
FairBlock: Preventing Blockchain Front-running
with Minimal Overheads

Peyman Momeni1,2, Sergey Gorbunov1,2, and Bohan Zhang1

1 University of Waterloo, Waterloo, Canada
{pmomeni,b327zhan,sgorbunov}@uwaterloo.ca

2 Axelar Network
3 FairBlock Network

Abstract. While blockchain systems are quickly gaining popularity,
front-running remains a major obstacle to fair exchange. In this paper,
we show how to apply identity-based encryption (IBE) to prevent front-
running with minimal bandwidth overheads. In our approach, to decrypt
a block of N transactions, the number of messages sent across the net-
work only grows linearly with the size of decrypting committees, S. That
is, to decrypt a set of N transactions sequenced at a specific block, a
committee only needs to exchange S decryption shares (independent of
N). In comparison, previous solutions are based on threshold decryption
schemes, where each transaction in a block must be decrypted separately
by the committee, resulting in bandwidth overhead of N × S. Along the
way, we present a model for fair block processing and build a prototype
implementation. We show that on a sample of 1000 messages with 1000
validators our system saves 42.53 MB of bandwidth which is 99.6% less
compared with the standard threshold decryption paradigm.

Keywords: Blockchain · Front-running · DeFi · Identity-Based Encryp-
tion · Smart contract · Security

1 Introduction

Maximal (or Miner) Extractable Value (MEV) is one of the central problems
that prevent fairness [39, 71] and trust in decentralized exchanges and other de-
centralized applications (dApps) [24, 29, 72, 53, 5]. MEV allows a block proposer
to influence the order of transactions to extract some “value” for themselves
before they are executed by the application. By rearranging the order, the block
proposer may inject extra transactions to extract profit. For example, if the block
proposer sees a transaction Txorg that tries to buy an asset from a decentralized
exchange, it may include another transaction Txf (or a sequence of transactions)
in the block that first buys the asset and then sells it to the sender in Txorg for
a higher fee.

This paper is accepted in 18th EAI International Conference on Security and Privacy
in Communication Networks [43]

2 P. Momeni et al.

MEV is defined as the revenue other than transaction fees and block rewards
which can be extracted by reordering, censoring, and adding transactions in
blocks [24, 29, 72, 53, 5]. MEV is present on any blockchain infrastructure that
includes a party that is responsible for transaction ordering such as miners in
Ethereum [68], validators in Cosmos [22], or sequencers in Layer 2 solutions
such as roll-ups [47, 42]. Most of the extracted MEV happens in the form of a
front-running attack whereby a party other than the block proposer itself closely
observes the submitted transactions to the public mempool and exploits this in-
formation to detect profitable opportunities such as arbitrages, liquidations, and
mispriced non-fungible tokens (NFT). After detecting them, the adversary makes
sure that their profitable transaction will be executed in a high order by offering
a high transaction fee to the block proposer or any party that is responsible for
ordering. They do so by submitting it either in the public mempool or a private
backchannel. Lower-bound estimates show that sophisticated bots and their af-
filiated miners are making up to 5M USD in 24 hours with the total amount of
over 607M USD million from 2020 to date just in the Ethereum network [42,
51, 68]. These attacks lead to serious problems such as high gas fees, network
congestion, and even consensus instability [24].

Threshold decryption schemes are one of the most promising and well-known
methods to prevent front-running [17, 32]. The idea was proposed in 1994 [52],
and recently explored by blockchain projects such as Sikka, F3, and Anoma [32,
59, 2, 70]. In this approach, every transaction sent to the blockchain is first en-
crypted by the user using a global public key. A committee of decryptors (e.g.
validators or set of users) holds shares of the corresponding private key. After
a block of encrypted transactions is finalized and sequenced by the consensus
layer, they collectively decrypt each transaction in a block to see its cleartext
values. Subsequently, the transactions must be executed in the order in which
they were finalized prior to the decryption. It is easy to see that this mechanism
solves many forms of front-running attacks: the validators must finalize a block
of encrypted transactions and fix their order, they cannot see the information in
them, and hence it is much harder for them to influence the outcome.

While this approach may be used to solve the problem, it introduces signifi-
cant bandwidth overheads on the network. To be more specific, due to the high
cost of distributed key generation process, decryption should happen without
revealing private key shares. Consequently, for each encrypted transaction in a
block, every committee member must propagate a separate decryption share,
and a designated individual can aggregate decryption shares to reveal the trans-
action. For a N -transactions block and S-members committee, this results in de-
cryption complexity of N ×S broadcast messages. As an example, for N = 1000
transactions of size 64 bytes, S = 1000 of validators with a two-thirds honest
majority, this adds an extra 42.7 MB of traffic on the network. This increases the
bandwidth required to process transactions non-linearly resulting in significant
scalability constraints. We refer the reader to Section 2 for limitations of other
front-running prevention mechanisms.

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 3

1.1 Our Contributions

In this work, we construct a front-running protection protocol with minimal
bandwidth overheads – linear in the number of users or validators called keep-
ers. Our construction, called FairBlock, is based on well-studied cryptographic
assumptions. In particular, the scheme is based on identity-based encryption
where one can exploit the linearity and secret sharing of the IBE private keys [9,
57, 19]. In FairBlock, a committee composed of keepers that run a distributed
key generation (DKG) [49, 33] protocol to generate a shared master key msk
associated with a system-wide master public key mpk for an IBE scheme. Next,
we associate each block identifier h with an IBE “identity”. Consequently, clients
can commit to their transactions by encrypting their information with mpk and
identity for a future block h (or a range of blocks). Validators run the consensus
and sequence all encrypted transactions in a block. Finally, to decrypt the block
with minimal overheads, each keeper k (a) computes a share bkh of the private
key bh (named block key) for the IBE identity corresponding to block h, and (b)
broadcasts it over the blockchain. After sufficiently many keepers propagated
their shares bkh, anyone can perform the key extraction process to obtain the pri-
vate key bh that allows decryption of all transactions encrypted under identity
h with no further communication. In FairBlock, another set consists of users or
validators named “relayers” (which can overlap with keepers) is responsible for
key extraction and decryption. The original sender of the transaction can also
reveal the plaintext transaction without block key extraction and decryption to
avoid paying fees.

FairBlock is a general solution that can be applied to all smart contract
blockchains. The scheme is practical and can be applied in real systems as IBE
constructions that support the linearity properties that we leverage are efficient.
FairBlock does not have basic commit-reveal challenges, which can facilitate
denial of service attacks, whereby a client commits to a transaction and reveal
it later only if subsequent transactions make it profitable [29, 17].

Compared to the solutions [40, 18, 27, 66] that leverage time-lock puzzles [7],
we do not introduce significant delays or high computational complexity in de-
cryption. Moreover, our work does not rely on secure enclaves [69] to realize a
private pool [61]. Unlike the standard threshold decryption approach, FairBlock
bandwidth overhead is minimal as the number of messages in this system grows
linearly with the number of keepers.

1.2 Paper Organization

The remainder of the paper is organized as follows. In Section 2, we describe
related works and their limitations. In Section 3, we review the cryptographic
building blocks of FairBlock and define blockchain front-running. In Section 4,
we present our security model, followed by describing FairBlock protocol and
details of our architecture. Section 5 describes our prototype implementation
and evaluation. We also indicate future research directions and challenges in
Section 6, before concluding in Section 7.

4 P. Momeni et al.

2 Related Works

Several academic works and projects have attempted to either limit or prevent
front-running. For instance, Flashbots [24] has mitigated front-running and bid-
ding war consequences such as high gas fees and network congestion with a
private channel for front-runners to make bids directly to miners through relay-
ers. However, relayers and white-listed miners in this approach have full access to
the transaction content in clear which makes it prone to front-running and cen-
sorship. LibSubmarine [12] conceals the transaction among other similar trans-
actions by locking the amount of the transaction to a generated address that is
indistinguishable from an address that has not been used on Ethereum previ-
ously. However, the security of this solution is not based on strong cryptographic
assumptions, and also the contents of the transactions are still in plaintext and
prone to front-running.

DEXes and AMMs [1, 62], as the main target of front-running [42, 5] have
tried to limit front-running consequences such as transactions failure and gas
waste using slippage. This approach has interestingly led to near-guaranteed
sandwich attacks by taking a deal and selling it again to the buyer with a higher
price to the maximum extent that slippage allows. CowSwap [23] protects DEX
users from sandwich attacks by matching simultaneous users off-chain, whenever
a user is buying an asset and another is selling the same asset. Currently, this
approach is limited as it cannot prevent general front-running on transactions
in the public mempool.

Recent projects including Secret Network [45] and Fairy [61] leverage se-
cure enclaves namely Intel SGX [69] to build private mempools at the cost of
potential latency, storage limits, and security risks due to several successful re-
cent attacks on secure enclaves [54, 65]. The basic commit-reveal approach relies
on clients to reveal their transactions after the finalization of the commitment
phase which leads to connectivity issues, and denial-of-service attacks (selective
revealing based on the market output). As a way to address basic commit-reveal
issues, time-lock encryption [27, 18, 40, 50] relies on the secure implementation of
verifiable delay functions (VDF) [7] and time-lock puzzles at the expense of long
delays between transaction inclusion and execution e.g. 3 or 7 minutes delay in
VeedDo implementation by Starkware [66].

Shutter Network [58] leverages threshold decryption and distributed key gen-
eration as their tools to prevent front-running by generating a private key for
each epoch but additional research is needed to validate their cryptographic
protocols. Projects such as Ferveo [32], Sikka [59], Helix [2], and F3 [70] employ
threshold decryption with high communication overhead as decryption of every
single message requires all members of the decryption committee to send their
partial decryption shares.

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 5

3 Background

3.1 Cryptographic Preliminaries

Identity-Based Encryption. An identity-based encryption (IBE) [9, 19, 57]
allows to establish a global master key in the system that can be used to derive
identity-specific public keys (and associated private keys). For instance, it en-
ables a sender, Alice, to encrypt a message for receiver Bob using his identifier
information such as email address, phone number, and IP address. The receiver
Bob, having obtained a private key associated with his identity information from
Trusted Third Party (TTP), can decrypt the ciphertext. An IBE scheme consists
of a tuple of algorithms: Setup, Extract, Encrypt, and Decrypt satisfying the
following semantics:

– Setup(1λ): On input corresponding to the security parameter λ, the setup
algorithm outputs a master key msk and its associated master public key
mpk which is publicly known.

– Encrypt(mpk, ID,m): On input of the master public key mpk, an identity
ID and a message m, the encryption algorithm outputs a ciphertext C.

– Extract(ID,msk): On input of the master key msk and identity ID, the
extraction algorithm returns a private key dID for user with identity ID.

– Decrypt(dID, C): On input of the private key dID and ciphertext C, the
decryption algorithm recovers the plaintext message m.

We build FairBlock using an IBE that is semantically secure under the BDH
assumption in a random-oracle model [9]. In particular, we use the Boneh-
Franklin IBE [9]. Our construction will use an IBE in a non-black box way
and exploit two common properties. Other IBE schemes [41, 8] may also be used
assuming they satisfy these two properties:

1. Support efficient distributed key generation (DKG) protocols.
2. Support linear homomorphic operations over the private keys for identities.

That is, given a share of a master key, one should be able to compute a
share of the corresponding private key for any identity ID, such that given
a collection of shares, anyone can extract the private key for ID.

The central TTP in the described IBE algorithms is a single point of failure
and contradictory to the distributed nature of blockchains. As suggested in [9],
Shamir’s secret sharing (SSS) [56] technique can replace the TTP by distributing
the shares of msk among a group of keepers with an honest majority. In this
work, we show how to employ a distributed key generation [49] to eliminate the
trusted dealer in SSS to achieve complete decentralization.

6 P. Momeni et al.

Cryptographic Commitment. In order to ensure that transactions cannot
be modified, censored, or added after decryption by relayers, our protocol should
verify that decrypted transactions are in fact the ones that have been encrypted.
To realize this, we have leveraged a basic non-interactive hash-based commit-
ment [11, 44, 37] with computational binding and hiding properties in the random
oracle model based on a collision-resistant hash function Hc. The hiding prop-
erty is vital for our commitment scheme, as an adversary should not acquire any
information about the transaction. We also need binding, so a relayer cannot
submit a different transaction with the correct commitment to censor the origi-
nal transaction. The simple and efficient hash-based cryptographic commitment
in this work can be replaced with more advanced commitment schemes [48, 37,
36] with stronger security guarantees.

3.2 Blockchain Front-running

In this paper, we define blockchain front-running as follows:

Definition 1. Blockchain front-running is a family of strategies in which a ma-
licious party directly or indirectly manipulates the order of transactions in a
blockchain architecture such that a transaction tx2 which is broadcasted in time
t2 executes before the transaction of victim tx1 which is broadcasted in time t1
where t1 < t2.

In practice, front-runners may be the parties who are responsible for sequenc-
ing transactions themselves including miners, validators, roll-up providers, or
relayers. Alternatively, front-runners may indirectly influence the order of trans-
action by offering high tips (gas price) to block proposers, performing attacks in
the network layer such as DDOS attacks, or utilizing high-speed networks sim-
ilar to high-frequency traders in traditional financial markets. Typically, front-
runners such as sophisticated bots actively listen to pending transactions in the
public mempool or in the peer-to-peer network to exploit the revealed (but not
executed) information of transactions to make profits by broadcasting a trans-
action and front-running the victim’s transaction to capture the opportunity.
This form of front-running attacks significantly increases the cost of transaction
fees for normal users, unfairly steal many profitable opportunities, and makes
the user experience much more complex and slow by failing the victim’s transac-
tion. Front-running and MEV-related transactions can also result in significant
network congestion. For instance, Bank for International Settlements [3] has re-
ported that up to one out of thirty transactions in Ethereum blocks from 2020
to 2022 were included for MEV extraction purposes. Moreover, several works in
the literature [47, 29, 24] have also discussed the potential threat of front-running
attacks to the consensus mechanism of blockchain networks due to the high prof-
itability of these opportunities which incentivize some players such as miners to
sabotage the whole network. We refer the reader to Appendix A for a summary
on the nature of front-running attacks.

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 7

4 FairBlock

In this section, we formalize the security model in Section 4.1, present FairBlock’s
architecture in 4.2, and finally prove the correctness and security of the protocol
in 4.3 and 4.4.

4.1 Model

Players. In this protocol, we define three types of players:

– Users: Parties who wish to communicate with a target smart contract
without being front-runned. Users submit a transaction containing their en-
crypted message e.g. trading information to our system.

– Keepers: Parties that are responsible for generating a distributed secret key
and submitting their shares for each block key. Keepers set can be composed
of any parties in the network including users, consensus validators, decentral-
ized oracle networks (DON) [17], or decentralized autonomous organizations
(DAO) [25].

– Relayers: Parties that are responsible for aggregating block key shares, com-
puting block keys, and decrypting committed transactions. Relayers set can
be composed of users, keepers, consensus validators, decentralized oracle net-
works (DON) [17], or decentralized autonomous organizations (DAO) [25].
In practice, keepers can also play the relayers’ role; however, we have defined
an independent set to highlight the fact that they can be a very large group
competing to decrypt transactions. Also, even just a single honest party e.g.
the next block proposer would suffice.

Setup. In our protocol, a set of n keepers P = {P1, P2, ..., Pn} generate a shared
master key msk and a system-wide public key mpk. Users pick a desired block
identifier h as the ID of the block (or range of blocks) in which their encrypted
transaction should be executed without being front-runned.

Assume that the associated groups of a symmetric bilinear pairing, G1 and
GT have order q, that is, the pairing is ê: G1 × G1 → GT . Two cryptographic
hash functions H1 and H2 are also used. H1 maps block identifier h ∈ {0, 1}∗ to
G1, and H2 maps GT to transaction information tx of bitlength l1. Additionally,
a collision-resistant hash function Hc is used for the cryptographic commitment.
Also assume that a generator g ∈ G1 is available to all entities.

Threat Model. We assume that the adversary is computationally bounded and
our cryptographic schemes including IBE, DKG, and Commitments are secure.
In this work, we work with an honest majority assumption on the keepers. That
is, an adversary controls at most t keepers, whereas a collaboration of t + 1
keepers is required to extract the block key and also the presence of at least
one honest relayer is necessary to perform decryption. Assuming that keepers
are running Pedersen’s DKG [49] protocol, the adversary must control at most

8 P. Momeni et al.

t ≤ n−1
2 keepers. In the case of consensus-level implementation, the underlying

BFT-style [13] consensus algorithm may enforce a two-thirds honest majority
assumption. In this case, the adversary must control at most t ≤ n−1

3 keepers’
shares as consensus validators also play keepers’ roles. A party controlled by the
adversary may deviate arbitrarily from the specified protocol. We consider an
adaptive adversary, in the sense that it can decide which parties to corrupt at
any point during the protocol execution.

Correctness. Our construction should also satisfy correctness. We define this
property as follows: Given a sequence of encrypted transactions submitted by
the users, every player should be able to learn the cleartext transactions and
their correct execution order after the block key reconstruction phase.

Security Model. We now describe a security model that captures the notion
of fairness. In essence, it states that no adversary that controls less than the
corruption threshold of parties can influence the order or censor transactions in
the system. We follow the formal notion of fairness in recent works [39, 17, 71]
and aim to provide fairness by satisfying both order-fairness and secure causality
preservation [28, 15]. Order-fairness requires that if a large fraction of nodes γ
receive T1 before T2, then T1 should not be executed after T2. We refer the
reader to [39, 17, 71] for further formal discussion and technical detail of order-
fairness. Also, the security conditions of secure causality-preservation [28, 15]
require formally that no information about a transaction becomes known before
the finalization of its order in the block. Until that time, the system must not
reveal any information to an adversary in a cryptographically strong sense. In
Section 4.4, we show how FairBlock satisfies both secure causality-preservation
and order-fairness.

4.2 Protocol

In this section, we show how to apply FairBlock to any dApp by adding special-
purpose smart contracts to the system. However, one can similarly apply Fair-
Block at the consensus level, where keepers and relayers are replaced by the
validators that maintain the shared master key and contribute to the decryption
on chain [32, 59]. We will further discuss consensus-level Implementation.

Smart Contracts. To implement FairBlock using smart contracts as the com-
munication layer, we introduce five smart contracts:

1. Participate(dep, val): This contract keeps track of keeper and relayers sets. It
may also lock security deposits dep and the value of an encrypted transaction
val so it can be transferred to the target contract.

2. DKG(mDKG): During the distributed key generation protocol, keepers sub-
mit their broadcast messages mDKG and read others’ from this contract.
At the end of the protocol, it may also store the system-wide public key

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 9

mpk and other public system parameters, so users can read it and encrypt
transactions.

3. Commit(enc(tx),Hc(tx)): This contract stores received encrypted transactions
enc(tx) and cryptographic commitments H(tx). The main purpose of this
contract is to preserve the order of received transactions.

4. IBE(bkh): This contract receives block key shares bkh from each keeper k, so
the relayer can aggregate them to construct the block key.

What follows is a brief description of FairBlock’s architecture in six phases:

Phase 0: Enrollment. Keepers and relayers enroll in participating in the pro-
tocol by calling a function in Participate and sending an amount of deposit as an
entry fee. Clients may also lock the value of their transaction in Participate, so
the value could be automatically transferred to the target contract in the last
phase.

Phase 1: Distributed Key Generation. Keepers generate a shared public
key, and an associated shared master key split across all of them using a DKG
protocol [49]. DKG protocols are generally slow as they typically require time
quadratic in n [38, 49, 63]; however, it only runs once in the setup phase and
afterward very infrequently anytime the keepers set changes. Keepers set is ex-
pected to be stable as they are collecting rewards for their honest co-operation
and being penalized for malicious behavior. The following is a brief description
of Pedersen’s DKG protocol [49]:

1. Sharing: Each keeper Pi randomly picks a secret si ∈ Z∗
q . Next, Pi sets ai0

= si and chooses a random polynomial fi(z) over Z∗
q of degree t as follows:

fi(z) = ai0 + ai1z + · · ·+ aitz
t. (1)

Pi broadcasts Feldman [31] commitments Aik = gaik for k ∈ [0, t] using DKG.
Pi computes the share sij = fi(j) mod q for j in [1, n] and sends sij through
secure private channels to Pj .

2. Share Verification: Each keeper Pj verifies each received share sij sent by Pi.

To do so, Pj checks Feldman’s VSS [31] validity condition: gsij
?
=

∏t
k=0 A

jk

ik .
3. Dispute: If t or more keepers complain against a keeper Pf by broadcasting

the complaint on DKG, Pf will be considered faulty and disqualified. Sub-
sequently, Pf can make a complaint and claim its honesty by revealing the
share sfv for each complaining user Pv . If any of the revealed shares fails
the check again, Pf is disqualified.

4. Public Key: Assuming that T is the set of qualified (not disqualified in the
previous phase) keepers, the system-wide public key mpk is computed as
follows:

mpk =
∏
i∈T

Ai0 =
∏
i∈T

gsi . (2)

10 P. Momeni et al.

5. Master Key Shares: Each keeper k ∈ T compute its master key share
wk =

∑
i∈T sik.

Although there is no need to reconstruct the msk through our protocol, it
is defined as sum of qualified keepers’ secrets: msk =

∑
i∈T si. Note that

secret sf for a disqualified keeper Pf is set to zero.

Phase 2: Encryption and Commitment. Clients encrypt their message m
using public key mpk for block identifier h. To encrypt transaction information
tx ∈ {0, 1}l1 , a client computes Qh = H1(h) followed by selecting a random
integer r ∈ Z∗

q , and a random string x ∈ {0, 1}l2 . Afterward, it sets m = tx∥x
and R = gr [9]. Having them, U is calculated as follows:

U = m⊕H2(ê(Qh,mpk)r). (3)

Finally, it submits a encrypted message C = (R,U) alongside a commitment
Hc(m) to Commit.

Phase 3: Broadcasting Block Key Shares. At least t+ 1 out of n keepers
compute their block key shares bkh [9] and propagate it using IBE. Keeper k
computes its share for block h as bkh = H1(h)

wk .

Phase 4: Decryption. Relayers compute the block key bh after receiving at
least t + 1 valid shares from IBE. Next, they use bh to decrypt each of the
encrypted messages for the block h. Relayers are incentivized to decrypt correctly
as fast as possible by rewards for each correct decryption. Each Relayer can
extract block key bh after the following steps:

1. Share Verification: Relayer verifies received shares bkh from each keeper k by
checking the following condition [9]:

ê(

t∏
i=0

V ki

i , H1(h))
?
= ê(g, bkh), (4)

where Vis are public verification values for keepers i ∈ [0, t] in the DKG
protocol defined as Vi =

∏
k∈T Aki.

2. Block Key Extraction: After verifying the shares, the block key for block h
is extracted as follows:

bh =

t+1∏
k=1

(bkh)
Lk , (5)

where Lks are proper Lagrange coefficients for point 0 defined as Lk =∏t+1
r=1
r ̸=k

r
r−k . The derived key bh is indeed the IBE key for identity h that would

have been extracted by the TTP. See Sect. 4.3 for correctness discussion.

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 11

3. Decryption: Let C = (R,U) be the ciphertext for block identifier h. A Relayer
decrypts C using the private key bh as:

m = U ⊕H2(ê(bh, R)). (6)

In the event that relayers are unable to include the decrypted transactions in the
blockchain before or at the block specified in the commitments, an application-
specific policy determines if the submitted encrypted transactions should fail or
be decrypted in a later block. However, we expect that this case is very rare with
a proper incentivization mechanism.

Phase 5: Execution. Given a list of decrypted messages m1, ...,mn, Process
extracts x and tx for each of the messages. Next, it checks the validity of each
transaction tx e.g. user’s balance in Participate which should be more than the
transaction value. Finally, it verifies that a) none of the committed transactions
is censored, b) all of them have been decrypted correctly, and c) their received
order follows the specified ordering policy. This verification can be simply done
by recomputing the cryptographic commitment for each of decrypted messages,
and then reading previously submitted cryptographic commitments Hc(m) from
Commit for each of them. The verification can be done in a single step by com-
puting the hash of all commitments as Hc(m1, · · ·,mn) and comparing them.
Finally, it executes the batch by calling the target contract for each of the de-
crypted transactions.

Consensus-level Implementation. An alternative to using smart contracts
as the communication layer is implementing FairBlock in the consensus layer [59,
2]. In this case, there will be no need to maintain sets of keepers and relayers,
as the normal validators who are responsible for mining the blocks will also
perform these tasks. To be more specific, validators receive private key shares in
proportion to their stake and submit their block key shares as an extension to
messages in the voting round in a BFT-style consensus algorithm [13]. Next, the
next block proposer computes the block key by aggregating submitted shares,
decrypting, and including the plaintext transaction in the next block.

Alternatively, validators can submit their block key shares as a message in the
blockchain, and any other user can compute the block key and submit decrypted
transactions as a message to collect rewards. Hash of submitted decryptions
should be compared to the commitments which are previously sent alongside
the encrypted transactions to verify the correctness of the block key extraction
and decryption process. The original sender of the encrypted message is able to
submit its plaintext transaction immediately without block key extraction and
decryption in order to avoid system fees. In the event that the original sender
is no longer online or refuses to reveal in time, other parties will compete to
decrypt the transactions as soon as possible to collect rewards.

12 P. Momeni et al.

Fig. 1. Architecture of FairBlock

4.3 Correctness

Correctness follows by the linearity of secret sharing and IBE extraction al-
gorithm. In particular, it is easy to see that shares of the private key can be
reconstructed to obtain the IBE key. We refer the reader to Appendix B for
correctness proof.

4.4 Security

Secure Causality Preservation. Assuming the honest majority of keepers
described in Section 4.1, and at least one honest relayer, we show that our
system satisfies causality-preservation based on the security of DKG and IBE
schemes.

In particular, at the end of phase 1, the adversary cannot learn any informa-
tion of the msk given t ≤ n−1

2 shares of the msk. Furthermore, given block keys
bh for block identifiers h ∈ Sh, the adversary cannot learn about the block key
of other block identifiers h∗ /∈ Sh by the properties of IBE.

We prove security of FairBlock by defining a security game G between a poly-
nomially bounded adversary A controlling at most t keepers and a challenger.
The adversary’s goal is to front-run a client, defined as being able to distinguish
between two challenge encrypted messages containing transaction information.
We define the security game as follows:

– The challenger runs DKG and IBE Setup(1λ) algorithm.
– The adversary receives shares of msk, (w1, ..., wk) for k ≤ t.
– The adversary computes Encrypt(mpk, h,m) for arbitrary message m and

any block identifier h ∈ Sh.
– The adversary receives q ≤ n shares for the block key bh.

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 13

– The adversary chooses two distinct message m0, m1, and a block identifier
h∗ /∈ Sh and sends them to the challenger.

– The challenger selects random bit b and sends C∗ = Encrypt(mpk, h∗,mb)
to the adversary alongside up to t − k shares of the block key skh∗ . The
number of received shares in this phase cannot be more than t − k, as the
adversary can exploit its shares of msk and extract additional k shares for
skh∗ . In case of receiving more than t− k shares of the challenge block key,
the adversary can trivially extract the challenge block key by combining
more than t shares of skh∗ shares.

– The adversary can still query the oracle to get q ≤ n shares of the block key
bh for any h ̸= h∗, and finally outputs a guess for b.

Let W be the event that an adversary succeeds in the game G by correctly
guessing b in polynomial time, and ε be a negligible function of the security
parameter λ which is fed to the scheme in the setup phase. We say that the
protocol is secure against front-running if:

AdvG(A) = | Pr[W]− 0.5 |≤ ε (7)

To show that our scheme is secure according to the definition above, let
us assume that there exists an adversary A which can win the game with a
non-negligible probability. We can show that in turn this adversary A should
either break the security of our distributed IBE scheme or the underlying DKG
protocol. In the former case, an adversary B can obtain a private key dID for
arbitrary identity ID alongside the two challenge ciphertexts from the challenger
in the security game of standard IBE. Next, it runs a secret sharing algorithm on
dID to generate shares with the same distribution of block key shares and submits
the generated shares, two challenge ciphertexts, and ID to A. Consequently, A
outputs b which can be sent to the challenger by B to break the security of
standard IBE with a non-negligible probability. To break the DKG security in
latter,A should have the ability to distinguish between the distribution of master
key shares and master public key tuple (w1, ..., wk,mpk) as the output of a
simulator Sim and (w1, ..., wk,mpk

′
) as the output of the real DKG protocol [33,

49]. Consequently, as we have not modified the DKG protocol in FairBlock, an
adversary C can simply use A as an oracle to break the security of the original
DKG protocol.

Order-fairness. FairBlock achieves order-fairness by executing transactions in
the order that their commitments have been received and written to Commit
or alternatively distributed public ledger (in the case of consensus-level imple-
mentation) without duplication. No party including miners in the decryption and
execution phase can influence the fixed order of executed transactions. Moreover,
no party including miners can insert transactions before the decrypted batch or
directly submit transactions to the target contract to frontrun or out-race Fair-
Block transactions as the target contract only accepts messages received through
FairBlock.

14 P. Momeni et al.

To achieve order-fairness, we follow the literature on “fairness” [39, 17, 71]
which favors the transactions that are received earlier. This property has been
a subject of debate in the blockchain community lately [24, 17, 59]. In some ap-
plications e.g. auctions or networks, it is vital to preserve the order of received
transactions for the correctness of the auction or incentivize parties to act with
the lowest possible latency e.g. arbitragers in AMMs. The other side of this
trade-off is that this property may be exploited to perform blind front-running
in some applications e.g. initial coin offerings (ICO) or attacks based on meta-
data. To the extent of our knowledge, blind front-running and attacks based
on metadata are negligible in current applications. However, FairBlock can be
easily modified to prevent this type of attack by shuffling the ordering of trans-
actions. The source of shuffling can be the hash of the concatenation of random
strings x of all messages which cannot be pre-determined or influenced. Kelkar
et al. [39] propose executing all the received transactions in parallel which is
implemented in Chainlink fair sequencing service (FSS) [17] and also compat-
ible with FairBlock’s encryption mechanism. We have further discussed other
solutions to combat metadata-based attacks by anonymizing the transaction’s
sender in Section 6.

5 Implementation

5.1 Implementation Details

We have built prototype implementations of FairBlock for both consensus-level
and smart contracts approaches. Smart contracts are implemented in Solidity
and consensus-level blockchain is built based on Cosmos SDK [22] in Go. For
consensus-level implementation, validators can submit their block key shares as
a message in the FairBlock blockchain, and other parties can compute the block
key and submit decrypted transactions as a message to collect rewards. How-
ever, a more efficient implementation would be submitting block key shares as
an extension to messages in the voting round in a BFT-style consensus algo-
rithm [13]. This implementation can be realized in FairBlock blockchain after
release of ABCI++ [21] which allows validators in a Cosmos-based blockchain
to extend their votes in the consensus voting phase with their shares of block
key [32, 59].

Our implementation of the distributed IBE is built on top of Vuvuzela cryp-
tography library [67] in Go and assembly. For simplicity, we have described
FairBlock using symmetric pairings with the same source groups. However, we
have implemented our protocol using type 3 pairings (BLS12-381) with different
source groups for better efficiency as the Boneh-Franklin BasicIdent IBE [9] can
also be described with type 3 pairings [10]. For the DKG part, we have used
Pedersen’s scheme [49], as it is efficient, fast, and can be explained simply in
this paper. However, this DKG scheme can be replaced with implementations
and schemes such as [38, 35, 55, 34, 33, 63] to achieve better properties. Both im-
plementations can be readily employed for auctions, gaming, and various other
DeFi use cases. Moreover, other PoS blockchain networks including [30, 20, 4, 60]

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 15

can also prevent front-running in their network by including FairBlock in their
consensus mechanism. Source code of FairBlock including distributed IBE and
smart contracts is available on GitHub4. Source code of FairBlock implementa-
tion in the consensus layer is also available on GitHub5.

5.2 Performance Evaluation

To measure performance of our Distributed IBE implementation, we use a 2nd
Gen Intel Xeon 2.50 GHz server with 1 core and 2 GB of RAM. In order to
determine an average performance, we ran the experiments 100 times for each
keepers set size. We test the implementation for systems of up to 500 keepers and
present average execution times in Table 1 along with 95% two-sided confidence
intervals. Our results show the feasibility of our basic implementation using basic
hardware resources for even the fastest proof-of-stake (PoS) and proof-of-work
(PoW) public blockchains. For instance, average block key extraction time (com-
posed of block key shares aggregation, verification, and block key computation)
for 100 keepers is 147.39 ms which is significantly less than the block finaliza-
tion time of PoW blockchains such as Ethereum (12-14 seconds), and current
fastest PoS blockchain namely Avalanche [4] (1-3 seconds). We have also mea-
sured encryption and decryption execution time of random 256 byte messages
for 1000 runs. On average, decryption takes 1.54 ms and encryption takes 5.27
ms which are neglectable compared to block key extraction time and can be eas-
ily parallelized with the same execution time. For larger message sizes, our work
employs hybrid encryption [26]. Using hybrid encryption, identity-based encryp-
tion is used to encrypt a key and an efficient symmetric encryption scheme such
as AES-GCM or ChaCha20 [16] is used to encrypt the actual transaction with
the key.

Table 1. Mean values of encryption, block key extraction, and decryption execution
time for various keepers set sizes.

Keepers Block key extraction (ms) Decryption (ms) Encryption (ms)

5 8.07 ± 0.05 1.57 ± 0.04 5.29 ± 0.03
10 16.97 ± 0.06 1.54 ± 0.04 5.24 ± 0.02
20 29.5 ± 0.10 1.50 ± 0.02 5.21 ± 0.01
50 72.91 ± 0.18 1.52 ± 0.04 5.22 ± 0.02
100 147.39 ± 0.29 1.60 ± 0.07 5.28 ± 0.04
200 294.90 ± 0.63 1.53 ± 0.04 5.30 ± 0.02
500 771.72 ± 1.38 1.59 ± 0.03 5.35 ± 0.03

We have compared the bandwidth overhead of FairBlock and the threshold
decryption approach in two realistic scenarios. In scenario I, there are 1000

4 https://github.com/pememoni/FairBlock-SC
5 https://github.com/pememoni/FairBlock

16 P. Momeni et al.

keepers and 1000 encrypted transactions that should be decrypted every 24
hours. In scenario II, there are 100 keepers and 100 transactions to be decrypted
in 10 seconds. Using IBE, we need at least two-thirds of keepers to send their
shares (of size 256 byte in our implementation) for the block key extraction.
In threshold decryption, at least two-thirds of keepers should compute partial
decryptions (of size 64 byte in our implementation) for each of the committed
transactions. Table 2 shows the result of our experiment. In scenario I, the total
message size of IBE approach is only 0.4% of the threshold decryption approach.
Similarly, the total message size of IBE approach is approximately 25 times less
than the other approach in scenario II.

Table 2. Comparison of bandwidth overhead in identity-based encryption and thresh-
old decryption (assuming two-thirds honest majority)

System size Bandwidth overhead

Transactions Keepers Identity-Based Encryption Threshold Decryption
1000 1000 170.8 KB 42.7 MB
100 100 17.2 KB 326.4 KB

6 Challenges and Future Work

One of the main challenges that arises in all privacy-preserving implementations
is to protect leakage of information through transaction metadata. In particular,
although the data field will not leak any information about the encrypted trans-
action itself, signature of the transaction can leak the sender’s identity. In theory,
an adversary with just the knowledge of the transaction’s sender can perform
front-running. For example, traders can be front-runned just based on their reg-
ular trading times of specific assets. Preventing such attacks requires mitigations
that avoid leakage of metadata as well. As an alternative to using complex ring
signatures [46], a client can avoid this risk and hide the real sender of the trans-
action by asking another party to send its transaction; or alternatively, replace
the sender’s signature with a PoW puzzle. Other privacy-enhancing technolo-
gies such as [6, 64, 14] can also be applied to prevent front-running based on the
sender’s public key or other forms of metadata namely IP addresses.

7 Conclusions

This paper designs and implements FairBlock, the first front-running prevention
mechanism based on distributed IBE. Our work does not have many limita-
tions of previous front-running mechanisms. Specifically, FairBlock significantly
outperforms the most well-known approach based on threshold decryption in

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 17

bandwidth overhead. We have implemented and evaluated our prototype us-
ing both smart contracts and consensus-layer as the communications layer. The
source code of our implementation is also open-sourced.

References

1. Adams, H., Zinsmeister, N., Salem, M., Keefer, R., Robinson, D.: Uniswap v3 core.
Tech. rep., Tech. rep., Uniswap (2021)

2. Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich, O., Tamari,
R., Yakira, D.: A fair consensus protocol for transaction ordering. In: 2018 IEEE
26th International Conference on Network Protocols (ICNP). pp. 55–65 (2018).
https://doi.org/10.1109/ICNP.2018.00016

3. Auer, R., Frost, J., Vidal Pastor, J.M.: Miners as intermediaries:
extractable value and market manipulation in crypto and defi.
https://www.bis.org/publ/bisbull58.htm, (Accessed on 07/07/2022)

4. Avalanche whitepaper. https://www.avalabs.org/whitepapers, (Accessed on
12/03/2021)

5. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. arXiv preprint arXiv:2106.01870 (2021)

6. Bojja Venkatakrishnan, S., Fanti, G., Viswanath, P.: Dandelion: Redesigning the
bitcoin network for anonymity. Proc. ACM Meas. Anal. Comput. Syst. 1(1) (jun
2017). https://doi.org/10.1145/3084459, https://doi.org/10.1145/3084459

7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Annual
international cryptology conference. pp. 757–788. Springer (2018)

8. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: International conference on the theory and applications of
cryptographic techniques. pp. 223–238. Springer (2004)

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: An-
nual international cryptology conference. pp. 213–229. Springer (2001)

10. Boyen, X.: A tapestry of identity-based encryption: practical frameworks com-
pared. International Journal of Applied Cryptography 1(1), 3–21 (2008)

11. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
Journal of computer and system sciences 37(2), 156–189 (1988)

12. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the hydra: Towards
principled bug bounties and exploit-resistant smart contracts. Cryptology ePrint
Archive, Report 2017/1090 (2017)

13. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938 (2018)

14. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a
smart contract world. In: International Conference on Financial Cryptography and
Data Security. pp. 423–443. Springer (07 2020). https://doi.org/10.1007/978-3-030-
51280-4 23

15. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology. p. 524–541. CRYPTO ’01, Springer-Verlag,
Berlin, Heidelberg (2001)

16. Chacha20 and poly1305 for ietf protocols. https://www.rfc-
editor.org/rfc/rfc7539.txt, (Accessed on 04/03/2022)

18 P. Momeni et al.

17. Chainlink 2.0 and the future of decentralized oracle networks — chainlink.
https://chain.link/whitepaper (2021)

18. Cline, D., Dryja, T., Narula, N.: Clockwork: An exchange protocol for proofs of
non front-running (2020)

19. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
IMA international conference on cryptography and coding. pp. 360–363. Springer
(2001)

20. Cosmos: The internet of blockchains. https://cosmos.network/, (Accessed on
03/18/2022)

21. Abci++. https://github.com/tendermint/spec/blob/master/rfc/004-abci++.md,
(Accessed on 04/03/2022)

22. Cosmos sdk - cosmos network. https://v1.cosmos.network/sdk, (Accessed on
03/26/2022)

23. Cowswap - meta dex aggregator. https://cowswap.exchange/, (Accessed on
12/03/2021)

24. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning, transaction reordering, and consensus
instability in decentralized exchanges. arXiv preprint arXiv:1904.05234 (2019)

25. Dao — aragon. https://aragon.org/dao, (Accessed on 04/01/2022)
26. Dixit, P., Gupta, A.K., Trivedi, M.C., Yadav, V.K.: Traditional and hybrid en-

cryption techniques: a survey. In: Networking communication and data knowledge
engineering, pp. 239–248. Springer (2018)

27. Doweck, Y., Eyal, I.: Multi-party timed commitments (2020)
28. Duan, S., Reiter, M.K., Zhang, H.: Secure causal atomic broadcast, revisited. In:

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). pp. 61–72 (2017). https://doi.org/10.1109/DSN.2017.64

29. Eskandari, S., Moosavi, S., Clark, J.: Sok: Transparent dishonesty: front-running
attacks on blockchain (2019)

30. Ethereum upgrades. https://ethereum.org/en/upgrades/, (Accessed on
03/18/2022)

31. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th Annual Symposium on Foundations of Computer Science (sfcs 1987). pp.
427–438 (1987). https://doi.org/10.1109/SFCS.1987.4

32. Ferveo. https://anoma.network/blog/ferveo-a-distributed-key-generation-scheme-
for-front-running-protection/, (Accessed on 12/03/2021)

33. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gen-
eration for discrete-log based cryptosystems. Journal of Cryptology 20(1), 51–83
(2007)

34. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive, Report 2021/339 (2021)

35. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Aggregatable distributed key generation. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 147–176. Springer
(2021). https://doi.org/10.1007/978-3-030-77870-5 6

36. Halevi, S.: Efficient commitment schemes with bounded sender and unbounded
receiver. In: Proceedings of the 15th Annual International Cryptology Conference
on Advances in Cryptology. p. 84–96. CRYPTO ’95, Springer-Verlag, Berlin, Hei-
delberg (1995)

37. Halevi, S., Micali, S.: Practical and provably-secure commitment schemes from
collision-free hashing. In: Koblitz, N. (ed.) Advances in Cryptology — CRYPTO
’96. pp. 201–215 (1996)

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 19

38. Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryp-
tography. In: Security and Cryptography for Networks. pp. 436–453. Springer
Berlin Heidelberg (2010)

39. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-
sensus. In: Annual International Cryptology Conference. pp. 451–480. Springer
(2020)

40. Khalil, R., Gervais, A., Felley, G.: TEX - a securely scalable trustless exchange.
IACR Cryptol. ePrint Arch. p. 265 (2019)

41. Libert, B., Quisquater, J.J.: Identity based encryption without redundancy. In:
International Conference on Applied Cryptography and Network Security. pp. 285–
300. Springer (2005)

42. Mev-Explore. https://explore.flashbots.net/, (Accessed on 12/03/2021)
43. Momeni, P., Gorbunov, S., Zhang, B.: Fairblock: Preventing blockchain front-

running with minimal overheads. In: International Conference on Security and
Privacy in Communication Systems. p. in press. Springer (2022)

44. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (jan
1991). https://doi.org/10.1007/BF00196774

45. Network, S.: Secret markets: Front running prevention for automated market mak-
ers. https://scrt.network/blog/secret-markets-front-running-prevention, (Accessed
on 06/22/2022)

46. Noether, S.: Ring signature confidential transactions for monero. IACR Cryptol.
ePrint Arch p. 1098 (2015)

47. Obadia, A., Salles, A., Sankar, L., Chitra, T., Chellani, V., Daian, P.: Unity is
strength: A formalization of cross-domain maximal extractable value (2021)

48. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140. Springer
(1991)

49. Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: Davies, D.W.
(ed.) Advances in Cryptology — EUROCRYPT ’91. pp. 522–526. Springer Berlin
Heidelberg, Berlin, Heidelberg (1991)

50. Protocol, V.: Blockchain derivatives. https://vega.xyz/, (Accessed on 06/22/2022)
51. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark

is the forest? (2021)
52. Reiter, M.K., Birman, K.P.: How to securely replicate services. ACM Transactions

on Programming Languages and Systems (TOPLAS) 16(3), 986–1009 (1994)
53. Robinson, D., Konstantopoulos, G.: Ethereum is a dark forest - paradigm.

https://www.paradigm.xyz/2020/08/ethereum-is-a-dark-forest/, (Accessed on
12/03/2021)

54. van Schaik, S., Kwong, A., Genkin, D., Yarom, Y.: SGAxe: How SGX fails in
practice (2020)

55. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Ethdkg: Distributed key gener-
ation with ethereum smart contracts. Cryptology ePrint Archive, Report 2019/985
(2019)

56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
https://doi.org/10.1145/359168.359176, https://doi.org/10.1145/359168.359176

57. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Workshop on
the theory and application of cryptographic techniques. pp. 47–53. Springer (1984)

58. Shutter Network. https://shutter.ghost.io/, (Accessed on 12/03/2021)
59. Sikka. https://sikka.tech/projects/, (Accessed on 12/03/2021)
60. Solana. https://solana.com/, (Accessed on 03/18/2022)

20 P. Momeni et al.

61. Stathakopoulou, C., Rüsch, S., Brandenburger, M., Vukolic, M.: Adding fairness
to order: Preventing front-running attacks in bft protocols using tees

62. Sushiswap. https://sushi.com/, (Accessed on 12/03/2021)
63. Tomescu, A., Chen, R., Zheng, Y., Abraham, I., Pinkas, B., Gueta, G.G., De-

vadas, S.: Towards scalable threshold cryptosystems. In: 2020 IEEE Symposium
on Security and Privacy (SP). pp. 877–893. IEEE (2020)

64. Tornado Cash. https://tornado.cash/, (Accessed on 12/05/2021)
65. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-

stein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order execution. In: 27th USENIX
Security Symposium (USENIX Security 18). pp. 991–1008 (2018)

66. Veedo. https://github.com/starkware-libs/veedo, (Accessed on 03/30/2022)
67. vuvuzela cryptography libraries. https://github.com/vuvuzela/crypto, (Accessed

on 04/03/2022)
68. Wood, G.: Ethereum: A secure decentralized generalized transaction ledger (2014)
69. Xing, B.C., Shanahan, M., Leslie-Hurd, R.: Intel software guard extensions (In-

tel SGX) software support for dynamic memory allocation inside an enclave. In:
Proceedings of the Hardware and Architectural Support for Security and Pri-
vacy 2016. Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2948618.2954330

70. Zhang, H., Merino, L.H., Estrada-Galinanes, V., Ford, B.: F3b: A low-latency
commit-and-reveal architecture to mitigate blockchain front-running. arXiv
preprint arXiv:2205.08529 (2022)

71. Zhang, Y., Setty, S., Chen, Q., Zhou, L., Alvisi, L.: Byzantine ordered consensus
without byzantine oligarchy. In: 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). pp. 633–649. USENIX Association (Nov
2020)

72. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on
decentralized on-chain exchanges. 2021 IEEE Symposium on Security and Privacy
(SP) pp. 428–445 (2021)

FairBlock: Preventing Blockchain Front-running with Minimal Overheads 21

A Front-running Strategies

In this appendix, we discuss two families of the most common front-running
strategies with the goal of familiarizing the reader with the MEV space and
nature of the front-running attacks.

Sandwiching Attack Sandwich attacks are the most notorious form of front-
running attacks. Predatory parties observe profitable pending transactions in the
public mempool or exploit their privileged access to plaintext orders in central-
ized exchanges or relayer services. At its core, they manipulate the transaction
ordering in a block and ensure that their front-running transaction tx1 executes
before the victim’s transaction txorg and their back-running transaction tx2 exe-
cutes immediately after the victim’s transaction. The profitability of this strategy
is based on the assumption that demand for assets results in a higher price. In
simple terms, when the attacker observes a pending buy order, it can buy the
same asset before the original trade, and immediately sell after execution of the
original trade to enjoy price increases thanks to a) its back-running transaction
and b) the victim’s transaction. For a concrete example, assume the scenario
that Alice broadcasts txorg to trade 100 USDC for DAI with a standard 0.3%
transaction fee and 1% slippage tolerance in a decentralized exchange (DEX)
that has 1000 DAI and 1000 USDC reserve. Following the standard automatic
market maker (AMM) model [1] in DEXes, Alice is expecting to receive 90.66
DAI in return. However, Bob observes this trade in the mempool and front-runs
Alice by submitting t1 to trade 5.23 USDC for 5.19 DAI which increases the price
of DAI to the maximum limit that Alice can tolerate due to 1% slippage. Con-
sequently, Alice’s trade torg returns 1% less DAI (89.75 DAI) and even further
increases DAI price. Finally, Bob pockets 1.05 USDC (ignoring gas fees) in profit
by submitting t2 and trading its 5.19 DAI for 6.28 USDC. To realize this strategy
Bob should manipulate the ordering by offering gas prices (price for computing
each unit of computation) to block proposers such that t1 and t2 sandwich torg.
Block proposers normally sort transactions with respect to gas price; and for a
successful attack, Bob has the challenge to strategically offer a gas price that
overbids competitors and still be profitable which makes this strategy complex
for Bob. However, Flashbots [24] allows front-runners to sandwich users with
much less risk as they can offer a bundle of transactions containing t1, t2, torg,
and a bid directly to the block proposer without submitting it to the mempool.
Then the block proposer chooses the most profitable bundles and executes them
in their profitable order. Consequently, Bob can almost guarantee his profit by
only paying for the bid and fees only if the block proposer executes t1, t2, torg
in the specified order.

Generalized Front-running Blockchain networks such as Ethereum [68] and
Avalanche [4] are modelled as a distributed state machine and their global state
changes from block to block with respect to a pre-defined set of rules. This
means that any party can observe a pending transaction txorg and simulate its

22 P. Momeni et al.

resulting state change. Consequently, generalized front-runners can simulate all
pending transactions and determine the profitability of them by checking the
balances of the transactions’ senders. In case of a net increase in the original
sender’s balance, the generalized front-runner copies the same transaction fields
and signs it with its private key. Next, it simulates the copied transaction locally
to check that the transaction is indeed profitable e.g. not a trap smart contract.
Finally, the generalized front-runner submits transaction tx1 to front-run txorg

and capture the profit. This strategy enables parties that have access to the
mempool to extract profits by mimicking a pending transaction (even blindly)
and outbidding competitors and the original sender. While the generalized front-
runner may be able to simulate all pending transactions in order to find the most
profitable ones, due to the high number of pending transactions and cost of
simulating, the front-runner can also filter specific target addresses and markets
which is expected to have more profitable opportunities including NFT markets,
DEX and CEX liquidity pools, yield aggregators, or well-known traders.

B Correctness and Consistency

B.1 Consistency of IBE encryption and decryption

Let C = (R,U) be encryption of message m for block identifier h using the
public keympk. In encryption,m is bitwise XORed with the hash of ê(Qh,mpk)r.
Subsequently in decryption, U is bitwise XORed with the hash of ê(bh, R). These
two masks are equal since:

ê(Qh,mpk)r = ê(Qh, g)
r.msk = ê((Qh)

msk, gr) = ê(bh, R) (8)

B.2 Correctness proof for distributed private key extraction

The following proof shows that bh is indeed the IBE key that a trusted third
party extracts for the identity h by raising the hash of the identity H1(h) to its
private key msk:

bh =

t∏
k=1

(bkh)
Lk =

t∏
k=1

(H1(h)
wk)Lk =

t∏
k=1

H1(h)
wkLk = H1(h)

∑t
k=1 wkLk (9)

And by Lagrange interpolation formula we have:

H1(h)
∑t

k=1 wkLk = H1(h)
msk (10)

