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Abstract

Private Information Retrieval (PIR) addresses the cryp-
tographic problem of hiding sensitive database queries
from database operators. In practice, PIR schemes face
the challenges of either high computational costs or re-
strictive security assumptions, resulting in a barrier to
deployment. In this work, we introduce Assisted Private
Information Retrieval (APIR), a new PIR framework for
keyword-value databases generalizing multi-server PIR
and relaxing its database consistency assumption. We
propose the construction of Synchronized APIR, an ef-
ficient hybrid APIR scheme combining black-box single-
server PIR and non-black-box multi-server PIR. To evalu-
ate the scheme, we apply it to a proof-of-concept privacy-
preserving DNS application. The experiment results
demonstrate that Synchronized APIR outperforms the
baseline single-server PIR protocol in communication and
computational cost after the initial one-time cost.

1 Introduction

One often overlooked privacy aspect of information ac-
cess over a network is the surveillance of users’ queries
by database-operating servers. To illuminate this con-
cern, let us consider the scenario in which a user wishes
to download a sensitive file from a website, but accessing
that particular file is incriminating. To get around this
problem, the user has a few options. She can use an en-
crypted channel like TLS to prevent eavesdropping, but
this does not prevent the leakage of the query to the web
server; or she can use anonymizing technology like Tor to
hide her IP address, but this does not prevent the web
server from being notified and collecting statistics about
file access patterns.

A case in point is the Domain Name System (DNS).
DNS privacy and security are the core argument for en-
crypted DNS such as DNS-over-HTTPS (DoH) [16] and
DNS-over-TLS (DoT) [17]. However, the encrypted DNS
proposals do not necessarily increase users’ privacy. The
most significant privacy risk is increased data concentra-

tion at DNS operators. Given the exploitation of users’
data by data collectors and online services in recent years,
it is not far-fetched to claim that the concentration of data
is a privacy violation.

The family of cryptographic protocols that proposes
to address this threat model is Private Information Re-
trieval (PIR). A core privacy definition of PIR requires
that any two PIR queries appear indistinguishable from
the attacker’s point of view, thus preventing database op-
erators from collecting sensitive information about the
queries. Many PIR schemes have been proposed recently,
yet they all face practical challenges. The family of PIR
schemes that requires one server to operate, or single-
server PIR [2–4, 8, 10, 20, 24], makes minimal assump-
tions about data management. However, they often rely
on additively homomorphic encryption schemes, which
are computationally expensive and incur high commu-
nication costs in practice. The family of PIR schemes
that requires multiple servers to operate, or multi-server
PIR [7, 9, 11, 12, 14, 15], are orders of magnitude more ef-
ficient than single-server PIR to deploy. However, they
have conflicting requirements that 1) all the servers hold
an identical copy of the database in some form, and 2)
some sets of servers do not collude by sharing user queries.
In practice, it is difficult to imagine a scenario where both
requirements hold simultaneously. In the DNS applica-
tion, it can be argued that DNS servers administered by
independent organizations are unlikely to collude. How-
ever, requiring that they hold the same cache tables and
zone files would be a significant overhaul to the DNS in-
frastructure, making it less scalable. Further, the decen-
tralization of DNS is what makes it useful for localization
and load-balancing to begin with.

1.1 Our contributions

In this work, we introduce a new PIR framework, Assisted
Private Information Retrieval (APIR). APIR generalizes
multi-server PIR in the following ways while maintaining
the non-collusion assumption:

1. The databases are keyword-value maps instead of in-
dexed vectors.
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2. The servers can operate their copies of the databases
that are different from one another. Correctness is
defined by the copy operated by the server chosen to
be the main server.

We present Synchronized APIR (SAPIR), an APIR
scheme that requires the client to synchronize the “view”
of the databases across the servers before making queries.
SAPIR is a hybrid protocol combining a black-box single-
server PIR scheme and a non-black-box multi-server PIR
scheme similar to CGKS protocol [7]. Due to the black-
box use of single-server PIR, improvements in single-
server PIR imply improvements in SAPIR. We provide
a formal analysis and an implementation of Synchronized
APIR in Rust using SealPIR [4] as the underlying single-
server PIR scheme.

We apply SAPIR to demonstrate a proof-of-concept
privacy-preserving DNS application, specifically to query
nameserver (NS) records among DNS cache servers.
Then, we evaluate the application with simulated datasets
based on realistic assumptions about DNS queries and
cache behavior. The results show that after the initial
one-time cost, privacy-preserving DNS via SAPIR out-
performs SealPIR, a baseline single-server PIR, in com-
munication and computational costs.

2 Related Works

PIR over unsynchronized databases Our work is
partly inspired by Fanti et al. [13], who propose an
information-theoretic multi-server PIR scheme over un-
synchronized databases. In this setting, the PIR servers
operate identical indexed databases, but some database
values can go missing in some copies. The scheme first
requires the client to synchronize the database “view”
to identify the missing values. Then, the client makes a
query for an index whose value is not missing in any of
the databases while hiding which values are missing from
the servers. This setting applies to peer-to-peer (P2P)
file-sharing, where P2P users share and download parts
of the same file or database in small, indexed fragments.
Fanti et al.’s scheme can be viewed as a solution to a sub-
set of the APIR problem with two additional limitations:
1) the databases are strictly indexed, and 2) the client
cannot query any missing values in at least one of the
databases.

Oblivious DNS Prior techniques have been proposed
for Oblivious DNS (ODNS) [19, 22], and Oblivious DNS
over HTTPS (ODoH) [23]. Oblivious DNS techniques
offer anonymity for DNS clients by decoupling their IP
addresses from their queries via a proxy server between
them and the DNS resolvers. Unlike PIR approaches,
these techniques require minimal modifications to DNS

clients and servers for deployment. However, their pri-
vacy definition is fundamentally different from ours. De-
spite the clients’ anonymity in Oblivious DNS, the DNS
servers can aggregate anonymized queries. In our threat
model, we consider data concentration—anonymized or
otherwise—by DNS operators as a security and privacy
risk. Our approach addresses this by making it impossible
to aggregate such data by design.

3 Preliminaries

3.1 Single-Server PIR

Single-server PIR (sPIR) [2–4, 8, 10, 20, 24] is the family
of PIR schemes that requires the client to interact with
only one database-operating server to query information.
sPIR is closely related to computational PIR (CPIR) due
to the computational assumptions usually required to in-
stantiate it, although not all sPIR schemes are CPIR. One
example of such an sPIR scheme is the trivial PIR, where
the client downloads the entire database from the server
and queries from her local copy. This technically satis-
fies the privacy requirements of PIR because the server
cannot learn the client’s query. However, this results in a
prohibitively high communication cost in practice. There-
fore, non-trivial PIR schemes must aim to satisfy the pri-
vacy requirements while keeping the communication cost
lower than the trivial PIR.

We formally define sPIR in Definition 3.1 below. This
definition will be referred to in our construction in Section
5.

Definition 3.1 (sPIR Scheme). Given a server oper-
ating an indexed database V = (v0, . . . , vm−1) for all
i ∈ {0, . . . ,m− 1}. An sPIR scheme is a tuple ΠsPIR =
(SGen,SQuery,SReply,SDecode) defined by

• SGen(1λ) → (spk, ssk), where λ is the security pa-
rameter, spk the public key, and ssk the secret key.

• SQuery(spk, i,m) → sq, where sq is a query for in-
dex i ∈ {0, . . . ,m− 1} targeting item vi.

• SReply(spk, V, sq) → sr, where sr is the reply for
query sq targeting database V .

• SDecode(ssk, sr) → sa, where sa is the answer de-
coded from reply sr.

A typical flow of an sPIR protocol proceeds as follows.
1) The client generates the public-secret key pair with
SGen and gives the public key to the server. 2) Once the
client has decided to query the i-th item in the database,
an sPIR query is generated with SQuery using i. The
query is sent to the server. 3) The server generates a
reply from the query and database using SReply. The
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reply is returned to the client. 4) The client decodes the
reply with the secret key using SDecode to obtain the
answer.

The formal definitions of sPIR correctness and privacy
are provided in Definition A.1 and Definition A.2, respec-
tively, in Appendix A. Intuitively, an sPIR scheme is cor-
rect if the answer matches the target value. An sPIR
scheme is privacy-preserving if a query encoding index i
and a query encoding index j are indistinguishable for
any i and j.

In this work, we use SealPIR [4], one of the state-of-
the-art sPIR schemes, as a building block for our scheme.
In addition to the relatively low computational cost,
SealPIR offers a significant advantage over its predeces-
sors via a query compression technique, which cuts down
the size of a query by a significant factor.

3.2 Multi-Server PIR

Multi-server PIR (mPIR) [7, 9, 11, 12, 14, 15] is the fam-
ily of PIR schemes that requires the client to interact
with multiple database-operating servers to query. mPIR
is a broader category for information-theoretic PIR (IT-
PIR) in literature, in that all IT-PIR schemes (except
for the trivial PIR) are multi-server, but some mPIR
schemes are a hybrid between IT-PIR and CPIR. Ex-
isting mPIR schemes rely on the following two assump-
tions: 1) databases must be consistent, meaning that
each server holds the same “ground-truth” copy of the
database, which may be preprocessed for the scheme, and
2) no more than a given number of servers can collude,
meaning that they cannot share the client’s private infor-
mation other than what is instructed.

We omit the technical abstractions for mPIR here since
we intend to use a modified version of CGKS [7], one of
the most well-known mPIR schemes, in a non-block-box
manner. For instructional purposes, we provide a tuto-
rial of CGKS [7] in Appendix B. In our construction, we
modify CGKS so that the servers do not require consis-
tent databases and the participating parties use a PRG
to generate all but one query and reply to reduce the
communication cost.

4 Assisted PIR

This section aims to provide an abstraction for As-
sisted PIR (APIR), a new framework for PIR general-
izing mPIR. We provide a construction of APIR called
Synchronized APIR in Section 5.

APIR comprises three groups of participating parties
with distinct roles, client C, main server S0, and assist-
ing servers S1−Sn. Client C wishes to retrieve the value
associated with keyword k∗ from keyword-value database

DB0 operated by main server S0. This process is as-
sisted by n assisting servers S1, . . . ,Sn who independently
operate keyword-value databases DB1, . . . ,DBn, respec-
tively. The purpose of assistance includes but is not lim-
ited to reducing operational costs. DB1, . . . ,DBn are not
required to be the exact copies of DB0, although they
may have some common keyword-value pairs. For exam-
ple, it is possible that keyword-value pair (k, v) ∈ DB0

but (k, v) /∈ DB1, or (k, v) ∈ DB1 and (k, v′) ∈ DB2 but
v ̸= v′. This database definition differs from sPIR and
mPIR in Section 3 where databases are assumed to be
indexed and consistent. APIR is formally defined below.

Notations

• Keys(DB), the set of all keywords in database DB

• ID := {0, . . . , n}, the set of n+ 1 server ID’s

• AID := {1, . . . , n}, the set of n assisting server ID’s

• (ai)I := (ai1 , . . . , ain) where ij ∈ I, a sequence
ordered by the index set I. For clarity, we some-
times use (ai)i∈I instead.

Definition 4.1 (APIR Scheme). Given a set of n + 1
database-operating servers. An APIR scheme is a tuple
ΠAPIR = (ServGen,
CliGen,Query,Reply,Decode) defined by

• ServGen(id,DBid) → parid, where id ∈ ID and parid
is the database parameter for DBid.

• CliGen(1λ, t, (parid)ID) → (pk, sk), where λ is the
security parameter, t the collusion threshold where
1 ≤ t ≤ n, pk is the public key, and sk the secret key.

• Query(pk, sk, k)→ (qid)ID, where qid is the query for
server id from query keyword k ∈ Keys(DB0) target-
ing database value DB0[k].

• Reply(id, pk,DBid, qid) → rid, where rid is the reply
for query qid targeting database DBid.

• Decode(sk, (rid)ID) → a, where a is the answer de-
coded from replies (rid)ID.

The flow of the scheme is similar to that of sPIR and
mPIR described in Section 3: 1) The servers generate
database parameters using ServGen and send them to
the client. 2) The client generates a public-secret key
pair from the database and security parameters using
CliGen. 3) The client chooses a query keyword from
DB0 and generates queries using Query; each server gets
their own query. 4) The servers respond to the query with
their database and public key using Reply. And finally,
5) the client aggregates all the replies and decodes them
using the secret key with Decode to obtain the answer.
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The correctness of APIR is defined according to the
content of DB0. That is, if the client generates queries
with keyword k, then DB0[k] is defined to be the correct
answer (even if there is another DBid such that DBid[k] ̸=
DB0[k]); formally, correctness is defined below.

Definition 4.2 (APIR Correctness). Following Defini-
tion 4.1 of scheme ΠAPIR, suppose any set ID, databases
DBid for all id ∈ ID, and keyword k ∈ Keys(DB0), and

• ∀id ∈ ID : parid ← ServGen(id,DBid)

• (pk, sk)← CliGen(1λ, t, (parid)ID)

• (qid)ID ← Query (pk, sk, k)

• ∀id ∈ ID : rid ← Reply(id, pk,DBid, qid)

• a← Decode(sk, (rid)ID)

Then, ΠAPIR is correct if a = DB0[k] with a non-zero
probability.

The privacy definition of APIR captures the indistin-
guishability of queries when server collusion does not ex-
ceed threshold t. Intuitively, an APIR scheme is privacy-
preserving if an adversary, who compromises a set of at
most t servers, cannot distinguish between two queries
generated from any query keywords k0 and k1 of the ad-
versary’s own choice. We model a realistic scenario in
which the client is not informed of which servers are com-
promised or whether they are compromised at all. To this
end, we assume the hypothetical oracle O who works to
relay the compromised queries to the adversary without
the client’s knowledge. We formally define APIR privacy
using a game-based definition below.

Definition 4.3 ((λ, t)-APIR Privacy). Given secu-
rity parameter λ, collusion threshold t, adversary A,
and oracle O, define an APIR privacy experiment
PrivAA,ΠAPIR,t(1

λ) for APIR scheme ΠAPIR according to
Definition 4.1 below.

1. A chooses correctly formatted database parameters
(parid)ID and outputs (parid)ID. A chooses a collusion
set C ⊂ ID such that |C| ≤ t and sends C to O.

2. The public-secret key pair is generated by (pk, sk)←
CliGen(1λ, t, (parid)ID) and pk is given to A.

3. A is given oracle access to Query in the following
way: A chooses and outputs k ∈ K(par0) where
K(par0) is the query keyword space determined by
a correctly formatted par0. Queries are generated by
(qid)ID ← Query (pk, sk, k) and (qid)ID is given to O.
O gives (qid)C to A.

4. A chooses k∗0 , k
∗
1 ∈ K(par0), and outputs (k∗0 , k

∗
1).

A uniformly random bit is sampled, b ←$ {0, 1}.
Queries are generated by (q∗id)ID ← Query(pk, sk, k∗b )
and (q∗id)ID is given to O. O gives (q∗id)C to A.

5. A is given more oracle access to Query according to
step 3.

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠAPIR is (λ, t)-APIR privacy-preserving for all PPT ad-
versary A if there exists a negligible function negl such
that

Pr
[
PrivAA,ΠAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

5 Synchronized APIR

This section presents our construction of APIR called
Synchronized APIR (SAPIR). SAPIR requires the client
to synchronize the global “view” of the databases before
making queries. This results in a one-time communica-
tion cost to initialize the scheme and low recurring com-
putational and communication costs to query. SAPIR
uses a black-box sPIR scheme described in Section 3.1 in
its hybrid PIR construction and a non-black-block con-
struction of modified CGKS.

For the rest of this section, we detail the protocol de-
scription, optimization techniques, and implementation
of SAPIR. For instructional purposes, we provide a high-
level concept of SAPIR in Appendix C. The formal anal-
ysis of SAPIR is detailed in Appendix D.

5.1 Overview

To query keyword k, client C works with main server
S0 and assisting servers S1, . . . ,Sn through three phases,
as illustrated in Figure 1: Synchronization, Setup, and
Query. Synchronization and Setup must be completed
once at the start, while a new Query session can be re-
peated for every new query keyword C wishes to query.

In the following sections, we will describe step 1○ - 9○
of SAPIR as shown in Figure 1 in detail.

5.2 Synchronization Phase

During the Synchronization phase, C synchronizes the
global view of the databases to select the consistent
keyword-value pairs to be retrieved via mPIR and the rest
via sPIR. This selection is done through catalogs which
C downloads from all the servers. A catalog is a map
from keywords to hashes of values in a database (see step
1○A). The purpose of a catalog is to uniquely represent
a database while keeping the communication cost low.
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Figure 1: Overview of Synchronized APIR. Synchronized APIR comprises three distinct phases between client C,
main server S0, and assisting Servers S1 − Sn: Synchronization, Setup, and Query. Synchronization and Setup are
completed once at the start, while a new Query session can be repeated with every new query keyword k. 1○ The
servers generate catalogs Catid from database DBid. C obtains catalog Cat0 and catalog intersections Cat′id via the
Catalog Intersection protocol. 2○ C tags the catalogs for sets Mid, indicating the keywords retrievable via mPIR in
DBid. 3○ C sends Mid to Sid via the Keyword Synchronization protocol. 4○ C generates the sPIR public-secret key
pair and PRG seeds. The sPIR public key spk is sent to S0 and PRG seed sid to Sid. 5○ C generate mPIR query
tokens using the PRG seeds. 6○ Each assisting server Sid generates the reply mrid from the PRG seed and database
DBid and sends mrid to C. 7○ C generates mPIR query mq0 and sPIR query sq from keyword k and sends them to
S0. 8○ S0 generates reply r with query mq0 and sq and database DB0 and sends r to C. 9○ C decodes r to obtain
the answer a. Step 6○- 9○ can be repeated in the next session with a new keyword k.

We refer to step 1○ - 3○ in Figure 1 and 1○ - 2○ in 2 as
a demonstration to describe the Synchronization protocol
below.

Notations

• Map{(k, v) ∈ K × V | Φ(k, v)}, a keyword-value
map builder notation where K is the key domain,
V value domain, and Φ a predicate.

Synchronization Protocol

Input

▷ DBid from Sid,∀id ∈ ID

▷ t from C

Output

▷ Catid,Mid to Sid,∀id ∈ ID

▷ Cat0,
(
Cat′id

)
AID

, (Mid)ID , S to C

1○ C obtains the full catalog Cat0 from S0 and catalog
intersections Cat′1, . . . ,Cat

′
n from S1, . . . ,Sn by fol-

lowing the steps below:

A. For each id ∈ ID, Sid generates catalog

Catid ← Map {(k, h) | ∀(k, v) ∈ DBid, h = H(v)}

where H(·) is a universal hash function with short
hash values, chosen randomly from the universal
family by C.

B. C downloads Cat0 from S0. For each id ∈ AID,
C engages in the Catalog Intersection protocol
CatIntersection with Sid, where C obtains cat-
alog intersections Cat′id = Catid ∩ Cat0 at the end.
The goal of CatIntersection is to transmit cat-
alog intersections at a cost lower than sending full
catalogs. CatIntersection is described in Sec-
tion 5.6. With the full catalog and catalog inter-
sections, C now has complete information of the
keyword-value pairs consistent with DB0.

2○ C tags the catalogs to categorize keyword-value pairs
for either mPIR or sPIR:

((Mid)ID , S)← Tag(Cat0,
(
Cat′id

)
AID

, t)

where t is the collusion threshold, i.e., the highest
number of colluding servers C can tolerate without
leaking query keywords; Mid is the mPIR keyword
set, i.e., the set of keywords to be queried via mPIR
from Sid; S is the sPIR keyword set, i.e., the set of
keywords to be queried via sPIR from S0. Tag is
detailed in Algorithm 1 below.
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Figure 2: Synchronization. An example of databases in a Synchronized APIR setting with three assisting servers
that undergo the Synchronization phase. 1○A: Sid generates catalog Catid from database DBid. A toy hash function
H(v) = v/10 is chosen to demonstrate that an appropriate hash function should be able to produce short unique hash
values. Generally, when the distribution of database values is unknown, universal hash functions should be applied to
reduce hash collisions. 1○B: C obtains catalog Cat0 from S0 and catalog intersections Cat′id from Sid via the Catalog
Intersection protocol. Keyword-value pairs inconsistent with DB0 in DB1, . . . ,DB3 and with Cat0 in Cat1, . . . ,Cat3
are eliminated via catalog intersection. 2○ C decides the collusion threshold t = 2. To tag the catalogs, the pairs
that pass the threshold for mPIR must have t + 1 = 3 copies: one copy in Cat0 and two copies in Cat′1,Cat

′
2,Cat

′
3.

(a, 10), (b, 20), (c, 30), and (d, 40) all pass the threshold ((a, 10) in Cat′3 is redundant and disregarded). Neither of
(e, 50), (f, 60), or (g, 70) pass the threshold, so C disregards them. This results in M0, . . . ,M4 for the set of keywords
that pass the threshold for mPIR, and the rest in S for sPIR.

Algorithm 1 Catalog Tagging. Ck can be chosen ran-
domly or with a specific optimization strategy.

1: procedure Tag(Cat0,
(
Cat′id

)
AID

, t)
2: ∀id ∈ ID : Mid ← ϕ ▷ initialize to an empty set
3: for k ∈ Keys(Cat0) do
4: G←

{
id ∈ AID | k ∈ Keys(Cat′id))

}
5: if |G| ≥ t then
6: choose Ck ⊆ G such that |Ck| = t
7: ∀id ∈ Ck ∪ {0} : Mid ←Mid ∪ {k}
8: end if
9: end for

10: S ← Keys(Cat0) \M0

11: return ((Mid)ID , S)
12: end procedure

3○ For each id ∈ ID, C and Sid engage in the Key-
word Synchronization protocol KeySynchronize,
where Sid obtains Mid at the end. The goal of
KeySynchronize is to transmit Mid at a cost lower
than sending them in full. KeySynchronize is de-
scribed in Section 5.7.

5.3 Setup Phase

Suppose l = poly(λ), where λ is the security parameter, is
the total number of queries that C will be making during
the Query phase. We call each query during the Query
phase a Query session, each denoted with session ID sid ∈

[l]. Starting at sid = 1, sid increases by 1 for each Query
session.

During Setup, C sends each of S1, . . . ,Sn a random
PRG seed which will be used to generate random mPIR
queries for all Query sessions sid ∈ [l]. We follow step
4○ and 5○ in Figure 1 and 5○ in 3 to describe the Setup
protocol below.

Notations

• [l] := {1 . . . l}, the set of all l session ID’s.

• index(a,A) := |{b ∈ A | b < a}|, index of a in set
A.

Setup Protocol

Input

▷ |Mid| from Sid,∀id ∈ AID

▷ l, (Mid)AID from C

Output

▷ spk to S0

▷
(
mqsidid

)
sid∈[l]

to Sid,∀id ∈ AID

▷ spk, ssk,
(
toksid

)
[l]

to C
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4○ C generates an sPIR key pair (spk, ssk) ← SGen(λ)
and sends spk to main server S0.
For each assisting servers id ∈ AID, C samples a PRG
seed sid ∈ {0, 1}λ uniformly at random and sends sid
to Sid. C and each Sid define(

mqsidid
)
sid∈[l]

:= PRG(sid, l · |Mid|)

where l · |Mid| is the total length of the output string
and

∣∣mqsidid
∣∣ = |Mid|.

In practice, when the PRG is implemented with a
stream cipher, l is not predetermined and each mqsidid
can be generated on the fly.

5○ C defines query tokens

toksid := MToken((Mid)ID ,
(
mqsidid

)
id∈AID

)

for all sid ∈ [l]. MToken is defined in Algorithm
2 below. Intuitively, a token is an XOR of the ran-
dom queries mqsidid for all id ∈ AID when the bits
are aligned to the ordering of the corresponding key-
words in M0.

Each toksid can be generated on the fly.

Algorithm 2 mPIR Token Generation

1: procedure MToken((Mid)ID , (mqid)AID)

2: tok← {0}|M0|

3: for k ∈M0 do
4: Ck ← {id ∈ AID | k ∈Mid}
5: ∀id ∈ Ck ∪ {0} : iid ← index(k,Mid)
6: tok[i0]←

⊕
id∈C mqid[iid]

7: end for
8: return tok
9: end procedure

5.4 Special Case: mPIR-Only Query
Phase

Before describing the full protocol of the Query phase,
it would be instructive to walk through the special case
in which all keyword-value pairs can be retrieved with
mPIR, i.e., S = ϕ in Algorithm 1. The goal is to show how
all the mPIR components fit together during the Query
phase to provide correct answers without dealing with
the hybrid PIR’s complexity. We shall follow the steps in
Figure 3 for a walk-through.

Suppose that at this point C and S0, . . . ,Sn have
already completed Synchronization in Section 5.2 and
Setup in Section 5.3. We will now pick up step 6○ and
7○*- 9○* (* to denote the steps for this special case) in
Figure 3 from here.

mPIR-Only Query Protocol for Session sid

Input

▷ DBid,Mid from Sid,∀id ∈ ID

▷ mqsidid from Sid,∀id ∈ AID

▷ M0, tok
sid, ksid from C

Output

▷ asid to C

6○ For each assisting servers id ∈ AID, Sid generates a
reply from the query

mrsidid ←MReply(Mid,DBid,mqsidid )

and sends mrsidid to C. MReply is described in Algo-
rithm 3 below.

Algorithm 3 mPIR Reply Generation

1: procedure MReply(Mid,DBid,mqid)
2: V ← (DBid[k])k∈Mid

3: mrid ← mqid · V ▷ dot product in GF(2)
4: return mrid
5: end procedure

Note that this step can be completed offline as it
does not require a query keyword ksid by C. This
means that during the online time (that is, step 7○*
onwards), C only needs to interact with S0, signifi-
cantly reducing the latency.

7○* Once C has decided on a mPIR query keyword ksid ∈
M0 to query, she generates a mPIR query for S0

mqsid0 ←MQuery(M0, tok
sid, ksid)

where MQuery is described in Algorithm 4 below.
Finally, C sends mqsid0 to S0 to query.

Algorithm 4 mPIR Query Generation

1: procedure MQuery(M0, tok, k)
2: mq0 ← tok
3: if k ∈M0 then
4: mq0[i]← mq0[i]⊕ 1, where i = index(k,M0)
5: end if
6: return mq0 ▷ note that mq0 = tok if k ̸∈M0

7: end procedure

8○* Upon receiving mqsid0 , S0 processes the query in the
same way queries are processed in step 6○, except
that here mqsid0 is given by C,

mrsid0 ←MReply(mqsid0 ,M0,DB0)

S0 returns mrsid0 to C.
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9○* Now that C has received all mrsid0 , . . . ,mrsidn , she can
decode them for the answer by a simple XOR

asid ←
⊕
id∈ID

mrsidid

where asid = DB[ksid] as a result.

Once the session is over, all parties increase sid by 1:
sid← sid+ 1.

5.5 Query Phase

In this section, we will expand on the special case in Sec-
tion 5.4 to describe the full Query phase. The Query
phase can be repeated for every new query keyword ksid.
The Query session starts at sid = 1 and increases by one
for every new Query session. Below, we follow Figure 4
to describe step 6○ - 9○. We refer to step 7○* - 9○* from
Section 5.4.

Query Protocol for Session sid

Input

▷ DB0,M0, spk from S0

▷ DBid,Mid,mqsidid from Sid,∀id ∈ AID

▷ M0, S, spk, ssk, tok
sid, ksid from C

Output

▷ asid to C

6○ This is identical to 6○ in Section 5.4.

7○ C decides on a query keyword ksid ∈ M0 ∪ S and
generates a hybrid-PIR query for S0(

mqsid0 , sqsid
)
← Query(M0, S, spk, tok

sid, ksid)

where sqsid is the sPIR query and mqsid0 mPIR query.
Query is described in Algorithm 5 below. C sends
(mqsid0 , sqsid) to S0.

Algorithm 5 Query Generation

1: procedure Query(M0, S, spk, tok, k)
2: mq0 ←MQuery (M0, tok, k)
3: sq←⊥ ▷ initialize to null value
4: if S ̸= ϕ then
5: if k ∈ S then
6: sq← SQuery(spk, index(k, S), |S|+ 1)
7: else
8: sq← SQuery(spk, |S| , |S|+ 1)
9: end if

10: end if
11: return (mq0, sq) ▷ note that sq =⊥ if S = ϕ
12: end procedure

8○ S0 receives the query (mqsid0 , sqsid) from C and gener-
ates the reply

rsid ← Reply(M0,DB0,mqsid0 , sqsid)

where rsid is the resulting hybrid PIR reply. Reply
is described in Algorithm 6 below. S0 returns rsid to
C.

Algorithm 6 Reply Generation

1: procedure Reply(M0,DB0,mq0, sq)
2: mr0 ←MReply(M0,DB0,mq0)
3: S ← Keys(DB0) \M0

4: if S ̸= ϕ then
5: V ← (DB0[k])k∈S

6: return r = SReply(spk, V ∥mr0, sq)
7: else
8: return r = mr0
9: end if

10: end procedure

9○ C receives the reply rsid from S0 and decodes it using
the same query keyword ksid from step 7○ to obtain
the answer

asid ← Decode(S, ssk, ksid,
(
mrsidid

)
id∈AID

, rsid)

Decode is described in Algorithm 7 below.

Algorithm 7 Decoding

1: procedure Decode(S, ssk, k,
(
mrsidid

)
id∈AID

, r)
2: if k ∈ S then
3: return a = SDecode(ssk, r)
4: else
5: if S ̸= ϕ then
6: mr0 ← SDecode(ssk, r)
7: else
8: mr0 ← r
9: end if

10: return a =
⊕

id∈ID mrid
11: end if
12: end procedure

For privacy, it is important that regardless of whether
ksid ∈ S, mrsid1 , . . . ,mrsidn must be downloaded by C
from S1, . . . ,Sn, respectively. If this step is skipped,
then S1, . . . ,Sn can infer that ksid ∈ S.

Once the session is over, all parties increase sid by 1:
sid← sid+ 1.

9



Considerations for sPIR schemes with a high pro-
processing cost Many sPIR schemes require the server
to preprocess the database before the reply generation
step to reduce the online cost. As it pertains to SAPIR,
S0 can compute V ← (DB0[k])k∈S in Algorithm 6 and
preprocess V during the Synchronization phase. Later,
when mr0 is generated, S0 can preprocess mr0 online and
append it to the processed V .
While this is doable in many schemes like SealPIR [4],

it is not the case for others. FrodoPIR [10], for exam-
ple, requires the client to download a large matrix from
the server during the preprocessing phase that is a prod-
uct between the database matrix and a global pseudo-
random matrix. It is not obvious how this matrix can
be efficiently updated online for every new mr0. To
address this issue, we can modify our Query phase so
that S0 independently processes mPIR and sPIR queries.
That is, instead of appending mr0 to V in Algorithm 6,
S0 can send both mr0 = MReply(M0,DB0,mq0) and
r = SReply(spk, V, sq) to the client. This increases the
client’s download cost by |mr0|, which is equivalent to the
size of one database value.

5.6 Catalog Intersection

The Catalog Intersection protocol is a part of the Syn-
chronization phase in Section 5.2 to reduce the communi-
cation cost of transferring catalog intersections. The idea
is as follows: given that C has already obtained Cat0 from
S0, then Cat′id = Catid ∩ Cat0 can be compressed with a
hash function (we call these hashes digests) for transport
by Si and decompressed by C. We describe the Catalog
Intersection protocol below.

Catalog Intersection Protocol

Input

▷ Catid from Sid,∀id ∈ AID

▷ Cat0 from C

Output

▷
(
Cat′id

)
AID

, (Digid)AID to C

1○ For each id ∈ AID, Sid generates digests from Catid

Digid ← {G((k, h)) | ∀(k, h) ∈ Catid}

where G(·) is a universal hash function with short
hash values, chosen randomly from the universal
family by C. Sid sends the digest set Digid to C.

2○ C downloads all the digest sets (Digid)AID from
S1, . . . ,Sn. For each id ∈ AID, C remaps digest sets
into catalog intersections as follows:

Cat′id ← Map{(k, h) ∈ Cat0 | G((k, h)) ∈ Digid}

5.7 Keyword Synchronization

The Keyword Synchronization protocol is a part of the
Synchronization phase in Section 5.2 to reduce the com-
munication cost of transferring mPIR keyword sets Mid

from C to Sid. The idea is to map each keyword in Mid to
its corresponding index in Digid for transport, which can
then be remapped to Mid on the server side. We describe
the Keyword Synchronization protocol below.

Keyword Synchronization Protocol

Input

▷ Digid,Catid from Sid,∀id ∈ ID

▷ (Mid)ID , (Digid)ID from C

Output

▷ Mid to Sid,∀id ∈ ID

1○ For all id ∈ ID, C converts Mid to the set of indices
corresponding to the ordering of Keys(Cat0) for the
main server and of Digid for the assisting servers:

I0 ← KeyToIndex0 (M0,Cat0)

∀id ∈ AID : Iid ← KeyToIndexid (Mid,Digid,Catid)

KeyToIndex is described in Algorithm 8 below. C
then sends Iid to Sid. Iid is a small, indexed repre-
sentation of Mid which can be transported at a low
communication cost.

Algorithm 8 Key-to-Index Mapping

1: procedure KeyToIndex0(M0,Cat0)
2: I0 ← {index(k,Keys(Cat0)) | ∀k ∈M0}
3: return I0
4: end procedure
5: procedure KeyToIndexid(Mid,Digid,Catid)
6: D ← {G((k, h)) | ∀k ∈Mid, h = Catid[k]}
7: Iid ← {index(d,Digid) | ∀d ∈ D}
8: return Iid
9: end procedure

2○ For each id ∈ ID, Sid receives Iid and remaps it back
to Mid

M0 ← IndexToKey0 (I0,Cat0)

∀id ∈ AID : Mid ← IndexToKeyid (Iid,Digid,Catid)

IndexToKey is described in Algorithm 9 below.
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Algorithm 9 Index-to-Key Mapping

1: procedure IndexToKey0(I0,Cat0)
2: M0 ← {k ∈ Keys(Cat0) | index(k,Keys(Cat0)) ∈ I0}
3: return M0

4: end procedure
5: procedure IndexToKeyid(Iid,Digid,Catid)
6: D ← {d ∈ Digid | index(d,Digid) ∈ Iid}
7: Mid ← {k ∈ Keys(Catid) | G((k,Catid[k])) ∈ D}
8: return Mid

9: end procedure

5.8 Optimization Techniques

5.8.1 Keyword Compression

When query keywords in the databases are long, they can
result in a high communication cost during the Synchro-
nization phase since all the keywords in the catalogs must
be sent to the client. This cost can be reduced by rep-
resenting each query keyword k by its hash H̃(k), where
H̃(·) is a universal hash function with short hash values,
chosen randomly from the universal family by the client.
When querying keyword k, the client computes H̃(k) and
uses it as a keyword to query instead.

However, when the keyword space is large, this tech-
nique can introduce a high hash-collision rate, which can
result in a false-positive query when H̃(k) replaces k. Our
workaround for this problem is to make the servers mod-
ify the databases by prepending the keyword to the value
so that a false positive can be detected at the end of the
protocol. That is,

D̃Bid := Map {(k, ṽ) | ∀(k, v) ∈ DBid, ṽ = k∥v}

When the client receives the answer ṽ, she can check
whether the obtained keyword from the answer is the
same as the query keyword.

5.8.2 Synchronization Proxy

When the cost of the Synchronization phase is high com-
pared to the total cost of all Query sessions, Synchroniza-
tion can become a bottleneck for the client. For instance,
in the DNS setting, where DNS databases get updated
quickly, the client may need to re-Synchronize with the
servers whenever a change occurs. Here, we observe that
the Synchronization phase can be done by a proxy server
for the client since Synchronization does not involve pri-
vate information. In fact, the proxy server can Synchro-
nize once for multiple clients as long as the clients query
the same set of servers. We detail this technique below.

1. Proxy server P undergoes the Synchronization phase
with SAPIR servers S0, . . . , Sn and obtains catalog
tags M0, . . . ,Mn,
S.

2. P compresses Mid,∀id ∈ AID:

M̃id ← {index(k,M0) | k ∈Mid}

3. SAPIR clients download M0, M̃1, . . . , M̃n, S from P
and decompress M̃id,∀id ∈ AID:

Mid ←
{
k ∈M0 | index(k,M0) ∈ M̃id

}
4. The SAPIR clients independently continue the Setup

and Query phase with S0, . . . , Sn.

Compared with the standard Synchronization phase,
downloading the compressed tags M0, M̃1, . . . , M̃n, S is
far more efficient, especially because M̃1, . . . , M̃n are sets
of indices. Moreover, when the number of clients is large,
this technique can reduce the SAPIR server-side load in
Synchronization and preprocessing databases for Query.

5.9 Implementation

SAPIR is implemented in Rust, where keyword compres-
sion in Section 5.8.1 is implemented by default. The
universal hash functions H,G, and H̃ are instantiated
with Google’s CityHash (https://github.com/google/
cityhash), each seeded with a random number by the
client. The variable-length PRG is instantiated with the
stream cipher ChaCha12 [5], which provides 256-bit se-
curity. sPIR is instantiated with SealPIR using SEAL
v3.2.0 (https://github.com/ndokmai/sealpir-rust).
We modify the SealPIR library to permit extra opera-
tions to update the database online. By default, this
library version sets the degree of ciphertext polynomial
to 2,048 and the size of the coefficients to 54 bits, which
provides 128-bit security [6].
The open-source implementation of SAPIR is available

at https://github.com/ndokmai/assisted-pir.

6 Privacy-Preserving DNS

In this section, we demonstrate the application of SAPIR
to achieve privacy-preserving DNS for NS (Name Server)
records among DNS cache servers. The applicability of
SAPIR is not limited to NS records, but NS records pro-
vide a workable example because they are relatively sta-
ble with the time-to-live (TTL) of 2 days based on the
ICANN’s .com zone file, which we use as a reference to
simulate data. (For other types of DNS records with short
TTLs, we suggest the Synchronization Proxy technique in
Section 5.8.2.)
We assume a hypothetical setting where three DNS

cache servers keep a local cache table for NS records and
build a SAPIR database out of this table. The keywords
are the domain names, and the values are the NS records.
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If multiple records are linked to the same domain name,
then all the records are concatenated to provide one long
database value. The cache table is assumed to be much
smaller than the number of available records for efficiency.
The SAPIR client chooses one DNS cache server as the
main server and the other two as assisting servers. The
collusion threshold is assumed to be t = 2.

To evaluate this application, we design the experiments
on two scales: local and regional. The local experiment
represents DNS servers whose cache tables result from
local traffics in a city, e.g., Chicago. The regional exper-
iment represents DNS servers whose cache tables result
from regional traffics, e.g., the entire USA. The DNS pop-
ularity distribution is assumed to follow a Zifian distri-
bution with an optimal popularity index of s = 1.0. The
database values are assumed to be 1,024-byte long to con-
tain multiple NS records per domain. The database size
is 213 ∼ 8K pairs for the local experiment and 216 ∼ 66K
pairs for the regional experiment. The details of how we
justify these parameters and simulate the databases are
in Appendix E.

We summarize all the experiment parameters in Table
1 and 2 below.

Parameters Values

number of servers 3
collusion threshold, t 2

Zipfian popularity index, s 1.0
value length (bytes) 1,024
security parameter 128

SealPIR Parameters

log(plaintext modulus), d = 1 14
log(plaintext modulus), d = 2 16

Table 1: Shared parameters between local and regional
experiments. d indicates the query dimensionality of
SealPIR.

6.1 Evaluation Settings

To evaluate the application, we use the implementation
specified in Section 5.9. The computing environment is a
desktop computer with an Intel i9-10900 CPU and 64 GB
of RAM running Ubuntu 20.04. The client and servers
are simulated locally in the same computing environment,
where each party occupies one CPU core; the remote com-
munication is via TCP loopback connections.

We measure the performance in communication and
computational costs for one PIR query. The communi-
cation cost is measured separately in the amount of data
uploaded and downloaded by the client in bytes. The

Parameters Local Regional

|DB| 213 ∼ 8K 216 ∼ 66K
hash length (bits) 43 54

Statistics

% of sPIR 7.3 3.9
prob. of failure ⪅ 1.3× 10−5 ⪅ 1.2× 10−5

Table 2: Specific parameters and statistics for local and
regional experiments (K=103). “|DB|” indicates the num-
ber of keyword-value pairs in each cache table. “% of
sPIR” indicates the percentage of sPIR items in the main
cache table, i.e., |S| / |DB0| × 100%. “hash length” in-
dicates the length of hash functions (H, H̃,G) in bits.
“prob. of failure” indicates the probability of failure of
the scheme for each unique query.

computational cost is measured in the CPU time each
party spends in milli-seconds.

The application is evaluated in two experiments: re-
gional and local. In each experiment, a comparison is
made between the following schemes:

1. Baseline SealPIR with query dimensionality d = 2,
i.e., recursive PIR

2. SAPIR with d = 1 SealPIR

3. SAPIR with d = 2 SealPIR

The Baseline d = 1 SealPIR scheme is omitted because
it repeatedly crashed during the regional experiment in
our trial runs regardless of parameters. We suspect this is
due to a limitation in the SealPIR library, which cannot
handle databases larger than a certain size for d = 1.
In the Baseline SealPIR experiment, the keyword com-

pression technique is applied to the list of domain names
in the cache table. That is, the server computes the
hashes of all keywords and sends them to the client as
the catalog. The client translates keywords into indices
by finding the index position of their hashes in the cata-
log.

In SAPIR, the keyword compression technique is ap-
plied per the description in Section 5.8.1.

SealPIR is configured by default to provide 128-bit se-
curity (see Section 5.9). The log of plaintext modulus
in Table 1 determines the noise budget in the underly-
ing SEAL fully homomorphic encryption scheme (where
higher means more noise budget and higher communica-
tion cost); this is adjusted in our trial runs to ensure the
experiments do not fail from the noise after several runs.

The sPIR percentage statistics in Table 2 are calculated
from the simulated databases. The probability of failure
is calculated from the hash length and the size of the
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Experiment Phase Communication
SealPIR,
d = 2

SAPIR,
d = 1

SAPIR,
d = 2

S0 S0 S1 + S2 S0 S1 + S2

Local
(|DB| = 213)

Synchronization Download 44K 95K 89K 95K 89K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 769 19K 769 19K

Query
(per session)

Upload 64K 34K - 65K -
Download 257K 32K 2K 257K 2K

Regional
(|DB| = 216)

Synchronization Download 352K 799K 704K 799K 704K

Setup
Upload (spk) 3.5M 3.5M - 3.5M -

Upload (others) - 3.1K 154K 3.1K 154K

Query
(per session)

Upload 64K 40K - 72K -
Download 257K 32K 2K 257K 2K

Table 3: Client’s communication costs for one query in the local and regional experiment (in bytes, K=210, M=220).
“S1 + S2” indicates the client’s combined communication costs with Server 1 and 2. The upload costs during Setup
are listed separately between the SEAL public key and other public parameters.

Experiment Phase
SealPIR,
d = 2

SAPIR,
d = 1

SAPIR,
d = 2

C S0 C S0 S1 or S2 C S0 S1 or S2

Local
(|DB| = 213)

Synchronization < 1 2 20 3 3 20 3 3

Setup 107 150 98 89 1 93 86 1

Query (per session) 8 90 1 76 < 1 8 23 < 1

Regional
(|DB| = 216)

Synchronization 7 31 184 35 42 184 35 42

Setup 106 653 221 127 16 214 119 16

Query (per session) 8 414 9 323 4 16 48 4

Table 4: Computational costs in CPU time for one query in the local and regional experiment (in milli-seconds).
“S0” indicates the only server in SealPIR and the main server in SAPIR. “S1 or S2” indicates the computational
cost on S1 or S2 in SAPIR.

union of all the simulated databases following Theorem 3
in Appendix D,

6.2 Results

The results for the communication costs of the experi-
ments are shown in Table 3 and computational costs in
Table 4. We refer to the Baseline d = 2 SealPIR scheme
as the baseline scheme for comparison.

Communication costs During Synchronization and
Setup, in the local experiment, the SAPIR client trans-
mits 6.0x ((95K + 89K + 769 + 19K)/44K) the amount
of data of the baseline client; in the regional experiment,

the SAPIR client transmits 4.7x ((799K+704K+3.1K+
154K)/352K) the amount of data of the baseline client.
This calculation does not include the cost of uploading
the long-term SEAL public key (3.5M), which can be mit-
igated through public-key infrastructure.

During Query, in the local experiment, the d = 1
and d = 2 SAPIR client transmits 0.2x ((34K + 32K +
2K)/(64K+257K)) and 1.0x ((65K+257K+2K)/(64K+
257K)), respectively, the amount of data per query of
the baseline client; in the regional experiment, the d = 1
and d = 2 SAPIR client transmits 0.2x ((40K + 32K +
2K)/(64K+257K)) and 1.0x ((72K+257K+2K)/(64K+
257K)), respectively, the amount of data per query of the
baseline client. The latency between the client and Server
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1 and 2 does not affect the online cost because the client
can download replies from them offline before the query
keyword is determined.

Overall, it would take d = 1 SAPIR client only one
Query session to gain a communication cost advantage
over the baseline client, whereas d = 2 SAPIR client will
always cost more than the baseline client in communica-
tion.

Computational costs During Synchronization and
Setup, our general observation is that it costs the SAPIR
client more than the baseline client since the SAPIR client
needs to compute catalog intersection and catalog tag-
ging. However, since this one-time cost is less than 0.5
seconds, we consider this negligible. It costs the SAPIR
main server less than the baseline server since the SAPIR
main server needs to preprocess a smaller database for
sPIR, but the overall cost is well below one second. The
costs for the Server 1 and 2 are negligible (less than 60
milliseconds) compared to other parties.

During Query, the client’s costs to generate a query and
decode a reply are negligible (less than 20 milliseconds)
across all the experiments. Server 1 and 2’s cost to gen-
erate a reply is also negligible (less than 5 milliseconds).
In the local experiment, it costs d = 1 and d = 2 SAPIR
main server 0.85x (76/90) and 0.26x (23/90), respectively,
CPU time of the baseline server per query. In the regional
experiment, it costs d = 1 and d = 2 SAPIR main server
0.78x (323/414) and 0.12x (48/414), respectively, CPU of
the baseline server per query.

6.3 Discussion

In comparison to the baseline SealPIR, SAPIR offers com-
petitive options between reducing communication costs
and computational costs. d = 1 SAPIR reduces a signif-
icant communication cost per query (0.2x) for the client
and reduces a minor computational cost per query (0.85x
for local and 0.78x for regional) for the main server. d = 2
SAPIR reduces no communication costs per query for the
client but reduces a significant computational cost per
query (0.26x for local and 0.12x for regional) for the main
server. The cost of operating an assisting server is small,
and introducing an extra assisting server only increases
minimal offline costs for the client. This makes it feasible
for each assisting server to serve a large number of users
in the network.

Although our experiments are based on a specific Zip-
fian assumption of popularity distribution, we note that
the statistics that determines the costs is the percentage
of sPIR items in the main database (as shown in Table
2), which directly affects the main server costs. Different
distributions might increase or decrease this percentage.
When it is at 100%, the scheme naturally falls back to

the baseline sPIR. Thus, we conclude that SAPIR always
improves the cost per query over the baseline sPIR after
the initial one-time cost.

7 Conclusion

In this work, we introduce Assisted PIR, a generaliza-
tion to multi-server PIR that allows for keyword-value
databases and database inconsistencies. We present the
construction of Synchronized APIR, a hybrid APIR pro-
tocol combining a black-box single-server PIR scheme and
a non-black-box multi-server PIR scheme, taking advan-
tage of the overlaps between inconsistent databases to
reduce costs. Since Synchronized APIR relies on a black-
box sPIR scheme, advances in sPIR research also improve
Synchronized APIR.

We apply Synchronized APIR to demonstrate a proof-
of-concept privacy-preserving DNS application, specifi-
cally to query NS records among DNS cache servers.
Then, we evaluate the application with simulated datasets
based on realistic assumptions about DNS queries and
cache behavior. The results show that after the higher ini-
tial one-time cost, privacy-preserving DNS via Synchro-
nized APIR outperforms the baseline single-server PIR in
communication or computational costs.
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A sPIR Correctness and Privacy
Definition

Definition A.1 (sPIR Correctness). Following Defini-
tion 3.1 for scheme ΠsPIR. Suppose an indexed database
V = (v0, . . . , vm−1) for all m ≥ 1, i ∈ {0, . . . ,m− 1}, and

• (spk, ssk)← SGen(1λ)

• sq← SQuery(spk, i,m)

• sr← SReply(spk, V, sq)

• sa← SDecode(ssk, sr)

Then, ΠsPIR is correct if sa = vi with a non-zero proba-
bility.

Definition A.2 (λ-sPIR Privacy). Define an sPIR pri-
vacy experiment PrivSA,ΠsPIR(1λ) for sPIR scheme ΠsPIR

according to Definition 3.1 and adversary A below.

1. A chooses and outputs m.

2. The public-secret key pair is generated by
(spk, ssk) ← SGen(1λ). The public key spk is
given to A.

3. A is given oracle access to SQuery(spk, ·).

4. A chooses i∗0, i
∗
1 ∈ {0, . . . ,m− 1} and outputs

(i∗0, i
∗
1). A uniformly random bit is chosen: b ←

$ {0, 1}. A query sq∗ ← SQuery(spk, i∗b) is gener-
ated and sq∗ is given to A.

5. A is given more oracle access to SQuery(spk, ·).

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠsPIR is λ-sPIR privacy-preserving if for all PPT adver-
sary A, there exists a negligible function negl such that

Pr
[
PrivSA,ΠsPIR(1λ) = 1

]
≤ 1

2
+ negl(λ)

B CGKS Tutorial

We provide a 3-server tutorial of CGKS [7] as follows.
Suppose there are three database-operating servers, S1,
S2, S3, each holding an identical, consistent indexed
database V = (a, b, c, d, f) ∈ GF(2)ℓ·5, where each of the
5 database values is of length ℓ. Suppose client C wishes
to retrieve the item at 0-based index 2, i.e., “c”, then she
must generate three queries, one for each server, following
the steps below.

1. Sample q1 ←$GF(2)5 and q2 ←$GF(2)5 uniformly at
random. Suppose this results in q1 = (0, 0, 1, 1, 0)
and q2 = (0, 1, 0, 0, 0).

2. Compute q′3 ← q1 ⊕ q2 to obtain q′3 = (0, 1, 1, 1, 0).

3. For target index i, encode it as the standard-basis
vector ei+1. Here, index 2 is encoded as e3 =
(0, 0, 1, 0, 0)

4. Compute q3 ← q′3 ⊕ e3. This results in q3 =
(0, 1, 0, 1, 0).

Next, C sends each query qj to server Sj , who then
generates reply rj by computing a dot product rj ← qj ·V
in GF(2)ℓ. As a result, we have r1 = c ⊕ d, r2 = b, and
r3 = b⊕d. Sj returns reply rj to C. Finally, C decodes the
replies to obtain the answer by computing r1⊕r2⊕r3 = c.

The CGKS scheme generalizes to any number of servers
with databases of any size. However, the scheme as stated
above is only non-trivial (i.e., communication cost lower
than downloading the entire database) if the database
is not exponentially lop-sided (i.e., if the length of each
record is super-logarithmic in the number of records).
Otherwise, the query size is asymptotically equivalent to
the database size.

CGKS scheme is (n− 1)-collusion-resistant where n is
the number of servers. This is because any n− 1 queries
are statistically indistinguishable from a uniformly ran-
dom string of the same length.

C Concept of Synchronized APIR

Let us consider an example of keyword-value databases
in Figure 5 step 1○, and suppose that a PIR server inde-
pendently operates each database. A client with a given
query keyword k wishes to retrieve the value stored in
database DB0 associated with keyword k, while hiding k
from an adversary controlling some of the servers. How
could this be achieved? In the traditional mPIR setting,
databases are required to be consistent for correctness.
However, because this is not the case in Figure 5 step 1○,
mPIR is not immediately achievable. Instead, the client
must resort to the costly sPIR on DB0 and completely
disregard DB1,DB2, and DB3.
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Figure 5: Concept of Synchronized APIR. A conceptual demonstration of how Synchronized APIR performs hybrid
PIR on inconsistent databases when the collusion threshold is t = 2.

To circumvent this issue, Synchronized APIR uses some
of the keyword-value pairs in DB1,DB2,DB3 that are con-
sistent with DB0 to “assist” in reducing the cost of sPIR
on DB0 via a hybrid PIR. We will walk through the ex-
ample in Figure 5 below to demonstrate this concept.

Step 1○: For this demonstration, we assume that the
client can fully observe DB0, . . . ,DB3 (how exactly this
is done is explained in Section 5). The client first no-
tices that there are keyword-value pairs in DB1,DB2,DB3

inconsistent with DB0, indicated in light grey. The
client prefers the “correct” versions of the keyword-value
pairs according to DB0, so the inconsistent pairs in
DB1,DB2,DB3 are disregarded.

Step 2○: To lower the cost, the participating parties
want to apply traditional mPIR to “assist” wherever pos-
sible. This requires that the client first determines how
many servers can collude without leaking k, i.e., the t col-
lusion threshold. Suppose the client decides that t = 2;
that is, no more than two servers can collude. Threshold
t requires at least t + 1 copies of the same database val-
ues across the databases, so the client must identify the
keyword-value pairs with at least 3 duplicates to pass the
threshold requirement.
(a, 100), (b, 200), (c, 300), and (d, 400) have

at least 3 copies. ((a, 100) has 4, so the one in DB3 is
redundant and disregarded). Neither of (e, 500), (f,
600), or (g, 700) meets the requirement, so they are
disregarded. The pairs that do not pass the threshold are
indicated in dark grey.

Step 3○: The client splits the pairs that pass the
threshold from those that do not. This reveals, on the
top rows in the green box, the pairs which can be re-
trieved with mPIR, and, on the remaining bottom rows
in the purple box, the pairs which can only be retrieved
with sPIR.

Step 4○: The client and servers engage in a hybrid
PIR protocol. The client makes separate PIR queries for
mPIR and sPIR from key k. All the servers process the
mPIR queries, while only the server operating DB0 pro-
cesses the sPIR query.

There are some important details we have omitted here
for conceptual simplicity. In Section 5, we expand on the

concept of Synchronized APIR to answer these questions:

• How can the client “synchronize” the databases ac-
cording to step 1○ - 3○ without needing to download
them in full and at a low communication cost?

• How can the client construct a coherent mPIR
query in Synchronized APIR when the databases are
keyword-value and the mPIR duplicates are scat-
tered across multiple databases?

• How can the communication cost of query and reply
be optimized?

D Analysis

This section provides theorems for Synchronized APIR
correctness and privacy. In addition, we provide an anal-
ysis for a loose upper bound for the probability of failure
of Synchronized APIR in the event that there are hash
collisions.

D.1 Correctness

We will first prove the correctness of Synchronized APIR
Theorem 1 by assuming that H,G, and H̃ are perfect
hash functions, i.e., they produce no hash collisions in the
scheme. Then, we provide an analysis for the probability
of no hash collisions if H,G, and H̃ are, in fact, universal
hash functions in Theorem 2. Since Synchronized APIR
may fail only when there is a hash collision, the probabil-
ity of no hash collisions implies an upper bound for the
probability of failure of Synchronized APIR. We prove
this in Theorem 3.

Theorem 1 (Synchronized APIR Correctness With Per-
fect Hashing). Suppose an sPIR-correct scheme ΠsPIR and
that the perfect hash functions H,G, and H̃. Following
Definition 4.2, Synchronized APIR scheme ΠSAPIR is cor-
rect for any ID = {0, . . . , n} and AID = {1, . . . , n}, collu-
sion threshold 1 ≤ t ≤ n, databases DBid for all id ∈ ID,
l Query sessions, and ksid ∈ Keys(DB0) for all sid ∈ [l].
That is, if
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• Synchronization protocol takes inputs (DBid)ID , t
and outputs (Catid)ID ,

(
Cat′id

)
AID

, (Mid)ID , S

• Setup protocol takes inputs l, (Mid)AID and outputs
spk, ssk,(
mqsidid

)
sid∈[l],id∈AID

,
(
toksid

)
[l]

• For all sid ∈ [l], Query proto-
col for session sid takes inputs
(DBid)ID , (Mid)ID , S,

(
mqsidid

)
id∈AID

, spk, ssk, toksid, ksid

and outputs asid

then for all sid ∈ [l],DB0[k
sid] = asid.

Proof. First, by assuming the perfect hash functions, we
can claim that

• H̃(k) perfectly represents keyword k, so k can be ef-
fectively replaced with H̃(k).

• H(v) perfectly represents value v, so catalog Catid
perfectly represents database DBid. Therefore, tag-
ging the catalogs has the same effect as tagging the
databases directly.

• G((k, h)) perfectly represents (k, h), so the Catalog
Intersection protocol and the Keyword Synchroniza-
tion protocol are trivially correct.

Next, we consider the properties of the tags (Mid)ID, S.
By construction of Tag (Algorithm 1), for each keyword
k ∈ Keys(DB0),

1. either k ∈M0 or k ∈ S but not both

2. if k ∈ M0 and k ∈ Mid for any id ∈ AID, then
DB0[k] = DBid[k]

3.
⋃

k∈M0

⋃
id∈Ck

{(id, k)} =
⋃

id∈AID

⋃
k∈Mid

{(id, k)}

Property 3. is a consequence of the fact that by
construction, Mid = {k ∈M0 | id ∈ Ck} and Ck =
{id ∈ AID | k ∈Mid}.
If ksid ∈ S, then by construction of Query (Algorithm

5), sqsid targets item index(ksid, S) in the filtered database
(DB0[k])k∈S in Reply (Algorithm 6), which is exactly

DB0[k
sid]. By sPIR correctness of ΠsPIR, we conclude that

asid = DB0[k
sid].

If ksid ∈ M0, we consider how the mPIR token toksid

and queries mqsidid are generated. Consider each bit of

toksid by construction in MToken (Algorithm 2): there
exists k ∈M0 such that

toksid[index(k,M0)] =
⊕
id∈Ck

mqsidid [index(k,Mid)]

where Ck is a set of id’s such that DB0[k] = DBid[k] by
property (2) stated above. This implies

toksid[index(k,M0)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DB0[k]

=
⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

And therefore, by the equation above and property (3),

toksid · (DB0[k])k∈M0
=

⊕
k∈M0

toksid[index(k,M0)] · DB0[k]

=
⊕
k∈M0

⊕
id∈Ck

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

⊕
k∈Mid

mqsidid [index(k,Mid)] · DBid[k]

=
⊕

id∈AID

mqsidid · (DBid[k])k∈Mid

Next, because

mqsid0 [index(ksid,M0)] = toksid[index(ksid,M0)]⊕ 1

by construction of MQuery (Algorithm 4), we have⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

=
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= toksid · (DB0[k])k∈M0
⊕ (1 · DB0[k

sid])⊕
id∈AID

mqsidid · (DBid[k])k∈Mid

= DB0[k
sid]

Thus proving the correctness of the mPIR-only Query
protocol.

To show that the general case in the Query protocol is
correct, we observe that when ksid ∈M0, sq

sid targets item
|S| by the construction of Query (Algorithm 5). That is,
sqsid targets targets mrsid0 by construction of Reply (Algo-
rithm 6). By sPIR correctness of ΠsPIR, we conclude that
in Decode (Algorithm 7), SDecode(ssk, rsid) = mrsid0 .
And finally,

asid =
⊕
id∈ID

mrsidid =
⊕
id∈ID

mqsidid · (DBid[k])k∈Mid

= DB0[k
sid]

by the correctness of the mPIR-only Query protocol.

Next, we analyze the probability of no hash collision
when the universal hash functions are used in Synchro-
nized APIR.
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Theorem 2 (Synchronized APIR Hash Non-collision).
Let H,G, H̃ be random universal hash functions from uni-
versal families whose hash values are of length lH, lG, lH̃,
respectively. For any ID = {0, . . . , n} and databases
DBid, id ∈ ID, let U :=

⋃
id∈ID DBid. We define the fol-

lowing non-collision events:

• E1(U) :=

∀k, k′ ∈ Keys(U) : k ̸= k′ =⇒ H̃(k) ̸= H̃(k′)

(For all database keywords, no two distinct keywords
result in a hash collision.)

• E2(U) :=

∀v, v′ ∈ Values(U) : v ̸= v′ =⇒ H(v) ̸= H(v′)

(For all database values, no two distinct values result
in a hash collision.)

• E3(U) :=

∀(k, v), (k′, v′) ∈ U : (k, v) ̸= (k′, v′) =⇒
G((H̃(k),H(v))) ̸= G((H̃(k′),H(v′)))

(For all database keyword-value pairs, no two dis-
tinct pairs result in a digest collision.)

Define p(m, d) := e−
m(m−1)

2d . Then,

Pr[E1(U), E2(U), E3(U)]

≈ p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

Proof. First, we consider E1(U) and E2(U), which de-
scribe the “birthday” problem where no two individuals
share the same birthday. For E1(U) the number of birth-
days is 2lH̃ and the number of individuals is |Keys(U)|;
likewise for E2(U), the number of birthdays is 2lH and the
number of individuals is |Values(U)|. By [21], we have

Pr[E1(U)] ≈ p(|Keys(U)| , 2lH̃)

Pr[E2(U)] ≈ p(|Values(U)| , 2lH)
Given that E1(U) and E2(U) have occurred, E3(U) also

describes the same birthday problem with 2lG birthdays
and |U | individuals. That is,

Pr[E3(U) | E1(U), E2(U)] ≈ p(|U | , 2lG)

Since E1(U) and E2(U) are independent events, we
have

Pr[E1(U), E2(U), E3(U)]

= Pr[E3(U) | E1(U), E2(U)] · Pr[E1(U), E2(U)]

= Pr[E3(U) | E1(U), E2(U)] · Pr[E1(U)] Pr[E2(U)]

≈ p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

Finally, we prove the upper bound of the probability of
failure of Synchronized APIR with universal hash func-
tions.

Theorem 3 (Synchronized APIR Correctness). Suppose
an sPIR-correct scheme ΠsPIR and H,G, H̃ are random uni-
versal hash functions from universal families whose hash
values are of length lH, lG, lH̃, respectively. Following Def-
inition 4.2, for any ID = {0, . . . , n} and AID = {1, . . . , n},
collusion threshold 1 ≤ t ≤ n, databases DBid for all
id ∈ ID, l Query sessions, and ksid ∈ Keys(DB0) for all
sid ∈ [l], if

• Synchronization protocol takes inputs (DBid)ID , t
and outputs (Catid)ID ,

(
Cat′id

)
AID

, (Mid)ID , S

• Setup protocol takes inputs l, (Mid)AID and outputs
spk, ssk,(
mqsidid

)
sid∈[l],id∈AID

,
(
toksid

)
[l]

• For all sid ∈ [l], Query proto-
col for session sid takes inputs
(DBid)ID , (Mid)ID , S,

(
mqsidid

)
id∈AID

, spk, ssk, toksid, ksid

and outputs asid

Then, for all sid ∈ [l],DB0[k
sid] = asid, i.e. Synchronized

APIR scheme ΠSAPIR is correct, with probability

Pr[ΠSAPIR is correct] ⪆

p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

Likewise,

Pr[ΠSAPIR fails] ⪅

1− p(|U | , 2lG) · p(|Keys(U)| , 2lH̃) · p(|Values(U)| , 2lH)

where U :=
⋃

id∈ID DBid and p(m, d) := e−
m(m−1)

2d .

Proof. By Theorem 1 and Theorem 2, we know that if
events E1(U), E2(U), E3(U) take place, then Theorem 3
is true with probability 1. That is,

Pr[ΠSAPIR is correct | E1(U), E2(U), E3(U)] = 1

Therefore,

Pr[ΠSAPIR is correct]

≥ Pr[ΠSAPIR is correct | E1(U), E2(U), E3(U)]

· Pr[E1(U), E2(U), E3(U)]

= Pr[E1(U), E2(U), E3(U)]

And so,

Pr[ΠSAPIR fails] ≤ 1− Pr[E1(U), E2(U), E3(U)]
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We remark that the probability of failure is not per
query but per query keyword; that is, the same keyword
either succeeds or fails every time from hash collisions.
This implies that the amount of failure does not scale with
query traffic loads but with the total number of query
keywords made.

The upper bound here can be improved because
E1(U), E2(U), E3(U) are not necessary conditions for the
correctness of Synchronized APIR. After all, certain hash
collisions do not affect the correctness of the scheme. For
example, in the catalogs, it is not an issue if v ̸= v′ but
H(v) = H(v′) as long as pairs (k,H(v)) and (k′,H(v′)) are
in the catalogs and k ̸= k′.

D.2 Privacy

To prove the privacy of Synchronized APIR, we first pro-
vide the privacy definition of Synchronized APIR in Def-
inition D.1, which directly corresponds to the privacy
definition of APIR in Definition 4.3. Then, we show
that mPIR queries are pseudorandom given the variable-
length PRG even if some PRG seeds are predetermined in
Theorem 4. Leveraging this fact and the privacy of sPIR
scheme, we show that Synchronized APIR is privacy-
preserving in Theorem 5.

First, let us provide the privacy definition of Synchro-
nized APIR below. Intuitively, Synchronized APIR is
privacy-preserving if the attacker cannot distinguish be-
tween queries generated by keyword k0 and k1 during one
session, even if the attacker has oracle access to all other
query sessions and is provided with some of the PRG
seeds used to generate the mPIR queries.

Definition D.1 ((λ, t)-Synchronized APIR Privacy).
Following Definition 4.3, we define the privacy experiment
PrivAA,ΠSAPIR,t(1

λ) for the Synchronized APIR scheme
given a λ-sPIR privacy-preserving scheme ΠsPIR by Defi-
nition A.2 and variable-length PRG PRG(s, ℓ)→ r below.

1. A chooses the number of Query sessions l =
poly(λ), correctly formatted catalog Cat0 and di-
gests (Digid)AID, and outputs (l,Cat0, (Digid)AID). A
chooses a collusion set C ⊂ ID such that |C| ≤ t and
sends C to the oracle O.

2. The steps below are followed to generate public and
secret parameters:

(a) Synchronization: Step 2○ of Catalog Inter-
section Protocol in Section 5.6 is followed with
inputs Cat0,
(Digid)AID to produce

(
Cat′id

)
AID

. Catalogs are
tagged by

((Mid)ID , S)← Tag(Cat0,
(
Cat′id

)
AID

, t)

as per step 2○ of Synchronization Protocol in
Section 5.2.

(b) Setup: Setup Protocol in Section 5.3 is fol-
lowed with inputs (Mid)ID and l and outputs(
spk, ssk,

(
toksid

)
[l]

)
(the mq output is ig-

nored). The PRG seeds (sid)AID generated dur-
ing this step is also saved.

(spk, (Mid)ID , S) is given to A as public parameters.

3. Initialize session ID sid = 1. A is given oracle access
to Query in the following way:

(a) At sid = 1, (sid)AID is given to O, and O gives
(sid)C\{0} to A (recall that sid is a PRG seed).

(b) A chooses and outputs ksid ∈ Keys(Cat0).

(c) A query is generated by(
mqsid0 , sqsid

)
← Query(M0, S, spk, tok

sid, ksid)

following step 7○ of Query Protocol in Section
5.5.

(
mqsid0 , sqsid

)
is given to O .

(d) If 0 ∈ C, O gives
(
mqsid0 , sqsid

)
to A; otherwise,

O gives an empty value ⊥ to A.
(e) sid← sid+ 1

4. During some session sid = sid∗ ≤ l,

(a) A chooses ksid
∗

0 , ksid
∗

1 ∈ Keys(Cat0) and outputs(
ksid

∗

0 , ksid
∗

1

)
.

(b) A uniformly random bit is sampled b←$ {0, 1}.
(c) A query is generated(

mqsid
∗

0,b , sq
sid∗

b

)
← Query(M0, S, spk, tok

sid∗ , ksid
∗

b )

and
(
mqsid

∗

0,b , sq
sid∗

b

)
is given to O.

(d) If 0 ∈ C, O gives
(
mqsid

∗

0 , sqsid
∗)

toA; otherwise,
O gives an empty value ⊥ to A.

(e) sid← sid∗ + 1

5. A is given more oracle access to Query until sid = l.

6. A outputs b∗ ∈ {0, 1}. The experiment’s output is 1
if b∗ = b and 0 otherwise.

ΠSAPIR is (λ, t)-APIR privacy-preserving for all PPT
adversary A if there exists a negligible function negl such
that

Pr
[
PrivAA,ΠSAPIR,t(1

λ) = 1
]
≤ 1

2
+ negl(λ)

20



To show that Synchronized APIR satisfies this defini-
tion, we first prove that mPIR queries are pseudorandom,
even if some of the PRG seeds are predetermined. (The
predetermined seeds are indicated by set A below.) mPIR
query pseudorandomness implies that two queries gener-
ated with different keywords are computationally indis-
tinguishable from one another.

Theorem 4 (mPIR Query Pseudorandomness). Suppose
a variable-length PRG PRG(s, ℓ) → r where |s| = λ and
|r| = ℓ = poly(λ). For any ID := {0, . . . , n}, AID :=
{1, . . . , n}, 1 ≤ t ≤ n, correctly formatted catalog Cat0
and catalog intersections Cat′id, id ∈ AID, l Query sessions,
sid ∈ [l], ksid ∈ Keys(Cat0), A ⊂ AID such that |A| < t,

and (sid)A ∈ {0, 1}
λ·|A|

; define

• ∀id ∈ AID \A : sid ←$ {0, 1}
λ

• ((Mid)AID , S) = Tag(Cat0,
(
Cat′id

)
AID

, t)

• ∀id ∈ AID :
(
mqsidid

)
sid∈[l]

= PRG(sid, l · |Mid|)

• ∀sid ∈ [l] : toksid = MToken
(
(Mid)ID ,

(
mqsidid

)
AID

)
• ∀sid ∈ [l] : mqsid0 = MQuery

(
M0, tok

sid, ksid
)

• aux =
(
(Mid)ID , A, (sid)A ,

(
ksid

)
[l]

)
Then for all PPT distinguisher D, there exists a negli-

gible function negl such that∣∣∣Pr [D(r, aux) = 1]− Pr
[
D
((

mqsid0
)
[l]
, aux

)
= 1

]∣∣∣ ≤ negl(λ)

where r ←$ {0, 1}
l·|M0| is sampled uniformly at random.

Proof sketch. We will use a hybrid argument to prove the
theorem as follows.

Part 1: For any B ⊂ AID such that A ⊆ B and |B| =
t−1, we will slightly modify the definition of mqsidid above

called m̃qsidid where if id ∈ AID \ B, then for all sid ∈
[l], m̃qsidid ←$ {0, 1}

|Mid| is sampled uniformly at random;
everything else remains unchanged i.e. ∀id ∈ B, ∀sid ∈
[l] : m̃qsidid = mqsidid . This results in the new m̃qsid0 , sid ∈ [l].

We claim that these two ensembles are perfectly indis-
tinguishable

⟨r, aux⟩
p
≡ ⟨(m̃qsid0 )[l], aux⟩

by observing the construction of mqsid0 . Let

˜tok
sid

= MToken

(
(Mid)ID ,

(
m̃qsidid

)
id∈AID

)

and consider each bit of ˜tok
sid
: for each k ∈M0,

˜tok
sid
[index(k,M0)] =

⊕
id∈Ck

m̃qsidid [index(k,Mid)]

=
⊕

id∈Ck\B

m̃qsidid [index(k,Mid)]

⊕
⊕

id∈Ck∩B

m̃qsidid [index(k,Mid)]

Since |Ck| = t by construction and |B| = t− 1, we know
that Ck\B is not empty. Because for all id ∈ Ck\B, m̃qsidid
is uniformly random by definition, we conclude that⊕

id∈Ck\B m̃qsidid [index(k,Mid)] is unformly random, and so

is ˜tok
sid
[index(k,M0)] and ˜tok

sid
for all sid ∈ [l]. Thus by

construction of MQuery, m̃qsid0 is also uniformly random
for all sid ∈ [l]. This proves the perfect indistinguishabil-
ity.

Part 2: Given the variable-length PRG, we claim that
these two ensembles are computationally indistinguish-
able

⟨(m̃qsid0 )[l], aux⟩
c≡ ⟨(mqsid0 )[l], aux⟩

via a reduction proof.
Suppose there exists a PPT distinguisher D who can

distinguish between the two ensembles; we will construct
an adversary A using D as a subroutine to play the fol-
lowing game:

The challenger C is tasking A to distinguish between a
uniformly random string

r0 ←$ {0, 1}
∑

id∈AID\B l·|Mid|

where B is defined in Part 1, and a pseudorandom
string

r1 ← (PRG(sid, l · |Mid|))id∈AID\B

where each sid ←$ {0, 1}
λ
is sampled uniformly at ran-

dom. Upon given rb, b ∈ {0, 1}, A defines((
mqsid,∗id

)
sid∈[l]

)
id∈AID\B

:= rb

and mqsid,∗id := mqsidid for the rest of id ∈ B and sid ∈ [l].

Next, A constructs mqsid,∗0 out of mqsid,∗id , id ∈ AID i.e.

∀sid ∈ [l] : toksid,∗ = MToken
(
(Mid)ID ,

(
mqsid,∗id

)
AID

)
∀sid ∈ [l] : mqsid,∗0 = MQuery

(
M0, tok

sid,∗, ksid
)

and inputs ((mqsid,∗0 )[l], aux) to D. If D determines the
input is the first ensemble, then A outputs 0; otherwise,
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A outputs 1. By variable-length PRG assumption, we
conclude that the advantage of A of guessing the correct
string is negligible, so the two ensembles are indistinguish-
able.

Part 3: By “transitivity” of Part 1 and 2,

⟨r, aux⟩
p
≡ ⟨(m̃qsid0 )[l], aux⟩

c≡ ⟨(mqsid0 )[l], aux⟩

=⇒ ⟨r, aux⟩ c≡ ⟨(mqsid0 )[l], aux⟩

thus proving the theorem.

Now that we have proven that mPIR are pseudoran-
dom given the variable-length PRG, we will use a hy-
brid argument to show that the hybridization between
mPIR and sPIR (given that the sPIR scheme is privacy-
preserving) in Synchronized APIR results in a privacy-
preserving scheme, even if some PRG seeds are leaked to
the attacker.

Theorem 5 (Synchronized APIR Privacy). Suppose
ΠsPIR is λ-sPIR privacy-preserving according to Defini-
tion A.2 and PRG(s, l) → r is a variable-length PRG,
then Synchronized APIR scheme ΠSAPIR is (λ, t)-APIR
privacy-preserving according to Definition D.1.

Proof sketch. We first observe that if 0 ̸∈ C in
PrivAA,ΠSAPIR,t i.e. main server S0 is not compromised,
then A does not obtain any information related to b,
which implies no advantage in guessing b∗; the scheme
is therefore trivially privacy-preserving. For the rest of
this proof, we therefore only focus on the scenario where
A has chosen 0 ∈ C .
We want to show that the view of A in PrivAA,ΠSAPIR,t

is computationally indistinguishable between when b = 0
and b = 1. Formally, define the view of A in the experi-
ment as

outviewA := ⟨
(
ksid

)
sid̸=sid∗

,
(
ksid

∗

0 , ksid
∗

1

)
, auxout⟩

for the outputs of A, where

auxout := (l,Cat0, (Digid)AID , C)

and

inviewA(b) :=

⟨(sid)C\{0} ,
(
mqsid0 , sqsid

)
sid̸=sid∗

,
(
mqsid

∗

0,b , sq
sid∗

b

)
, auxin⟩

for the inputs of A, where

auxin := (spk, (Mid)ID , S)

and finally

viewA(b) := ⟨outviewA, inviewA(b)⟩

We want to show that

viewA(0)
c≡ viewA(1)

with respect to the security parameter λ through the fol-
lows steps:

1. Similarly to inviewA(b), we define

ĩnviewA(b) :=

⟨(sid)C\{0} ,
(
mqsid0 , sqsid

)
sid̸=sid∗

,
(
mqsid

∗

0,b , s̃q
)
, auxin⟩

where s̃q← SQuery(spk, 0), and

ṽiewA(b) := ⟨outviewA, ĩnviewA(b)⟩

By λ-sPIR privacy assumption, we claim that

viewA(0)
c≡ ṽiewA(0)

2. By Theorem 4, we claim that

ṽiewA(0)
c≡ ṽiewA(1)

because mPIR queries are pseudorandom.

3. Similarly to step 1, by λ-sPIR privacy assumption
we claim that

ṽiewA(1)
c≡ viewA(1)

4. By “transitivity”, we claim that

viewA(0)
c≡ ṽiewA(0)

c≡ ṽiewA(1)
c≡ viewA(1)

Thus proven the theorem.

E Data Simulation Method

Reference NS dataset To simulate cache tables for
SAPIR servers, we analyze the .com Generic Top Level
Domain (gTLD) zone file provided by ICANN available
per request on https://czds.icann.org, accessed on
June 16, 2022, to gather statistics about NS records. The
.com zone file includes all record types, but we filter it
for only NS records. Each NS record contains 1) do-
main name, 2) time-to-live (TTL), 3) class, 4) type, 5)
resource record length, and 6) NS domain name. Each
domain name may be linked to multiple NS records, and
each record is of variable length, depending on how long
the NS domain name is. We summarize the statistics in
Table 5.
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In this table, we draw particular attention to “max.
|records| per domain”. “|records| per domain” here means
that if a domain name is linked to record 1, record 2, . . . ,
record n, then |records| per domain for this domain is
|record 1| + |record 2|+, . . . ,+ |record n|. “max.” indi-
cates the maximum of this value across all the domains
in the zone file, which is 759 bytes. This implies that
the SAPIR database values must be at least 759 bytes in
length to hold all the NS records linked to each domain
name for all the domain names. We thus parameterize
the database values to be 1,024 bytes in length as a con-
servative measure.

Statistics Values

number of records 382M
number of domains 159M

avg. #records per domain 2.4
avg. |domain name| 17.7 bytes

avg. |records| per domain 73.1 bytes
max. |records| per domain 759 bytes

TTL 2 days

Table 5: Statistics for NS records in ICANN’s .com
gTLD Zone File (M=106). “|records| per domain”
specifies the total size in bytes of all records linked
to each domain, where each NS record is encoded as
TTL|CLASS|TYPE|LEN|NSDOMAIN. The TTLs are of
the same value of 172800 across all the records.

Data simulation method Although we have access
to NS records, what remains unknown is how indepen-
dent DNS cache servers would behave in the real world.
Specifically, we need to know what NS records each server
is holding in the cache table at a given time to be able
to use this table as a database in SAPIR. To simulate
the servers’ cache tables for this purpose, we thus need
to make assumptions about 1) the statistical distribution
of domain name popularity and 2) the frequency of DNS
queries over a period of time.

For 1), we assume that the popularity of domain names
in DNS queries follows a Zipfian distribution [18,25], with
the total number of ranks being the total number of do-
main names with NS records (159 million domains ac-
cording to Table 5).

For 2), we assume that a cache server collects DNS
query statistics from the normal (i.e., non-private) DNS
service over a period of time, after which the server
updates the cache table with the most queried domain
names during the period. To assume the number of
queries (which follow a Zipfian distribution) over a pe-
riod of time, we consider two scales of DNS operation:
local and regional. The scale of operation implies the

scale of traffic loads. In our setting, local means a US
city, whereas regional means the entire US.

To get a sense of what the scales look like in
the real world, we obtain DNS query statistics from
ICANN Managed Root Server (IMRS) accessible on
stats.dns.icann.org on June 18, 2022, to compute the av-
erage queries-per-second (QPS) statistics for NS queries
in a 24-hour window. For the local scale, we obtain the
QPS within the city of Chicago; for the regional setting,
we obtain the QPS within the entire US. The average
QPS in a 24-hour window for the local setting is 256.3,
accumulating to 22 million queries in the 24-hour cycle.
The average QPS in a 24-hour window for the regional
setting is 7032.3, accumulating to 608 million queries in
the 24-hour cycle.

We follow these assumptions and parameters to sim-
ulate three cache servers for SAPIR for the local and
regional experiment: one main server and two assist-
ing servers with the collusion threshold of t = 2. The
cache table size, or |DB|, for the local experiment is
213 ∼ 8 thousand domains, and for the regional exper-
iment 216 ∼ 66 thousand domains. We base the cache
table sizes roughly on Cisco’s Caching DNS Capacity and
Performance Guidelines [1]. To simulate a cache table,
we sample domain name ranks from a Zipfian distribution
as many times as the number of queries in 24 hours for
each server, where the most |DB| popular ranks are kept
in the cache table. The exact keywords and values in the
cache tables are randomly generated; this does not affect
the scheme’s performance since the scheme is agnostic of
the actual content of database keywords and values.

Zipfian parameters The next question is what appro-
priate popularity index s of the Zipfian distribution to use
in the simulation. Wang [25] and Jung et al. [18] found
the popularity index to be 0.98 and 0.91, respectively, in
a local DNS setting at the time of the studies. We sur-
mise that the distribution of domain name popularity is
always sensitive to time and geography, and there is no
universally true and accurate distribution.

Instead, in our experiments, we aim to demonstrate
Synchronized APIR in the most optimal conditions. Since
SAPIR’s most expensive computational and communica-
tion cost corresponds to the number of sPIR items, i.e.,
|S|, we want to find a Zipfian popularity index s that min-
imizes |S| to demonstrate the most optimal conditions for
both the local and regional setting.

To achieve this, we simulate the cache tables for three
SAPIR servers at varying s and cache sizes for the local
and regional setting (212, 213, 214 domains for local, and
215, 216, 217 domains for regional). The results are shown
in Figure 6. Here, the optimality is represented by the
percentage of sPIR items in the main cache table, i.e.,
|S| / |DB0| × 100%. The results indices that s = 1.0 is an
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optimal parameter. (Coincidentally, this is close to 0.98
and 0.91 in Wang and Jung et al.’s study, respectively.)
We thus choose s = 1.0 to evaluate SAPIR.
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Figure 6: The effect of Zipfian distribution on the percent-
age of sPIR items in simulated databases for 3 SAPIR
servers at collusion threshold t = 2. “#q” denotes the
total number of simulated queries. s = 1.0 is chosen as
an optimal parameter.
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