
Secure Branching Program Evaluation

Jonas Janneck1, Anas Boudi2, Anselme Tueno1, Matthew Akram1

1 SAP SE
firstname.lastname@sap.com

2 Zama
anas.boudi@zama.ai

August 18, 2022

Abstract

We address the problem of privately evaluating a branching program
on encrypted data. This scenario is a 2-party protocol consisting of a
server and a client. The server privately holds a branching program which
is a representation of a boolean function using a directed acyclic graph.
The client holds a secret input to the branching program. The goal of the
computation is to evaluate the client’s input on the server program such
that only the result is revealed to the client, and nothing is revealed to
the server. To solve this problem Ishai-Paskin introduced a public-key en-
cryption scheme that is based on Damg̊ard-Jurik additively homomorphic
encryption and has the property, that given a branching program P and
an encryption c of an input y, it is possible to efficiently compute a suc-
cinct ciphertext c′ corresponding to P (y). The entire computation is done
by the server relying on the fact that Damg̊ard-Jurik scheme has length-
flexible ciphertexts which allows multiplications between ciphertexts of
different sizes under the same encryption key. Although the decryption
of the Damg̊ard-Jurik scheme is theoretically efficient, the size of c′ and
the decoding time depend on the depth of the branching program. In this
paper, we propose a new scheme where the input is instead encrypted
using fully homomorphic encryption and discuss different variants and
optimizations. The entire computation is also done by the server but the
size of the resulting ciphertext is independent of the depth of the program.
We implement Ishai-Paskin and our scheme and show that the running
time of our scheme is an order of magnitude smaller.

1 Introduction

A branching program (BP) is a representation of a boolean function using a
directed acyclic graph. Depending on the function to be evaluated, we can
sometimes represent a BP using a directed tree. The result of an evaluation can
then be obtained by traversing the tree for a chosen input. For example, special

1

cases of BPs are ordered binary decision diagrams or finite automata.
In this paper we consider a 2-party protocol. There is a server holding a BP
and there is a client holding an input to the program. The goal is for the
client to obtain the result of the evaluation of the servers BP on the client’s
input, without the server learning anything about the client’s input, or the
client learning anything about the server’s BP (aside from the result of its
query). Secure BPs can be used in applications such as Private Information
Retrieval or the evaluation of 2-DNF formulas or degree-2 polynomials.

One approach is to use homomorphic encryption to ensure both parties’
privacy, by letting the server evaluate the BP on encrypted inputs. By repre-
senting the BP as a tree, the output can be computed by aggregating all possible
paths. We must therefore be able to apply multiplication as well as addition
on encrypted data. The Ishai-Paskin protocol [20] solves this problem using the
Damg̊ard-Jurik cryptosystem [12]. Although the Damg̊ard-Jurik scheme only
allows for homomorphic additions, it is length-flexible and can therefore be used
for multiplications between ciphertext spaces of different sizes. However, a sig-
nificant drawback is that the length of the ciphertext is increasing in the tree’s
depth.

Instead, we present an approach relying on fully homomorphic encryption
(FHE). This reduces the query time and moreover, provides a fixed-length ci-
phertext output, independent of the tree’s depth. In contrast to partially ho-
momorphic schemes, for many FHE schemes, we must take the multiplicative
depth into account. For many FHE schemes, an expensive bootstrapping proce-
dure must be invoked after a given number of multiplications. To prevent this,
we can avoid bootstrapping operations, by reducing the multiplicative depth of
ciphertexts. This can be achieved by simplifying the tree representation of our
function to a smaller directed acyclic graph. We also present some optimiza-
tions of the basic protocol as well as some extensions and generalizations to the
basic case. We implement our approach using the BGV scheme [6] and TFHE
[10]. Using the gate-by-gate bootstrapping mode of TFHE, the multiplicative
depth is not relevant since a (comparably efficient) bootstrapping operation is
executed after every computation. Evaluating the three variants, we observe
that for higher depths of the BP (greater than five) our implementation using
BGV is faster than Ishai-Paskin’s protocol. The implementation of our protocol
using TFHE outperforms both other variants and is especially about 400 times
faster than Ishai-Paskin.

2 Related Work

Our work is related to multiparty computation (MPC) where multiple parties
want to securely compute a public function on their private data such that only
the result is revealed [4,8,11,14,15,17,22,34]. A special case is 2-PC with exactly
two computing parties. Two party computation is used in private function
evaluation (PFE) where one of the party (the server) holds a private function
and the second party (the client) holds a private input, with to goal to evaluate

2

the client’s input on the server function and reveal the result only to the client
[24,25]. There are different techniques used to design 2-PC protocols, including
garbled circuit (GC) [3], secret sharing [27] and homomorphic encryption (HE)
[6, 10, 16]. Using HE for PFE, the client holds a pair of encryption keys, and
the server evaluates the client’s encrypted input on the private function and
sends an encrypted result back to the client. HE can be additive, meaning that
only addition is possible on encrypted data [12,13,26]. Using additive HE with
a specific property called length-flexibility [13], Ishai and Paskin proposed an
encryption scheme for evaluating branching programs (BP) on encrypted data
[20]. A special case of BPs are decision trees, which are used in the context
of PFE, where the server holds a private decision tree and the client wants to
securely learn the classification of its private input [2,5,7,21,23,28,29,31,33]. In
[29], Tueno et al. used FHE to evaluate decision trees on encrypted data. Our
work relies on this to evaluate branching program using FHE instead of additive
HE. The idea of evaluating a BP on encrypted data, has been used for integer
comparison, where the server represents the comparison with a given value as a
binary tree and evaluates it securely on the client’s input [30].

3 Preliminaries

3.1 Homomorphic Encryption

Homomorphic encryption (HE) allows computations on ciphertexts by generat-
ing an encrypted result whose decryption matches the result of a function on
the plaintexts [6, 10,16].

HE Algorithms. An HE scheme consists of the following algorithms:

� pk, sk, ek ← KGen(λ): This probabilistic algorithm takes a security pa-
rameter λ and outputs public, private, and evaluation keys pk, sk, and
ek.

� c ← Enc(pk,m): This algorithm takes pk and a message m and outputs a
ciphertext c. We will use ⟦m⟧ as a shorthand notation for Enc(pk,m).

� c ← Eval(ek, f, c1, . . . , cn): This algorithm takes ek, an n-ary function f
and n ciphertexts c1, . . . cn and outputs a ciphertext c.

� m′ ← Dec(sk, c): This deterministic algorithm takes sk and a ciphertext c
and outputs a message m′.

We require IND-CPA security and the following correctness conditions. Given
any set of n plaintexts m1, . . . ,mn, any keys pk, sk, ek generated by KGen, it
must hold:

� Dec(sk,Enc(pk,mi)) = Dec(sk, ⟦mi⟧) = mi,

� Dec(sk,Eval(ek, f, ⟦m1⟧, . . . , ⟦mn⟧)) = f(m1, . . . ,mn).

3

We define ⊞, as the homomorphic addition of two cipherexts and ⊡, as the
homomorphic multiplication of two ciphertexts.

3.2 Damg̊ard-Jurik Scheme

The Damg̊ard-Jurik cryptosystem [12] is a generalization of the Paillier cryp-
tosystem [26]. It operates in the multiplicative group Z∗ns+1 for a predefined s.
The special case s = 1 is equivalent to the Paillier cryptosystem. The group
defined above can be divided into two groups, a cyclic group G of order ns and
a group H isomorphic to Z∗n, such that Z∗ns+1 = G ×H.

For key generation, we choose n = p ⋅ q as an RSA modulus and g ∈ Z∗ns+1

such that g ≡ (1 + n)jx mod ns+1 for a known j which is coprime to n and
x ∈H. Let λ = lcm(p − 1, q − 1) and choose d such that d mod n ∈ Z∗n and d ≡ 0
mod λ. The values n and g function as the public key, and d as the private
key. The plaintext space of the scheme is Zns . The encryption of an element
i ∈ Zns is E(i) = girns

mod ns+1 for a randomly chosen r ∈ Z∗ns+1 . Decrypting a
ciphertext c can be done by computing cd mod ns+1.

The following two properties are of particular interest for Ishai-Paskin’s ap-
plication. The scheme is additively homomorphic, since multiplying two cipher-
texts corresponds to an addition of the underlying plaintexts. We can also mul-
tiply ciphertexts by plaintext constants, i.e. given a ciphertext ⟦m⟧ ∈ Z∗ns+1 and

a plaintext k ∈ Zns , we can can compute ⟦m⟧k ≡ gkmr′ns ≡ ⟦km⟧ mod Z∗ns+1 .
The encryption scheme is also length-flexible. For s = i, we have a plaintext
space Z∗ni and ciphertext space Z∗ni+1 . This ciphertext space is the plaintext
space of a scheme with s = i + 1 as illustrated in Figure 1. We can therefore
use the multiplication with plaintext constants to implement a multiplication of
ciphertexts if we consider ciphertexts from different schemes, i.e. with different
parameters s.

s Plaintext → Ciphertext
s = 1 Zn → Zn2

s = 2 Zn2 → Zn3

s = 3 Zn3 → Zn4

⋮ ⋮ ⋮

Figure 1: Length-flexibility of Damg̊ard-Jurik

4

4 Definitions

In this section, we introduce the data-structure we use in order to represent and
evaluate BP’s, as well as the security goal for a secure evaluation procedure.

4.1 Branching programs

A branching program (BP) is a directed acyclic graph that can be used to
represent a boolean function.

Definition 4.1 (Branching Program [20]). A branching program P over input
variables x1, . . . , xn, input domain I, and output domain O is a tuple

P = (G = (V,E), v0, T,ψV , ψE)

with:

� G = (V,E) a directed acyclic graph with V the set of nodes and E the set
of edges and Γ(v) the children set of a node v,

� v0 an initial node with indegree 0,

� T ⊆ V set of terminal or leaf nodes with outdegree 0,

� ψV ∶ V → {1, . . . , n}∪O a node labeling function assigning an output value
to terminal nodes and a variable index to inner nodes V /T ,

� ψE ∶ E → ℘(I)1 an edge labeling function such that every edge is mapped
to a non-empty set and for every node v the sets labeling the edges to nodes
in Γ(v) form a partition of I.

Even though, the formal definition of a BP is very generic, we start with a
simpler instantiation and only consider binary BPs, i.e. I = O = {0,1}, which
we represent as binary trees. In later chapters, we also extend our approach to
generalized variants.

We further recursively assign a unique index to every node. The root has
index 0 and for an inner node xi with index i, its left child has the index 2i + 1
and its right child has the index 2i+2. Each leaf v′ is assigned a boolean output
Ov′ . The edge to the left child of any inner node is then labeled with 0, and the
edge to the right child with the label 1.

By iteratively unifying equivalent paths, we can obtain a smaller binary tree,
that represents the same function. This is referred to as pruning the tree. Figure
2 illustrates a simple branching program with a root labeled x0, an inner node
labeled x1 and three leaves with output O1, O2 and O3.

1
℘(I) denotes the power set of I.

5

x0

x1

O1

0

O2

1

0

O3

1

Figure 2: Example of a Binary Tree of Depth 2

The size of a BP is given by its number of inner nodes. For example, the BP
in Figure 2 has two inner nodes and three leaves; thus, its size is 2. The depth
of a node corresponds to the distance between it and the root. The depth of a
binary tree is then the maximum of the leaves’ depth.

The nodes of a tree can be separated into disjoint layers, where the j’th layer
Lj consists of all the nodes with distance j + 1 from the root. An inner node
xi ∈ Lj therefore has its children in Lj+1. For example the complete binary tree
in Figure 3 below represents the same boolean function as the one above.

x0

x1

O1

0

O2

1

0

x1

O3

0

O3

1

1

Figure 3: Example of a Complete Binary Tree of Depth 2

4.2 Branching Program Evaluation

The following definition describes the evaluation if a BP.

Definition 4.2 (BP Evaluation). Let P = (G = (V,E), v0, T,ψV , ψE) be a BP.
The output of P on inputs x1, . . . , xn can be extracted by following the unique
path from v0 to a terminal node vl such that every node v and its successor node
v′ fulfill xψV (v) ∈ ψE(v, v′). Then, the output is P (x1, . . . , xn) = ψV (vl).

In other words, we traverse the graph in a very natural manner. For every
node we check the corresponding input value which indicates which edge we
have to take next. Following such a path we end up with a leaf label which is
the final result of the computation.

6

4.3 Data Structure

The data structure we use to represent a BP is a binary tree consisting of inner
nodes and leaves. Each inner node has two child nodes and leaves have no
children. There is a single node with no parent node, that is called the root.
Let v be a node in the tree. We define a node data structure Node consisting of
the following attributes.

� v.parent: a value representing the pointer to the parent node,

� v.left: a value representing the pointer to the left child node,

� v.right: a value representing the pointer to the right child node,

� v.lEdge: a bit representing the edge label to the left child node,

� v.rEdge: a bit representing the edge label to the right child node,

� v.cLabel: a value representing a node label,

� v.level: an integer representing the node level in the tree,

� v.cost: an integer representing the cost on the path from the root.

The pointer to the parent node v.parent is initially null and points to the
respective parent node when the child node is created. This pointer remains
null for the root. The pointers to the child nodes v.left, v.right are initially null
and point to the respective nodes if they are created. The edge labels to the
child nodes v.lEdge, v.rEdge are 0 on the left and 1 on the right. The node label
v.cLabel is 0 or 1 for leaves and undefined for inner nodes. The level v.level is 1 for
the root, 2 for the child nodes of the root and so on. The cost attribute v.cost
is computed during tree evaluation. Note that this data structure represents
the basic case, where we represent our function as a binary tree. We further
generalize this structure in Section 7, for more complex scenarios.

4.4 Security Goal

The protocol consists of a server holding the branching program P , and a client
holding an input y. We assume that the client’s input and the program’s input
consist of µ−bit strings. The ideal functionality FBP takes y from the client and
P from the server, computes P (y), and outputs it to the client without leaking
information to the server, as described in Figure 4.

We rely on simulation-based security for deterministic functionalities in the
two party setting [19]. To this end, we define:

Definition 4.3 (Probability Ensemble). A probability ensemble X =X(a, λ)a,λ
is an infinite sequence of random variables indexed by a ∈ {0,1}∗ and λ ∈ N.

7

Client Server

FBP

y P

P (y) ∅

Figure 4: Illustration of a secure BP evaluation

Definition 4.4 (Computational Indistinguishability). Let a ∈ {0,1}∗ and λ ∈ N.
Two probability ensembles X = X(a, λ)a,λ and Y = Y (a, λ)a,λ are computa-

tionally indistinguishable, or X
c≡ Y , if for every non-uniform probabilistic-

polynomial time (PPT) algorithm D there exists a negligible function µ such
that for every a and λ it holds

∣Pr[D(X(a, λ)) = 1] − Pr[D(Y (a, λ)) = 1]∣ ≤ µ(λ).

We further define viewΠ
i (a, b, λ) as the view of party i during the execution

of protocol Π on inputs a and b with security parameter λ. This is the party’s
input and all received messages.

A protocol correctly implements a BP evaluation if after the computation
the output P (y) to the client is correct. A protocol securely implements the BP
evaluation FBP if the client learns only the result P (y) and nothing else, and
the server learns nothing.

Definition 4.5 (Semi-Honest Security for BPs). A protocol ΠBP securely com-
putes FBP in the presence of semi-honest adversaries if the output is correct
and

� there exists a PPT algorithm S1 that simulates the server’s view ViewΠBP

1

given only P such that:

{S1(P,∅)}P,y,λ
c≡ {ViewΠBP

1 (P, y, λ)}P,y,λ, (1)

� there exists a PPT algorithm S2 that simulates the client’s view ViewΠBP

2

given only y and P (y) such that:

{S2(y,P (y))}P,y,λ
c≡ {ViewΠBP

2 (P, y, λ)}P,y,λ. (2)

5 Ishai-Paskin’s protocol

Evaluating an encrypted BP is slightly more complicated than evaluating a non-
encrypted BP. In order to evaluate an encrypted BP, we need to evaluate the
paths from the root to each leaf individually. This is done by comparing the i’th
input bit to the i’th edge label, and then multiplying all of the results together.
We refer to this as the cost of the path. If all of the input bits are equal to

8

x0

x1

O1

Enc(1)(. . .)

O2

Enc(1)(. . .)

Enc(2)(. . .)

O3

Enc(2)(. . .)

Figure 5: Example for Ishai-Paskin BP Structure

the respective edge labels, then all of the comparison bits are equal to 1, and
the cost of the path is 1. If at least one of the input bits is not equal to the
respective edge label, then at least one of the comparison bits is equal to 0, and
the cost of the path is 0. On any input, there is therefore exactly one path, from
the root to a leaf, of cost 1. To then obtain the output of the BP, we multiply
the cost at each leaf, with its label, and then sum up all of these results. Since
exactly one leaf has non-zero cost, we obtain only the label of that leaf as a
result.

The protocol of Ishai and Paskin is based on the same BP structure we
described in Section 4. For simplicity, we only describe the binary case, i.e.
where every inner node has exactly two children. The protocol of Ishai and
Paskin [20] evaluates the BP bottom up. They start with the labels of the
leaves and evaluate the deepest inner nodes given an input. This is theoretically
done by an Oblivious Transfer (OT) query returning the respective leaf which is
indicated by the associated input. Specifically, if we have a left child with label
l0 and a right child with label l1, we query the label lyi where yi is the input
bit at level i. They implement such an OT query by using the Damg̊ard-Jurik
cryptosystem as described in Section 3.2.

In the following, we describe some details of our own implementation of
Ishai-Paskin’s protocol. The client encrypts its input bits with an encryption
instance depending on the level in the BP. Starting with s = 1 for the deepest
input level, and with an increasing s for upper levels, for s the encryption pa-
rameter for Damg̊ard-Jurik, see Section 3.2. By Enc(s), we denote an encryption
with parameter s. The server can then homomorphically compute decision bits
on each of the branches indicating which branch is taken by the input. We
aggregate all the decision bits by evaluating the tree bottom up as described
above. This needs a multiplication of a decision bit with the label of the previ-
ous level and an addition afterwards. While the addition is a basic property of
the Damg̊ard-Jurik scheme, the multiplication follows from the length-flexibility
and the choice of different encryption instances based on the considerations in
Section 3.2. The structure is illustrated in Figure 5.

The problem of such a procedure is that the ciphertext size is increasing
during the process and depends on the BP depth. On the one hand, this leads
to higher communication cost between server and client since they have to send

9

Client Server

Input: y Input: P

Output: r = P (y)

⟦y⟧ ← Enc(y[1]), . . . ,Enc(y[µ]) T ← CreateTree(P)

⟦y⟧

EvalNodes(T, ⟦y⟧)

leaves← EvalPaths(T)

⟦r⟧ ← EvalLeave(leaves)

⟦r⟧

r ← Dec(⟦r⟧)

Protocol 6: Protocol Overview

larger ciphertexts. On the other hand, the computation time strongly increases
with the use of schemes with a larger parameter s because we are operating in
the group Z∗ns+1 . Our solution, on the other hand, relies on Fully Homomorphic
Encryption (FHE) which comes with a compactness property, i.e. the ciphertext
size is bounded and independent of the evaluation that is applied.

6 Our Protocol

Our protocol consists of an offline and an online phase. In the offline phase,
the server and client initialize their settings; the server creates a tree based
on its program and the the client encrypts its input. In the online phase, the
client sends the bit-wise encrypted input to the server, which evaluates the input
homomorphically and sends the encrypted result to the client. Figure 6 gives
an overview of the protocol.

6.1 Algorithms

We now introduce some subroutines that our protocol will make use of. We
then present a detailed overview of the implementation of our protocol based
on leveled FHE (Section 6.3) and bootstrapping FHE (Section 6.4).

Initialization. The initialization consists of a one time key generation. The
client generates an appropriate triple (pk, sk, ek) of public, private and evalua-

10

tion keys for a homomorphic encryption scheme. Then, the client sends (pk, ek)
to the server. For each computation, the client encrypts its input and sends it
to the server. As explained before, the actual computation on the binary tree
is done only by the server. The following steps describe the computation done
by the server, starting by creating the binary tree.

Creating the Binary Tree. We build a tree based on the BP as defined in
Section 4.3. Depending on the input, the tree might be complete, i.e. each leaf
has the same depth, or it might already be pruned. To analyze the same data
structure for the same input, we prune every tree as described in the following.
If for a node v the right and the left child have the same cLabel, we assign node
v their cLabel and remove the children. Especially for a small output range, e.g.
{0,1}, pruning the tree comes with a significant reduction of the complexity of
the tree structure. This step can be pre-computed since it does not depend on
the client. Moreover, the server can use the representation of the BP several
times.

Computing Decision Bits. The client sends each input y bitwise encrypted.
Let y = y[1], . . . , y[µ] be the corresponding bit string and ⟦y⟧ = ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
the corresponding ciphertexts. The server computes the decision bits at each
inner node v by comparing each ⟦y[i]⟧ against the edge labels of node v. This
comparison is a bit equality test that returns ⟦1⟧ if the two bits are equal and
⟦0⟧ otherwise. We could therefore implement it using the Boolean XNOR gate.
However, since the server knows the labels of the branches, it is easier to apply a
Boolean XOR gate to the negated label. This is equivalent to addition modulo
2. Thus, we obtain ⟦y[i]⟧ ⊞ 1 for the left branch and analogously just ⟦y[i]⟧ for
the right branch. The computation of decision bits is illustrated in Algorithm
7.

Note that the decision bits are the same for every node on the same level.
We can therefore reduce the complexity by computing the decision bits only
once per level and using it for any node at this level.

Aggregating Decision Bits. For each leaf v, the server aggregates the com-
parison bits along the path from the root to v. This is done using homomorphic
multiplication of the decision bits along the path. The aggregated result is
stored at the leaf of the corresponding path. We implement it using a queue
and traversing the tree in BFS order as illustrated in Algorithm 8.

Finalizing. After aggregating the decision bits along the paths, each leaf
v stores either ⟦v.cost⟧ = ⟦0⟧ or ⟦v.cost⟧ = ⟦1⟧, whereby there is a unique
leaf with ⟦v.cost⟧ = ⟦1⟧ and all other leaves have ⟦v.cost⟧ = ⟦0⟧. Then, the
server aggregates the costs at the leaves by computing for each leaf v the value
⟦v.cost⟧⊡⟦v.cLabel⟧ and summing up the results of all leaves. This computation
is illustrated in Algorithm 9.

11

1: function EvalNodes(root, ⟦ȳ⟧)
2: let Q be a new queue
3: Q.enqueue(root)
4: parse ⟦ȳ⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧ ← ⟦y[v.level]⟧ ⊞ 1
9: Q.enqueue(v.left)

10: if v.right ≠ null then
11: ⟦v.right.cost⟧ ← ⟦y[v.level]⟧
12: Q.enqueue(v.right)

Algorithm 7: Evaluating Nodes by Computing Decision Bits

1: function EvalPaths(root)
2: let Q be a queue
3: let leaves be a queue
4: Q.enqueue(root)
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧ ← ⟦v.left.cost⟧ ⊡ ⟦v.cost⟧,
9: if v.left.isLeaf() then

10: leaves.enqueue(v.left)
11: else
12: Q.enqueue(v.left)
13: if v.right ≠ null then
14: ⟦v.right.cost⟧ ← ⟦v.right.cost⟧ ⊡ ⟦v.cost⟧,
15: if v.right.isLeaf() then
16: leaves.enqueue(v.right)
17: else
18: Q.enqueue(v.right)
19: return leaves

Algorithm 8: Evaluating Path by Aggregating Decision Bits

12

1: function EvalLeave(leaves)
2: ⟦b⟧ ← ⟦0⟧
3: for each v ∈ leaves do
4: ⟦b⟧ ← ⟦b⟧ ⊞ (⟦v.cost⟧ ⊡ ⟦v.cLabel⟧)
5: return ⟦b⟧

Algorithm 9: Evaluating Leaves by Summing up the Costs at Leaves

6.2 Security

The correctness of the protocol is given since our construction only allows the
cost of the corresponding leaf to be 1. Hence, the result of the protocol is exactly
the leaf label which is the desired program output. Privacy is shown in the proof
of the following theorem.

Theorem 6.1. If the underlying encryption scheme is IND-CPA secure, Pro-
tocol 6, called Π, securely computes functionality FBP in the presence of a semi-
honest adversary.

Proof. Correctness is given by previous elaborations.
For privacy, we start with the simulator of the server, S1. The view of the

server only consists of µ encrypted bits. Therefore, the simulator only encrypts µ
random bits and sends it to the server. Since the encryption scheme is IND-CPA
secure, there is no non-negligible probability to distinguish the µ encrypted ran-
dom values from the actual messages. Hence, the simulator is indistinguishable

from the actual view and it holds {S1(P,∅)}P,y,λ
c≡ {ViewΠ

1 (P, y, λ)}P,y,λ.
The simulator of the client obtains y and P (y). The client’s view consists

of the resulting ciphertext, i.e. ⟦P (y)⟧. Hence, the simulator encrypts the
result P (y) such that the simulated values decrypt to the correct result and
the decrypted values cannot be distinguished. However, the ciphertexts itself
also have to be indistinguishable to obtain a correct simulation. Using an FHE
scheme, one can distinguish a fresh ciphertext from a ciphertext with operations
applied since they have a different noise level. To this end, the simulator can
apply as many additions and multiplications as the original protocol. For each
addition, the simulator adds 0, for each multiplication it multiplies the result
by 1 to obtain a ciphertext with the same noise level as the real protocol. Thus,
the simulator cannot be distinguished from the real client’s view.

6.3 Leveled FHE

One way to implement our basic protocol is to rely on a leveled FHE scheme.
We now present some specifications and refinements compared to the basic al-
gorithms described so far.

13

Batch Multiplication. For leveled FHE, the multiplicative depth of the pro-
gram to be evaluated is relevant because the parameters of the scheme have to
be chosen accordingly. A larger multiplicative depth leads to larger parameters
with higher computational overhead. We therefore adapt Algorithm 8, in order
to decrease the multiplicative depth required to evaluate paths, at the cost of
increasing the total number of multiplications. The idea is based on the private
evaluation of decision trees from Tueno et al. [29].

Given the ciphertexts a1, . . . , an, define the function g as

g({a1, . . . , an}) ∶=
⎧⎪⎪⎨⎪⎪⎩

a1, if n = 1,
g({a1, . . . , a⌊n

2
⌋
}) ⊡ g({a

⌊
n
2
⌋+1, . . . , an}, if n > 1

We refer to the application of g onto a given set of ciphertexts as batch multi-
plication. This is useful, since it allows us to decrease the multiplicative depth
of this series of multiplications by the following theorem.

Theorem 6.2. The operation g({a1, . . . , an}) has a multiplicative depth of
⌈log(n)⌉.
Proof. We proceed with this proof inductively. For n = 1, no multiplication is
performed, and thus the multiplicative depth of g(a1) is zero. For n ≥ 2 we know
that g({a1, . . . , an}) = g({a1, . . . , a⌊n

2
⌋
})⊡g({a

⌊
n
2
⌋+1, . . . , an}, and hence the mul-

tiplicative depth is max{⌊log n
2
⌋ , ⌈log n

2
⌉} + 1 by our inductive assumption. We

therefore see that the multiplicative depth of g({a1, . . . , an}) is ⌈log n
2
⌉ + 1 =

⌈logn⌉.

Analysis. Using batch multiplication, we can reduce the multiplicative depth
of evaluating a path from d to log(d). However, this does increase the number of
multiplications required to evaluate the tree from O(2d) to O(log(d) ⋅ 2d log(d)).
A detailed description of how this is achieved can be found in Appendix A.

6.4 (Bootstrapping) FHE

For FHE schemes capable of bootstrapping we distinguish between two variants.
There are schemes which apply a bootstrapping operation when the noise

of the ciphertext is too high [16]. Since a multiplication usually adds a lot of
noise compared to an addition, it might be wise to reduce the multiplicative
depth to avoid expensive bootstrapping operations. In this case, we could apply
batch multiplication, presented in Section 6.3. However, this procedure leads to
an increased number of multiplications which leads to a trade-off between the
number of multiplications and the number of bootstrapping operations. The
most efficient choice therefore depends on the parameters of the chosen scheme.

Other variants of FHE schemes use gate-by-gate bootstrapping [9]. They
apply a bootstrapping operation after each gate evaluation without considering
the actual noise. In this scenario, it is not reasonable to reduce the multiplicative
depth but to reduce the overall homomorphic operations. In the following, we
focus on this case.

14

Const. XOR Const. AND Hom. XOR Hom. AND

Node Evaluation d - - -

Path Evaluation - - - 2d+1 − 2

Leaves Aggregation - 2d 2d − 1 -

Total d 2d 2d
− 1 2d+1

− 2

Total Hom. Gates 2d+1
+ 2d

− 3

Table 1: An overview of the number of required operations in Bootstrapping
FHE mode. The symbol “-” indicates that there is no such operation in this
step.

Analysis. Since we do not apply any further optimizations to improve the
running time, we can use the algorithms of our basic protocol from Section
6, since they already optimize the number of homomorphic operations. We
consider the worst case scenario, i.e. a complete tree of depth d. An overview of
the required number of each operation can be found in Table 1. Note that, due
to pruning and further optimizations, the worst case is very unlikely to happen
(e.g. with a probability of 2−d for binary outputs). If we rely on a binary
scheme, we can represent an addition in Z2 by an XOR -gate. A multiplication
is given by an AND-gate. For the following description, addition/XOR and
multiplication/AND are used for the same operation.

1. To evaluate decision nodes, we need one constant XOR operation. Since
all nodes on one level have the same value, we need d constant XOR op-
erations.

2. The path evaluation needs two homomorphic AND operations per inner
node. That is 2d+1 − 2 homomorphic AND gates.

3. Leaves aggregation needs one constant AND operation per leaf and ad-
ditionally homomorphic XOR operations to sum up all the leaf results.
This yields 2d constant AND gates and 2d − 1 homomorphic XOR gates.

This is in total 2d+1 + 2d − 3 homomorphic gates.

7 Generalizations and Optimization

In this section, we present optimizations to our basic protocol to achieve a more
efficient solution.

7.1 Reducing Computation Cost

Algorithm 7 is very efficient since there is exactly one homomorphic evalua-
tion at each node. We can even save this operation by computing it on plain-
text at the client’s side. Instead of sending ⟦y[1]⟧ , . . . , ⟦y[µ]⟧, the client sends

15

⟦y[1]⟧ , ⟦¬y[1]⟧ , . . . , ⟦y[µ]⟧ , ⟦¬y[µ]⟧. This doubles the number of ciphertexts
the client has to send for each input. The server can now evaluate each node
without any homomorphic operation by labeling the left branch with ⟦y[i]⟧ as
before and the right branch with ⟦¬y[i]⟧. This is very similar to the procedure
from [20].

7.2 Reducing Communication Cost

We can further reduce the communication costs using pre-computation. For
an input y the client sends a random ciphertext ⟦−r⟧ in the offline phase. In
the online phase, the client can send y + r which is not an FHE ciphertext and
thus much more efficient. Here, “+” is the operation on the underlying group,
e.g. ⊕ for binary representations. The security is still guaranteed based on the
one-time-pad. Then, the server can compute ⟦y + r⟧⊞ ⟦−r⟧ to obtain the actual
input.

7.3 Non-binary Trees

We can generalize our approach using a branching program by relying on an
m-ary tree instead of a binary tree. Now, we have to parse the input element by
base m and create a tree with m children for each inner node. The client has to
encrypt values from {0, . . . ,m−1} which reduces the number of ciphertexts that
have to be sent. Moreover, the computation time on the server can be reduced
as well, since the server can parallelize the execution of independent sub-trees.
The only difference in the evaluation of an m-ary tree is the node evaluation
since we have to take m branches into account. We present two possibilities to
evaluate the nodes of an m-ary tree.

Precomputed Booleans. In order to get the correct input bit, the client
could precompute it on plaintext. This idea is based on the construction from
Section 7.1. Instead of an encrypted input digit ⟦yi⟧, the client sends the en-
crypted bits ⟦yi == 0⟧ , . . . , ⟦yi == (m − 1)⟧. For node i and branch j the server
can take the j-th encrypted boolean as the decision bit on that branch. This
procedure of course neglects the advantage of sending less ciphertexts. However,
compared to the binary tree and the extension from Section 7.1 the amount of
data being sent does not increase significantly.

Polynomial Evaluation. Another variant is to evaluate a polynomial on the
server’s side to get the decision bit of a branch. For the i-th node and the j-th
branch we can homomorphically evaluate the polynomial

Pj =
m−1

∏
k=0,k≠j

⟦yi⟧ − k
cj

,

16

xi

P0 = (⟦yi⟧−1)(⟦yi⟧−2)2

P1 = ⟦yi⟧(⟦yi⟧−2)
−1

P2 = ⟦yi⟧(⟦yi⟧−1)2

Figure 10: Example of polynomial evaluation for m = 3 at node xi

for a constant c. If yi is any value but j, the product is an encryption of 0. We
choose c such that we obtain an encryption of 1 in the other case:

cj =
m−1

∏
k=0,k≠j

(j − k).

An example is presented in Figure 10.
This procedure increases the multiplicative depth of a decision bit but it is

not worse than the basic case since we reduce the tree depth at the same time
by using m-ary trees instead of binary trees.

We now investigate how to efficiently evaluate these polynomials. The goal
is to evaluate one polynomial on each of m branches. In the following, we ignore
the constant term to normalize the polynomial since it can be easily precom-
puted and multiplied in the online phase using only one constant multiplication.
Hence, we consider polynomial Pj for branch j:

Pj(y) =
m−1

∏
i=0,i≠j

(y − i).

All polynomials have degree n − 1. For the first branch, we obtain

P0(y) =
m−1

∏
i=1

(y − i).

We can evaluate it in the offline phase to obtain the coefficient form, i.e. an
array of n coefficients starting with the highest degree xm−1:

(cm−1, . . . , c0).

Some observations:

� cm−1 = 1 for every polynomial

� c0 = 0 for every polynomial except the first (P0)

17

Let now (cm−1, . . . , c0) be the coefficient form of polynomial P0. We can
then precompute the coefficient forms of P1, . . . , Pm−1. For polynomial Pj , we
iteratively compute

(cjm−1, . . . , c
j
0) = (1, cm−2 + jcm−1, cm−3 + j(cm−2 + jcm−1), . . .).

In a more compact form, we compute the i-th coefficient of Pj (c
j
i) based on P0:

cji = ci + jc
j
i+1,

starting with cjm−1 = 1.
In the online phase, we only need the powers of y which might be compu-

tationally expensive. Then, we can use the coefficient forms to evaluate the
polynomial by using constant multiplications and additions.

Overall effort per tree level (online phase):

� Powers from y2, y3, . . . , ym−1 (ciphertext powers)

� m ⋅ (m − 2) =m2 − 2m constant multiplications

� m ⋅ (m − 2) + 1 =m2 − 2m + 1 additions (+1 since the first polynomial has
a constant term)

We can even decrease the computational complexity further. So far, we
implicitly assumed the computation to be done over some field (we assumed
cj to have an inverse element). If we introduce some further constraints, there
occur some quite practical consequences. The output of the polynomial is either
0 or 1 and the input is at most m. Then, it is sufficient to compute over Zm
which is a field if we assumem to be prime.2 The improvement can be illustrated
by considering polynomial P0 which simplifies to

P0(y) = ym−1 − 1 mod m

which saves many computations.
Finally, we can introduce a trade-off between communication and computa-

tion. The most expensive operations are ciphertext-ciphertext multiplications.
For evaluating the polynomials for multiple branches, these are the ciphertext
powers to compute. To save some computation time, the client could precom-
pute these powers. This can be done in the offline phase and especially on
plaintexts before the encryption step.

7.4 BDD

Our protocol is based on the evaluation of a BP. So far, we represented the BP
by a simple tree structure but there are more efficient ways of evaluation, e.g. a
binary decision diagram (BDD). This is a special case of a BP which applies to
our construction. As for BPs there are a lot of different notations for BDDs. In

2Otherwise we could take the smallest prime larger than m.

18

0

0

1

1

0

1

1

0

0

0

0

0

1

1

1

1

(a) Pruned tree for X = {1,2,3,7}

0 1

1

1

0

0
1 0

0 1

(b) BDD for X = {1,2,3,7}

Figure 11: Visualization of pruned tree and BDD for X = {1,2,3,7}

contrast to our previous construction, a BDD can have more than one parent
node. We need some slight modifications to our evaluation procedure since we
now have nodes with in-degree greater than 1. See Figure 11 for an example
with X = {1,2,3,7}. It is easy to see that the BDD consists of less edges and
less nodes which leads to a smaller evaluation effort. Evaluating the pruned
tree, we need at least 10 multiplications and 5 additions (aggregating bottom
up or using path prefixes). For the BDD, we only need 8 multiplications and 4
additions.

In the following, we present changes in the protocol’s subroutines to allow
the creation and evaluation of BDDs. The algorithms for node evaluation (Al-
gorithm 7) and leaf evaluation (Algorithm 9) can be used without any changes
for BDDs.

Creating the BDD. Our main goal is to represent the data structure as
compact as possible. Therefore, we are considering reduced BDDs. A BDD is
reduced if none of the reduction rules can be applied [32]. The reduction rules
are [32]:

1. Eliminate nodes with isomorphic children

2. Merge isomorphic subgraphs

In our case, the first rule corresponds to pruning the tree. Isomorphic subgraphs
means that there is a bijection between the nodes of the subgraphs such that
adjacent nodes in a subgraph are also adjacent to the corresponding nodes in the
other subgraph. An example for the second rule has been shown in Figure 11.
The leftmost subgraph and the rightmost subgraph are isomorphic since in our
data structure nodes on the same level are labeled with the same input.

For a general approach, we start with the tree, which is already a special case
of a BDD, from our basic protocol and use established algorithms to efficiently
reduce it [32]. As an addition of the data structure from Section 6, the parent
attribute is now a list of pointer values since a node can have several parents.
Note that this computation can be done in the offline phase and on plaintexts.

19

1: function EvalPaths(root)
2: let Q be a queue
3: let leaves be a queue
4: Q.enqueue(root)
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: ⟦tmp⟧ ← ⟦0⟧
8: for all p ∈ v.parent do
9: ⟦tmp⟧ ← ⟦tmp⟧ ⊞ ⟦v.cost⟧ ⊡ ⟦p.cost⟧

10: ⟦v.cost⟧ ← ⟦tmp⟧
11: if v.isLeaf() then
12: leaves.enqueue(v)
13: else
14: if v.left ≠ null then
15: Q.enqueue(v.left)
16: if v.right ≠ null then
17: Q.enqueue(v.right)
18: return leaves

Algorithm 12: Evaluating Paths (BDD Case)

Aggregating Decision Bits. The aggregation along each path works similar
but we must take care of nodes with more than one predecessor. Instead of
evaluating the decision bits of edges to a node’s children, we evaluate the decision
bits of edges to a node’s parents and aggregate them. The result is depicted in
Algorithm 12.

7.5 Third-Party Computation

Our protocol is built for a client-server-scenario in which the server holds the
larger set and has a lot of computation power. In case the latter is not given,
the server might outsource the computational effort to a third party. With some
slight modifications we are able to extend our protocol such that the server can
outsource the main computation to a third party in a secure way. As the client,
the server encrypts its program and the third party can evaluate our protocol
on an encrypted input y and an encrypted tree built on P . To this end, the
server builds the tree and encrypts edge labels and leaf labels. Since we want
to guarantee the server’s privacy, we must create the tree in a generic way such
that the resulting structure does not leak anything about the server’s set. The
server sends these encrypted values and the client sends the encrypted input to
the third party which applies the same evaluation as before except an encrypted
node evaluation algorithm. In contrast to the plaintext case, the evaluation has
to be done homomorphically. The modification can be found in Algorithm 13

20

1: function EvalNodes(root, ⟦ȳ⟧)
2: let Q be a new queue
3: Q.enqueue(root)
4: parse ⟦ȳ⟧ to ⟦y[1]⟧ , . . . , ⟦y[µ]⟧
5: while Q.empty() = false do
6: v ← Q.dequeue()
7: if v.left ≠ null then
8: ⟦v.left.cost⟧ ← ⟦y[v.level]⟧⊞ ⟦v.lEdge⟧ ▷ Encrypted label
9: Q.enqueue(v.left)

10: if v.right ≠ null then
11: ⟦v.right.cost⟧ ← ⟦y[v.level]⟧⊞ ⟦v.rEdge⟧ ▷ Encrypted label
12: Q.enqueue(v.right)

Algorithm 13: Evaluating Nodes (Encrypted Case)

where lines 8 and 11 changed compared to the basic protocol.

8 Implementation and Evaluation

In this section, we present implementation details and describe our evaluation
where we compare the running time of the different implementations of our
protocol with each other and with the baseline implementation of Ishai-Paskin’s
protocol.

8.1 Implementation

We implemented Ishai-Paskin’s protocol as a baseline implementation. It is
based on libscapi [18], which is a library containing the Damg̊ard-Jurik scheme [12].

For our protocol, we implemented two variants. The first variant is based
on Section 6.3 implementing the leveled BGV scheme [6] from HElib library [1].
The second variant is based on Section 6.4 and uses TFHE as a gate-by-gate
bootstrapping scheme [9,10].

8.2 Experimental Setup

We compare protocols with only one interaction between the two parties. The
client sends the encrypted input to the server and receives the encrypted output.
The computation is done on the server’s side. This is why we only measure the
overall computation time on the server. We further measure the communication
in bytes sent from the client to the serer and from the server to the client.

The protocols are evaluated for depths 3 through 12 on random inputs. For
our variants, we computed the average over 30 runs. Due to the running time
of Ishai-Paskin’s protocol, we averaged over only 20 runs for depth 6, 7 and 8

21

and over only 10 runs for depth 9. To evaluate the effect of our optimizations
from Section 7, we also compare the running times of different optimization
procedures.

All experiments were performed on an AWS instance equipped with 24 vir-
tual cores of an Intel Xeon scalable processor with up to 4GHz and 192 GB of
RAM running Ubuntu 20.04.

8.3 Evaluation Results

The relevant data for our experiments is presented in Table 2.

Ishai-Paskin
Ours (TFHE) Ours (BGV)

Naive Pruning BDD Naive Pruning BDD
d = 3 7.44635 0.6013 0.5697 0.6384 0.1394 0.1375 0.2649
d = 4 18.9638 0.6576 0.6204 0.7467 0.2952 0.2663 0.4322
d = 5 43.2954 0.7215 0.7238 0.9057 0.5121 0.4698 0.6895
d = 6 93.6150 0.8764 0.9030 1.0971 1.0856 0.9254 1.3019
d = 7 195.7310 1.2544 1.2551 1.4327 2.0830 1.6626 1.7867
d = 8 402.0605 1.9530 1.9509 1.7813 4.5693 3.5818 2.4503
d = 9 815.8435 3.3567 3.3624 2.3534 7.8346 5.7843 2.9849
d = 10 - 6.1514 4.8179 3.3270 17.2331 12.3072 11.9572
d = 11 - 11.6349 8.8790 4.8329 36.1534 25.0358 18.3435
d = 12 - 22.8414 16.9379 6.8911 82.0635 56.3668 28.7130

Table 2: Running Time (s) for All Schemes

Our experimental evaluation concludes that for all tested tree depths, the
evaluation of both BGV and TFHE comes with less overhead, as well as better
scalability when compared to the Ishai-Paskin protocol. This is visualized in
Figure 14. Here we see that BGV is between 16 times faster than the Ishai-
Paskin protocol on the smallest instances and 31 times faster on the largest
instances. TFHE, is marginally slower than BGV on the smallest instances,
but eventually becomes faster due to better scalability. Notably, TFHE and
HElib seem to scale similarly on small examples, but as instances get bigger
we are forced to select less optimal parameters in HElib to accomodate for a
larger multiplicative depth. Since picking less optimal parameters makes every
operation a little bit slower, this accumilates into a massive hit in performace,
as seen when going from depth 9 to depth 10. On the largest instance (depth
12), TFHE outperforms BGV by about 4 times.

We also tested the performance gained using pruning, as well as the com-
bination of pruning and the evaluation of the BDD representation of the tree.
These are visualized in Figures 15 and 16. We see, that both our TFHE imple-
mentation as well as our BGV implementation benefit from pruning. Moreover,
since pruning has a proportionally larger effect on larger trees, we see an in-
crease in performance gained by BGV and TFHE as the depth of the evaluated
tree increases. Note however, that evaluating the BDD representation of a tree
requires a deeper multiplicative depth. This forces us to select less optimal
parameters to allow for a deeper multiplicative depth, much earlier that when

22

Figure 14: Comparison of Running Time

evaluating the trees directly. This means that when using BGV, our perfor-
mance when using the BDD representation can become comparable to what we
obtain using only pruning.

More interestingly, the combination of using pruning and the BDD repre-
sentation, leads initially to slower times. This is due in part, to the fact that
evaluating a BDD is more complex than evaluating a pruned tree. The perfor-
mance gained by by decreasing the size of the instance is therefore negated by
the increase in evaluation overhead on smaller trees. As the tree size increases,
we see that this is no longer the case, and that using the BDD representation
can provide a substantial performance gain over just pruning.

23

Figure 15: Influence of Optimizations for TFHE

24

Figure 16: Influence of Optimizations for BGV

In terms of space efficiency, Figure 17 presents the number of bytes sent from
the server to the client. We see that TFHE uses constant ciphertext-size, and
therefore becomes marginally more space efficient than BGV and Ishai-Paskin.
The Ishai-Paskin protocol uses ciphertexts of a similar order-of-magnitude to
those used in TFHE but becomes less space efficient the deeper the tree becomes,
since ciphertext size is dependence on the tree depth in the Ishai-Paskin protocol.
BGV uses cipherexts that are much larger than TFHE and Ishai-Paskin. We
also see a sudden increase in ciphertext size, that corresponds to the selection of
new parameters in order to accomodate for larger multiplicative depths. We can
conclude, that the space efficiency of both Ishai-Paskin and BGV scale poorly
in comparison to the TFHE implementation.

25

Figure 17: The number of bytes sent from the server to the client, i.e. the size
of a single ciphertext.

This trend can also be seen in the communication cost from the client to
the server. Figure 18 presents the number of bytes received by the server from
the client. We see that again, TFHE is much more efficient that both BGV and
Ishai-Paskin. We also see, that both BGV as well as TFHE scale better than
Ishai-Paskin.

As we previously noticed, when using BGV our performance when using
the BDD representation can become comparable to what we obtain using only
pruning. In such situations, it might be even be wiser to only use pruning,
since sub-optimal parameters also greatly increase ciphertext size. This can be
seen in Figure 19 and Figure 20, where the selection of new parameters greatly
increases the communication cost between both parties.

26

Figure 18: The numer of bytes sent from the client to the server.

Figure 19: The number of bytes received by the server from the client in BGV
variants.

27

Figure 20: The number of bytes sent from the server to the client in BGV
variants, i.e. the size of one ciphertext.

References

[1] Helib, October 2021. https://github.com/homenc/HElib.

[2] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and
T. Schneider. Secure evaluation of private linear branching programs with
medical applications. In ESORICS, pages 424–439, Berlin, Heidelberg,
2009. Springer-Verlag.

[3] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits.
In CCS, CCS ’12, pages 784–796, 2012.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC, pages
1–10, New York, NY, USA, 1988. ACM.

[5] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. Machine learning classifi-
cation over encrypted data. In NDSS, 2015.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic en-
cryption without bootstrapping. ECCC, 18:111, 2011.

28

[7] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving
remote diagnostics. In CCS, pages 498–507, New York, NY, USA, 2007.
ACM.

[8] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In STOC, pages 11–19, New York, NY, USA, 1988. ACM.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: fast fully
homomorphic encryption over the torus. J. Cryptol., 33(1):34–91, 2020.

[10] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.
TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

[11] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from
threshold homomorphic encryption. In EUROCRYPT, pages 280–299,
2001.

[12] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In PKC ’01, PKC
’01, pages 119–136, London, UK, UK, 2001. Springer-Verlag.

[13] I. Damg̊ard and M. Jurik. A length-flexible threshold cryptosystem with
applications. In Information Security and Privacy, 8th Australasian Con-
ference, ACISP 2003, Wollongong, Australia, July 9-11, 2003, Proceedings,
pages 350–364, 2003.

[14] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart.
Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits. In ESORICS ’13, pages 1–18, 2013.

[15] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO ’12, pages
643–662, 2012.

[16] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178, New York, NY, USA, 2009. ACM.

[17] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

[18] B. I. C. R. Group et al. libscapi: The secure computation api, 2016.

[19] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques
and Constructions. Springer-Verlag New York, Inc., New York, NY, USA,
1st edition, 2010.

[20] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data.
In Theory of Cryptography Conference, pages 575–594. Springer, 2007.

29

[21] M. Joye and F. Salehi. Private yet efficient decision tree evaluation. In
DBSec, volume 10980 of Lecture Notes in Computer Science, pages 243–
259. Springer, 2018.

[22] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In CCS ’16, pages 830–842,
2016.

[23] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider. Sok: Modular
and efficient private decision tree evaluation. PoPETs, 2019(2):187–208,
2019.

[24] V. Kolesnikov and T. Schneider. A practical universal circuit construction
and secure evaluation of private functions. In FC, pages 83–97, 2008.

[25] P. Mohassel, S. S. Sadeghian, and N. P. Smart. Actively secure private
function evaluation. In ASIACRYPT, pages 486–505, 2014.

[26] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT’99, pages 223–238. Springer-Verlag, 1999.

[27] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[28] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow. Privacy-preserving
decision trees evaluation via linear functions. In ESORICS, pages 494–512,
2017.

[29] A. Tueno, Y. Boev, and F. Kerschbaum. Non-interactive private decision
tree evaluation. In Data and Applications Security and Privacy XXXIV
- 34th Annual IFIP WG 11.3 Conference, DBSec 2020, Regensburg, Ger-
many, June 25-26, 2020, Proceedings, pages 174–194, 2020.

[30] A. Tueno and J. Janneck. A method for securely comparing integers using
binary trees. IACR Cryptol. ePrint Arch., page 1646, 2021.

[31] A. Tueno, F. Kerschbaum, and S. Katzenbeisser. Private evaluation of
decision trees using sublinear cost. PoPETs, 2019(1):266–286, 2019.

[32] I. Wegener. Branching programs and binary decision diagrams: theory and
applications. SIAM, 2000.

[33] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter. Privately evaluating decision
trees and random forests. PoPETs, 2016(4):335–355, 2016.

[34] A. C. Yao. Protocols for secure computations. In SFCS ’82, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

30

A Analysis Multiplication DAG

In this section, we analyse the number of multiplications required to evaluate
a complete tree using batch multiplication. First we show that the required
number of multiplications is bound by log(d) ⋅ 2d log(d), where d is the depth
of the tree, and then we give an explicit formula for the required number of
multiplications.

Theorem A.1. The number of multiplications required to evaluate a complete
tree using batch multiplication is bound by log(d) ⋅ 2d log(d), where d is the depth
of the tree.

Proof. We prove this fact by induction. To do this, we need a recursive formula
for the number of multiplications required to evaluate the tree. For large trees,
the evaluation of the tree using batch multiplication goes as follows. The tree is
split at level ⌊d

2
⌋. The tree above the split is of depth ⌊d

2
⌋, and the trees below

the split are of depth ⌈d
2
⌉, with the leaves of the upper tree forming the roots of

the lower trees (since we multiply edge labels and not node labels). Each of the
trees is evaluated separately, and then the value at each leaf in the upper tree is
multiplied with each of the values at the leaves below it. There are 2⌊

d
2
⌋ leaves

in the tree above the split. For each of those leaves, there is exactly one tree
below it, which is of depth ⌈d

2
⌉. Since each leaf of each lower tree is multiplied

with one leaf from the upper tree, we get an extra 2d multiplications. Let p(d)
be a function that gives us the number of multiplications required to evaluate
a tree of depth d using batch multiplication. We now know that

p(d) = p(⌊d
2
⌋) + 2⌊

d
2
⌋ ⋅ p(⌈d

2
⌉) + 2d,

for d ≥ 2. By inspection, we obtain the initial value condition p(1) = 0.
We now only need to bound this function from above, by log(d) ⋅ 2d log(d).

We do this inductively for all d ≥ 8 (we require large d in our proof), and by
inspection for all smaller d.

Our base case is simple. Evaluating the function p between 1 and 8 yields
the values 0,4,16,36,100,208,432, and 868. The reader can verify that for these
values, p is in fact bound by log(d) ⋅ 2d log(d).

Our induction step then goes as follows. We make the distinction between
odd and even d. For even d, we know

p(d) = p(⌊d
2
⌋) + 2⌊

d
2
⌋ ⋅ p(⌈d

2
⌉) + 2d

≤
B.C.

log (d
2
)2 d

2 log(d2) + 2
d
2 ⋅ log (d

2
) ⋅ 2 d

2 log(d2) + 2d

= log(d) (2 d
2 log(d2) + 2

d
2 ⋅ 2 d

2 log(d2)) − 2
d
2 log(d2) − 2

d
2 ⋅ 2 d

2 log(d2) + 2d

31

For any d ≥ 8, log2(d/2) ≥ 2 and thus 2
d
2 log(d/2) ≥ 2d. Hence we obtain

log(d) (2 d
2 log(d2) + 2

d
2 ⋅ 2 d

2 log(d2)) − 2
d
2 log(d2) − 2

d
2 ⋅ 2 d

2 log(d2) + 2d

≤ log(d) (2 d
2 log(d2) + 2

d
2 ⋅ 2 d

2 log(d2))

= log(d) (2 d
2 log(d2) + 2

d
2 log(d))

≤ log(d) (2 d
2 log(d) + 2

d
2 log(d)) .

For any number r that is at least 2, we know that r + r ≤ r ⋅ r. Hence,

log(d) (2 d
2 log(d) + 2

d
2 log(d))

≤ log(d) (2 d
2 log(d) ⋅ 2 d

2 log(d))

= log(d) (2d log(d)) .

For odd d > 8, the argumentation is analogous. We obtain

p(⌊d
2
⌋) + 2⌊

d
2
⌋ ⋅ p(⌈d

2
⌉) + 2d

≤
B.C.

log(d − 1

2
)2 d−1

2 log(d−12) + 2
d−1
2 ⋅ log(d + 1

2
) ⋅ 2 d+1

2 log(d+12) + 2d

≤ log(d + 1) (2 d−1
2 log(d−12) + 2

d−1
2 ⋅ 2 d+1

2 log(d+12))

− 2
d−1
2 log(d−12) − 2

d−1
2 ⋅ 2 d+1

2 log(d+12) + 2d,

≤ log(d) (2 d−1
2 log(d−12) + 2

d−1
2 ⋅ 2 d+1

2 log(d+12))

≤ log(d) (2 d−1
2 log(d−12)+

d+1
2 log(d+1))

≤ log(d) (2(d−1) log(d−1)− d−1
2 +log(d+1))

≤ log(d) (2(d−1) log(d−1))
≤ log(d) (2d log(d))

By induction, it follows that for all d ∈ N, p(d) ≤ log(d) ⋅ 2d log(d).

32

