that |[¢(1)| < A/2. In the
representation of ¢/ (1) mod g, as can be seen in Fig. 1, this implies that the
two bits following (1) £(1) (mod p) must be 00 or 11. The configurations
01 or 10 are not possible. Furthermore, since private key £(X) = Z?:? fi X1
with f; € {—1,0,1}, the norm of its evaluation at 1 is upper-bounded by
N. In other words, £(1), seen as a signed integer, lies in {—N,...,N}. The
value of £(1) is unknown but can be searched exhaustively.

For each candidate value for £(1) € {0,...,N}, one checks whether
¢(1)f£(1) mod q (= d(1) mod q) has 01 or 10 for its two bits following
the “cleartext” position. If so, the tested candidate value for £(1) is dis-
regarded. The operation is repeated with another mildly noisy ciphertext
until a single candidate for £(1) remains. If we call F; this unique candidate
then the correct value for £(1) is £F; (mod q)—the test does not permit
to recover the sign. To make the test more selective, extra noise can be
increasingly added to mildly noisy ciphertexts ¢ prior to applying the test.
In practice, for typical parameters, about 10 ciphertexts suffice to recover
the value of +£(1). Once this value is known, ciphertexts in NTRU-v-um
can easily be distinguished.

The scheme is therefore not semantically secure in the case mildly noisy
ciphertexts are known and made available to an attacker.

Remark 2. A GP-Pari implementation of the above attack is given in ap-
pendix; see findkeyat1 ().

Variants There are several possible variants of the presented attack. For
example, instead of adding extra noise for more effectiveness, one can test
whether the resulting configurations are different from 000 or 111, and so
on for increasingly longer sequences of 0 and of 1.

The knowledge of a pair of cleartext/ciphertext allows the resolution of
the ambiguity on the sign of £(1).

When several pairs of cleartext/ciphertext are available, another way
to discriminate a candidate value for £(1) is to check whether or not the
ciphertext correctly decrypts modulo X — 1. The attacks can also be com-
bined.

3.2 A Key Recovery Attack against NTRU-v-um

The evaluation keys in a fully homomorphic encryption scheme are public
keys for operating over encrypted data. In the case of NTRU-v-um, they
consist of bootstrapping keys and of key-switching keys.

As seen in Section 2, given a binary LWE key s = (s1,...,s,) € {0, 1}™,
the bootstrapping keys are NTRU-type encryptions of bits s; (and of s; BY).
Ternary LWE keys s’ € {—1,0, 1}™ can be expressed as the difference of two
binary strings: s’ = s(!) —s(2) where s("), s(2) € {0, 1}™ [7]. In this case, the
bootstrapping keys are NTRU-type encryptions of bits SEU (and of sgl) B))
for 1 € {1,2}.

A bit B € {0, 1}—and in particular a key bit of an LWE key—is repre-
sented as a degree-0 plaintext p(X) = A, and thus n(1) = A 3. Decrypting
the corresponding NTRU ciphertext modulo X — 1 is therefore enough to
recover the value of 3 using key f£(1). This supposes however that the
corresponding ciphertext is mildly noisy.

The analysis in Section 2 concludes that the noise in a bootstrapping
key cannot be too large. Specifically, the standard deviation should be such

that oy < 2= for some p > N, and so

2/

Opsk K 7 \/N .
As a result, the NTRU-v-um bootstrapping keys are mildly noisy cipher-
texts, which, as we have demonstrated, leaks the value of £(1). Moreover,
as the bootstrapping keys contain encryptions of LWE key bits, these LWE
key bits can be recovered using £(1). This in turn leads to the full recovery
of the LWE private key.

4 Concluding Remarks

Working modulo XN — 1 in NTRU-v-um presents the convenient property
that XN = 1, which simplifies the mechanism of programmable bootstrap-
ping. This work unfortunately shows that this results in an insecure setting.

NTRU-v-um also has a variant modulo X™ 4 1 with N a power of two.
The attacks presented in this report do not apply in this case—note that
polynomial XN +1 is irreducible when N is a power of two. This negacyclic
version of NTRU-v-um should nevertheless be used with caution. The pa-
rameter selection in NTRU is quite tricky; in particular, NTRU is known to
have its security decreasing in the so-called ‘overstretched’ regime—that is,

6

when modulus q is much larger than degree N [1, 4]. An improved analysis
in [2] concretely settles the NTRU fatigue point at q ~ 0.004 N-*34. 1t has
to be noted that all the parameter sets suggested for NTRU-v-um largely
exceed the fatigue point.

References

[1]

2]

3]

[4]

[5]

[6]

Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on
overstretched NTRU assumptions. In M. Robshaw and J. Katz, editors,
Advances in Cryptology — CRYPTO 2016, Part I, volume 9814 of
Lecture Notes in Computer Science, pages 153-178. Springer, 2016.
doi:10.1007/978-3-662-53018-4_6.

Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched
is overstretched? In M. Tibouchi and H. Wang, editors, Advances in
Cryptology — ASIACRYPT 2021, Part IV, volume 13093 of Lecture
Notes in Computer Science, pages 3—-32. Springer, 2021. doi:10.
1007/978-3-030-92068-5_1.

Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A
ring-based public key cryptosystem. In J. P. Buhler, editor, Algo-
rithmic Number Theory Symposium (ANTS-III), volume 1423 of
Lecture Notes in Computer Science, pages 267-288. Springer, 1198.
doi:10.1007/BFb0054868.

Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on
overstretched NTRU parameters. In J.-S. Coron and J. B. Nielsen, edi-
tors, Advances in Cryptology — EUROCRYPT 2017, Part I, volume
10210 of Lecture Notes in Computer Science, pages 3—26. Springer,
2017. doi:10.1007/978-3-319-56620-7_1.

Kamil Kluczniak. NTRU-v-um: Secure fully homomorphic encryp-
tion from NTRU with small modulus. Cryptology ePrint Archive, Re-
port 2022/089, 2022. https://eprint.iacr.org/archive/2022/089/
20220125:072357.

Kamil Kluczniak. NTRU-v-um: Secure fully homomorphic encryption
from NTRU with small modulus. In 2022 ACM SIGSAC Conference
on Computer and Communications Security (ACM CCS 2022),
page 17831797. ACM Press, 2022. doi:10.1145/3548606.3560700.

https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-319-56620-7_1
https://eprint.iacr.org/archive/2022/089/20220125:072357
https://eprint.iacr.org/archive/2022/089/20220125:072357
https://doi.org/10.1145/3548606.3560700

[7] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-
like cryptosystems. In M. Brenner et al., editors, 9th Workshop
on Encrypted Computing € Applied Homomorphic Cryptogra-
phy (WAHC 2021), pages 17-28. ACM Press, 2021. doi:10.1145/
3474366 .3486924.

[8] The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.4, 2022.
Available from http://pari.math.u-bordeaux.fr/.

https://doi.org/10.1145/3474366.3486924
https://doi.org/10.1145/3474366.3486924
http://pari.math.u-bordeaux.fr/

A Code

Below is an implementation of the attacks. They are developed with the
computer algebra system PARI/GP [2].

PREC = 2730; \\ default precision (i.e., modulus q)
MSG = 274; \\ default message precision (i.e., modulus p)
STDEV = 2°-25; \\ default standard deviation (torus notation)
DIM = 2039; \\ default N (prime)
[K m e
General functions
—— */
\\ Draws at random an element in N(0,sd”2) using Box-Muller method,
\\ and converts it as an integer in Z/qZ
nrandom(q = PREC, sd = STDEV) = {
my (X) ;
X = sqrt(-2*log(random(1.)))*cos(2*Pi*random(1.));
return (Mod (round (q*sd*X),q));
¥
\\ Computes the inverse of a polynomial f in (Z/qZ)[X]/(X"N - 1)
polinv2(f) = {
my(i, q, 1, g);
q = polcoef (lift(£f),0).mod; 1 = valuation(q,2);
g = Mod(1,2)*f; g = 1iftall(1l/g); g = Mod(1l,q)*Mod(g,f.mod);
for(i=2, 1,
g = g*x(2 - fx*xg);
)
return(g);
}
/K m e e -
NTRUnium
—— */

\\ Generates private key f
NTRUnium_keygen(N = DIM, q = PREC) = {
my (i, £);
f = Polrev(vector (N, i, random(3) - 1));
return(Mod (1,q9)*Mod(f, x°N - 1));
}

\\ Encodes a message m in (Z/pZ)[X]1/(X"N - 1) as an
\\ element mu in (Z/qZ)[X]/(X"N - 1)
NTRUnium_encode(m, q = PREC) = {

my (p, mu);

p = polcoef (lift(m),0).mod;

mu = q/p*liftall(m);

return (Mod (1,q)*Mod (mu,m.mod));

\\ Encrypts encoded message mu with key f
NTRUnium_encrypt(f, mu, sd = STDEV) = {

my(i, q, N, el, e2, finv);

q = polcoef (lift(£f),0).mod; N = poldegree(f.mod);

el sum(i=0, N-1, nrandom(q,sd)*x"i);

e2 = sum(i=0, N-1, nrandom(q,sd)*x"i);

finv = polinv2(f);

return(el*xfinv + e2 + mu);

\\ Decrypts ciphertext c with key f
NTRUnium_decrypt(f, c, p = MSG) = {
my(q, d, finv);
q = polcoef (lift(c),0).mod;
d liftall(c*f); d = round(d*p/q); d = Mod(1,p)*Mod(d,f.mod);
f Mod (1,p)*f; finv = polinv2(f);
return(d*xfinv);

findkeyatl(keylist = []1, sd = STDEV, N = DIM, q = PREC, p = MSG) =
if (keylist == [], keylist = vector(N,i,i));
cont = 1;
while (cont,
print ("-> ", #keylist);
m = Mod(1l,p)*Mod(sum(i=0,N-1, random(p)*x~i), x"N - 1);
mu = NTRUnium_encode(m, q);
¢ = NTRUnium_encrypt(f, mu, sd);
Cl = subst(lift(c),x,1);
potlist = [];
for(i=1, #keylist,
tmp = 1lift(Clxkeylist[i]);
tau = 272;
tmp = bitand(tmp,(tau-1)*q/(taux*p));
tmp = tau*p*tmp/q;
potkey = ((tmp==0) || (tmp==tau-1));
if (potkey, potlist = concat(potlist,i));
)
tt = #keylist;
keylist = vecextract(keylist, potlist);
cont = (#keylist < tt);
);
return(keylist);
}

keybitreco(F1, sd = STDEV, N = DIM, q = PREC, p = MSG)
beta = Mod(1,p)*Mod(random(2), x"N - 1);
mu = NTRUnium_encode (beta, q);
¢ = NTRUnium_encrypt(f, mu, sd);
Cl = subst(lift(c),x,1);
d = 1iftall(C1*F1); d = Mod(l,p)*round(d*p/q);
betap = d/1ift(F1);

1]
~

ok = (betap == lift(beta));
return (ok);
}
setup(N = DIM, g = PREC, p = MSG) = {
ok = 0;
until (ok,

f = NTRUnium_keygen(N, q);
tmp = iferr(finv = polinv2(f), E, E);
ok = (type(tmp) != "t_ERROR"));
Fl1 = centerlift(subst(lift(f),x,1));
return(F1);

10

	NTRUnium
	Analysis
	Attacks
	A General Attack from Mildly Noisy Ciphertexts
	A Key Recovery Attack against NTRUnium

	Concluding Remarks
	Code

