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Abstract

Multiplicative Complexity (MC) is defined as the minimum number of AND gates
required to implement a function with a circuit over the basis {AND, XOR, NOT}. This
complexity measure is relevant for many advanced cryptographic protocols such as
fully homomorphic encryption, multi-party computation, and zero-knowledge proofs,
where processing AND gates is more expensive than processing XOR gates. Although
there is no known asymptotically efficient technique to compute the MC of a random
Boolean function, bounds on the MC of Boolean functions are successfully used to
to show existence of Boolean functions with a particular MC. In 2000, Boyar et al.
[1] showed that, for all n ≥ 0, at most 2k

2+2k+2kn+n+1 n-variable Boolean functions
can be computed with k AND gates. This bound is used to prove the existence of a
8-variable Boolean functions with MC greater than 7. In this paper, we improve the
Boyar et al. bound.

1 Introduction

Multiplicative Complexity (MC) is defined as the minimum number of AND gates required
to implement a function with a circuit over the basis {AND, XOR, NOT}. This complexity
measure is relevant for many advanced cryptographic protocols (e.g., [2]), fully homomor-
phic encryption (e.g., [3]), and zero-knowledge proofs (e.g., [4]), where processing nonlinear
gates such as AND, NAND, is more expensive than processing linear gates such as XOR. These
protocols benefit from new symmetric-key primitives that can be implemented with small
number of AND gates (e.g., Rasta [5], LowMC [6]).

There is no known asymptotically efficient technique to compute the MC of a random
Boolean function. Boyar et al. [1] showed that the MC of an n-variable random Boolean
function is at least 2n/2 − O(n) with high probability. For arbitrary n, it is known that
under standard cryptographic assumptions, it is not possible to compute the MC in poly-
nomial time in the length of the truth table [7]. The degree bound states that the MC of
a Boolean function having degree d is at least d− 1 [8]. This bound is commonly used to
prove that a given Boolean function implementation is optimal.

For up to 6 variables, the MC of each Boolean function has been established in [9, 10].
There are also known bounds for special classes of Boolean functions. The MC of affine
Boolean functions is zero. Mirwald and Schnorr [11] showed that the MC of a quadratic
function f is k, iff f is affine equivalent to the canonical form

⊕k
i=1 x2i−1x2i. This implies

the MC of quadratic functions is at most ⌊n2 ⌋. Turan and Peralta [12] improved the bounds
on MC of cubic Boolean functions. Brandão et al. [13] studied the MC of symmetric
Boolean functions and constructed circuits for all such functions with up to 25 variables.
In 2017, Find et al. [14] characterized the Boolean functions with MC 2 by using the fact



that MC is invariant with respect to affine transformations. In 2020, Çalık et al. extended
the result to Boolean functions with MC up to 4 [15]. In 2022, Häner and Soeken [16]
showed the MC of interval checking.

A particular value of interest is the number of n-variable Boolean functions with MC
k, denoted λ(n, k). In [1], it is shown that λ(n, k) ≤ 2k

2+2k+2kn+n+1. Using this bound, it
is easy to see that 7 AND gates are not enough to compute all 8-variable Boolean functions,
i.e., there exists 8-variable Boolean functions with MC at least 8. In 2002, Fischer and
Peralta [17] showed that λ(n, 1) is equal to 2

(
2n

3

)
. In 2017, Find et al. [14] showed that

λ(n, 2) = 2n(2n − 1)(2n − 2)(2n − 4)

(
2

21
+

2n − 8

12
+

2n − 8

360

)
. (1)

Çalık and Turan [15] studied the Boolean functions with MC 3 and 4, and provided a
closed formula for λ(n, 3) and λ(n, 4), by summing the sizes of all the affine equivalence
classes with MC 3 (total of 24 classes) and 4 (total of 1277 classes).

For large values of n and k, the bound λ(n, k) ≤ 2k
2+2k+2kn+n+1 is essentially tight,

but it is unclear to what extent this is true for small constant values of k. In this paper, we
improve the Boyar et al. bound and provide new bounds on the maximum multiplicative
complexity for n-variable Boolean functions.

2 Preliminaries

2.1 Boolean functions

Let F2 be the finite field with two elements. An n-variable Boolean function f is a mapping
from Fn

2 to F2. Let Bn be the set of n-variable Boolean functions and Bc
n be the set of

n-variable cubic Boolean functions.
The algebraic normal form (ANF) of f is the multivariate polynomial f(x1, . . . , xn) =∑

u∈Fn
2
aux

u, where au ∈ F2 and xu = xu1
1 xu2

2 · · ·xun
n is amonomial containing the variables

xi where ui = 1. The degree of the monomial xu is the number of variables appearing in
xu. The degree of a Boolean function, denoted deg(f), is the highest degree among the
monomials appearing in its ANF.

Two functions f, g ∈ Bn are affine equivalent if f can be written as

f(x) = g(Ax+ a) + b⊤x+ c, (2)

where A is a non-singular n×n matrix over F2, a,b are column vectors in Fn
2 , and c ∈ F2.

We use [f ] to denote the affine equivalence class of the function f . Degree and MC are
invariant under affine transformations.

2.2 Boolean Circuits

A Boolean circuit C with n inputs and m outputs is a directed acyclic graph, where the
inputs and the gates are the nodes, and the edges correspond to the Boolean-valued wires.
The fanin and fanout of a node is the number of wires going in and out of the node,
respectively. The nodes with fanin zero are called the input nodes and are labeled with
an input variable from {x1, . . . , xn}. The circuits considered in this study only contain
gates from the complete basis {AND, XOR, NOT} and have exactly one node with fanout
zero (i.e., m = 1), which is called the output node. For our purposes, we assume AND gates
have fan-in two, but XOR gates have arbitrary fan-in > 0.



3 Number of Boolean functions with MC k

3.1 Previous results

Boyar et al. [1] showed that λ(n, k) ≤ 2k
2+2k+2kn+n+1, for all n ≥ 0. To compute this

bound, the authors considered an abstraction of Boolean circuits having binary AND gates
and XOR gates with unbounded inputs. Each AND gate is assumed to input a subset of input
variables, outputs of AND gates (that are topologically located before the gate) and the
constant function 1, i.e., for the ith AND gate ai the (right and the left) input is subset of
{x1, . . . , xn, a1, a2, . . . , ai−1,1}. Hence, for ai, there are 2n+1+(i−1) = 2n+i possible choices
for its left and right inputs. The bound increases by 2(n+ k) + 3 for each addition of the
new AND gate to the circuit.

The exact values of λ(n, k) are known for the following values of n and k:

• [17] λ(n, 1) = 2
(
2n

3

)
• [7] λ(n, 2) = 2n(2n − 1)(2n − 2)(2n − 4)

(
2
21 + 2n−8

12 + 2n−8
360

)
.

• [15] λ(n, 3) =
∑6

d=4

(
2n−d

∏d−1
i=0

2n−2i

2d−2i
β(d, 3)

)
where

β(4, 3) = 32 768,

β(5, 3) = 775 728 128,

β(6, 3) = 183 894 007 808.

• [15] λ(n, 4) =
∑8

d=5

(
2n−d

∏d−1
i=0

2n−2i

2d−2i
β(d, 4)

)
where

β(5, 4) = 3 515 396 096,

β(6, 4) = 7 944 313 921 970 176,

β(7, 4) = 8 217 135 092 528 316 416,

β(8, 4) = 5 502 415 308 673 798 144.

Table 1 shows the gap between the Boyar et al. bound and the exact number of
functions with MC up to 4.

MC Bound n =6 n = 7 n =8 n =9 n =10 n =11 n =12 n =13 n =14 n =15 n =16

1 Exact 16.34 19.38 22.38 25.40 28.41 31.41 34.41 37.41 40.41 43.41 46.41
1 Bound 22 25 28 31 34 37 40 43 46 49 52

2 Exact 26.13 31.30 36.38 41.42 46.44 51.45 56.45 61.45 66.46 71.46 76.46
2 Bound 39 44 49 54 59 64 69 74 79 84 89

3 Exact 38.03 45.64 52.92 60.05 67.12 74.15 81.17 88.18 95.18 102.18 109.18
3 Bound 58 65 72 79 86 93 100 107 114 121 128

4 Exact 52.81 63.15 71.94 80.29 88.46 96.56 104.63 112.70 120.82 129.02 137.35
4 Bound 79 88 97 106 115 124 133 142 151 160 169

Table 1: Number of Boolean functions with MC 1, 2, 3, and 4 compared to the Boyar et
al. bound [1] on a log scale with base 2

3.2 Improving the Boyar et al. bound

Next, we present two observations on Boolean circuits to improve the bound.



1. Elimination of equivalent inputs Let f1 and f2 be n-bit Boolean functions repre-
senting the left and right inputs to an AND gate, respectively, and let f3 be the
Boolean function XORed to the output to the AND gate. The output of the AND gate is
f1 ∗ f2 + f3. It is easy to see that the following inputs also produce the same output
as f1,f2, and f3.

(f1, f2, f3) → f1 ∗ f2 + f3

(f2, f1, f3) → f1 ∗ f2 + f3

(f1 + f2, f2, f3 + f2) → f1 ∗ f2 + f2 + f2 + f3 = f1 ∗ f2 + f3

(f2, f1 + f2, f3 + f2) → f2 ∗ f1 + f2 + f2 + f3 = f1 ∗ f2 + f3

(f1, f2 + f1, f3 + f1) → f2 ∗ f1 + f1 + f3 + f1 = f1 ∗ f2 + f3

(f2 + f1, f1, f3 + f1) → f2 ∗ f1 + f1 + f3 + f1 = f1 ∗ f2 + f3

In the Boyar et al. bound, each of these cases are counted separately.

2. Elimination of the constant 1 function. Boolean functions can be partitioned into
those f for which f(0) = 0 and those f for which f(0) = 1. One set can be mapped
bijectively into the other by the transformation g(x) = f(x)+1. A function f(x) for
which f(0) = 0 can be computed by a circuit which is both optimal with respect to
multiplicative complexity and has no negations. Thus, considering circuits that do
not have the constant 1 as input would produce the same set of Boolean functions.
Boyar et al. bound computes the two inputs (f1, f2, f3), and (f1, f2 + 1, f3 + f1)
separately, although they both results in the same output.

(f1, f2, f3) → f1 ∗ f2 + f3

(f1 + 1, f2, f3 + f2) → f1 ∗ f2 + f2 + f3 + f2 = f1 ∗ f2 + f3

(f1, f2 + 1, f3 + f1) → f1 ∗ f2 + f1 + f3 + f1 = f1 ∗ f2 + f3

(f1 + 1, f2 + 1, f3 + f1 + f2) → f2 ∗ f1 + f1 + f2 + f3 + f1 + f2 = f1 ∗ f2 + f3

Using the observations given above, the bound on the number of n-variable Boolean
functions that can be generated using k AND gates, over the basis {AND, XOR, NOT}, can be
improved, by a factor of 24 for each AND gate. In other words, the function f1 ∗f2+f3 can
be generated using 24 different choices of inputs for each AND gate, and instead of trying
all 24 inputs (each combination of cases from (1) and (2)), it is possible to try only one of
the inputs.

Theorem 3.1 The number of n-variable Boolean functions that can be generated with
k-AND gates is at most

λ(n, k) ≤ 2n+k+1
k∏

i=1

1

24
(2n+i+1)2,

≤ 2k
2+2nk+n−k+13−k.

4 Discussion

In this note, we improved the Boyar et al. [1] the bound on the number of n-variable
Boolean functions that can be generated using k AND gates by a factor of 23k3k (by a



factor of 24 for each AND gate), which can be used to provide bounds on the maximum
MC across all n-variable Boolean functions.
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