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Abstract

Hash chains are a simple way to generate pseudoran-
dom data, but are inefficient in situations that re-
quire long chains. This can cause unnecessary over-
head for use cases including logical clocks, synchro-
nizing the heads of a pseudorandom stream, or non-
interactive key agreement. This paper presents the
“skip ratchet”, a novel pseudorandom function that
can be efficiently incremented by arbitrary intervals.

1 Introduction

Hash algorithms provide a way to generate pseudo-
random data from an input that is impractical to
reverse. Many applications iteratively hash a value
(“ratcheting” [4]) for pre-computation resistance,
backward secrecy, one-time schemes (e.g. S/KEY
[2]), deterministically generating unique names, key
derivation functions, digital payment schemes [6],
and so on.

This paper introduces the “skip ratchet”, a hier-
archical and iterative hashing system suitable as an
extension to pseudorandom (PRF) and key deriva-
tion (KDF) functions. A skip ratchet is capable of
efficiently making large leaps in hash count while pre-
serving backward secrecy in a passive setting.

2 Motivation

The intersection of private data and location-
independent access control in open protocols is only

beginning to be explored. Decentralization, trust
minimization, and non-interactive protocols are in-
creasingly important, but have many unsolved prob-
lems including how to efficiently secure changing data
in an unknown and unstable topology. Not know-
ing the number or attributes of peers implies the use
of passive security methods based directly on data
rather than mediated by live processes.

An increasing number of applications in open de-
centralized networks have no fixed topology, and re-
quire non-interactive key agreement on a large num-
ber of files, the ability to share a single file (and no
others), a range of files, or elements from a point in
time onwards (but not prior versions). As such, there
is also a need to keep the historical information of the
internal state secret from even those with current ac-
cess.

One approach for securing history is to use a simple
ratchet function, iteratively hashing on each update
to produce the next state (a ”hash chain”). This
works well if the number of changes to synchronize
is small, but O(n) ratchet steps is prohibitive as the
difference grows. It allows a malicious participant to
force others to a large amount of work in order to
access the latest update.

The skip ratchet presented here improves the situ-
ation. A skip ratchet is able to synchronize in sublin-
ear time, supports efficient arbitrary access in the for-
ward direction, maintain secrecy of its internal state,
and does not leak metadata such as the number of
updates or participants. Further, jump size and gran-
ularity are configurable.
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3 Numeral Intuition

The problem of how to efficiently calculate the nth

step of a ratchet in fewer than n steps is structurally
similar to how we efficiently represent large numbers.
There are many systems for doing so. The two most
common numeric representations are unary and posi-
tional numeral systems. The skip ratchet uses analo-
gies to both of these concepts.

3.1 Unary Hashing

Hash chains are structurally very similar to unary
counting systems. Unary is very concrete: the symbol
count is equivalent to the number being represented.
Two examples are tally marks and Peano numbers
[8]. Replacing the successor function with a hash
function h, one may represent unary counting with
hashes.1 As will become useful later, this does not
make reference to a concrete “zero” value; merely an
interval from the input x.

Peano(3)⇒ S(S(S(0)))

hchain(3)⇒ h(h(h(I))) ≡ h3(I)

Figure 1: Peano Number ↔ Hash Chain

3.2 Positional Hashing

A major advantage of positional numerals is the abil-
ity to express large jumps with minimal effort. In
positional systems (such as the familiar binary, dec-
imal, and hexadecimal) each position corresponds to
some factor for the numeral at that position.2

Just as positional numerals combine multiple num-
bers to represent a single sum, the hash count state

1By convention, this paper will use I, J , and K as indepen-
dent fixed initial values, x as an arbitrary variable, and h for
hashing

2While most systems use fixed-base exponential factors,
there exist systems where there is no fixed relationship be-
tween positions, or some other rule relating them.

24616 = 2×162 + 4×161 + 6×160 = 58210

Figure 2: Componentized Hexadecimal

can have multiple components that are combined to
create a single symmetric key.3

h10(x+ 0)⇒ I

h10(x+ 11)⇒ 〈h(J), h(I)〉
h10(x+ 582)⇒ 〈h5(K), h8(J), h2(I)〉

Figure 3: Compound Hash State

Unlike a positional number system used in arith-
metic, a compound ratchet “forgets” its internal
state, combining elements and flattening its struc-
ture. There are many methods of combination, in-
cluding further hashing, concatenation followed by
HKDF, and so on. This paper will use bitwise XOR
(Figure 4).

hpos10,⊕(0)⇒ I

hpos10,⊕(11)⇒ h(J)⊕ h(I)

hpos10,⊕(582)⇒ h5(K)⊕ h8(J)⊕ h2(I)

Figure 4: Compound Hash Key Derivation

4 Skip Ratchet

The skip ratchet’s state is built from a unary digit U ,
a fixed number n of positional digits, and their base b.
The positional digits are bounded by the base, and
so must track a natural number count. The unary
digit explicitly does not track its count.4

3Different explorations of this core idea include hash calen-
dars [1], and multidimensional hash chains (MDHC) [6]

4Note that Figure 5 is given as little-endian. The order
of the state does not strictly matter, but it is convenient to
associate the index of the state with the exponent for the base
that the position represents.

2

https://en.wikipedia.org/wiki/Mixed_radix
https://en.wikipedia.org/wiki/Mixed_radix
https://en.wikipedia.org/wiki/Factorial_number_system


S : 〈〈Count0, V alue0〉, 〈Count1, V alue1〉 . . . 〈Countn−1, V aluen−1〉, U〉b

Figure 5: Skip Ratchet Counter State

Since the skip ratchet’s internal state is composed
of a fixed number of “digits”, there is a fixed maxi-
mum interval by which the ratchet can jump. While
it is possible to create variants that deterministi-
cally generate increasingly large digits as needed, this
would leak data about the range of the counter. In-
distinguishability is desirable in many use cases.

While advancing the ratchet by arbitrary intervals
is possible, the jump operation is not the same as
adding arbitrary integers. Incrementing all but the
lowest digit cascades down to the lower values, “ze-
roing” them out. Therefore, arbitrary jumps require
a carry (Algorithm 4). This situation is structurally
similar to deterministic skip lists [5] (Figure 6), but
with each step pointing to a monotonically increasing
value, rather than previous ones.

Each digit is given a label and maximum value for
all but the largest, which acts as a linear “spine”.
This largest element is analogous to an unbounded
unary digit. The remaining elements are arranged
positionally, and are bounded by their numerical
base. Since the unary digit is a hard limit on the
number of digits, it conceals information about the
range of numbers that the current internal state rep-
resents. Any range within a fixed larger value is called
an “epoch” (e.g. “the 300s epoch” or “the h42(x)
epoch”).5

4.1 Initialization

A skip ratchet is deterministically derived from a
hash function h, a numeric base b, a positional digit
count n, a function k to derive a key from the state,
and an initialization vector IV . We distinguish be-
tween configurations by referring to their 〈n, b, h, k〉
triple, such as 〈3, 256,SHA256,HKDF〉 skip ratchet.6

5The term “epoch” is used here in the generic or
Ethereum[11] sense, and is a slightly different from some other
ratchet constructions such as the Double Ratchet[9].

6This implies that a 〈0, b, h, k〉 skip ratchet would express
a standard hash chain.

To prevent leaking the iteration count, all of the
positional values in the seed state are immediately
incremented by a random value. This randomized
origin is treated as the ratchet’s starting state. Given
the backward secrecy constraint, only relative values
may be used unless this initial value is known.

Each positional value is generated from the salt-
concatenated (x‖y) preimage’s hash of its larger
neighbour, in a recursive cascade starting with the
unary digit (Algorithm 1). This protects the infor-
mation needed to derive the current state, and thus
prevents leaking all of the values in that range. The
salt must be consistent across all calls.

The number of digits is configurable. These should
be chosen to a balance jump control (the number of
intervals that can be skipped by), and step-function
performance. If the number of digits is large, incre-
ment on the unary element or higher digits will have
require multiple hash operations in each zero cascade.

In practice, 〈2, 256,SHA256,⊕〉 and
〈2, 256,BLAKE3,⊕〉 skip ratchets have performed
well. The maximum leap is 2562, so the state
i + 2563 is (approximately) the same amount of
work as i + 256. Given the small constant factor of
hardware-accelerated hashing and the monotonicity
of a ratchet, relatively large bases are often viable.

4.2 Basic Operations

Basic operations on the skip ratchet follow from the
rules set out during initialization. It can be incre-
mented sequentially, or leap to the next “zero” of
any digit. Any interval can be efficiently found by
combining increments and skips (Figure 8).

It is sometimes helpful to distinguish between a
small and large skip, and so the terms “skip” and
“leap” may be used for this purpose, despite them
functioning identically but on different positions.
The term “increment” (or “inc”) is only used for the
special case of the smallest movement (by one).

Being a ratchet, it can never be “unwound” (there
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Figure 7: Simplified Skip Ratchet

is no inverse or subtractive analogue). Access to ear-
lier keys requires knowing an even earlier state, and
moving forward to the desired state from there. This
is important for break-in resistance and backwards
secrecy (e.g sharing a document from a point in time
but no earlier).

4.2.1 Secret Derivation

Generating secrets or keys from the ratchet state can
be done in a myriad of ways. This paper will use the
bitwise XOR function, as it is straightforward and
efficient.

4.2.2 Increment

As with positional numerals, when a digit reaches
its maximum, the next larger digit is incremented,
and all lower digits are zeroed out. The zero cascade
works similarly for skip ratchets, but never repeats a
value. Similar to initialization, each zero is derived
from the preimage of its higher neighbour.

The special case of incrementing by one is the sim-
plest way to demonstrate this (Algorithm 3). It func-
tions by checking the lowest digit’s counter, and if it’s
saturated, mark a carry and move to the next digit

and recurse, bounded by the unary digit. Any car-
ried digits are then re-zeroed by the preimage of their
larger neighbour.

4.2.3 Arbitrary Jumps

Jumps by an arbitrary interval require a little more
calculation (Algorithm 4). The interval δ is com-
ponentized, and each digit incremented in ascending
order. Every positional digit has an upper bound, so
any remainder saved for the final step, where any ze-
roed digits are incremented to match the final count.
Arbitrary jumps run in O(logb δ) when δ < bb(n+1)

(the normal operating interval that the skip ratchet
is tuned for). As the unary hash chain dominates as
δ becomes very large, the complexity becomes O( δ

bn ).

5 Security

There is no inbuilt way to revoke this access once a
secret is compromised. This is especially important if
a skip ratchet is used to generate cryptographic keys.
Updates rely on backward secrecy for protection, and
key rotation in the case where a breach becomes
known. Algorithms such as the Double Ratchet[9]
have post-compromise security in a two-party semi-

4



Algorithm 1 Skip Ratchet Initialization

Require: 〈n, b, κ〉 ∈ N0 × N1 × N1 . Digit count, base, security parameter

1: seed
$← {0, 1}κ

2: unary := hash(seed)
3: pos := []
4: for i ∈ n . . . 0 do . Descending to associate index with degree

5: δ
$← 0 . . . b− 1 . To increment by

6: seed := hash(salt‖seed) . Secretly derive from the larger value
7: pos[i].count := δ
8: pos[i].value := hashδ+1(seed)
9: end for

10: return unary, pos

IV
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⊕
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inc //

skip

((

leap
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��

inc //
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inc // · · ·
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Figure 8: Binary Skip Ratchet Operations

trusted setup, where there key is automatically ro-
tated as a matter of course.

The skip ratchet has two security domains: its ex-
ternal secret generation, and its internal state. The
state is itself based on hierarchical hash chains to
assure backwards secrecy, even for those that have
been given access to its state. Not only is the previ-
ous state not calculable, other metadata such as the
number of steps is also hidden, even when the internal
state is known.

5.1 Sharing Bounded State

The skip ratchet’s internal state permits bounding
derivation to a fixed range in a decentralized sys-
tem. This is accomplished by only sharing some of
the lower positions, with the rest being presented as
a flattened hash.

Revealing one derived key provides access to the
cleartexts encrypted with that key (e.g. a single ver-
sion of one file). Providing an XOR of the unary digit
and a nonzero number of positional elements provides
the remaining updates in that epoch. Access to the
entire internal state grants provides keys from a point
onwards, including potentially the initial state. The
number of elements in the internal state must be at
least n+ 2 if intended for use in this setting, where n
is the number of levels that are desired to be exposed.

For example, in a 〈3, 256,SHA256,⊕〉 skip ratchet,
sharing 〈S,M,L ⊕ U〉 allows the recipient to move
freely in the “medium” jump range, up to i+2562−1.
Keys can still be fully generated thanks to XOR’s
associativity, but the recipient will need to ask for
the next L′ ⊕ U to continue.
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Algorithm 2 Generating a Key

1: function toKey(ratchet)
2: sum := ratchet.unary
3: for digit ∈ ratchet.pos do
4: sum := acc⊕ digit.value
5: end for
6: return sum
7: end function

Algorithm 3 Incrementing a Skip Ratchet

1: function inc(ratchet)
2: {base, unary, pos} ← ratchet
3: seed := unary
4: counter := length(pos)
5:

6: for i ∈ 0 . . . length(pos)− 1 do
7: {count, value} ← pos[i]
8: if count < base− 1 then . Position not saturated
9: seed := value

10: counter := i
11: ratchet.pos[i].count := count+ 1
12: ratchet.pos[i].value := hash(value)
13: break
14: end if
15: end for
16:

17: if counter = length(pos) then . All positional values were saturated
18: ratchet.unary := hash(unary)
19: end if
20:

21: if counter > 0 then
22: for j ∈ (counter − 1) . . . 0 do . N.B. Descending
23: seed′ := pos[j].value
24: ratchet[pos][j].count := 0
25: ratchet[pos][j].value := hash(salt‖seed)
26: seed := seed′

27: end for
28: end if
29:

30: ratchet
31: end function
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Algorithm 4 Skip Ratchet Arbitrary Jump

1: function jump(ratchet, amount)
2: {base, unary, pos} ← ratchet
3: remaining := amount
4: seed := unary
5: carry := []
6: n := length(pos)
7:

8: for i ∈ 0 . . . n− 1 do
9: if remaining = 0 then

10: break
11: end if
12:

13: componenti := remaining mod basei

14: remaining := remaining − componenti
15: δi := component/basei . No remainder because ascending in steps
16:

17: {count, value} ← pos[i]
18: headroom := base− count− 1
19:

20: if δi > headroom then
21: carry[i] := steps− headroom
22: else
23: ratchet.pos[i].count := count+ δi
24: if remaining = 0 then
25: seed := hashδi−1(value)
26: ratchet.pos[i].value := hash(seed)
27: else
28: carry[i] := 0
29: end if
30: end if
31: end for
32:

33: if remaining > 0 then
34: componentu := remaining mod basen

35: δu := componentu/base
n

36: ratchet.unary := hashδu(unary)
37: end if
38:

39: for j ∈ (length(carry)− 1) . . . 0 do . N.B. Descending
40: seed := hashcarry[j]−1(salt‖seed)
41: ratchet.pos[j].value := hash(seed)
42: end for
43:

44: return ratchet
45: end function
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5.2 Post-Compromise Security

The skip ratchet trades off general post-compromise
self-healing (of the unary digit) for permissionless key
agreement between an unbounded and growable set
of peers. If the secured communications are between
exactly two parties, the Double Ratchet is typically
a better choice due to its post-compromise security.
Such a model could be adapted to use a skip ratchet
for decentralized key agreement with periodic rota-
tions of the unary digit. In essence, this involves
distributing a freshly initialized skip ratchet to a list
of trusted peers on every i steps [10], or any other
method of rotating the unary digit.

5.3 Seed Trust

Giving a single party the power to decide the ini-
tial seed is not desirable in some situations. There
are many options for generating this value from com-
ponents provided by many parties. Some common
options include Diffie-Hellman key exchange and its
variants (e.g. X3DH) and key ceremonies.

6 Conclusion

This paper has presented the skip ratchet, an algo-
rithm for decentralized secrets and keys on streams
of encrypted data with unbounded and changing par-
ticipants. Arbitrary forward search in the expected
operating range can be performed in O(logb δ) time
within a configurable bound (and O( δ

bn ) outside it),
backwards access is impossible without the earlier in-
ternal state, and total counts can never be inferred
from the internal state.
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