
1

A Password-Based Access Control Framework
For Time-Sequence Aware Media Cloudization

Haiyan Wang, Penghui (Owen) Liu, Xiaoxiong Zhong, Weizhe Zhang, Fucai Luo

Abstract—The time sequence-based outsourcing makes new demands for related access control continue to grow increasingly in
cloud computing. In this paper, we propose a practical password-based access control framework for such media cloudization relying
on content control based on the time-sequence attribute, which is designed over prime-order groups. First, the scheme supports
multi-keyword search simultaneously in any monotonic boolean formulas, and enables media owner to control content encryption key
for different time-periods using an updatable password; Second, the scheme supports the key self-retrievability of content encryption
key, which is more suitable for the cloud-based media applications with massive users. Then, we show that the proposed scheme is
provably secure in the standard model. Finally, the detailed result of performance evaluation shows the proposed scheme is efficient
and practical for cloud-based media applications.

Index Terms—Access control, password, time-sequence, content protection, searchable encryption, media cloudization.

F

1 INTRODUCTION

A Class of important media applications based on time-
sequence can only be accessed by authorized cus-

tomers. For example, the digital video broadcasting (DVB)
business in the cloud needs a content access control solution
based on time-sequence in order to produce and stream
the high value video content in a protection way, in which
the feature that the high value video content produced or
streamed during what time shall not be viewed by which
class of people is a must. Besides, cloud-based chatroom
or web conference system, the conference records can only
be viewed by the authorized persons. With the continuous
development of data sharing technology, cloud computing
has become one of the most practical and efficient network
computing models today [1]. Thus, large amounts of data
(content) are outsourced to the cloud server. However, it
directly makes content vendors lose control of their data.
Meantime, the public cloud server cannot be assured to be
fully trusted, the concern on both content security and user
privacy of such applications arises inevitably.

One approach to solving the problem is to directly
encrypt the sensitive content before outsoucing them to
the public cloud, which can achieve content confidential-
ity for unauthorized users [2]. Searchable Encryption (SE)
is a mainstream access control technology based on data
encryption [3], [4], and it allows users to search for specific
information (e.g., based on keywords) in lots of encrypted
data directly, in which the cloud server cannot learn any
sensitive information on the clear data. SE technology is
divided into symmetric encryption (SSE) and public key
encryption with keyword search (PEKS). SSE only allows
the user having the secret symmetric key to encrypt the
keywords and generate the keyword-related tokens, and
PEKS allows anyone to encrypt the keywords using the
public key of data user, in which the user having the private
key can perform search on the encrypted data.

• H. Wang and P. Liu contributed equally to this work.

Many access control schemes supporting SE have been
proposed for different scenarios over the past few decades.
However, to the best of our knowlege, the research on
access control based on time-sequence supporting SE over
outsourced encrypted content for the cloud-based media
applications is relatively inadequate (e.g., high computation
time, high storage cost). In this paper, we propose an effi-
cient password-based access control framework supporting
expressive PEKS for media cloudization (PAC-MC). Our
main contributions can be briefly summarized as follows:

1. The proposed scheme is the first one allowing media
service provider to outsource the confidential content
to the cloud, controlling content encryption key for
different time periods by an updatable password.
Meantime, the sevice provider can determine users’
privilege of access outsourced data by the time-
sequence attribute of content.

2. A new content encryption key generation scheme is
proposed, in which users can self-retrieve content
encryption key without frequently communicating
with key management server.

3. A new PEKS built over the prime-order groups is
proposed for cloud-based media applications, which
enables the data user to perform multi-keyword
search more efficiently over the outsourced content.

4. Security definition based on the standard model is
formalized for our scheme, and then we formally
prove it to be selectively secure under this model.
The performance evaluation shows that our scheme
is very efficient and practical.

The remainder of this paper is organized as follows: In
Sections 2 and 3, related work and the preliminaries of our
scheme are introduced, respectively. In Section 4, we present
the concrete construction of PAC-MC, including system ar-
chitecture, security definitions and security proof. In Section
5, we briefly give a performance evaluation related to the
scheme, and finally the conclusion is given in Section 6.

2

2 RELATED WORK

Most of the existing works on access control in modern
cloud-based applications are designed based on a central-
ized architecture [5]. Moreover, in the cloud-based applica-
tions with access control supporting encrypted data search-
ability, the keyword-based SE is a mainstream technology.

Searchable symmetric encryption schemes (SSE). In
2000, Song et al. [1] firstly proposed the practical security
concept of SSE, at the same time presented several SSE
primitive constructions. In 2003, Goh et al. [6] introduced a
bloom filter-based SSE scheme. Later, Chang et al. [7] also
developed a scheme based on per-file index with higher
efficiency than the one proposed by Goh at al., Regrettably,
both two schemes cannot prevent the adaptive adversary
from generating illegal queries by using the results of pre-
vious queries. Next, Curtmola et al. [8] introduced a new
scheme using per-keyword technique, this approach is more
efficient than the previous ones. After then, lots of solutions
[9], [10], [11], [12], [13], [14] supporting various levels of
security and efficiency have been proposed, most solutions
are limited to single keyword search or single user search.
Obviously, the design of single-keyword search and single-
user search cannot satisfy modern cloud-based applications,
which require more complex search. In addition, it is not
difficult to see that all access controls based on searchable
symmetric encryption scheme uses single key to encrypt
and decrypt the shared data, the data owner is required
to share a secret key used to generate trapdoors with other
authorized users. Inevitably, this will result the risk that the
secret-key could be easily leaked to the unauthorized user.

Public key encryption with keyword search (PEKS). In
2004, Boneh et al. [3] first proposed the concept of PEKS,
developed a provably secure public key SE scheme using
anonymous identity-based encryption technique. In 2007,
Bellare et al. [15] developed a similar searchable public key
encryption scheme, where a lot of deterministic searchable
tags are defined, the server can sort these tags and match
them within a minimum logarithmic time. Compared with
previous ones, it is more efficient. However, this scheme
only supports equality search, it is difficult to handle dupli-
cate attribute values associated with the matched records.
Moreover, some different records with duplicate attribute
values will end with the same ciphertext, thus the appear-
ance frequency of plaintext can be tracked statistically based
on relevant attribute values. Subsequent works [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28] im-
proved the search capability, support multiple, conjunctive
or disjunctive keywords search. However, most works only
focus on single user (data owner) search, or only aims
to secure against the offline keyword dictionary guessing
attacks, and the search number of keywords allowed in the
searchable schemes are predefined in the setup phase while
running the system. These don’t fully satisfy the cloud-
based applications that operate relying on the time-sequence
attribute of content with multi-user search using any num-
ber of keywords. Meantime, these schemes designed over
the composite-order groups require considerable computa-
tional complexity and mainly concerns the offline keyword
dictionary guessing attacks.

Content access control based on time-sequence. The ex-

isting media access control schemes based on time-sequence
attribute of the encrypted content, such as ITU-R Rec.810
[29] and solutions [30], [31], [32], [33], are mainly employed
in the security systems of CAS (conditional access system)
and DRM (digital rights management) for content encryp-
tion key management of streaming media service. Park et al.
[30]proposed an efficient encryption and key management
scheme for layered access control of H.264/Scalable Video
Coding based on the hierarchical content access control of
H.264 video. The scheme focuses on the feature extraction
of low-level picture frame. However, it also cannot support
user grouping and content search on the encrypted data
for data users. Zhu et al. [31] proposed a hierarchical key
distribution scheme for the conditional access system in
DTV broadcasting, which requires an additional smart card
and relies on the transport stream. Unfortunately, these
schemes are only suitable for the video encryption for
traditional cable broadcasting of digital TV service. Yang et
al. [32] developed a simplified and secure conditional access
system for the interactive TV service in converged network.
this scheme [31] requires a smart card and severely relies
on the transport stream, and an additional client access
agent should be integrated into the device owned by data
user. Feng et al. [33] proposed a content encryption key
scheme for the multicast encryption and DRM (digital rights
management), which requires to interact with the license
server (content key management server) frequently when
the DRM content needs to be decrypted. Moreover, the
commnuication overhead will become excessive in order to
obtain all encryption keys of the streaming media blocks,
due to the decryption key for each content block is obtained
by interacting with the license server one by one. In ad-
dition, this scheme mainly focuses on key management and
access control for the recorded content, and each client (data
user) needs to integrate an additional DRM agent as well, is
only suitable for IPTV and not designed for cloud-based
media application. Overall, the existing schemes designed
for the access control do not support content search for
users, and are not suitable for the modern cloud-based
media applications.

3 PRELIMINARIES AND BACKGROUND

3.1 Bilinear Groups and Pairings

Bilinear Pairings [34]. Let G(1`) be an algorithm taking a
security parameter ` as input, it outputs the system parame-
ters: (p,G,GT , ê)← G(1`) where G,GT are both multiplica-
tive cyclic groups with a prime order p, ê : G×G→ GT is a
bilinear pairing map function with the following properties:

1) Bilinearly:ê(ga, hb) = ê(g, h)ab for g, h ∈ G, a, b ∈ Zp.
2) Non-degenerate:ê(g, g) 6= 1.
3) Computability: there exists an efficient algorithm to

compute ê(g, h) for all g, h ∈ G.

3.2 One-way Hash Binary Tree(OHBT):

Let T be a OHBT [35], given an internal node in T , the
value stored on its left child node is generated by hashing
the value on its parent node with 0, and the value stored
on its right child node is generated by hashing the value
on its parent node with 1, i.e., Let LeftT (x) and RightT (x)

3

Data Owner

（e.g. Content provider）

Data User

(e.g. Consumer)

1. Update key materials

when the password expires.

2. Encrypted files

and the corresponding

encrypted keywords.

(file. 1)dek1

(file. 2)dek2

(file. …)dek...

File ciphertext

Keywords W1,W2,W3

Keywords W1,W2

Keywords ...

Keyword ciphertext

Trapdoor

Generation Center

5. Self-retrieve

decryption key,

decrypt the files.

UID1

UID1

UID2

Owner ID

2019.12.1:5:00

2020.1.1:5:00

...

Timestamp

Key Generation

Center

Content Encryption

Key Management

Center

User Registry Center

System Init. System Init.

System Init.

User ID {allocated access time-period}

(UID3 {Time-period: #1-#5})

(UID4 {Time-period: #2-#3})

...

Content Protection

Solution Vendor

(e.g. CAS/DRM vendor)

UID, Password

UID, Password

Cloud Content Server

（e.g. Public cloud provider）

Fig. 1. Architecture of our proposed PAC-MC scheme.

denote the left child and right child of node x in a given
OHBT, respectively, let valueT (x) be a value associated with
node x, then valueT (LeftT (x)) = HASH(valueT (x)||0),
and valueT (RightT (x)) = HASH(valueT (x)||1).

3.3 Complexity Assumptions
Decisional q-2 Assumption [34]. For any probabilistic
polynomial-time algorithm A, given the above system pa-
rameters (p,G,GT , ê) and following D,

D = (g, gx, gy, gz, gxz
2

,

gbi , gxzbi , gxz/bi , gx
2zbi , gy/b

2
i , gy

2/b2i ,∀i ∈ [q],

gxzbi/bj , gybi/b
2
j , gxyzbi/bj , g(xy)2bi/bj ,∀i, j ∈ [q], i 6= j),

[q]
def
= {1, 2, . . . , q},

where q is an integer. We assume it is impossible for A to
distinguish (D, ê(g, g)xyz) from (D, Z), where the random
number Z ∈ GT , x, y, z, b1, b2 . . . , bq ∈ Zp are chosen ran-
domly and independently.

Decisional Bilinear Diffie-Hellman Assumption [25]
(DBDH). For any probabilistic polynomial-time algorithm
A, given the parameters: D = (g, gx, gy, gz), we assume it is
impossible for A to distinguish (D, ê(g, g)xyz) from (D, Z),
where the ramdom number Z ∈ GT , x, y, z ∈ Zp are chosen
randomly and independently.

Decisional Diffie-Hellman Assumption [36] (DDH).
Assume there are two big prime numbers: p′, q′, such that
q′|(p′ − 1), and a group Gq′, which is a subgroup of
multiplicative group Z∗p′, g′ is the generator of Gq′. For
any probabilistic polynomial-time algorithm A , given the
parameters: D = (g′, g′x, g′y), we assume it is impossible for
A to distinguish (D, g′xy) from (D, Z), where Z ∈ Gq , and
x, y ∈ Zq′, are chosen randomly and independently.

Pseudorandom Function Ensemble [37]. Let F be a func-
tion ensemble with functions in the set {0, 1}n → {0, 1}n,

H be the function ensemble distributed uniformly over all
functions in the set {0, 1}n → {0, 1}n, For any probabilistic
polynomial-time algorithm A, given the ability to query
values on a function f ′, it is impossible for A to determine
whether f ′ was drawn from F or from H. Then we define F
is a pseudorandom function ensemble.

3.4 Access Structures and Linear Secret Sharing
Access Structures [34], [38]. Let {P1, . . . , Pn} be a set of
parties. A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C:
if B ∈ A and B ⊆ C , then C ⊆ A. An access structure
(respectively, monotonic access structure) is a collection (re-
spectively, a monotonic collection) A of non-empty subsets
of {P1, . . . , Pn}, i.e.A ⊆ 2{P1,...,Pn}\{∅}. The sets in A are
called authorized sets, and the sets not in A are called unau-
thorized sets. In this paper, we only focus on the monotone
access structures. However, for non-monotone versions, as
stated in [38], it is possible to implement the general access
structures, where the non-monotone access structures can be
described using monotonic access structures with inefficient
techniques such as taking the negation of an attribute as a
separate attribute.

Linear Secret Sharing schemes (LSSS) [34], [38]. A
secret sharing scheme

∏
over a set of parties P is called

linear (over Zp) if
1) The shares for each party form a vector over Zp.
2) There exists a matrix M with ` rows and columns

n columns called the share-generating matrix for
∏

, For
all i = 1, . . . , `, the i-th row of M is labeled by a party
ρ(i), (where ρ(∗) is a map function from {1, . . . , `} to
P for labeling). When we consider the column vector
v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared,
r2, . . . , rn ∈ Zp, are randomly chosen, then Mv is the vector
of ` shares of the secret s according to

∏
. The share (Mv)i

belongs to party ρ(i).

4

As noted in [34] that every LSSS enjoys the linear re-
construction property, which can be defined as follows:
Suppose that

∏
is an LSSS for access structure A. Let S be an

authorized set chosen from A, and letMi denote the i-th row
of M, define I ⊆ [`] as I = {i|ρ(i) ∈ S}. Then there exist
constants {ωi ∈ Zp}i∈I and a vector w = (1, 0, 0, . . . , 0),
such that, for any valid shares {vi} of the secret s according
to
∏

, we have
∑
i∈I ωivi = s, and

∑
i∈I ωiMi = w, where

w is in the span of the rows of M indexed by I and constants
{ωi ∈ Zp}i∈I can be found in the polynomial time in
size of the share-generation matrix M. However, for any
unauthorized set S′, no such constants {ωi} satisfying the
above definition exist. Moreover, in this case it is true, if
I ′ = {i|i ∈ [`] ∧ ρ(i) ∈ S′}, there exists a vector ŵ such
that its first component ŵ1 is any no zero element in Zp and
< Mi, ŵ >= 0 for all i ∈ I ′.

4 PASSWORD-BASED ACCESS CONTROL SCHEME
FOR MEDIA CLOUDIZATION (PAC-MC)
We first describe the architecture of our scheme, then present
the details on algorithm definitions, construction, threat
model, as well as the relevant design goals.

4.1 System Architecture
The architecture of our access control system is shown in
Fig. 1, which consists of four entities:

Data Owner: The data owner (media content and service
provider) is responsible for content production, encryption
and outsourcing, determines which users can search the
outsourced content.

Content Protection Solution Vendor (CPSV)1: CPSV
consists of four parts: Key generation center (KGC), User
registry center (URC), Content encryption key management
center (CEKMC) and Trapdoor generation center (TGC).
Among which, KGC initializes and publishes the system
parameters; URC manages all information on cloud users
including access time-period and identity of each user;
CEKMC assists data owner to update and manage all con-
tent encryption keys for different time-period if required;
TGC issues trapdoor for content search for data user.

Data User: The data user shall request a trapdoor from
TGC before using search service, if a data user is an autho-
rized user, who will be privileged by data owner to search
the outsourced content.

Cloud Content Server (CCS): CCS provides content
storage and search services, performs the keyword search
operations on behalf of authorized data user.

Assume that all entities have their own unique identity
(UID), and all cloud users are authorized by using separate
password-based identity authentication approach before provid-
ing service; The service lifetime of an application consists
of many password lifetimes, which is divided into lots
of constant time-periods, (The relationship among service
lifetime, password lifetime and time-period is depicted in
Fig. 2). The data owner uses different keys to encrypt the
data outsourced to the public cloud in different time-periods

1. Main CPSVs: NAGRA, Verimatrix, Irdeto, Conax, NDS, etc. Its
functionality can be deployed in the domain of CPSVs geographically,
or in the form of private cloud service of operator.

Timeline, time-sequence

1 2 3 1(5) 2(6) 3(7) 4(8)

PL #1

TP #1 PUT #1

PL #2

TP #2

PL: password lifetime. TP: time-period. PUT: password updating point-in-time.

(*): the logical number of TP in follow-up PLs calculated from the setup of application.

In this example, 1 PL consists of 4 TPs.

PUT #2

 Service lifetime of an application

4 ...

Fig. 2. The relationship among service lifetime, password lifetime and
time-period.

based on time-sequence. This assumption is reasonable, due
to considering the security of data and password, it will
be better for data owner to change the data encryption key
for the data outsourced in different time-period, and the
cloud management system shall prompt user to periodically
update the password.

We elaborate on the workflow of our scheme. Suppose
there is a media application where a data owner is required
to deliver some files (content) produced based on the time-
sequence to other users by outsourcing the files to the
cloud. Firstly, the data owner allocates access time-periods
to each authorized user respectively, such as (UID3, time-
period:#1-#5), which means the user UID3 can access files
produced and outsourced in time-period: #1-#5, then the
data owner provides the information on access time-period
and identity of each authorized user to URC, who further
hands the information over to CCS, then with the help
of CEKMC, the data owner updates the key materials to
generate a symmetric encryption key for file encryption in
current time-period.

Next, the data owner extracts a set of keywords for each
file, encrypts the files using the symmetric encryption key,
whilst encrypts the keywords by using a PEKS to be de-
scribed later, then uploads the encrypted files and keywords
to CCS. To obtain the files of interest, the data user sends a
trapdoor request with one keyword LSSS access structure
to CPSV, where TGC issues a trapdoor and CEKMC gener-
ates a set of key parameters for the data user, then CPSV
returns the trapdoor and key parameters to the data user
after necessary separate identity authentication2, further, the
data user sends the trapdoor and a partial hidden access
structure with keyword name only (without keyword value,
see Fig. 3) to CCS for file (content) search.

Finally, CCS checks whether the timestamp attached to
file satisfies the access time-period belongs to data user,
and whether the trapdoor satisfies keyword ciphertext in
database while searching files, returns the matched files,
then the data user self-retrieves the content encryption key
using key parameters returned by CPSV to decrypt the files.

Our solution aims to achieve the following goals for data
access in media outsourcing service:

a. Time-sequence based outsourced content key management.
The data owner can manage content encryption key
for content produced and outsourced based on time-

2. Here we only assume a separate password-based identity authentica-
tion approach is adopted and ignore the specific mechanism, which is
out of the scope of this paper.

5

Name

Codec

Rating Time

Name =

XXX.mov

Codec=

H.265

Rating=

Adult

Time = Mar.

2019

AND

AND

AND

AND

OR

OR

Fig. 3. (a) Partial hidden access structure. (b) Full access structure.

sequence. Moreover, the content encryption key cor-
responding to different time-period can be conve-
niently updated by data owner. The data owner can
determine users’s privilege to access outsourced data
based on the allocated access time-periods.

b. Efficient multi-keyword search on outsourced content.
The data user can efficiently perform multi-keyword
search using a boolean formula expression consisting
of “AND” and “OR” gates on the encrypted content.

c. Password-driven access control. Both the content en-
cryption key and trapdoor can be generated under
the control of password, more importantly, where the
password can be updated as per the requirement.

d. Encryption key self-retrievability/recoverability. For
cloud-based media application with massive users,
the data user (consumer) can self-retrieve the en-
cryption keys after obtaining the initial key mate-
rials, to a certain extent, the data user can recover
temporarily lost encryption key that belongs to her
or him without frequently communicating with key
management server.

e. Content keyword confidentiality. Any polynomial-time
adversary (such as the “curious” cloud server and
outside attacker) cannot acquire the information on
keyword values directly from the keyword cipher-
text without its related trapdoor, the trapdoor shall
also leak nothing on keyword values to any outside
attacker without system private key or the cloud
server’s private key and the user’s password.

f. Collusion attack resistance. The colluded data users
cannot acquire the content encryption key corre-
sponding to the access time-periods that not belongs
to them via collusion attack. Additionally, any au-
thorized user cannot obtain the content encryption
key corresponding to the access time-periods that
not belongs to her or him using the key matrials
corresponding to two or more disjoint access time-
periods that allocated to her or him.

4.2 System Algorithms and Security Model
In this section, we will introduce system algorithms and
threat model, respectively.

4.2.1 System Algorithms
Our password-based access control system mainly consists
of the following seven polynomial-time algorithms:

• Setup(1`) → (pp,msk): For system initialization,
CPSV runs the setup algorithm which takes a secu-

rity parameter ` as input, outputs the system public
parameter pp, and the master private parametermsk.

• KeyGen(pp,msk, UIDi)→ (pki, ski, FHSi, BHSi):
To initialize the public/private key pair and secret
keys for CCS and cloud users, CPSV runs the key
generation algorithm which takes the system public
parameter pp, the master private parameter msk,
and CCS or users’ UIDi as input, outputs two
hashing seeds (FHSi, BHSi) for each user, and a
public/private key pair (pki, ski) for CCS and each
user, respectively.

• KeyParUpdate(pp,msk, pwo, UIDCPSV , UIDo) →
(kseed, dek): With the help of CPSV, the data owner
runs the key materials updating algorithm which
takes the system public parameter pp, the master
private parameter msk, the data owner’s password
pw0, the CPSV’s UIDCPSV , and the data owner’s
UIDo as input, outputs a updated seed kseed of
the key materials and a symmetric encryption key
dek for content outsourced in the new time periods.
Note that, this algorithm is not always running but
executed by the data owner together with CPSV
when password expires.

• Encrypt(pp, file, dek,W, sko) → ((file)dek, CTW):
To encrypt the file and its keywords for outsourcing,
the data owner runs the encryption algorithm which
takes the system public parameter pp, a file file,
the encryption key dek for current time-period, the
keyword set W of the file file, and the data owner’s
private key sko as input, outputs the encrypted file (
file)dek and its keyword ciphertexts CTW.

• Trapdoor(pp,msk, pks,U, pwu, UIDs, UIDu, UIDo,
LASM,ρ,W = (M, ρ, {Wρ(i)})) → (TdW, kp): To
generate a search trapdoor, CPSV runs the trapdoor
generation algorithm which takes the system
public parameter pp, the master private parameter
msk, the public key pks of CCS, a collection of
authorized users U, the data user’s password pwu,
CCS’s UIDs, the data owner’s UIDo, the data
user’s UIDu, and a keyword LSSS access structure
LASM,ρ,W = (M, ρ, {Wρ(i)}) as input, outputs a
trapdoor TdW and key parameter kp.

• Check(pp, sks, pko, pku, CTW, TdW) → (”Yes” and
(file)dek/”⊥”): To search the file, CCS runs the check
algorithm which takes the system public parameter
pp, the private key sks of CCS, the data owner’s
public key pko, the data user’s public key pku, the
keyword ciphertexts CTW, and the trapdoor TdW for
the LSSS access structure LASM,ρ,W as input, outputs
“Yes” and (file)dek if the keyword ciphertexts satisfy
the trapdoor TdW, otherwise outputs ”⊥”.

• Decrypt((file)dek, kp) → file: To decrypt the files,
the data user runs the decryption algorithm which
takes the encrypted file (file)dek and key parameter
kp as input, outputs the decrypted file file.

Correctness: A password-based access control scheme∏
is correct, which means that, for any keyword-

set W and a LSSS access structure (M, ρ, {Wρ(i)})
such that M(W) = 1, if (pp,msk) ←Setup(1`),
(pki, ski, FHSi, BHSi) ←KeyGen(pp, msk, UIDi),

6

(kseed, dek) ←KeyParUpdate(pp, msk, pwo, UIDCPSV ,
UIDo), ((file)dek, CTW) ←Encrypt(pp, file, dek,W, sko),
(TdW, kp)←Trapdoor(pp, msk, pks, U, pwu, UIDs, UIDu,
UIDo, LASM,ρ,W = (M, ρ, {Wρ(i)})), then Check(pp, sks,
pko, pku, CTW, TdW), outputs ”Yes”, and file ←Decrypt
((file)dek, kp) if the verification passes, otherwise outputs
”⊥”.

4.2.2 Security Model

In our work, the algorithm KeyParUpdate(*) is not always
running but executed by data owner with the help of
CPSV when the prescribed event occurs, such as pass-
word expires. We first define a security model for the
sub-process KeyParUpdate(*) under standard model, then
define a slightly weaker security model under the chosen
keyword-set attacks for the whole PAC-MC scheme. It can
be considered as a keyword SE in the sense of selectively
semantic security, due to the adversary needs to commit
two challenge keyword sets W∗0 and W∗1 as the attack target
to the challenger at the beginning of the simulation. Thus,
the proof is also divided into two parts later.

1) Security model for KeyParUpdate(*): We introduce a
formal security model defined by Bellare et al. in [36]. Each
of participants is modeled as a set of oracles, the oracle Πn

i,j

denotes the n-th protocol instance between the participant i
and j. In this model the adversary’s capability is abstracted
as unordered and adaptive query against the predefined
oracles. The adversary A can make different queries to any
oracle (it has an endless supply of oracles [26]), such as the
Execute(*), Send(*), Reveal(*), Corrupt(*) and Test(*) queries.

Based on the model [14], [21], we define a security model
in the sense of semantic security. The challenger C picks two
big prime numbers: p′, q′, such that q′|(p′ − 1), a group Gq′
with a prime order q′, a system secret key β ∈ Zq′ , a system
generator g′ ∈ Gq′ , a pseudorandom function ensemble F,
and two one-way hash functions H0, f : {0, 1}∗ → Zq′ ,
computes v = g′β , and chooses a password pw shared
by the protocol participants. Then the challenger C gives
the public parameter (H0, p

′, q′,Gq′, g′, v, f,F, UIDi) to the
adversary A and keeps the password pw by itself. Next,
the adversary A makes the above queries to the challenger
C in a `-bounded polynomial-time and the challenger C
responds to the adversary A in a manner prescribed by
the algorithm KeyParUpdate(*). Finally, the adversary A
makes a Test(Πn

i,j) query on a fresh oracle, if the adversary
A successfully guesses the value b′ of b, then we call the
adversary wins the game. The advantage of the adversary
A is defined as

AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw
def
= 2Pr [b = b′]− 1.

where AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw is the maximum value that
all adversaries may achieve, and Pr[b = b′] is the suc-
cess probability of the adversary A. We call the algorithm
KeyParUpdate(*) is secure if AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw ≤ 2 · C ′ ·
qs
′

send + ε, in which qsend is the number of the Send(Πn
i,j ,M)

queries performed by the adversary A, and ε is a negligible
variable for any probabilistic polynomial-time adversary
A. Here C ′ · qs′send limits a constant maximum number of
passwords that an adversary A can guess and exclude via
the Send(Πn

i,j ,M) query in this game, where the password
space follows the frequency distribution according to Zipf’s

law, and C ′ and s′ are the Zipf regression parameters of
dataset, considered as Zipf parameters [43].

2) Security model for the whole PAC-MC scheme related
with PEKS: the security model defined by Boneh et. al in
[3], in terms of the semantic security, and to ensure PAC-
MC scheme does not leak any information on the keyword
values embedded in ciphertext, we define a selective se-
curity model under chosen keyword-set attacks in terms
of semantic security. In the game, the adversary A can
acquire a polynomial number of trapdoors for any set of
keywords. However, the game ensures it doesn’t disclose
any information on the keyword values embedded in the
challenge ciphertext, if the adversaryA has no any matching
trapdoor or system private materials and password.

We introduce a formal security model according to [25],
[34]. Two security cases may occur in our scheme are con-
sidered as follows:

(1) The first security case is defined as follows: (where
the adversaryA is assumed to be a malicious user, or an out-
side attacker who impersonating other user with UID ∈ U
to forge the trapdoor with a set of guessed keyword values
and try to determine whether a trapdoor matches the given
keyword ciphertext.):

• Setup: The adversary A initially declares two
distinct challenge keyword sets W∗0 and W∗1 of
the same size with a file file to the challenger C,
and sends it to the challenger C. The challenger
C first runs Setup(1`) to obtain the system public
parameter pp and the master private parameter
msk, and provides the system public parameter pp
to the adversary A, and keeps the master private
parameter msk by itself. Next, the challenger
C runs KeyGen(pp,msk, UIDi) to generate two
hashing seeds (FHSi, BHSi) for the user and the
public/private key pair (pki, ski) for CCS and user,
respectively, further chooses a password pwi for
each user, respectively, then it provides all public
keys pki to the adversary A, and keeps the private
keys ski, the hashing seeds (FHSi, BHSi) and the
password pwi by itself. Finally, the challenger C runs
KeyParUpdate(pp,msk, pwo, UIDCPSV , UIDo) to
obtain the key materials and a symmetric encryption
key dek for file encryption, then it keeps the key
materials and the file encryption key dek by itself.

• Query phase 1: The adversary A adaptively issues
a polynomial number of queries to the challenger
C for the trapdoors with the keyword LSSS access
structures {LASMj ,ρj ,Wj = (Mj , ρj , {Wρj(i)})|
j ∈ {1, 2, . . . , qT}} the challenger C directly runs
Trapdoor(pp,msk, pks,U, pwA, UIDS , UIDA, UIDo,
LASMj ,ρj ,Wj = (Mj , ρj , {Wρj(i)})) to generate the
trapdoor TdWj and key parameter kpj , and sends
the trapdoor TdWj and key parameter kpj to
the adversary A, where pwA and UIDA are the
impersonated user’s password and unique ID,
respectively.

• Challenge: The adversary A submits the de-
clared two distinct challenge keyword sets W∗0
and W∗1 of the same size with a file file to
the challenger C, who chooses a random bit

7

b ∈ {0, 1}, and runs Encrypt(pp, file, dek,W, sko)
on W∗b and file to obtain the challenge key-
word ciphertext CT ∗Wb

and (file)dek, then pro-
vides CT ∗Wb

and (file)dek to the adversary A, who
runs Check(pp, sks, pko, pku, CTW, TdW) to verify
whether there is a trapdoor satisfying the ciphertext.

• Query phase 2: The adversary A continues to
adaptively issue a polynomial number of queries
to the challenger C for the trapdoors with the
keyword LSSS access structures {LASMj ,ρj ,Wj

=
(Mj , ρj , {Wρj(i)})| j ∈ {qT + 1, qT + 2, . . . , q}}
the challenger C directly runs Trapdoor(pp,msk,
pks,U, pwA, UIDS , UIDA, UIDo, LASMj ,ρj ,Wj

=
(Mj , ρj , {Wρj(i)})) to generate the trapdoor TdWj
and key parameter kpj , and sends the trapdoor
TdWj and key parameter kpj to the adversary A,
where pwA and UIDA are the impersonated user’s
password and unique ID, respectively.

• Guess: The adversary A outputs its guess b′ ∈ {0, 1}
and wins the game if b′ = b.

(2) The second security case is defined as follows (where
the adversary A is assumed to be the “curious” CCS who
tries to learn the statistic information on the correlation
between a set of keywords and a keyword ciphertext):

• Setup: Similar to Setup in the first case, it won’t be
repeat here.

• Query phase 1: Similar to Query phase 1 in
the first case, but the keyword LSSS access struc-
tures {LASMj ,ρj ,Wj

= (Mj , ρj , {Wρj(i)})| j ∈
{1, 2, . . . , qT}} cannot be satisfied by neither the
keyword set W∗0 nor W∗1, and also, pwA and UIDA

are the target user’s password and unique ID, respec-
tively.

• Challenge: Similar to Challenge in the first case, it
won’t be repeat here.

• Query phase 2: Similar to Query phase 2 in the
first case, but the keyword LSSS access structures
{LASMj ,ρj ,Wj

= (Mj , ρj , {Wρj(i)})| j ∈ {qT+1, qT+
2, . . . , q}} cannot be satisfied by neither the keyword
set W∗0 nor W∗1, and also, pwA and UIDA are the
target user’s password and unique ID, respectively.

• Guess: The adversary A outputs its guess b′ ∈ {0, 1}
and wins the game if b′ = b.

Note that, the parameters (FHSi, BHSi), kseed, dek, kp,
file and (file)dek in above games can be random data
initiated by the challenger C, and can be ignored by the
adversary A, here we reserve these parameters for keeping
the workflow integrity only. We define the advantage of
a probabilistic polynomial time adversary A in above two
games as

AdvPAC−EKS
A,pw = |Pr [b′ = b]− 1/2| .

Additionally, we call the PAC-MC scheme is selectively
secure under chosen keyword-set attacks if the advantage
AdvPAC−EKS

A,pw and AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw in the above games
are both negligible for any probabilistic polynomial time
adversary.

4.3 Main Construction
In this section, we describe the concrete constructions of our
PAC-MC, which consists of a new password-based content

Data owner CEKMC (part of CPSV)

Pre-shared parameters:

H0(*), p', q', g', v, f, F, pwo, UIDCPSV, UIDo

1. x←Zq', A = (g')
x
,

{UIDo, A, B}

{UIDCPSV, D, akT }

3. E = D/(g')
f(pwo,UIDo)

, σ' = (E)
x

{UIDo, ako}
4. Check ako ?= Fσ(2),

Assume there exists only one time-period contained in a password lifetime,

then the content encryption key dek = Kseed+H0(FHS)+H0(BHS).

B = v
x
(g')

f(pwo,UIDo)
,

 β , Service_tag=v =(g')
β
,

 2. Check B/A
β
?= (g')

f(pwo,UIDo)
,

r←Zq', C = B/(g')
f(pwo,UIDo)

,

σ = (C)
r
, akT = Fσ(1),

D = (v)
r
(g')

f(pwo,UIDo)
=(g')

rβ+f(pwo,UIDo)

Kseed = Fσ'(3), ako = Fσ'(2),

Check akT ?= Fσ'(1) ,

Kseed = Fσ(3),

Fig. 4. Data owner (content provider) updates key materials and gener-
ates content encryption key with the help of CEKMC (part of CPSV).

key management approach and a new PEKS based on
knowledge of KP-ABE [34]. We assume all cloud users have
been registered at URC with a password respectively, the ac-
cess time-periods of outsourced files have been allocated for
each data user by the data owner. Also, the information on
the collection of authorized users and access time-periods
for each user has been shared among the data owner, CPSV,
and CCS.

1) System Initialization. KGC sets up the system by
calling the Setup algorithm, and outputs a public key pp
and a master secret key msk, where pp is publicized to
a public board such that all entities have access to it, and
msk is kept secret by CPSV. Meanwhile, for CCS and cloud
users, KGC initializes them with secret keys by running the
KeyGen algorithm after registration offline.

Setup
(
1`
)
: KGC first calls G(1`) taking a secure pa-

rameter ` as input, generates the system parameters D =
(p,G,GT , ê), where G,GT are both multiplicative cyclic
groups with a prime order p, ê is a bilinear map function
ê : G× G→ GT , then picks a generator g of G, the random
terms u, h, ω ∈ G, and α ∈ Zp. Next, it picks two big
prime numbers: p′, q′, such that q′|(p′ − 1), chooses a group
Gq′ with a prime order q′, a system secret key β ∈ Zq′,
a system generator g′ ∈ Gq′, and a symmetric encryption
algorithm E(∗) with appropriate integrity protection, con-
structs a pseudorandom function ensemble F, three one-
way hash functions H0 : {0, 1}∗ → Zq′, f : {0, 1}∗ → Zq′,
H1 : {0, 1}∗ → Zp, then computes v = g′β . Finally, KGC
outputs the system public parameter

pp = (D, g, u, h, ω,E,H0, H1, p
′, q′, g′, v, f,F, ê(g, g)α),

the master private parameter msk = (α, β), and provides α
to TGC, β to CEKMC, respectively.

KeyGen(pp,msk, UIDi): Given CCS or the cloud user’s
UIDi, KGC generates the private key ski = H1(α‖UIDi),
the public key pki = gski , further computes two hashing
seeds: FHSi = H0(ski), BHSi = H0(ski)

2 ∈ Zq′ for each
user3, then outputs the key pair (pki, ski) for CCS and each
user, respectively, where H0(ski)

2 denotes the algorithm
iteratively calls H0(∗) twice using ski, and ”‖” denotes a
concatenating operation.

3. Note that, CEKMC also keeps the hashing seeds by itself for other
purposes, e.g. public enforcement audit etc.

8

K10 =

H0(K00||0)
K11 =

H0(K00||1)

K12 =

H0(K01||0)

K13 =

H0(K01||1)

H0(FHS)1 H0(FHS)2 H0(FHS)3 H0(FHS)4

H0(BHS)4 H0(BHS)3 H0(BHS)2 H0(BHS)1

TP #1 TP #2 TP #3 TP #4

For the first password lifetime, the content encryption key:

deki = K1(i-1)+H0(FHS)i+H0(BHS)5-i;

FHC:

BHC:

K'10 =

H0(K'00||0)

K'11 =

H0(K'00||1)

K'12 =

H0(K'01||0)

K'13 =

H0(K'01||1)

H0(FHS)5 H0(FHS)6 H0(FHS)7 H0(FHS)8

H0(BHS)8 H0(BHS)7 H0(BHS)6 H0(BHS)5

TP #5 TP #6 TP #7 TP #8

The extended FHC and BHC for the follow-up password lifetime, the

content encryption key: deki = K'1(i-5)+H0(FHS)i+H0(BHS)4*(2m-1)-i+1(m>=2);

Timeline, time sequence
(a) m = 1 (b) m >= 2

...

...

TP #...

Kseed

K00 =

H0(Kseed||0)

K01 =

H0(Kseed||1)

K'seed

K'00 =

H0(K'seed||0)

K'01 =

H0(K'seed||1)

Fig. 5. (a) One-way hash binary tree for key materials management. (b) The extensions of FHC and BHC for new password lifetime.

2) Key Materials Updating. When initially using cloud
service, or the password expires, CPSV assists data owner
to update the key materials of content encryption key for
those files outsourced in the coming new time-periods using
a new password pwo.

KeyParUpdate(pp,msk, pwo, UIDCPSV , UIDo): Given
the data owner’s password pwo, the CPSV’s UIDCPSV , and
the data owner’s UIDo, with the help of CPSV, the data
owner executes the 3-round protocol as shown in Fig. 4 to
generate a key seed kseed. However, unlike the assumption
stated in Fig. 4 that ”Assume there exists only one time-period
contained in a password lifetime.”, for more practical scenarios
where a password lifetime consists of multiple time-periods,
the key materials kseed, FHS,BHS, and content encryption
key dek are further computed as follows:

We assume a password lifetime consists of n(n = 4)
time-periods, CEKMC (part of CPSV) builds an one-way
hash binary tree (OHBT) by callingH0(∗) using the key seed
kseed for content encryption key materials management,
which is shown in Fig. 5(a), where the root node of OHBT is
the key seed kseed. Then it computes a forward hash chain
(FHC) and a backward hash chain (BHC) as below, FHC and
BHC are also shown at the bottom of Fig. 5(a).

FHC : H0(FHS)1, H0(FHS)2, H0(FHS)3, H0(FHS)4;

BHC : H0(BHS)4, H0(BHS)3, H0(BHS)2, H0(BHS)1;

We define the content encryption key deki for the i-th time-
period contained in the first password lifetime as:

deki = K1(i−1) +H0(FHS)i +H0(BHS)n−i+1, (1)

where i is the logical number of current time-period cal-
culated from the setup of application. For example, for
the first time-period TP#1, the content encryption key
dek1 = K10 + H0(FHS)1 + H0(BHS)4, where K10 is a
secret key located on the first leaf node of OHBT defined for
TP#1; H0(FHS)1, H0(BHS)4 are the hash values of FHC
and BHC defined for TP#1, respectively.

If KeyParUpdate(*) is performd when the prescribed
event occurs, e.g. password expires, CEKMC builds another
OHBT using the new generated key seed k′seed

4, and extends
FHC and BHC using their previous values respectively as
shown in Fig. 5(b), we define the content encryption key
deki(i > 4) for the new password lifetimes as:

deki = K ′1(i−n−1) +H0(FHS)i

+H0(BHS)(2m−1)n−i+1,
(2)

where m(m >= 2) is the sequence number of current pass-
word calculated from the setup of application. For example,
for the fifth time-period TP#5, the content encryption key
dek5 = K ′10 + H0(FHS)5 + H0(BHS)8, where K ′10 is a
secret key located on the fifth leaf node of OHBT defined
for TP#5; H0(FHS)5 and H0(BHS)8 are the hash values
of FHC and BHC defined for TP#5, respectively.

After running KeyParUpdate(*), the data owner obtains
the content encryption keys for outsouring occurs in current
password lifetime as follows:

With the private key sko, the data owner computes hash-
ing seeds FHSo = H0(sko) and BHSo = H0(sko)

2, builds
the OHBT using current key seed (kseed or k′seed), then re-
trieves the secret keys for all time-periods contained in cur-
rent password lifetime from OHBT. In above example where
n = 4, the secret keys for all time-periods that contained in
the first password lifetime are {K10,K11,K12,K13} located
on the first 4 leaf nodes of OHBT, respectively.

Next, using FHSo andBHSo, the data owner iteratively
calls H0(∗) to obtain the required hash value pairs:

{H0(FHS)i,(H0(BHS)n−i+1or

H0(BHS)(2m−1)n−i+1)|i ∈ [n],m >= 2},
for all time-periods contained in current password lifetime.
Considering the above example where n = 4, the hash value

4. Note that all the key seeds kseed generated for the consecutive
password lifetimes will be saved by CEKMC permanently until the
relevant files are deleted from CCS, to ensure any user privileged after
current time-period can access such files normally.

9

pairs of FHC and BHC for all time-periods contained in the
first password lifetime are

{(H0(FHS)1, H0(BHS)4)}, {(H0(FHS)2, H0(BHS)3)},
{(H0(FHS)3, H0(BHS)2)}, {(H0(FHS)4, H0(BHS)1]}.

Finally, according to the equations (1) or (2), the data
owner generates the content encryption keys deki(i ∈ [n])
for all time-periods that contained in current password
lifetime with the corresponding secret key and hash value
pairs of FHC and BHC, respectively.

3) Content Outsourcing. The data owner extracts a set of
keywords W for each file file produced and outsourced to
the cloud based on time-sequence, encrypts the keywords
W, and encrypts file itself by using symmetric algorithm
with content encryption key dek corresponding to current
time-period, uploads the encrypted file and its encrypted
keywords to CCS.

Encrypt(pp, file, dek,W, sko): Given a file file, the con-
tent encryption key dek for current time-period, the key-
word set W of file (where each keyword Wi consists
of a generic name WiN and a keyword value WiV (i =
1, . . . ,m)), and the data owner’s private key sk0, the data
owner first randomly picks s, r1, r2, . . . , rm ∈ Zp, out-
puts the following keyword ciphertext for the file file.
CTW = (C,C0, {Ci,1, Ci,2, Ci,3}i∈[m]), where

C = ê(g, g)αs, C0 = gs, Ci,1 = gri ,

Ci,2 = ω−s(uH1(WiV ||sko)h)ri , Ci,3 = (Ci,2)sko ,

then outputs (file)dek by using E(∗) with the key dek.
Finally appends (file)dek with a timestamp and CTW.

4) Trapdoor and Encryption Key Self-retrieving Param-
eters Generation. The data user sends a trapdoor request
to TGC (part of CPSV), who generates a trapdoor TdW and
a set of key parameters kp after running separate identity
authentication, and returns TdW and kp to the data user.

Trapdoor(pp,msk, pks,U, pwu, UIDs, UIDu, UIDo,
(LASM,ρ,W = (M, ρ, {Wρ(i)})): Given the public key
pks of CCS, a collection of authorized users U, the data
user’s password pwu, the CCS’s UIDs, the data user’s
UIDu, the data owner’s UIDo, and a keyword LSSS
access structure LASM,ρ,W = (M, ρ, {Wρ(i)})5, TGC
checks whether UIDu ∈ U and performs the separated
necessary identity authentication, if approved, it picks a
vector ~y = (α, y2, . . . , yn)⊥, where y2, . . . , yn ∈ Zp, we
assume the vector of the shares belongs to the master
private key α is λ = (λ1, λ2, . . . , λl)

⊥ = M~y, then it picks
t0, t1, t2, . . . , tl ∈ Zp, computes

∆ = ê(gH1(H1(α||UIDs)]|t0‖UIDu), pks)
H1(pwu‖t0‖UIDu)

and outputs the following trapdoor
TdW = (UIDu, (M, ρ), {Ti,0, Ti,1, Ti,2, Ti,3}i∈[l], T4, T5),

where

Ti,0 = gλiωti , Ti,1 = (uH1(Wρ(i)‖H1(α‖UIDo)).h)−ti ,

Ti,2 = gH1(∆)gti , Ti,3 = T
H1(α||UIDu)
i,1 ,

T4 = gH1(pwu‖t0‖UIDu),

T5 = gH1(H1(α‖UIDs)‖t0‖UIDu).

5. Here M is a ` × n matrix over Zp, let Mi denotes the i-th row of
M, ρ is function mapping Mi to generic keyword name {ρ(i)|i ∈ [`]},
{Wρ(i)} are corresponding keyword values, we denote the keyword
values in trapdoor using Wρ(i) to distinguish it from those keyword
values WiV in the keyword ciphertext.

Next, CEKMC generates key parameters kp for content
encryption key self-retrieving for the data user as follows:

• Firstly, it generates the key components (K1(i−1), . . .
or K ′1(i−n−1), . . .) by calculating the lowest com-
mon ancestor nodes using the secret keys that be-
longs to the data user from OHBT. For example,
see Fig. 5, we assume there is an authorized user
who has been allocated the access time-periods
(TP): TP#1,#2,#5,#6,#7 and #8, which are also
marked in green in Fig. 5, then it generates the
key components (K00, k

′
seed) from OHBT, where the

secret keys K ′10,K
′
11,K

′
12,K

′
13 have the lowest com-

mon ancestor node k′seed, the secret keys K10,K11

have the lowest common ancestor node K00. That is,
“the lowest common ancestor nodes” means it tries to
find the lowest common ancestor node for the suc-
cessive leaf nodes holding secret keys that belongs to
the data user.

• Secondly, it generates two starting hash values:

{H0(FHS)i,

H0(BHS)n−i+1orH0(BHS)(2m−1)n−i+1},
from FHC and BHC for the data user. Consider-
ing the example in Fig. 5, it computes the start-
ing hash values

(
H0(FHS)1, H0(BHS)3

)
from FHC

and BHC for the data user, respectively.
• Finally, using the key components and starting hash

values, it obtains the following set of key parameters
kp, and forwards kp to TGC.

kp = {(K1(i−1), . . . orK
′
1(i−n−1), . . .), (H0(FHS)i,

H0(BHS)n−i+1orH0(BHS)(2m−1)n−i+1)}.
TGC outputs the trapdoor TdW, together with key pa-

rameters kp6 to the data user. Considering the example in
Fig. 5, kp =

{
(K00, k

′
seed) ,

(
H0(FHS)1, H0(BHS)3

)}
.

5) Content Searching. The data user sends the trapdoor
TdW and a partial hidden access structure to CCS, who
matches the trapdoor TdW with the keyword ciphertexts
CTW in database, returns the matched file to data user.

Check(pp, sks, pko, pku, CTW, TdW): Given the private
key sks of CCS, the data owner’s public key pko, the data
user’s public key pku, the keyword ciphertexts CTW, and
the trapdoor TdW for the LSSS access structure LASM,ρ,W =(
M, ρ,

{
Wρ(i)

})
, CCS checks whether the timestamp at-

tached to file satisfies the access time-period of data user,
if yes, generates a set IM,ρ from (M, ρ), which is a set of the
minimum subsets satisfying (M, ρ), checks whether there
exists an T ∈ IM,ρ, which makes the constants {ωi ∈ Zp}i∈T
such that

∑
i∈T ωiMi = (1, 0, . . . , 0), and the following

equations hold:

ê (g, Cτ,3)
?
= ê (pko, Cτ,2) , ê (g, Ti,3)

?
= ê (pku, Ti,1) ,∏

i∈T

(
ê (C0, Ti,0) ê (Cτ,1, Ti,1) ê

(
Cτ,2, Ti,2/g

H1(ê(T4,T5)sks)
))ωi

?
= C,

6. We assume kp is encrypted by using E (∗) with appropriate in-
tegrity protection with password pwu before being output to data user
along with the trapdoor TdW. Here we ignore the specific approach,
which is out of the scope of this paper.

10

where τ is the index of keyword ρ(i) in CTW
7. CCS outputs

”⊥” , if the timestamp attached to file does not satisfy the
access time-period that belongs to data user or there is no
any T in IM,ρ can satisfy the equations, otherwise outputs
“Yes” and (file)dek.

6) Key Retrieving and Content Decryption. The data user
self-retrieves the content encryption key dek using kp, and
decrypts the file (file)dek returned from CCS.

Decrypt((file)dek, kp): Given the key parameters kp,
the data user self-retrieves deki, and decrypts (file)dek
to get the plaintext of content in file. Considering the
example in Fig. 5, after obtaining the key parameters kp ={

(K00, k
′
seed) ,

(
H0(FHS)1, H0(BHS)3

)}
, the data user

self-retrieves the secret keys: K10,K11,K
′
10,K

′
11,K

′
12,K

′
13

located on leaf nodes of OHBT using the key components
(K00, k

′
seed) by iteratively calling H0 (∗) following the struc-

ture of OHBT, and generates the following hash values:

{H0(FHS)1,H0(FHS)2, H0(FHS)5,

H0(FHS)6, H0(FHS)7, H0(FHS)8},
{H0(BHS)3,H0(BHS)4, H0(BHS)5,

H0(BHS)6, H0(BHS)7, H0(BHS)8},

by iteratively calling H0 (∗) using hash values H0(FHS)1

and H0(BHS)3 respectively, then computes the conent en-
cryption key deki, if it is required to decrypt the files out-
sourced in the i-th time-period, where i ∈ {1, 2, 5, 6, 7, 8}.

Correctness: According to the definition of access struc-
tures and LSSS, if there exists an T in IM,ρ such that, the set
of keywords encrypted in ciphertext CTW satisfies the LSSS
access structure used in the trapdoor TdW, then we have∑
i∈T ωiλi = α. Therefore

ê (g, Cτ,3) = ê
(
g, (Cτ,2)

sko
)

= ê (pko, Cτ,2) .

ê (g, Ti,3) = ê
(
g, T

H1(α||UIDu)
i,1

)
= ê

(
g, T skui,1

)
= ê (pku, Ti,1) .

∏
i∈T

(
ê (C0, Ti,0) ê (Cτ,1, Ti,1) ê

(
Cτ,2, Ti,2/g

H1(ê(T4,T5)sks)
))ωi

=
∏
i∈T

ê
(
gs, gλiωti

)ωi
· ê
(
grτ ,

(
uH1(Wρ(i)‖sko)h

)−ti)ωi
· ê
(
ω−s

(
uH1(Wρ(i)‖sko)h

)rτ
, gti

)ωi
= ê(g, g)s

∑
i∈T ωiλi = ê(g, g)αs = C.

4.4 Security Proof

Theorem 1. Suppose H0 (∗) , H1 (∗) , f (∗) are three one-
way hash functions, if the defined pseudorandom function
ensemble F exists, then under the DDH assumption, the
DBDH assumption and the decisional (q-2) assumption,
our PAC-MC scheme is selectively secure under chosen
keyword-set attacks for any adversary with polynomial-
time computational capability.

Proof of Theorem 1: We first prove that the sub-process
KeyParUpdate(*) is secure under the standard model, then

7. Here τ can be calculated by comparing the keyword name ρ(i)
with the generic name attached to the CTW by traversal, depends on i.

prove that the whole PAC-MC scheme is with selectively
secure under chosen keyword-set attacks.

Lemma 1. Let T be the algorithm KeyParUpdate(*), F is
pseudorandom function ensemble, p′, q′ are two big prime
numbers, such that q′|(p′−1), andGq′ is a q′-order subgroup
of multiplicative group Z∗p, g′ is the generator of Gq′ and
v = g′β , where β ∈ Zq′ is a system secret key, C ′ and s′

are the Zipf regression parameters, qsend is the number of
the Send(Πn

i,j ,M) queries, then under the DDH assumption,
the algorithm KeyParUpdate(*) is secure for any probabilis-
tic polynomial-time adversary A, i.e. AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw
≤ 2 · C ′ · qs′send + ε, where ε is a negligible variable in the
security parameter.

Proof : We prove this lemma via a sequence of games
T0, T1, . . ., where the game T0 is the same as the original
algorithm KeyParUpdate(*), then we gradually modify the
oracle’s reply to the adversary A in subsequent games and
ensure that the adversary’s success probability difference
between two adjacent games is negligible. Note that, in all
games, the oracle behind simulator replies to the adver-
sary’s query according to the description of the algorithm
KeyParUpdate(*).We define the adversary’s success proba-
bility in the game Ti as Pr [Ti].

Game T0: The game T0 is the same as the original
algorithm, if the adversaryA successfully guessed the value
b′ of b in the Test(*) query on a fresh oracle, then we have
AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw= 2Pr[b = b′]− 1 = 2Pr[T0]− 1.

Game T1: In the game T1, the simulator replaces B with
a random number r ∈ Gq′ in the message {UIDo, A,B}
when the adversaryA performs the Execute(*) query. Under
the DDH assumption, with the hybrid arguments technique,
we can prove it is impossible for the adversary A to distin-
guish B from r as follows:

Let qe be the total number of Execute(*) queries per-
formed by the adversary A, T1,χ denotes a game, in which
the first χ Execute(*) queries are replied to the adversary A
following the game T1, but the remaining (qe−χ) Execute(*)
queries are replied following the game T0 (0 ≤ χ ≤ qe).
Obviously, we have T1,0 = T0, T1,qe = T1, therefore
Pr[T1]− Pr[T0] = Pr[T1,qe]− Pr[T1,0].

Suppose v = g′β , f(∗) is an one-way hash function:
{0, 1}∗ → Zq′ , then we can construct the algorithms
Di(0 ≤ i ≤ qe − 1) to distinguish (g′, g′x, g′β , g′xβ) from
(g′, g′x, g′β , r) in a simulated way as below, where r a
random number chosen from Gq′ :

For each algorithm Di(0 ≤ i ≤ qe − 1) with an input
(g′, g′x, g′β , Z), where Z is either equal to g′xβ or equal to
r, the simulator randomly chooses a password pwo for the
data owner, then the simulator:

a) Chooses two random numbers: x′ and r′ ∈ Zq′,
computes Aj = g′x

′
, Bj = r′g′f(pwo,UIDo) and replys to

the adversary A with a message {UIDo, Aj , Bj} when the
adversary A performs the j-th(j < i) Execute(*) query;

b) Computes Aj = g′x, Bj = Zg′f(pwo,UIDo) and replys
to the adversary A with a message {UIDo, Ai+1, Bi+1}
when the adversary A performs the (i + 1)-th Execute(*)
query;

c) Chooses a random number x′ ∈ Zq′ , computes
Aj = g′x

′
, Bj = vx

′
g′f(pwo,UIDo) and replys to the adver-

11

sary A with a message {UIDo, Aj , Bj} when the adversary
A performs the j-th (j > i+ 1) Execute(*) query;

d) Outputs 1 if the adversary A wins in the simulation,
otherwise outputs 0;

For each algorithm Di, the simulator records all the sim-
ulated messages {UIDo, Aj , Bj} in the T1,χ(0 ≤ χ ≤ qe).
Obviously, during the simulation, the adversary A can also
obtain qe transcripts Tsχ(0 ≤ χ ≤ qe − 1), each of which
consists of a sequence of messages {UIDo, Aj , Bj}, Note
that, the transcript Tsi obtained by the adversary A is the
same as the messages recorded in the game T1,i when Z =
g′xβ , whereas the transcript Tsi is the same as the messages
recorded in the game T1,i+1 when Z = r(0 ≤ i ≤ qe − 1).
We can obtain
|Pr [T1]− Pr [T0]| =

∑qe−1
i=0 (|Pr [T1,i+1]− Pr [T1,i]|)

≤ qe ·Advddhg′,G(∗),
where Advddhg′,G(∗) is the probability advandage of breaking
the DDH assumption by the adversary A. Thus, if the DDH
assumption holds, |Pr[T1]− Pr[T0]| is negligible. That is, it
is impossible for the adversary A to distinguish B from r.

Game T2: Based on the game T1, the simulator replaces
the generated seed kseed with an equal-size random number
r when the adversary A performs the Execute(*) query. If
the pseudorandom function ensemble F exists, then we can
prove that |Pr[T1] − Pr[T0]| is also negligible as follows.
If the adversary A don’t perform the Reveal(*) query any
more, then the information he obtained in the game T2

is the same as that obtained in the game T1, otherwise,
the random number r is returned to the adversary A. In
the game T1, if the adversary A obtained the seed kseed,
which means he had performed a query on the pseudo-
random function ensemble F, whereas, in the game T2, if
the adversary A obtained the seed r, which means he had
performed a query on the uniform distribution function
ensemble H. According to the definition of pseudorandom
function ensemble, we know that the adversary A is impos-
sible to effectively distinguish the pseudorandom function
ensemble F from the uniform distribution function ensemble
H. Thus, |Pr[T2] − Pr[T1]| ≤ min{qe, qr} · AdvF, where
qr is the number of the Reveal(*) queries, and AdvF is
the probability advantage of breaking the pseudorandom
function ensemble F by the adversary A.

Game T3: Based on the game T2, the simulator replaces
the parameters akT and ako with an equal-size random
number r1 and r2 respectively when the adversary A
performs the Execute(*) query. Because the simulator have
replaced B with a random number in the game T1, the
messagesA andB cannot satisfyB/Aβ = g′f(pwo,UIDo) any
more, we assume B = vxg′R where R 6= f(pwo, UIDo),
then the simulator (simulates the CPSV) can compute
σ = Cr = (vxg′R−f(pwo,UIDo))r . We can see that, σ
is also a uniform random number since the r is chosen
randomly and independently. Similar to the analysis in
the game T2, if the pseudorandom function ensemble F
exists, with the hybrid arguments technique we can obtain
|Pr[T3]− Pr[T2]|≤ qe ·AdvF. Obviously, it is negligible.

Game T4: Based on the game T3, the simulator replaces
the parameter C with an random number when the ad-
versary A performs the Execute(*) query, in this case, the
parameter E will be also a random number. Under the DDH

assumption, we can obtain |Pr[T4]−Pr[T3]|≤ qe ·Advddhg′,G(∗)
by using the hybrid arguments technique.

Game T5: Based on the game T4, the simulator re-
places the parameter D with an random number when the
adversary A performs the Execute(*) query, in this case,
the adversary A cannot distinguish any change since the
message D itself is the product of a random number and
(g′)

f(pwo,UIDo), we can obtain |Pr[T5] = Pr[T4]|.
Game T6: Based on the game T5, when the adversary

A performs the Send(*, null) query, B is replaced with a
random number r by the simulator. Similar to the analysis
in the game T1, under the DDH assumption, with the hybrid
arguments technique, we can obtain |Pr[T5] − Pr[T4]|≤
qsend · Advddhg′,G(∗), where qsend is the number of the Send(*)
queries.

Game T7: Based on the game T6, when the adversary A
performs the Send(UIDo, A,B) query, if the equation B =

Aβ (g′)
f(pwo,UIDo) holds and checked by the simulator, then

the adversary A wins the game, the algorithm exits, then
1) The adversary A may have acquired two messages A

and B through the previous Execute(*) and Send(*) queries
such that B = Aβ (g′)

f(pwo,UIDo), the success probability in
this case is (qsend + qe)/q;

2) The adversary A may have guessed the correct pass-
word pwo, the success probability in this case is C ′ · qs′send;

3) The adversary A may have constructed two new
messages A and B successfully through guessing a B to
match the chosen A by himself, and B = Aβ (g′)

f(pwo,UIDo)

holds, the success probability in this case is qsend/q;
Then in this game, we have |Pr[T7]−Pr[T6]|≤ C ′·qs′send+

(2qsend + qe)/q.
Game T8: Based on the game T7, when the adversary

A performs the Send(UIDCPSV , D, akT) query, if the mes-
sages satisfying akT = Fσ′(1) checked by the simulator,
then the adversary A wins the game, the algorithm exits,
then there exists 3 cases:

1) The adversary A may have got the effective message
(UIDCPSV , D, akT) satisfying (UIDo, A,B) by replay at-
tack, the success probability in this case is (qe + qsend) /q;

2) The adversary A may have guessed the correct pass-
word pwo to obtain the parameters vx and σ = (g′)

xrβ

satisfying (UIDCPSV , D, akT), the success probability in
this case is C ′ · qs′send;

3) The adversary A may have successfully computed a
akT = Fσ′(1) without σ, the success probability in this case
is qsend ·AdvF;

Then in this game, we have |Pr[T8]−Pr[T7]|≤ C ′·qs′send+
(qe + qsend) /q + qsend ·AdvF.

Game T9: Based on the game T8, when the adversary
A performs the Send(UIDo, ako) query, if the message
satisfying ako = Fσ′(2) checked by the simulator, then
the adversary A wins the game T9, the algorithm exits,
if the adversary A has not been succeed in the game T8,
then all messages must be generated by CPSV and Data
owner, and the information on x, r and (g′)

xrβ cannot be
obtained by the adversary, if the pseudorandom function
ensemble F exists, the probability that the adversary A
can successfully guess the Fσ′(2) is 1/2n , we can obtain
|Pr[T9]− Pr[T8]|≤ qsend/2n.

12

Game T10: Based on the game T9, when the adversary A
performs the Reveal(*) query, the parameter kseed is replaced
with a uniformly chosen random number by the simulator.
If the adversaryA doesnot perfrom any Reveal(*) query after
Execute(*) and Send(*) query, then the information obtained
by the adversary A in the game T10 is the same as in the
game T9, the adversary A cannot obtain any information
on σ in the game T9. Similar to the analysis in the game
T8, if the pseudorandom function ensemble F exists, with
the hybrid arguments technique we can obtain |Pr[T10] −
Pr[T9]|≤ min {(qe + qsend) , qr} ·AdvF.

The adversary A cannot obtain any information on the
correct password pwo and also (g′)

xrβ in the game T10. Un-
less the adversary A has previously queried the instance or
its partner before this query, which is not allowed, therefore,
the adversary A cannot distinguish kseed and a random
number in the final Test(*) query, we have |Pr[T10]| = 1/2.

We can see that the adversaryA cannot obtain any infor-
mation on the correct password pwo in the game T10, due to
all relevant parameters are replaced with random numbers.
Also, the adversary A can obtain nothing on the parameter
σ and σ′. Thus, it is impossible for the adversary A to
distinguish kseed from a random number, the probability
that the adversary A can correctly guess the value of bit
b is 1/2 in the final Test(*) query. This also shows that the
success probability of the adversaryA depends on the guess
of the password via the active Send(*) query, has nothing to
do with queries such as Execute(*) and Reveal(*) query etc.

Combining the results in above games, we have
AdvKeyParUpdateA,p′,q′,g′·G1,F,β,pw≤ 2 · C ′ · qs′send + ε,

which completes the proof of Lemma 1. �
Lemma 2. Suppose H1(∗) is a one-way hash function,

if both the DBDH assumption and the decisional (q-2) as-
sumption hold, our PAC-MC scheme is semantically secure
with selectively security under chosen keyword-set attacks.

Proof : There are two security cases.
1) Case 1, we prove that our scheme is secure via two

games G0 and G1, where the game G0 is the same as the
original scheme with a real trapdoor. Furthermore, based
on the game G0, we replace the parameter used to generate
trapdoor with a random number chosen from GT to con-
struct the game G1. We can obtain, if the adversary A can
distinguish the game G0 from G1, then the challenger C can
also break the DBDH assumption. For simplicity, we omit
the insignificant process and parameters in the following
two games.

Game G0: The same as what is performed in the original
scheme in real-world.

• Setup: The adversary A initially declares two chal-
lenge keyword sets W∗0 = {W∗0,1, . . . ,W∗0,m} and
W∗1 = {W∗1,1, . . . ,W∗1,m} of the same size with a file
to the challenger C. The challenger C first chooses a
random bit b ∈ {0, 1}, and runs Setup(1`) to obtain
the system public parameter and the master private
parameter. Next, the challenger C runs KeyGen(*)
to generate a public/private key pair (pki, ski) and
other parameters for the users, respectively, and sets
(pks = gx, sks = x) to be the public/private key
pair for CCS, where x is set using the setting in the
DBDH assumption. Finally, it runs KeyParUpdate(*)

to obtain other parameters as requried for keeping
the game running.

• Query phase 1: The adversary A adaptively issues
a polynomial number of queries to the challenger
C for the trapdoors, since the challenger C knows
the master private key, the shared password with
user and all private keys for users and CCS, it can
easily output the trapdoor as required, the challenger
C runs Trapdoor(*) to generate a trapdoor TdW =
(UIDA′(M, ρ), {Ti,0, Ti,1, Ti,2, Ti,3}i∈[l], T4, T5), and
sends it to the adversary A. However, if the adaptive
query with a LSSS access structure that can be satis-
fied by W∗b , then the challenger C implicitly set Z =
∆ = ê(gz, gx)y, T4 = gy, T5 = gz, Ti,2 = gH1(∆) · gti
when running Trapdoor(*), where x, y, z are set in the
DBDH assumption.

• Challenge: The adversary A submits the declared
keyword sets W∗0 and W∗1 with a file to the challenger
C, who runs Encrypt(*) on W∗b to obtain the challenge
ciphertext CT ∗Wb

, and provides it to the adversary
A along with other parameters as requried, then the
adversary A runs Check(*) to verify whether there
exists a trapdoor satisfying the challenge ciphertext.

• Query phase 2: The same as what is performed in
Query phase 1.

• Guess: The adversary A outputs its guess b′ for b.

Game G1: The same as the game G0, except that the
parameter Z is replaced with a uniformly chosen random
number r ∈ GT in Query phase 1 and 2.

Obviously, in the game G0, Z = ê(gz, gx)y = ê(g, g)xyz ,
which is identical to the original scheme fom the perspective
of the adversary A, whereas Z is a random number chosen
from GT in the game G1, thus, if the DBDH assumption
holds, it is impossible for the adversary A to distinguish
the game G0 from G1. Therefore, our scheme can resist the
attacks may occur in the first security case.

2) Case 2, we also prove that our scheme is secure
via two games G0 and G1, where the game G0 is the
same as the original scheme in real world with keyword
ciphertext CT0,W = (C,C0, {Ci,1, Ci,2, Ci,3}i∈[m]). Based
on the game G0, we replace a parameter of the keyword
ciphertext with a uniformly chosen random numberZ ∈ GT
to construct the game G1, where the keyword ciphertext
CT1,W = (Z,C0, {Ci,1, Ci,2, Ci,3}i∈[m]). We can obtain, if
the adversary A can distinguish the game G0 from G1,
then the challenger C can also break the decisional (q-2)
assumption. For simplicity, we omit the insignificant process
and parameters in the following two games.

Game G0: The same as what is performed in the original
scheme in real-world.

• Setup: Similar to Setup in the first case, however, in
the algorithm Setup(1`), the challenger C implicitly
set α = xy, where x and y are both set in the deci-
sional (q-2) assumption and α is properly distributed,
then it picks two random numbers ũ, h̃ ∈ Zp, and
provides the following system public parameter pp
to the adversary A,

pp = (D, g = g, u = gũ ·
∏
i∈[m] g

y/b2i ,

h = gh̃ ·
∏
i∈[m]

(
gxz/bi

)
·
∏
i∈[m]

(
gy/b

2
i

)−W∗b,i
,

13

ω = gx, E (∗) , H0 (∗) , H1 (∗) , p′, q′, g, v, f (∗) ,F,
ê(g, g)α = ê (gx, gy)),

where x multiplied by y in α is information-
theoretically hidden from the perspective of the
adversary A, and u, ω, h are properly distributed.
Note that, all these parameters can be computed
by the challenger C using suitable parameters from
the decisional (q-2) assumption and the challenge
keyword provided by the adversary A. Next, the
challenger C runs KeyGen(*) to generate a pub-
lic/private key pair and other parameters required
for CCS and user, respectively. Finally, the challenger
C runs KeyParUpdate(*) to obtain other parameters
as required for keeping the game running.

• Query phases 1: The adversary A adaptively issues
a polynomial number of queries to the challenger C
for the trapdoors, the challenger C runs Trapdoor(*)
with a keyword LSSS access structure LASM,ρ,W =(
M, ρ,

{
Wρ(i)

})
to generate the required trapdoor,

where LASM,ρ,W are not satisfied by the keyword
sets W∗0 nor W∗1. Additionally, in the algorithm
Trapdoor(*), due to W∗b doesn’t satisfy the keyword
LSSS access structure LASM,ρ,W, as mentioned in the
access structure and LSSS definition, there exists a
vector ~w = (w1, w2, . . . , wn)⊥ ∈ Znp such that its
first component w1 = 1 and < Mi, ~w >= 0 for
all i ∈ [`] such that ρ(i) ∈ W∗b . The challenger
C calculates the vector ~w using linear algebra, and
the vector ~y that will be shared by the keywords
is implicitly set as ~y = xy ~w + (0, ỹ2, ỹ3, . . . , ỹn)⊥,
where ỹ2, ỹ3, . . . , ỹn ∈ Zp, This vector ~y is properly
distributed because its first element is set as xy = α
and other elements are uniformly random number
chosen from Zp.Thus for each row i ∈ [`], the share
is
λi =< Mi, ~y >

= xy < Mi, ~w > + < Mi, (0, ỹ2, ỹ3, . . . , ỹn)
⊥
>

= xy < Mi, ~w > +~λi
As we mentioned above, for each row i of M, for
which ρ(i) ∈W∗b , we have < Mi, ~w >= 0. Therefore,
λi = ~λi =< Mi, (0, ỹ2, ỹ3, . . . , ỹn)⊥ >, which is a
value known to the challenger C, who further ran-
domly picks ti ∈ Zp and outputs a trapdoor TdW =
(UIDA, (M, ρ), {Ti,0, Ti,1, Ti,2, Ti,3}i∈[l], T4, T5) as
we described in the algorithm Trapdoor(*), however,
for each row i of M, for which such that ρ(i) /∈ W∗b ,
the challenger C randomly picks t̃i ∈ Zp and set
implicitly
ti = −y < Mi, ~w > +∑
j∈[m]

xzbj<Mi, ~w>

H1(Wρ(i)‖H1(α||UIDo))−H1(W∗b,j‖H1(α‖UIDo))

+t̃i
Obviously, ti is properly distributed due to t̃i is
chosen randomly, and the intuition behind this
choice is that, we can see the exponent y raises
the power of ω to the secret α = xy. However,
this choice also results to the exponent xyz/bi from
h, which can be cancelled by the provided expo-
nent xzbi on the part y/b2i . Therefore, the chal-
lenger C can compute the following parameters of
the trapdoor using the settings in the decisional

(q-2) assumption. For the simplicity of equations,
here we let R(i0, i1) = H1(Wρ(i0)‖H1(α‖UIDo)) −
H1(W∗b,i1‖H1(α‖UIDo)).

Ti,0 = gλiωti

= gxy<Mi, ~w>+~λi

·g−xy<Mi, ~w>+
∑
j∈[m](x

2zbj<Mi, ~w>)/R(i,j) · ωt̃i

= g
~λi ·

∏
j∈[m]

(
gx

2zbj
)<Mi,w>/R(i,j)

· ωt̃i ,

Ti,1 =
(
uH1(Wρ(i)‖H1(α||UIDo))h

)−ti
=
(
g(H1(Wρ(i)|H1(α‖UIDo))ũ+h̃) ·

∏
j∈[m] g

xz/bj

·
∏
j∈[m] g

yR(i,j)/b2i

)y<Mi, ~w>−Σj∈[m](xzbj<Mi, ~w>)/R(i,j)

·
(
uH1(Wρ(i)‖H1(α||UIDo))h

)−t̃i
= gy<Mi, ~w>((H1(Wρ(i)‖H1(α||UIDo)))ũ+h̃)

·
∏
j∈[m] g

−xzbj((H1(Wρ(i)‖H1(α||UIDo)))ũ+h̃)<Mi, ~w>/R(i,j)

·
∏
j∈[m] g

xyz<Mi, ~w>/bj

·
∏
j,k∈[m,m] g

−(xz)2bk<Mi, ~w>/bjR(i,k)

·
∏
j∈[m] g

y2<Mi, ~w>R(i,j)/b2j

·
∏
j,k∈[m,m] g

−xyz<Mi, ~w>bkR(i,j)/b2iR(i,k)

·
(
uH1(Wρ(i)‖H1(α||UIDo))h

)−t̃i
= gy<Mi, ~w>((H1(Wρ(i)‖H1(α||UIDo)))ũ+h̃)

·
∏
j∈[m]

(
gxzbj

)−((H1(Wρ(i)‖H1(α‖UIDo)))ũ+h̃)<Mi, ~w>/R(i,j)

·
∏
j,k∈[m,m]

(
g(xz)2bk/bj

)−<Mi, ~w>/R(i,k)

·
∏
j∈[m]

(
gy

2/b2j
)<Mi, ~w>/R(i,j)

·
∏
j,k∈[m,m],j 6=k

(
gxyzbk/b

2
j

)−<Mi ~w>R(i,j)/b2iR(i,k)

·
(
uH1(Wρ(i)‖H1(α||UIDo))h

)−t̃i
,

Ti,2 = g
H1

(
ê
(
gH1(H1(α||UIDS)‖t0‖UIDA),pkS

)H1(pwA‖t0‖UIDA)
)
gti

= g
H1

(
ê
(
gH1(H1(α||UIDS)‖t0‖UIDA),pkS

)H1(pwA‖t0‖UIDA)
)

· (gy)
−<Mi, ~w>

·
∏
j∈[m]

(
gxzbj

)<Mi, ~w>/R(i,j) · g−t̃i .,

Ti,3 = T
H1(α||UIDA)
i,1 ,

T4 = gH1(pwA‖t0‖UIDA),

T5 = gH1(H1(α‖UIDS)‖t0‖UIDA).
Then the challenger C sends them to the adversary
A.

• Challenge: The adversary A submits the declared
keyword sets W∗0 and W∗1 with a file to the challenger
C, who runs Encrypt(*) on W∗b to obtain the challenge
ciphertext CT ∗Wb

, and then provides CT ∗Wb
to the ad-

versary A along with other parameters as required,
the adversary A runs Check(*) to verify whether
there exists a trapdoor satisfying the keyword ci-
phertext. However, in the algorithm Encrypt(*), the
challenger C implicitly sets s = z using the settings
from the decisional (q-2) assumption, and further sets
ri = bi for every i ∈ [m]. Obviously, these parame-

14

ters are all properly distributed since z, b1, . . . , bq are
information theoretically hidden from the perspec-
tive of the adversary A. Thus, the challenger C can
compute the following parameters of the ciphertext
W∗b using the settings in the decisional (q-2) assump-
tion:
C = (Z = ê(g, g)xyz) , C0 = gs = gz,
Ci,1 = gri = gbi

Ci,2 = ω−s
(
uH1(WiV ‖sko)h

)ri
=
(
gbi
)(H1(W∗b,i‖sko))ũ+h̃) ·

∏
j∈[m] g

xzbi/bj

·
∏
j∈[m]

(
gybi/b

2
j

)W∗b,i−W∗b,j · g−xz

=
(
gbi
)(H1(W∗b,i‖sko))ũ+h̃) ·

∏
j∈[m],i6=j g

xzbi/bj

·
∏
j∈[m],i6=j

(
gybi/b

2
j

)W∗b,i−W∗b,j

Ci,3 = (Ci,2)
sko

Note that, since the challenger C sets ri = bi, one of
the exponents xzbi/bj is raised to xz, which cancels
ω−s = g−xz in above parameter Ci,2.

• Query phase 2: The same as what is performed in
Query phase 1.

• Guess: The adversary A outputs its guess b′ for b.

Game G1: The same as the game G0, except that the
parameter Z is replaced with a uniformly chosen random
number r ∈ GT , i.e. C = (Z = r) in Query phase 1 and 2.

Obviously, in the game G0, Z = ê(g, g)xyz , which is
identical to the original scheme fom the perspective of the
adversary A, whereas Z is a random number uniformly
chosen from GT in the game G1, thus, if the decisional (q-2)
assumption holds, it is impossible for the adversary A to
distinguish the game G0 from G1. Therefore, our scheme
can resist the attacks that my occur in the second security
case. The proof for these two security cases completes the
proof of Lemma 2. �

By combining the proof of Lemma 1 and Lemma 2, it
completes the proof of Theorem 1. �

4.5 Discussion and Analysis

1. Keyword confidentiality. The efficient PEKS approach
in our work is derived from the KP-ABE scheme (see
Appendix C in [34]). However, a keyword value guessing
attack may exist if we directly transform and integrate it
into our scheme. For example, if we directly transform the
KP-ABE scheme into a keyword SE scheme, assume there
is a keyword ciphertext CTW = (C,C0, {Ci,1, Ci,2}i∈[m]),
where

C = ê(g, g)αs, C0 = gs,

Ci,1 = gri , Ci,2 = ω−s(uH1(WiV)h)ri .

Then ê(Ci,2, g) = ê(ω−1, C0)ê(Ci,1, u
H1(WiV)h) holds, the

“curios” CCS can guess the keyword value WiV embed-
ded in the ciphertext CTW by checking whether the above
equation holds with a guessed value and system public
paramter. Whereas, in our work, given keyword ciphertext
CTW = (C,C0, {Ci,1, Ci,2, Ci,3}i∈[m]), where

C = ê(g, g)αs, C0 = gs, Ci,1 = gri ,

Ci,2 = ω−s(uH1(WiV ||sko)h)ri , Ci,3 = (Ci,2)sko .

We also have the following equation holds,
ê(Ci,2, g) = ê(ω−1, C0)ê(Ci,1, u

H1(WiV ‖|sko)h),
however, the “curios” CCS shall have to first guess the
private key sko of the data owner if it attempts to guess
the keyword value WiV by checking whether the above
equation holds. Additionally, given a trapdoor
TdW = (UIDu, (M, ρ), {Ti,0, Ti,1, Ti,2, Ti,3}i∈[`], T4, T5),

where

Ti,0 = gλiωti ,

Ti,1 = (uH1(Wρ(i)‖H1(α‖UIDo)).h)−ti ,

Ti,2 = gH1(∆)gti ,

Ti,3 = T
H1(α||UIDu)
i,1 ,

T4 = gH1(pwu‖t0‖UIDu),

T5 = gH1(H1(α||UIDs)‖t0‖UIDu),

∆ = ê(gH1(H1(α||UIDs)‖t0‖UIDu), pks)
H1(pwu‖t0‖UIDu).

Obviously, the malicious attacker cannot forge a correct
trapdoor with a set of guessed keyword values and de-
termine whether a trapdoor matches the given keyword
ciphertext without the master private parameter, the private
key of CCS and the data user’s password.

2. Key self-retrievability/recoverability. If cloud user
can self-retrieve the subsequent content encryption keys
after obtaining the initial key materials, which significantly
reduces the unnecessary network overhead, and minimizes
the security risks occurs in communication. If cloud user
can recover the temporarily lost encryption key without
frequently communicating with CEKMC, which further re-
duces the computational overhead of CEKMC.

In our work, after generating the initial key seed based
on current password with the help of CEKMC, to reduce
storage cost, the data owner can build parts of OHBT,
FHC and BHC to temporarily derive the content encryption
key for current time-period only, hands the burdensome
content encryption key management over to CEKMC, who
is responsible for storing all key materials including the
history ones distributed to data users who are authorized
to access the content outsourced by that data owner. See
Fig. 5, according to our design of OHBT, FHC and BHC,
CEKMC just generates key components (K00, k

′
seed) by cal-

culating the lowest common ancestor nodes using retrieved
secret keys belongs to that data user from OHBT, as well
as the starting hash values: (H0(FHS)1, H0(BHS)3) from
FHC and BHC for that data user, who can self-recover the
content encryption keys for all access time-periods using
key parameters kp distributed by CEKMC. Additionally, the
key parameters kp are distributed along with trapdoor, due
to the authorized access time-periods may be dynamically
allocated to each data user by data owner, and providing
a certain amount of key redundancy to avoid that the data
user may not receive the initial key materials if possible.

3. Collusion attack resistance. Suppose there are two
malicious data users UIDa and UIDb without access time-
period intersection, and two disjoint access time-period
segments [j, k] and [`, v] such that (1 ≤ j < k < ` < v)
are allocated to them respectively, i.e. UIDa is an au-
thorized user of the content outsourced during the time-
periods: TP#j,#j + 1, . . . ,#k, whilst UIDb is an au-
thorized user of the content outsourced during the time-

15

periods: TP#`,#`+1, . . . ,#v. In our work, CEKMC gener-
ates the relevant key components by calculating the lowest
common ancestor nodes using those retrieved secret keys
belongs to UIDa from OHBT for TP#j,#j + 1, . . . ,#k.
Using the key components, UIDa can derive all secret
keys located on the leaf nodes of OHBT corresponding
to the access time-period segments [j, k]. However, if the
current time-period TP#n satisfies (n > k) or (n < j),
due to UIDa has no secret key corresponding to time-
period TP#n, obviously UIDa cannot obtain the content
encryption key dekn. Similarly, UIDb cannot obtain the
encryption key for the time-period TP#n where (n > v)
or (n < `). In addition, although UIDa and UIDb can
obtain the hash values of FHC and BHC for the time-period
segments [k + 1, ` − 1] via cooperation, due to UIDa and
UIDb have no secret keys corresponding to the time-period
segments [k + 1, ` − 1], thus the corresponding content
encryption key cannot be obtained by them. Besides, our
scheme can also prevent a single malicious user from using
two or more disjoint allocated access time-period segments
belongs to her or him to perform the above attack.

4. Efficient multi-keyword search on encrypted content.
Our scheme derived from [34] essentially inherits the at-
tribute such that the number of system public parameters
has no relation with the size of the keyword sets. Meatime,
the size of the keyword sets for the LSSS access structure
of trapdoor can be unlimitedly large enough to satisfy any
combination search containing any number of keywors in
the form of a boolean formula expression consisting of
“AND” and “OR” gates. Thus, Our scheme is more suitable
for the real-world applications.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PAC-MC
in terms of computation, communication and storage costs.
As the process KeyParUpdate(*) is not always running but
executed when password expires, it is a relatively indepen-
dent sub-process of PAC-MC. In essence, PAC-MC can be
viewed as an expressive PEKS solution, without consid-
ering the sub-process KeyParUpdate(*). For the proposed
PEKS, we take it out independently to compare with other
few schemes in TABLE 1, which describes the asymptotic
computation, communication and storage overheads among
our scheme [25], [38], [39]. Note that the schemes in [25],
[38], [39] and our scheme, are all PEKS supporting multi-
keyword search for outsourced data. To be in line with the
representations in [25], we ignore all hash operation in all
schemes. Here we define the following symbols: |pp| de-
notes the size of system public parameter, |msk| denotes the
size of system master private parameter, |CT | denotes the
size of keyword ciphertext, |TM,ρ(i)| denotes the size of trap-
door, |M| denotes the size of access tree, k denotes the length
of the vector for the keyword ciphertext in [39], l denotes
the number of keywords embedded in the access tree, n
denotes the maximum number of keywords for the system,
m denotes the number of keywords in a keyword set related
with the ciphertext, E denotes the exponentiation operation
on the element of groups (G,GT), P denotes the bilinear
pairing operation, X1 denotes the number of elements in
TM,ρ = {T1,T2, . . . ,TX1

},X2 denotes |T1|+|T2|+· · ·+|TX1
|,

and X3 denotes the number of primed keywords in a search
predicate, as stated in [38], N is the number of attributes
chosen by the data owner; |S| denotes the number of the
attributes appeared in each access tree [40]; Γ denotes set of
all roles associated with a ciphertext [42], Γ∅ denotes system
authorities associated with a ciphertext, SIDu denotes set
of roles associated with the user IDu [42] ; SIDi denotes
the attribute set possessed by the ith user, Γ denotes the
access policy [41], nor denotes number of “OR” gates in
an access policy, Kc denotes the total number of keywords
associated with an encrypted index; nt denotes the number
of attributes associated with a trapdoor [41].

We first analyze the asymptotic complexities including
the computation, communication and storage overheads of
our solution and other PEKS in [25], [38], [39], [40], [41], [42],
as is shown in TABLE 1, where the PEKS schemes in [38],
[39] are all developed based on composite-order groups,
whilst our scheme and [25] are both solutions supporting
unbounded number of keywords with bool formulas search
based on prime order groups. In [25], the PEKS scheme de-
signed with the prime order groups using pairing-friendly
elliptic curve shall have a clear advantage over the one
based on the composite order groups. Our scheme is more
efficient than the one in [25], almost saves 50% of the cost
in [25], in terms of the computation, communication and
storage overheads, which is due to the scheme in [25] is
designed using a “linear splitting” technique [25] on each
keyword value-related element embedded in the ciphertext
during keyword encryption, and also it re-randomizes the
element on each keyword value in trapdoor during trapdoor
generation. The computational overhead of the algorithms
Trapdoor(*) and Encrypt(*) have a linear relation with the
number of the keywords used during the trapdoor and
ciphertext generation, respectively, similarly, the lengths of
|TM,ρ(i)| and |CT | are both showing such a relation as well.
In [40], all overheads are determined by the attributes of
the access tree of the user, the size of access tree is bigger
than the number of keywords of the content, therefore, our
scheme has relatively less overheads than the scheme in [40].
The storage and communication overhead [42] for ciphertext
and trapdoor mainly depends on the set of all roles, the
size of the secret key possessed by a user mainly depends
on the number of SAs (i.e., number of organizations) and
the number of roles associated with that user. Overall, the
scheme in [42] has more overheads than ours in total due
to its functionalities, however, the scheme in [42] has more
features than ours, it is difficult to compare them directly
since the design objectives and application scenarios of the
two schemes are different. The storage cost of the scheme
in [41] is similar to ours in complexity, if considering the
number of “OR” gates in an access policy and total number
of keywords associated with an encrypted index to be the
same size of keywords in the ciphertext. In the Encryption
phase, it shows that the encryption cost of the scheme
mainly depends on the number of both “OR” gates in the
access policy and keywords associated with an encrypted
index. In the trapdoor generation phase, the scheme uses
an interactive protocol between a user and the CSP to
generate a trapdoor. Due to the remote interactive protocol,
the scheme may have more communication overhead than
others. In the Search phase, the computation cost is mainly

16

TABLE 1
Comparison of Computation, Storage and Communication Overhead among our new PEKS, [25], [38], [39], [40], [42] and [41]

[25] [38] [39] [40] [42] [41] Ours

|pp| 9 n+4 2k+3 6 2 + k 6 + 2|UA| 5

|msk| 5 n+2 2k+4 2 4 7 + 2|UA| 2

|TM,ρ| 6l+2+|M| 6k+1+|M| 3l+|M | 3|S| +1+|M | (3 + 2|Γ|) |SIDu|+ 4 4l+2+|M|

|CT | 5m+2 m+2 2k+1 2m+4 2|Γ|+ |GT |
Kc + 2

+nor + |Γ| 3m+2

KeyGen(*) E - (6k)E 3|S|E (9k + 1)E 7E E

Trapdoor(*) (16l+1)E (4l)E (6k)E (2|S|+l+1)E (3 + 2|SIDu|)E
User: (2nt + 5)E

+2P
CSP: 2E

(6l+4)E+P

Encrypt(*) (7m+2)E (m+2)E+P (4k+1)E (4 +N)E (4+|Γ|+|Γ∅|+1)E (nor + 2Kc + 3)E
+(nor + 1)P

(4m+3)E

Test(*)
or Check(*)

≤ (X2 + 1)E
+ (6X2 + 1)P

≤ (X2)E+
(2X3 + 2X2)P

(2k+1)P (2N+1)P+E
(2 +|Γ∅|)E+3P+

(|Γ|+1)E+ (2+|Γ|)P
+(|Γ| +|Γ∅|)E+(1+|Γ|)P

VA: (nt + 2)E
+2P

CSP: 3E + 4P

≤ (X2 + 1)E
+(3X2 + 5)P

Group
Order Prime Composite Composite Prime Prime Prime Prime

incurred by the CSP and VA who has to perform crypto-
graphic operations during keyword search operation over
the encrypted indexes, it mainly depends on the number of
attributes associated with a trapdoor. The communication
cost in Encryption and Search phase, and the computation
cost in all phases of this scheme is similar to ours in
complexity, if considering all the number of “OR” gates in
an access policy, the number of attributes associated with a
trapdoor and the total number of keywords associated with
an encrypted index to be the same size of keywords in the
ciphertext, the number of keywords embedded in the access
tree and X2. Also, it is difficult to compare them directly
since the design objectives and application scenarios of the
two schemes are different.

The following evaluations are performed on the settings:
CPU: Intel(R) Core(TM) i5-7200U@3.10 GHz max (2 core,
2.5GHz and 2.7GHz, the 7th generation), L3 Cache: 3MB,
RAM: DDR3 8.0GB; OS: 64-bit Ubuntu 15.10 (Codename:
wily), basic support software: pbc-0.5.14, gmp-6.1.2, m4-
1.4.17, bison-3.0, flex-2.5.4, charm-0.43 and Python 3.4. For
simplicity, we replace the pseudorandom function ensemble
F with SHA256, the parameter p′ and q′ are chosen ran-
domly such that |p′| = 2048, |q′| = 256. Additionally, we
use the 160-bit elliptic curve groups based on the super sin-
gular curve y2 = x3 + x over a 512-bit finite field.Note that,
this curve is a super singular elliptic curve with the bilinear
pairing being symmetric Type 1 pairing on it, thus here we
have G1 = G2, but we still denote them with asymmetric
groups to meet the requirement of the Charm routines.
By averaging the times of respective algorithms over 10
different instantiations of each basic operation, the basic
performance parameters obtained on the test laptop com-
puter are shown as follows: In PBC library (version 0.5.14),
the pairing operation can be completed in approximately
4.5ms, the exponentiation operations in groups Gq′,G1,G2

and GT can be completed in approximately 5.6ms, 3.0ms,
3.0ms and 0.4ms respectively, meanwhile, in our work, the
randomly selecting elements (by reading data from Linux

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

KeyParUpdate

KeyGen

Fig. 6. Computational overheads of KeyParUpdate(*) and KeyGen(*) run
by CPSV with respect to the number of cloud users (owners).

kernel’s /dev/urandom) are also significant operations costing
CPU cycles, which require about 0.3ms for Zp, 4.5ms for G1

and 5.0ms for G2, respectively.
Assume that a password lifetime (PL) is 7 days (1 week)

and a PL consists of 7 time-periods, i.e. 1 time-period equals
1 day. For data owner, the computational overheads for
running the algorithm KeyParUpdate(*) is about 29.3ms.
Without loss of generality, each cloud user may also play
the role of a data owner, then CPSV shall be responsible for
assisting all data owners to do most work of content encryp-
tion key management, the performance of the algorithms
KeyParUpdate(*) and KeyGen(*) run by CPSV for those cases
containing different number of cloud users are evaluated,
which is shown in Fig. 6, where only one CPSV exists, the
number of cloud users varies from 1000 to 10000 with step
length 1000. Obviously, the computational overheads of the
algorithms KeyParUpdate(*) and KeyGen(*) run by CPSV
have an approximately linear relation with the number of
cloud users, respectively. The computational overhead for
running the algorithm KeyParUpdate(*) with 10000 cloud
users is about 420.8s, and 31.7s for the algorithm KeyGen(*)
running with 10000 cloud users during system initialization,
which is quite suitable for the powerful server(s) that acting

17

1 2 3 4 5 6 7 8 9 10

No. of keywords

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
)

0
5

0
1

0
0

1
5

0
2

0
0

Encrypt

Trapdoor

(a)

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

No. of Keywords = 1

No. of Keywords = 2

(b)

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
2

0
0

4
0

0
6

0
0

8
0

0

No. of Keywords = 3

No. of Keywords = 4

(c)

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

No. of Keywords = 5

No. of Keywords = 6

(d)

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

No. of Keywords = 7

No. of Keywords = 8

(e)

1 2 3 4 5 6 7 8 9 10

No. of cloud users, unit:10
3

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

No. of Keywords = 9

No. of Keywords = 10

(f)

Fig. 7. (a) Computational overheads of Encrypt(*) and Trapdoor(*) run with respect to the number of keywords. (b) No. of keywords = 1 and 2,
respectively. (c) No. of keywords = 3 and 4, respectively. (d) No. of keywords = 5 and 6, respectively. (e) No. of keywords = 7 and 8, respectively. (f)
No. of keywords = 9 and 10, respectively.

2 4 6 8 10

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

No. of cloud users, unit:10
3

S
to

ra
g

e
 c

o
s
t

(K
B

)

#PL = 1

#PL = 2

1 2 3 4 5 6 7 8 9 10

(a)

2 4 6 8 10

0
5

0
0

1
0

0
0

2
0

0
0

3
0

0
0

No. of cloud users, unit:10
3

S
to

ra
g

e
 c

o
s
t

(K
B

)

#PL = 3

#PL = 4

1 2 3 4 5 6 7 8 9 10

(b)

2 4 6 8 10

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

No. of cloud users, unit:10
3

S
to

ra
g

e
 c

o
s
t

(K
B

)

#PL = 5

#PL = 6

1 2 3 4 5 6 7 8 9 10

(c)

2 4 6 8 10

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

No. of cloud users, unit:10
3

S
to

ra
g
e
 c

o
s
t
(K

B
)

#PL = 7

#PL = 8

1 2 3 4 5 6 7 8 9 10

(d)

Fig. 8. Storage overheads of CEKMC with respect to the number of cloud users in consecutive 8 PLs. (a) #PL = 1 and 2, respectively. (b) #PL =
3 and 4, respectively. (c) #PL = 5 and 6, respectively. (d) #PL = 7 and 8, respectively.

as CEKMC, due to the key materials updating time required
by KeyParUpdate(*) is far less than 1 time-period (day).
Actually, the size of time-period could be configured as per
the requirement of application 8.

The performance of the algorithms Encrypt(*) and
Trapdoor(*) for those cases containing different number of
keywords are evaluated, which is shown in Fig. 7(a), where

8. As an option, for the time-constricted applications, the new pass-
word could be prepared ahead of time and update the key materials
with CEKMC in a backup way, to generate the content encryption keys
in advance for the coming new PL. Moreover, most of the modern
CEKMCs are equipped with powerful HSM (hardware security mod-
ule) to offload the cryptographic operations, to further reduce the time
for content key generation.

the number of keywords varies from 1 to 10 with step length
1, from which, we can see that, the computational overheads
of the algorithms Encrypt(*) and Trapdoor(*) have an ap-
proximately linear relation with the number of keywords
used during keyword ciphertext and trapdoor generation,
respectively. The computation time taken to generate a trap-
door with 10 keywords is about 199.4ms, and 130.8ms for
generating a keyword ciphertext with 10 keywords, which
are both quite suitable for TGC and data owner, respectively.
Additionally, the performance on the algorithm Trapdoor(*)
run by TGC for a large number of cloud users concurrently
is evaluated and shown in Fig. 7(b), 7(c), 7(d), 7(e) and 7(f),
where the number of keywords varies from 1 to 10 with step
length 1, and the number of cloud users varies from 1000 to

18

2 4 6 8 10

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0

No. of cloud users, unit:10
3

C
o
m

m
u
n
ic

a
ti
o
n
 c

o
s
t
(K

B
)

KeyParUpdate

System Init.

1 2 3 4 5 6 7 8 9 10

Fig. 9. Communication overheads of CEKMC and KGC with respect to
the number of cloud users in KeyParUpdate(*) and System initialization.

10000 with step length 1000, from which, we can see that, the
computational overhead of the algorithm Trapdoor(*) run by
TGC have an approximately linear relation with the number
of cloud users. The computational overhead for running
the algorithm Trapdoor(*) to generate 10000 trapdoors con-
currently with 10 keywords is about 1748.2s, which can be
further reduced vastly for the powerful server(s) supporting
parallel computing technology and HSM that acting as TGC.
Moreover, the number of keywords in a searching query is
normally less than 10, according to the searching query logs
of search engines [25].

The storage overheads of CEKMC with respect to dif-
ferent number of cloud users in consecutive 8 PLs are
evaluated, respectively, which is shown in Fig. 8, where
the number of cloud users varies from 1000 to 10000
with step length 1000 for each PL, the maximum storage
cost for 10000 cloud users in PL#1 ∼ #8 are approxi-
mately 2502.4KB, 2814.7KB, 3131.1KB, 3439.7KB, 3752.2KB,
4064.7KB, 4377.2KB and 4689.7KB, respectively, from which,
it is clear that the storage overheads of CEKMC have an
approximately linear relation between different PLs. Also
in each PL, the storage overheads of CEKMC have an
approximately linear relation with the number of cloud
users as well, which can be concluded from Fig 8(a), (b),
(c) and (d). Due to CEKMC stores the key seed only for
all content encryption keys generated in one PL for each
cloud user, the memory capacity growth rate of key storage
for CEKMC is about 313KB per 10000 cloud users only as
the number of PLs increase, which is quite suitable for the
powerful server(s) that acting as CEKMC. In addition, the
key storage cost of TGC and cloud user is approximately
2.5KB and 2.2KB, respectively.

We also evaluated the communication overheads of
CEKMC and KGC with respect to the number of cloud users
when running KeyParUpdate(*) and system initialization, as
well as the communication overheads of CEKMC and TGC
with respect to the number of cloud users during trapdoor
and key parameter distribution in consecutive 8 PLs, which
are shown in Fig. 9 and Fig. 10, where a PL consists of 7 time-
periods and the key components generated by calculating
the lowest common ancestor nodes using secret keys from
OHBT is maximized in consecutive PLs for cloud users.
Clearly, the communication costs of CEKMC and KGC
when running KeyParUpdate(*) and system initialization
have an approximately linear relation with the number of

cloud users, the maximum communication cost for 10000
cloud users when simultaneously running KeyParUpdate(*)
and system initialization are about 5625KB and 24267KB,
respectively. In addition, the maximum communication cost
for 10000 cloud users in PL#1 ∼ #8 are approximately
54844KB, 56094KB, 57344KB, 58594KB, 59844KB, 61094KB,
62344KB and 63594KB, respectively, the communication
costs of CEKMC and TGC have an approximately linear
relation between different PLs during the trapdoor and key
parameter distribution. Also in each PL, the communication
costs of CEKMC and TGC have an approximately linear
relation with the number of cloud users as well, the commu-
nication overhead growth rate for CEKMC and TGC is about
1250KB per 10000 cloud users only as the number of PLs
increase, which is quite modest for cloud-based applications
with powerful server(s) that acting as CEKMC and TGC.

The performance of the algorithm Check(*) for those
cases where both the access structure of trapdoor and the
ciphertext with different number of keywords are evaluated,
which is shown in Fig. 11, where 10 different access struc-
tures and their related trapdoors are constructed using 1∼10
keywords, respectively, and also 4 different ciphertexts are
generated using 10, 20, 30 and 40 keywords, respectively,
based on the 4 ciphertexts and by averaging the time for
each trapdoor over 10 instantiations, the computational
overheads of the algorithm Check(*) are evaluated for these
10 trapdoors, respectively. Given the number of keywords
in the trapdoor and the related keyword names, we assign
each keyword value with a different integer for the sake of
simplicity, in addition, in order to assess the worst case, for
each keyword access structure of trapdoor, it is constructed
using a balanced binary tree such that, the total number
of leaf nodes is equal to the number of keywords in the
trapdoor, the interior nodes of the tree are assigned with
“AND” and “OR” to maximize X2 = |T1|+|T2|+· · ·+|TX1

|,
i.e. the total keyword matching times in one search.

For the case containing a trapdoor with 1 keyword and
a ciphertext with 10 keywords, the average computation
time of the algorithm Check(*) is approximate 40ms, and
3000ms for the case containing a trapdoor with 10 keywords
and a ciphertext with 40 keywords, which can further be
significantly reduced by the powerful server(s) acting as
CCS. From Fig. 11, it is clear that, in the cases where the trap-
door contains 1∼6 keywords, the computational overhead
increases slowly as the number of keywords in ciphertext
increases, however, in the cases where the trapdoor contains
7 or more keywords, the overhead increases dramatically as
the number of keywords in ciphertext increases.

Based on the preliminary result mentioned above, we
can draw the following trend that, as the number of key-
words in the trapdoor increases, the computational over-
head of the algorithm Check(*) will increase exponentially.
This is due to the fact, in the algorithm Check(*), CCS needs
to generate a set IM,ρ from (M, ρ) of the trapdoor, where
(M, ρ) is a set of the minimum subsets satisfying IM,ρ, and
check whether there exists at least one subset T ∈ IM,ρ such
that the trapdoor of each keyword in T matches its keyword
value in ciphertext after the corresponding keyword name
being found in the keyword ciphertext of the file. To a
large extent, the computational overhead of the algorithm
Check(*) depends on both the number of keywords in the

19

2 4 6 8 10

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

No. of cloud users, unit:10
3

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(K
B

) #PL = 1

#PL = 2

1 2 3 4 5 6 7 8 9 10

(a)

2 4 6 8 10

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

No. of cloud users, unit:10
3

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(K
B

) #PL = 3

#PL = 4

1 2 3 4 5 6 7 8 9 10

(b)

2 4 6 8 10

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

No. of cloud users, unit:10
3

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(K
B

) #PL = 5

#PL = 6

1 2 3 4 5 6 7 8 9 10

(c)

2 4 6 8 10

0
1

0
0

0
0

3
0

0
0

0
5

0
0

0
0

No. of cloud users, unit:10
3

C
o

m
m

u
n

ic
a

ti
o

n
 c

o
s
t

(K
B

) #PL = 7

#PL = 8

1 2 3 4 5 6 7 8 9 10

(d)

Fig. 10. Communication overheads of CEKMC and TGC with respect to the number of cloud users in consecutive 8 PLs. (a) #PL = 1 and 2,
respectively. (b) #PL = 3 and 4, respectively. (c) #PL = 5 and 6, respectively. (d) #PL = 7 and 8, respectively.

1 2 3 4 5 6 7 8 9 10

No. of keywords in trapdoor

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
)

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

10 keywords in ciphertext

20 keywords in ciphertext

(a)

1 2 3 4 5 6 7 8 9 10

No. of keywords in trapdoor

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
m

s
)

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

30 keywords in ciphertext

40 keywords in ciphertext

(b)

Fig. 11. Computational overheads of Check(*) with different number of
keywords in the trapdoor TdW and ciphertext CTW, where the number
of keywords in TdW varies from 1 to 10. (a) 10 and 20 keywords in CTW,
respectively. (b) 30 and 40 keywords in CTW, respectively.

LSSS access structure of trapdoor and the number of key-
words embedded in the ciphertext located on CCS, is mainly
affected by the number of keywords in the trapdoor.

6 CONCLUSION

In this paper, we proposed a new access control scheme
PAC-MC, which is designed over the prime-order groups.
First, the scheme can efficiently support multi-keyword
search over encrypted data in any monotonic boolean for-
mulas, and enable data owner to fully control the content
encryption key using an updatable password based on
the time-period. Meantime, the scheme supports the self-
retrievability of content encryption key, which is suitable
for the practical cloud-based media application with mas-
sive users. In addition, the authentication code or secret
key generated based on the biological characteristics (e.g.,
Fingerprint, Iris, Face etc.) during authentication can also be
processed similarly as password. By extending our scheme
and combining the authentication based on biological char-
acteristics, a new lightweight access control for cloud-based
application in the internet of things (IOT) could be con-
structed in the future work.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in 2000 IEEE Symposium on Security
and Privacy, Berkeley, California, USA, May 14-17, 2000,IEEE Com-
puter Society, 2000, pp. 44–55.

[2] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, T. Hou, and H. Li,
“Privacy preserving multi-keyword text search in the cloud sup-
porting similarity-based ranking,” in 8th ACM ASIA Conference on
Computer and Communications Security 2013, May 2013.

[3] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in EUROCRYPTO 2004, pp.
506–522, 2004.

[4] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in
INFOCOM 2011, pp. 829–837, 2011.

[5] Y. Hwang and P. Lee, “Public key encryption with conjunctive
keyword search and its extension to a multi-user system,” in
Pairing 2007, pp. 2–22, 2007.

[6] E. Goh, “Secure indexes,” IACR, Cryptology ePrint Archive on
October 7th, pp. 1–18, 2003.

[7] Y. C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in International Conference
on Applied Cryptography and Network Security 2005, vol. 3531, pp.
442–455.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient con-
structions”,in ACM Conference on Computer and Communications
Security 2006, vol. 19, pp. 79–88, 2006.

[9] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren and W. Lou, ”Fuzzy
Keyword Search over Encrypted Data in Cloud Computing,” in
2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010, pp. 1-5.

[10] M. Kuzu, M. S. Islam and M. Kantarcioglu, ”Efficient Similarity
Search over Encrypted Data,” in 2012 IEEE 28th International
Conference on Data Engineering, Washington, DC, 2012, pp. 1156-
1167.

[11] Y. Lu, “Privacy-preserving logarithmic-time search on encrypted
data in cloud,” in Proceedings of 19th NDSS, San Diego, California,
USA, 2012.

[12] C. Orencik, E. Savas, “An efficient privacy-preserving multi-
keyword search over encrypted cloud data with ranking,” J.
Parallel and Distributed Databases, 2014, vol. 32, no. 1, pp.119–60.

[13] C. Wang, N. Cao, K. Ren and W. Lou, ”Enabling Secure and
Efficient Ranked Keyword Search over Outsourced Cloud Data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 8,
pp. 1467-1479, Aug. 2012.

[14] N. Cao, C. Wang, M. Li, K. Ren and W. Lou, ”Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in 2011
Proceedings IEEE INFOCOM, Shanghai, 2011, pp. 829-837.

[15] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and effi-
ciently searchable encryption,” in Advances in Cryptology -CRYPTO
2007, 27th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2007, Proceedings, ser. Lecture Notes in
Computer Science, vol. 4622. Springer, 2007, pp. 535–552.

20

[16] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” J. Theory of Cryptography, vol. 4392, pp.
535–554, 2007.

[17] N. Attrapadung, L. Benoı̂t, “Functional Encryption for Public-
Attribute Inner Products: Achieving Constant-Size Ciphertexts
with Adaptive Security or Support for Negation,” in Public Key
Cryptography - PKC 2010, 13th International Conference on Practice
and Theory in Public Key Cryptography, Paris, France, May 26-28,
2010.

[18] J. Katz, A. Sahai, B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Pro-
ceedings of 27th annual international conference on the theory and
applications of cryptographic techniques, Berlin, Heidelberg, 2008,
pp.146–62.

[19] E. Shi, J. Bethencourt, H. Chan, D. Song, A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proceedings of
IEEE symposium on security and privacy. California, 2007, pp.350–364.

[20] B. Waters, D. Balfanz, G. Durfee, D. Smetters, “Building an en-
crypted and searchable audit log,” in Proceedings of annual network
and distributed security symposium, California, 2004.

[21] A. Boldyreva, N. Chenette, Y. Lee, “Order-Preserving Symmetric
Encryption,” in Proceedings of Advances in Cryptology, EUROCRYPT
2009, 28th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Cologne, Germany, April 26-30,
2009. Proceedings. DBLP, 2009.

[22] J. Yu, P. Lu, Y. Zhu, “Toward Secure Multi-Keyword Top-k Re-
trieval over Encrypted Cloud Data,” IEEE Transactions on Depend-
able and Secure Computing, 2013, vol. 10, no. 4, pp.239-250.

[23] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng, “Authorized keyword
search on encrypted data,” in Computer Security - ESORICS 2014 -
19th European Symposium on Research in Computer Security, Wroclaw,
Poland, September 7-11, 2014. Proceedings, Part I, ser. Lecture Notes in
Computer Science, vol. 8712. Springer, 2014, pp. 419–435.

[24] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: verifiable attribute-
based keyword search over outsourced encrypted data,” in 2014
IEEE Conference on Computer Communications, INFOCOM 2014,
Toronto, Canada, April 27 - May 2, 2014, pp. 522–530.

[25] H. Cui, Z. Wan, R. H. Deng, G. Wang and Y. Li, ”Efficient and
Expressive Keyword Search Over Encrypted Data in Cloud,” IEEE
Transactions on Dependable and Secure Computing, vol. 15, no. 3, pp.
409-422, 2016.

[26] K. He, J. Guo, J. Weng, J. Weng, J. K. Liu, X. Yi,”Attribute-Based
Hybrid Boolean Keyword Search over Outsourced Encrypted
Data” in J. IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 1-12, 2018.

[27] K. Lee, S. Choi, D. Lee, J. Park, H. Park, and M. Yung,“Self-
updatable encryption: Time constrained access control with hid-
den attributes and better efficiency”, Theoretical Computer Science,
vol. 667, pp. 51-92, 2017.

[28] K. Lee, D. Lee, J. Park, M. Yung, “CCA Security for Self-Updatable
Encryption: Protecting Cloud Data When Clients Read/Write Ci-
phertexts”, The Computer Journal, Vol. 62, no. 4, pp. 545-562, 2019.

[29] ITU-R Rec. 810: Conditional-Access Broadcasting Systems, (1992).
[30] S. W. Park, S. U. Shin. “An efficient encryption and key manage-

ment scheme for layered access control of h.264/scalable video
coding”, IEICE Transactions on Information and Systems, 2009, 92-
D(5), pp.851-858.

[31] M. Zhu, M. hang, X. Chen, D. Zhang, Z. Huang. “A Hierarchical
Key Distribution Scheme for Conditional Access System in DTV
Broadcasting”, Computational Intelligence and Security, DBLP, 2007.

[32] C. Yang, J. Liu, Y. Zhang, J. Tian, L. Yang. “The Simplified and
Secure Conditional Access for Interactive TV Service in Converged
Network”, International Conference on Management and Service Sci-
ence, IEEE, 2009.

[33] M. Feng, B. Zhu. “When DRM Meets Restricted Multicast.: A
Content Encryption Key Scheme for Multicast Encryption and
DRM”, Consumer Communications and Networking Conference, IEEE,
2007.

[34] Y. Rouselakis and B. Waters, “Practical constructions and new
proof methods for large universe attribute-based encryption,” in
2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, ACM, 2013,
pp. 463–474.

[35] K. Xiangying, C. Yanhui, Left Full Binary Hash Tree for Remote
Attestation, 2017 IEEE 2nd International Conference on Signal and
Image Processing.

[36] M. Bellare, D. Pointcheval and P. Rogaway, ”Authenticated key
exchange secure against dictionary attacks,” in Advances in Cryp-
tology, EUROCRYPT 2000, LNCS 1807, Berlin, springer Verlag, 2000,
pp 139 -155.

[37] O. Goldreich, S. Goldwasser, S. Micali, ”How to construct random
functions” J. of the ACM, vol.33, no.4, pp. 792-807, 1986.

[38] Z. Lv, C. Hong, M. Zhang, and D. Feng, “Expressive and secure
searchable encryption in the public key setting,” in Information
Security - 17th International Conference, ISC 2014, Hong Kong, China,
October 12-14, 2014. Proceedings, ser. Lecture Notes in Computer
Science, vol. 8783. Springer, 2014, pp. 364–376.

[39] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” J. Cryp-
tology, vol. 26, no. 2, pp. 191–224, 2013.

[40] M. Ameri, M. Delavar, J. Mohajeri, M. Salmasizadeh, “A Key-
Policy Attribute-Based Temporary Keyword Search scheme for
Secure Cloud Storage”, IEEE Transaction on Cloud Computing, Vol.
8, no. 3, pp. 660-671, 2020.

[41] N. Sultan, N. Kaaniche, M. Laurent, F. Barbhuiya, “Autho-
rized Keyword Search over Outsourced Encrypted Data in
Cloud Environment”, IEEE Transaction on Cloud Computing, DOI:
10.1109/TCC.2019.2931896, 2019.

[42] N. Sultan, M. Laurent, V. Varadharajan, “Securing Organization’s
Data: A Role-Based Authorized Keyword Search Scheme with
Efficient Decryption”, 2020, https://arxiv.org/abs/2004.10952.

[43] D. Wang, H. Cheng, P. Wang, X. Huang, G. Jian, “Zipf’s Law in
Passwords”, IEEE Transactions on Information Forensics and Security,
Vol. 12, no. 11, pp. 2776-2791, 2017.

