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Abstract. The qINDqCPA security notion for public-key encryption
schemes by Gagliardoni et al. (PQCrypto’21) models security against
adversaries which are able to obtain ciphertexts in superposition. Defin-
ing this security notion requires a special type of quantum operator.
Known constructions differ in which keys are necessary to construct this
operator, depending on properties of the encryption scheme.
We argue—for the typical setting of securing communication between
Alice and Bob—that in order to apply the notion, the quantum operator
should be realizable for challengers knowing only the public key. This
is already known to be the case for a wide range of public-key encryp-
tion schemes, in particular, those exhibiting the so-called recoverability
property which allows to recover the message from a ciphertext using the
randomness instead of the secret key.
The open question is whether there are real-world public-key encryption
schemes for which the notion is not applicable, considering the aforemen-
tioned observation on the keys known by the challenger. We answer this
question in the affirmative by showing that applying the qINDqCPA se-
curity notion to the OAEP construction requires the challenger to know
the secret key. We conclude that the qINDqCPA security notion might
need to be refined to eventually yield a universally applicable PKE notion
of quantum security with a quantum indistinguishability phase.

1 Introduction

In light of the threat posed by quantum algorithms such as Shor’s [33], crypto-
graphic primitives that are assumed to withstand attacks using quantum com-
puting are mandatory to ensure security also in the future. Over the last decade,
a lot of research focused on exactly this type of cryptographic primitives—
commonly known as post-quantum cryptography.

Security against attackers with quantum computing power can be divided
into two categories. The first, and arguably the one that will be realistic in
the upcoming years, is post-quantum security. Here, the adversary has local
quantum computing power, which allows to evaluate public primitives like hash
functions in superposition, while keyed cryptographic primitives can be accessed
only classically. The second, and more conservative setting, is quantum security,
which grants the adversary superposition access also to keyed cryptographic
primitives. The latter defines the scope of this work.



The research area of quantum security was initiated by Boneh and Zhandry,
who gave the first quantum security notions for encryption schemes and signature
schemes [8]. At the moment, quantum security is still at a point where definitional
challenges have to be solved, e.g., it has to be understood how classically well-
established concepts like “distinguishing two ciphertexts” and “forge a signature
for a new message” can be translated to the quantum setting. For signatures,
initial problems of the Boneh–Zhandry notion where identified in [20] and a po-
tential solution was given in [1]. For public-key encryption schemes, there are two
different approaches to avoid limitations when switching to a quantum challenge
phase: a left-or-right approach given in [19] and a real-or-random approach given
in [12]. While the latter can be defined for any public-key encryption scheme,
this is not the case for the former. This is discussed in detail in the full version
of [19] and stems from the fact that the security notion developed in [19] re-
quires a special type of quantum operator. Simply speaking, the notion requires
an in-place quantum operator that transforms a state |x〉 into |F(x)〉 instead of
the canonical xor operator that transforms |x, y〉 into |x, y ⊕F(x)〉. The authors
of [19] give two constructions for the required in-place operator, based on the
properties of the encryption scheme. These two constructions, which we describe
later, differ in the keys that are necessary: one construction requires merely the
public key, the other construction requires both the secret key and the public
key. While the latter seems artificial, we stress that [19] focuses on whether the
operator required by their security notion can be constructed at all. In fact, the
authors show, surprisingly, that most real-world public-key encryption schemes
allow for the construction that requires just the public key.

1.1 Our Contribution

In this work, we study the quantum security notion from [19] regarding its ap-
plicability.

We first revisit the typical notion of ciphertext indistinguishability in the
context of securing communication between two parties. We argue that, for this
setting, challengers should only have access to the public key. Regarding the
construction of the in-place quantum operator from the qINDqCPA security
notion, this is known to be the case for most real-world public-key encryption
schemes, namely, those exhibiting the recoverability property [19].

We then focus on the question whether there are public-key encryption
schemes which do not have the recoverability property. The only known schemes
are obtained by a generic transformation [19] which transforms a recoverable
public-key encryption scheme into a non-recoverable one. We refine the classifi-
cation by showing that there are not just recoverable and non-recoverable public
key encryption schemes, but also what we call equivalent recoverable.

Finally, we investigate the OAEP construction. We show that this construc-
tion is non-recoverable, thereby giving the first real-world PKE scheme with this
property. We then show that—for the OAEP construction—the in-place oper-
ator needed for the quantum security notion from [19] cannot be constructed
using just the public key. Thereby we show that the quantum security notion
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qINDqCPA cannot be applied to all PKE schemes when imposing the restriction
that the challenger only knows the public key.

1.2 Related Work

Quantum security notions were first considered by Boneh and Zhandry [8]. Since
then, many works developed new quantum security notions or analyzed primi-
tives with respect to existing notions, ranging from signature schemes and mes-
sage authentication codes [1,7,20], to symmetric encryption [11,12,14,18,28,29],
and to public-key encryption schemes [12,19].

A series of works [2,3,9,10,21–23,25–27,31] show that superposition attacks
(which are modeled by quantum security notions) can have devastating effects
on cryptographic primitives by providing attacks against primitives like Even-
Mansour, the FX construction, Feistel networks, block ciphers, and HMAC.

The optimal asymmetric encryption padding (OAEP) was developed by Bel-
lare and Rogaway [6]. The initial proof had a gap, as detected by Shoup [34],
who provided a variant of OAEP with an alternative proof. Fujisaki et al. [17]
provide a proof for OAEP avoiding the initial gap by strengthening the require-
ments of the underlying function. Security of OAEP against quantum attackers
was first considered in [35] which required a slight modification to prove security.
Recently, post-quantum security of the plain OAEP construction was shown [15].

1.3 Outline

In Section 2, we provide background on quantum security notions, quantum
operators, and cryptography as necessary for this work. In Section 3, we refine
the qINDqCPA security notion. In Section 4 we review the notion of recoverable
PKE schemes. In Section 5, we analyze the OAEP construction with respect to
the qINDqCPA security notion.

2 Preliminaries

2.1 Notation

For a set X , we write x←$ X to denote the process of picking an element from
X at random and assigning it to x. By P, S,M, C, and R, we denote the public
key space, secret key space, message space, ciphertext space, and randomness
space of a cryptographic scheme, respectively. For a deterministic algorithm F ,
we write y ← F(x) to denote that y is the output of F on input x. For a
probabilistic algorithm, y ← F(x; r) denotes that the output of F on input x
with randomness r equals y. We write y ←$F(x) to denote the process that the
randomness r is chosen uniformly at random and y is the output of F on input
x with randomness r.
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2.2 Public-Key Cryptography

Public-key encryption schemes are defined below.

Definition 1. A public-key encryption (PKE) scheme is a tuple (KGen, Enc, Dec)
of three efficient algorithms such that:

– KGen : N×R → P×S is the key generation algorithm which takes a security
parameter λ and a randomness r as input, and returns a keypair consisting of
a public key pk and a secret key sk. If clear from the context, we will denote
it by (pk , sk)←$ KGen(). We will generally drop the security parameter.

– Enc : P ×M×R → C is the encryption algorithm which takes a public key
pk, a message m, and a randomness r as input, and returns a ciphertext c.
It will be usually denoted by c ←$ Enc(pk ,m) or c ← Enc(pk ,m; r).

– Dec : S × C → M is the deterministic decryption algorithm which takes as
input a secret key sk and a ciphertext c, and returns a message m. It will be
usually denoted by m ← Dec(sk , c).

Next we define trapdoor permutations. The definition is tailored to permutations
over the Cartesian product over two sets X1 and X2. This is without loss of
generality but allows for a simple definition of the security notions required
later.

Definition 2. A trapdoor permutation is a tuple (KGenF ,F ,F−1) of three ef-
ficient algorithms such that:

– KGen : N×R → P×S is the key generation algorithm which takes a security
parameter λ and a randomness r as input, and returns a keypair consisting
of a public key pk and a secret key sk.

– F : P×X1×X2 → X1×X2 is the permutation algorithm which takes a public
key pk, permuting over the set X1 ×X2.

– F−1 : S×X1×X2 → X1×X2 is the inverse permutation which takes as input
a secret key sk and permutes over the set X1 ×X2.

Below we define two security notions for a trapdoor permutationΠ = (KGenF ,
F ,F−1). One asks to find the preimage of a given output whereas the other only
asks to find a partial preimage, i.e., a preimage with respect to X1.

Definition 3. Let Π = (KGenF ,F ,F−1) be a trapdoor permutation. Let further
the games OW and pdOW be defined as in Fig. 1. For any adversary A, we
define its advantages as

AdvOW(A) := Pr[OWA → true]

AdvpdOW(A) := Pr[pdOWA → true] .
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Game OW

(pk , sk)←$ KGen()

(x1, x2)←$ X1 ×X2

(z1, z2)← F(pk , (x1, x2))

(y1, y2)← A(pk , (z1, z2))

return (y1, y2) = (x1, x2)

Game pdOW

(pk , sk)←$ KGen()

(x1, x2)←$ X1 ×X2

(z1, z2)← F(pk , (x1, x2))

y1 ← A(pk , (z1, z2))

return y1 = x1

Fig. 1: Game OW (One-Wayness) and game pdOW (Partial-Domain One-
Wayness) to define security of a trapdoor permutation F .

2.3 Quantum Computing

We assume familiarity with quantum computing and refer to [30] for details.
Implementing a function F : X → Y on a quantum computer is typically done
via the canonical construction. This is what we call an xor operator, which is
defined as

U⊕F :
∑
x,y

αx,y |x, y〉 7→
∑
x,y

αx,y |x, y ⊕F(x)〉 .

This xor operator can be implemented efficiently whenever F is efficient [30]. If a
function is invertible, there is another operator—besides the xor operator—with
which the function can be realized. This operator is what we call an in-place
operator, which is defined as

U
(ip)
F : |x〉 7→ |F(x)〉 .

Fig. 2 illustrates the two operators for a function F . Kashefi et al. [24] first
introduced in-place operators giving them the name minimal oracles. They show
that the two variants are not equivalent by showing that in-place operators are
stronger than xor operators. The core observation is that inverting an in-place
operator gate-by-gate gives an in-place operator for the inverse function. The
same does not apply to the xor operator, as xor operators are self-inverse.

U⊕F U
(ip)
F

|x〉

|y〉

|x〉

|y ⊕F(x)〉
|x〉 |F(x)〉

Fig. 2: Left: xor operator for F . Right: in-place operator for F .

In the following we recall two variants how xor and in-place operators (for
invertible functions) can be constructed from one another. Fig. 3 shows how
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an xor operator for F can be constructed from an in-place operator for F .
Likewise, Fig. 4 shows how an in-place operator for F can be constructed from
xor operators for both F and F−1. Note here, that an xor operator for F does—
in general—not allow to construct an xor operator for F−1. As an example,
consider F to be some one-way function. The latter construction (cf. Fig. 4) is
important for the qINDqCPA security notion.

|x〉

|0〉

|x〉

|F(x)〉⊕

U
(ip)
F

(
U

(ip)
F

)†

Fig. 3: Construction of an xor operator for a function F from an in-place operator
for F and its inverse.

|x〉

|0〉

|F(x)〉

|0〉
U⊕F U⊕F−1

Fig. 4: Construction of an in-place operator for a function F from xor operators
for F and F−1.

3 (Quantum) Ciphertext Indistinguishability

3.1 The qINDqCPA Security Notion

Ciphertext indistinguishability is a security notion for encryption schemes—both
symmetric encryption and public-key encryption. It asks an adversary to distin-
guish between the encryption of two adversarial chosen messages. An encryption
scheme that achieves ciphertext indistinguishability comes with the guarantee
that an adversary cannot learn any information about the message underlying
a ciphertext.

When considering quantum adversaries, one can distinguish between adver-
saries restricted to local quantum computing power—the setting that is widely
known as post-quantum security—and adversaries that have full quantum ac-
cess to all oracles—known as quantum security. The latter is the setting consid-
ered by Gagliardoni et al. [19] who develop the qINDqCPA security notion for
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public-key encryption schemes. This notion models security where the challenge
ciphertexts by the adversary can be in superposition, hence it provides stronger
security guarantees than post-quantum security.

The security game qINDqCPA is displayed in Fig. 5. The adversary receives
a public key pk and gets access to an in-place operator for encryption.1 The ad-
versary then outputs two messages |ϕ0〉 and |ϕ1〉, possibly in superposition, one
of which will be encrypted and then sent back to the adversary. The adversary
continues to have access to the in-place operator for encryption and finally has
to output its guess b′, indicating which of the two messages was encrypted.

Game qINDqCPA

b←$ {0, 1}
(pk , sk)←$ KGen()

|ϕ0〉 , |ϕ1〉 ← AEnc
1 (pk)

trace out |ϕ1−b〉
r ←$R

|r〉 |c〉 ← U ipEnc (|r〉 |ϕb〉 |0 · · · 0〉)
trace out |r〉

b′ ← AEnc
2 (|c〉)

return (b′ = b)

oracle Enc(|ϕ〉), where |ϕ〉 =
∑

m αm |m〉

r ←$R

|r〉 |c〉 ← U ipEnc (|r〉 |ϕ〉 |0 · · · 0〉)
trace out |r〉
return |c〉

Fig. 5: Security game qINDqCPA.

At the core of the qINDqCPA security notion2 is the in-place operator U ipEnc
of the form

U ipEnc : |r ,m, 0 · · · 0〉 7→ |r〉 |Enc(pk ,m; r)〉 , (1)

where the extra qubits initialized with 0 are for the ciphertext expansion as,
in general, we have |C| > |M|. In [19], the authors observe that this is the
most general in-place operator for encryption. Keeping the randomness in an
extra register deals with randomness collisions, i.e., different randomnesses that
encrypt a message to the same ciphertext, which would thwart the mandatory
reversibility. Note that the extra randomness register also prevents to construct
a simple decryption operator by inverting the encryption operator gate-by-gate.
It would only allow to decrypt if the randomness used to produce a ciphertext
is known.
1 Note that this oracle is important in case the adversary cannot locally implement

this oracle. Without it, the standard simplification to a single challenge via a hybrid
argument does not work.

2 Note that there are other security notions [8, 12, 28] which only require an xor op-
erator. However, the relation between these different approaches is not completely
understood and requires more research.
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The core part of [19] lies in the construction of the in-place operator for en-
cryption. The authors show that for schemes which do not suffer from decryption
failures, such in-place operators can be efficiently constructed. This construction
consists of an xor operator for encryption and an xor operator for decryption.
This part exploits that decryption is the inverse of encryption and essentially
follows the idea of the construction in Fig. 4. They further show that in-place
operators can also be constructed for schemes which are recoverable; a property
they define and which was concurrently3 and independently defined by Bellare et
al. in the context of domain separation for random oracles [4]. This construction
also consists of an xor operator for encryption, but instead of an xor operator
for decryption, it uses an xor operator for the so-called recover algorithm (see
Section 4 for details). Interestingly, realizations of the in-place operator for the
two types of encryption schemes—those without decryption failures and those
exhibiting the recoverable property—is quite different: while it can be realized
solely from the public key for the latter, the former necessitates the secret key.
For schemes which fall into neither category, they show that there are schemes
for which the in-place operator can be realized, as well as schemes for which it
simply cannot be realized. We illustrate the two constructions from [19] in Fig. 6.

|r〉
|m〉
|0〉

|r〉
|c〉

|0〉
U⊕Enc

U⊕Dec

|r〉
|m〉
|0〉

|r〉
|c〉

|0〉
U⊕Enc U⊕Rec

Fig. 6: Two constructions for an in-place encryption operator as given in [19].

3.2 Interpretation of Ciphertext Indistinguishability

Having discussed the qINDqCPA security notion and the relevance of the keys
for constructing the required in-place operator, we now take a step back and
focus on ciphertext indistinguishability in general.

Fig. 7 displays the security game for ciphertext indistinguishability under
chosen ciphertext attacks. Here, the adversary receives a public key and can
query two oracles: First, an encryption oracle that takes two messages as input
and encrypts one of the two, based on a secret bit chosen uniformly at random at
the beginning of the game. Second, a decryption oracle which takes a ciphertext
as input and returns the decryption of it.4

3 The full version of both works appeared within a week.
4 For simplicity we ignore how cheating adversaries, which forward a response from

the encryption to the decryption oracle, are prevented. For a detailed discussion on
this, we refer to [5].
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In the security notion, there is only one challenger providing the adversary
its input (the public key) and its oracles (encryption and decryption oracle).
In particular, the challenger generates, and thus knows, both keys. Considering
what the two oracles correspond to in the real-world, they are quite different.
The encryption oracle represents the sender, sending a ciphertext, while the
decryption oracle represents the recipient, receiving a ciphertext. In the typical
setting of Alice sending an encrypted message to Bob, Alice is represented by
the encryption oracle while Bob is represented by the decryption oracle. The
main difference is that Alice only knows Bob’s public key, whereas Bob knows
both his public and secret key. In this sense, the encryption oracle should be
realizable using only the public key. The decryption oracle can be realized from
both the secret and the public key.5

We note that there are scenarios where the above observation does not apply,
for instance when considering public-key encryption schemes used for commit-
ment schemes. Here, Alice, holding both keys, would encrypt the message she
wants to commit to and send the ciphertext to Bob. Later, when Alice wants
to open the commitment, she reveals her secret key, more precisely the random
coins used to generate it, to Bob. In this case, the encrypting party, Alice, knows
both keys while the adversary still only knows the public key.

We conclude this section with the observation that in the qINDqCPA secu-
rity notion—when modeling standard encrypted communication with it—, the
challenger should be able to construct the in-place encryption operator using the
public key only. One can, for instance, let the challenger discard the secret key
after generating the key pair or let the challenger receive only the public key
from another trusted party. This raises the following question:

Are there public-key encryption schemes for which qINDqCPA security
cannot be defined for challengers knowing only the public key?

Using the results by Gagliardoni et al. [19], we know that the notion, when
imposing the restriction that the challenger only knows the public key, can be
defined for any recoverable public-key encryption scheme. For non-recoverable
schemes, however, the answer is unclear. Gagliardoni et al. [19] show that it
can be defined for challengers knowing both keys, but they do not discuss if it
can only be defined if the challenger knows both keys. Hence, in Section 4 we
will focus on non-recoverable public-key encryption schemes and recoverability
in general. In Section 5 we return to the main question above by studying the
OAEP construction.

4 Observations on Recoverability

The notion of recoverable PKE schemes has been introduced in [19]. In Sec-
tion 3 we concluded that especially non-recoverable schemes have to be fur-

5 When using the FO transformation [16], the public key is mandatory for the re-
encrypting part. This dependence is often implicit, e.g., schemes such as Kyber [32]
and Saber [13] specify the secret key to already include the public key.
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Game INDCCA

b←$ {0, 1}
(pk , sk)←$ KGen()

b′ ← ALR-Enc,Dec(pk)

return (b′ = b)

oracle LR-Enc(m0,m1)

c ← Enc(pk ,mb)

return c

oracle Dec(c)

m ← Dec(sk , c)

return m

Fig. 7: Security game INDCCA. For simplicity we drop the check that the decryp-
tion oracle checks whether a queried ciphertext was forwarded from the oracle
LR-Enc.

ther studied to understand whether qINDqCPA security can be defined using
solely the public key. Unfortunately, so far we are not aware of any real-world
non-recoverable scheme. Instead of a concrete non-recoverable scheme, in [19]
a generic transformation was introduced that transforms a recoverable scheme
into a non-recoverable scheme. In this section, however, by introducing what we
call equivalent recoverable schemes, we show that this transformation can also be
defined inversely, which questions the meaningfulness of the transformation with
respect to the existence of a non-recoverable scheme. By introducing equivalent
recoverable schemes, we hence refine the classification introduced in [19], such
that two kinds of schemes exist which are not recoverable: equivalent recoverable
schemes and non-recoverable schemes. We conclude this section with the open
question whether (real-world) non-recoverable PKE schemes exist at all.

We first repeat the notion of recoverability in Section 4.1 and then define
equivalent recoverable schemes in Section 4.2.

4.1 Recoverability

Recoverability is a property of public-key encryption schemes that was defined
by Gagliardoni et al. [19]. Simply speaking, a public-key encryption scheme is
recoverable if one can recover the message from a ciphertext when knowing the
randomness that was used to create said ciphertext—even without the secret
key. Below we formally define recoverable public-key encryption schemes.

Definition 4 (Recoverable PKE Scheme [19, Definition 6]). Let Σ =
(KGen, Enc, Dec) be a PKE scheme. We call Σ a recoverable PKE scheme if
there exists an efficient algorithm Rec : P × R × C → M such that, for any
pk ∈ P, r ∈ R,m ∈M, it holds that

Rec(pk , r , Enc(pk ,m; r)) = m .

An important property of recoverable PKE schemes is that the recover algo-
rithm Rec allows to perfectly recover the message from a ciphertext; even if the
scheme itself suffers from decryption failures as is the case for many candidate
quantum-resistant cryptographic algorithms.
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Fig. 8: Classification of PKE schemes as presented in the full version of [19].6

Based on the recoverability property, the following Fig. 8 classifies PKE
schemes regarding the applicability of the qINDqCPA security notion.

Remark 5. Concurrently and independent of [19], Bellare et al. [4] defined the
same property, which they call randomness-based decryption. They show that
some submissions to the NIST PQC standardization process instantiate the ran-
dom oracles in a way, that an adversary can recover the randomness (that is
used for encryption) from the ciphertext. Based on this, they then exploit the
randomness-based decryption property (i.e., the recoverability) to extract the
message, thereby breaking these submission. We note that this weakness is not
due to the scheme but rather the specific choice of how the random oracles are
instantiated from a single hash function.

Gagliardoni et al. [19] show that most real-world PKE schemes are indeed
recoverable. In fact, they do not give a real-world PKE scheme that is non-
recoverable. They provide, however, a generic transformation from a recoverable
PKE scheme into a non-recoverable PKE scheme via a trapdoor permutation.
The transformed scheme is displayed in Fig. 9. It first permutes the message
using the trapdoor permutation and afterwards encrypts the permuted message
using the encryption scheme. Decryption works in the obvious reversed way,
i.e., first decrypting using the encryption scheme followed by inverting the trap-
door permutation. Gagliardoni et al. [19] observe that the trapdoor permutation
prevents the transformed scheme from being recoverable.

6 The terms (efficiently) isometric and non-isometric have been introduced in the full
version of [19]. They are not relevant for the work at hand, but for better compre-
hensibility and comparability with the original work, we decided not to remove them
from this figure.
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KGenΣ
′
()

(pkΣ , skΣ)←$ KGen
Σ()

(pkΠ , skΠ)←$ KGen
F ()

pk ← (pkΣ , pkΠ)

sk ← (skΣ , skΠ)

return (pk , sk)

EncΣ
′
(pk ,m; r)

parse pk as (pkΣ , pkΠ)

y ← F(pkΠ ,m)

c ← Enc
Σ(pkΣ , y; r)

return c

DecΣ
′
(sk , c)

parse sk as (skΣ , skΠ)

y ← Dec
Σ(skΣ , c)

m ← F−1(skΠ , y)

return m

Fig. 9: Transformed scheme Σ′ = (KGenΣ
′
, EncΣ

′
, DecΣ

′
) as presented in the

full version of [19], where Σ = (KGenΣ , EncΣ , DecΣ) is a public-key encryption
scheme and Π = (KGenF ,F ,F−1) is a deterministic trapdoor permutation.

In Theorem 6 we show that the transformed scheme as displayed in Fig. 9
indeed is non-recoverable.

Theorem 6 ([19, adapted from the full version’s Theorem 26]). Let
Π = (KGenF ,F ,F−1) be a deterministic trapdoor permutation and Σ = (KGenΣ ,
EncΣ , DecΣ) be a PKE scheme. Let further Σ′ = (KGenΣ

′
, EncΣ

′
, DecΣ

′
) be the

PKE scheme constructed from Π and Σ according to the transformation depicted
in Fig. 9. If Σ is recoverable, then Σ′ is non-recoverable.

Remark 7. In the full version of [19], the theorem comprises further requirements
on Π and Σ, which achieve further properties for the transformed scheme. Since
these are not relevant for the remainder of this section, we omit them.

4.2 Equivalent Recoverable PKE Schemes

We refine the classification shown in Fig. 8 by identifying a set of schemes which
are not recoverable but for which it is possible to transform them into a recov-
erable PKE scheme. We call such schemes equivalent recoverable. Hence, equiv-
alent recoverable schemes are not recoverable, but for them it still holds that
after transformation it is possible to decrypt a ciphertext without knowledge
of the secret key, but having access to the randomness used for the encryption
instead. The transformation exploits that the secret key of an equivalent recov-
erable scheme consists of two parts, one of which is part of the public key after
transformation. Note that equivalent recoverable schemes are neither recover-
able nor non-recoverable (and, hence, not all schemes that are not recoverable
are non-recoverable), but a third class of PKE schemes that are worth to be
studied in the context of qINDqCPA security.

Definition 8 (Equivalent recoverable PKE Scheme). Let Σ′ = (KGenΣ
′
,

EncΣ
′
, DecΣ

′
) be a PKE scheme with key pair (pkΣ′ , skΣ′), using internally a

deterministic trapdoor permutation Π = (KGenF ,F ,F−1) and a PKE scheme
Σ = (KGenΣ , EncΣ , DecΣ) such that pkΣ′ = (pkΠ , pkΣ) and skΣ′ = (skΠ , skΣ).
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Let Σ∗ = (KGenΣ
∗
, EncΣ

∗
, DecΣ

∗
) be a transformed scheme which works iden-

tically as Σ′ (thus, Σ∗ and Σ′ have the same plaintext, ciphertext, and random-
ness spaces M, C, and R, respectively) except that the secret key skΠ of Π is
part of the scheme’s public key, i.e., pkΣ∗ = (pkΣ′ , skΠ) = (pkΠ , pkΣ , skΠ) and
skΣ∗ = skΣ.

We call Σ′ an equivalent recoverable PKE scheme if Σ′ is not recoverable but
Σ∗ is recoverable, i.e., if there exists an efficient algorithm Rec : PΣ∗ ×R×C →
M such that, for any pk ∈ PΣ∗ , r ∈ R,m ∈M, it holds that

Rec(pk , r , EncΣ
∗
(pk ,m; r)) = m.

In particular, all schemes that are constructed from the transformation shown
in Fig. 9 are equivalent recoverable, thus they are not really non-recoverable
since the transformation can be inverted. In the following Fig. 10 we display an
equivalent recoverable scheme after transformation.

KGenΣ
∗
()

(pkΣ , skΣ)←$ KGen
Σ()

(pkΠ , skΠ)←$ KGen
F ()

pk ← (pkΠ , pkΣ , skΠ)

sk ← (skΣ)

return (pk , sk)

EncΣ
∗
(pk ,m; r)

parse pk as (pkΠ , pkΣ , skΠ)

y ← F(pkΠ ,m)

c ← Enc
Σ(pkΣ , y; r)

return c

DecΣ
∗
(sk , c)

parse sk as (skΣ)

y ← Dec
Σ(skΣ , c)

m ← F−1(skΠ , y)

return m

Fig. 10: Transformed recoverable scheme Σ∗ = (KGenΣ
∗
, EncΣ

∗
, DecΣ

∗
), where

Σ = (KGenΣ , EncΣ , DecΣ) and Π = (KGenF ,F ,F−1) are a PKE scheme and a
deterministic trapdoor permutation, respectively, that are used internally within
an equivalent recoverable PKE scheme Σ′.

Recoverability of the transformed scheme from Fig. 10 can be easily seen.
First, the recover algorithm from the underlying PKE scheme is applied to re-
cover y from the ciphertext c, subsequently, the trapdoor permutation is inverted
which can be done as skΠ is part of the public key.

Note that the above definition of equivalent recoverable schemes does not
include a statement on the security of the involved schemes. In particular, we
do not claim that all equivalent recoverable schemes are as secure after trans-
formation as they are before. This of course depends on whether the security
of the equivalent recoverable scheme depends on the trapdoor permutation or
only on the underlying encryption scheme. What we claim instead is that all
schemes that are constructed from the transformation shown in Fig. 9 are not
helpful examples for non-recoverable schemes since in fact they are equivalent re-
coverable. For these schemes, we observe that their security depends entirely on
the underlying encryption scheme, but not on the trapdoor permutation. Hence,
after applying the transformation from Fig. 10, these schemes remain as secure
as they are before.
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?

?

Fig. 11: Refined classification of PKE schemes. Compared to Fig. 8, equivalent
recoverable schemes have been included. The transformation shown in Fig. 10
unveils that the existence of a non-recoverable PKE scheme is still unexplained.

We conclude this section with two findings: First, the transformation pre-
sented in [19] (cf. Fig. 9), that transforms a recoverable PKE scheme into a
non-recoverable PKE scheme, in fact transforms the scheme into an equivalent
recoverable PKE scheme, see Fig. 11. We are not aware of any transformation
that transforms a recoverable PKE scheme into a non-recoverable PKE scheme.
Any such transformation would, if it was reversible, entail the extension of Def-
inition 8, hence also transform the scheme into an equivalent recoverable PKE
scheme. Second, the existence of real-world schemes that are non-recoverable
(and not equivalent recoverable) remains unclear. We will provide an example of
such a scheme in the following section by proving that the OAEP construction
is non-recoverable, i.e., both not recoverable and not equivalent recoverable.

5 OAEP

The optimal asymmetric encryption padding (OAEP) is due to Bellare and Ro-
gaway [6]. It constructs an encryption scheme from a trapdoor permutation
Π = (KGenF ,F ,F−1) and two hash functions G and H. The construction is il-
lustrated in Fig. 12, the pseudocode is given in Fig. 13.7 The OAEP construction
takes a message m and randomness r and applies a two-round Feistel construc-
tion using G and H to it, yielding s and t. These values are then used as input
to the trapdoor permutation F to compute the ciphertext c. The security of the

7 Note that we consider the CPA-secure variant of OAEP for simplicity. The CCA-
secure variant pads the message with additional 0s.
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construction is based on the trapdoor permutation being partial-domain one-way
(cf. Definition 3), meaning it is infeasible to compute s from a ciphertext c.

G

H

‖

F

m r

s t

c

⊕

⊕

Fig. 12: The OAEP construction using a trapdoor permutation F and two hash
functions G and H.

KGen()

(pk , sk)←$ KGen
F ()

return (pk , sk)

Enc(pk ,m; r)

s← m ⊕G(r)

t← r ⊕H(s)

c ← F(pk , s ‖ t)
return c

Dec(sk , c)

s ‖ t← F−1(sk , c)

r ← H(s)⊕ t
m ← s⊕G(r)

return m

Fig. 13: Pseudocode of the OAEP construction using a trapdoor permutation
Π = (KGenF ,F ,F−1) and two hash functions G and H.

5.1 Recoverability of OAEP

Section 4 raises the question whether there are real-world public-key encryp-
tion scheme which are non-recoverable. In the following lemma, we answer this
question in the affirmative by showing that the OAEP construction is non-
recoverable, given that the trapdoor permutation is partial-domain one-way.

Lemma 9. The OAEP construction is non-recoverable under the assumption
that the trapdoor permutation is partial-domain one-way with respect to X1.
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Proof. We can view G(r) as a one-time pad encryption of m with key s. From
the randomness r , one can trivially compute G(r). The ciphertext c does not
reveal s due to the assumption of F being partial-domain one-way. Knowledge
of the randomness r (corresponding to H(s)⊕ t) does not provide any additional
information about s due to H being a random oracle, hence one-way. ut

It turns out that partial-domain one-wayness is crucial for the non-recoverability
of the OAEP construction—just one-wayness is not sufficient. To show this, we
consider the function

F∗(s, t) := (s,F(t)) .

If the underlying function F is OW-secure, then F∗ is OW-secure but not pdOW-
secure. The adversary trivially finds s as it is part of its input. Based on this,
it is straightforward to show that the OAEP construction instantiated with this
function is recoverable. The adversary obtains the value s from the ciphertext
(simply the first part of the ciphertext). From the randomness r , it computes
G(r) and xors it with s to get the message m.

5.2 Quantum Operators for OAEP

In the previous section we showed that the OAEP construction is non-recoverable.
This precludes the construction of the public-key-based in-place encryption op-
erator that Gagliardoni et al. [19] provide for recoverable public-key encryption
schemes. The open question is whether the in-place operator can be constructed
solely using the public key, which we answer negatively here. This also answers
the main question from Section 3 by showing that there are PKE schemes for
which the qINDqCPA security notion cannot be defined for challengers knowing
only the public key.

We first introduce a variant of pdOW, which we denote pdOW∗. The corre-
sponding game is illustrated in Fig. 14. In this variant, the adversary receives
some extra information, which corresponds to the randomness of the OAEP con-
struction. As a first step, we show that the extra information does not help the
adversary in breaking security (cf. Lemma 10). Subsequently, we show how an in-
place operator for the OAEP construction can be transformed into one breaking
security according to pdOW∗, yielding a contradiction (cf. Theorem 11).

The following lemma shows that, for OAEP, the extra information from game
pdOW∗ does not help the adversary in breaking security.

Lemma 10. Let H be a random oracle and the games pdOW and pdOW∗ be as
displayed in Fig. 1 and Fig. 14, respectively. Then for any adversary A, there
exists an adversary B such that

AdvpdOW∗

OAEP (A) ≤ 2 AdvpdOW
OAEP (B) .

Proof. The proof essentially relies on the fact that r does not yield any additional
information for A. As a first step, we modify game pdOW∗ by picking r uniformly
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Game pdOW∗

(pk , sk)←$ KGen
F ()

(s, t)←$ X1 ×X2

c ← F(pk , (s, t))

r ← H(s)⊕ t
s′ ← A(pk , c, r)

return s′ = s

Fig. 14: Security game pdOW∗. It is a variant of pdOW where the adversary
additionally receives the xor of H(s) and t as an input.

at random. To distinguish pdOW∗ from the modified game, A needs to query H
on s. Hence, a distinguishing adversary can be transformed into an adversary
winning pdOW. In the modified game, the value r is independent of anything else,
hence a straightforward reduction allows to transform any adversary A, playing
pdOW∗, into an adversary B, playing pdOW, with the same winning probability.
Adversary B simply runs A on its own challenge and a value r sampled uniformly
at random. In addition, B simulates two random oracles G and H for A. ut

We finally show that an in-place encryption operator can be used to construct
an xor operator for the inverse permutation F−1 underlying the OAEP con-
struction. Hence, assuming that the in-place operator can be constructed using
just the public key would yield an xor operator for the inverse permutation,
contradicting its security as anyone could invert it using only the public key.

Theorem 11. Assuming F to be partial-domain one-way, the in-place encryp-
tion operator for the OAEP construction instantiated with F cannot be con-
structed using solely the public key.

Proof. For sake of contradiction, assume that the in-place encryption operator
for the OAEP construction can be constructed solely using the public key. We
show how to use this operator to construct an xor operator for the inverse trap-
door permutation which also only requires the public key, thus contradicting its
security. The circuit is displayed in Fig. 15.

Constructing the in-place operator U
(ip)
Enc allows to compute its inverse op-

erator
(
U

(ip)
Enc

)†
. By definition of the operator,

(
U

(ip)
Enc

)†
on input |r〉 and |c〉

yields |r〉, |m〉, and |0〉, such that encrypting m using randomness r equals c.
In the next step, the registers |r〉 and |m〉 are xored to the two output registers

initialized with |0〉. The first three registers are input to U
(ip)
Enc , yielding |r〉 and

|c〉. The operator U⊕G is applied to the third and fourth register (the former
being the input, the latter being the output), which yields |r〉 and |m ⊕G(r)〉.
Then the operator U⊕H is applied to |m ⊕G(r)〉 (input register) and |r〉 (output
register) which results in |m ⊕G(r)〉 and |r ⊕H(m ⊕G(r))〉.
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By construction, it holds that the concatenation of register |m ⊕G(r)〉 and
register |r ⊕H(m ⊕G(r))〉 equals the preimage of |c〉 under the function F
(otherwise, the in-place operator would not correctly encrypt). This contradicts
the security of F as we get an algorithm for inverting the trapdoor permutation
F (using r as the extra information as specified in game pdOW) using only the
public key. ut

The above theorem shows that there are PKE schemes for which the in-place
encryption operator, required for the qINDqCPA security notion, cannot be
constructed using only the public key. This answers the open question from
Section 3 by showing that the qINDqCPA security notion is not always applicable
for the scenario of confidential communication between two parties.

|r〉

|c〉

|0〉

|0〉

|r〉

|c〉

|s〉

|t〉⊕

⊕

(
U

(ip)
Enc

)†
U

(ip)
Enc

U⊕G U⊕H

Fig. 15: Circuit for inverting F based on an in-place operator for Enc and xor
operators for G and H.

Remark 12. The qINDqCPA security notion essentially provides the adversary
a quantum channel transforming the message into a ciphertext, where the ran-
domness is out of reach for the adversary. One might wonder whether ruling
out the in-place quantum operator from above (cf. Equation (1)) is sufficient to
argue that the qINDqCPA security is not applicable to the OAEP construction.
Theoretically, one can consider alternative ways of realizing the quantum chan-
nel. Consider, for instance, that the challenger itself has some quantum channel
which it uses to realize the quantum channel for the adversary. In this case, the
challenger might not know the secret key but its own quantum channel uses
it; the quantum channel from the qINDqCPA security notion would then still
depend on the secret key. From a cryptographic perspective, we do not believe
this setting to be of relevance as the security notion corresponds to communica-
tion between the adversary and a challenger, where parts (i.e., the randomness)
are beyond the access of the adversary. In this sense, we believe the quantum
channel realized by the quantum operator from above to be the only relevant
one, while we consider other realizations to be irrelevant from a cryptographic
point of view.
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