
Breaking Category Five SPHINCS+ with
SHA-256

Ray Perlner1, John Kelsey1,2, and David Cooper1

1 National Institute of Standards and Technology,
Gaithersburg, Maryland 20899, USA

2 COSIC/KU Leuven

Abstract. SPHINCS+ is a stateless hash-based signature scheme that
has been selected for standardization as part of the NIST post-quantum
cryptography (PQC) standardization process. Its security proof relies
on the distinct-function multi-target second-preimage resistance (DM-
SPR) of the underlying keyed hash function. The SPHINCS+ submission
offered several instantiations of this keyed hash function, including one
based on SHA-256. A recent observation by Sydney Antonov on the PQC
mailing list demonstrated that the construction based on SHA-256 did
not have DM-SPR at NIST category five, for several of the parameter
sets submitted to NIST; however, it remained an open question whether
this observation leads to a forgery attack. We answer this question in
the affirmative by giving a complete forgery attack that reduces the
concrete classical security of these parameter sets by approximately 40
bits of security.
Our attack works by applying Antonov’s technique to the WOTS+ pub-
lic keys in SPHINCS+, leading to a new one-time key that can sign a
very limited set of hash values. From that key, we construct a slightly
altered version of the original hypertree with which we can sign arbitrary
messages, yielding signatures that appear valid.
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1 Introduction

SPHINCS+ [2] is a stateless hash-based signature scheme that has been selected
for standardization as part of the NIST post-quantum cryptography standard-
ization process [16]. Much of the underlying technology for SPHINCS+ goes back
to the very earliest days of academic cryptography [13–15]. Its security is based
entirely on the security of symmetric cryptographic primitives.

Because of the age of the underlying technology and the lack of additional
hardness assumptions (most other post-quantum algorithms depend on the dif-
ficulty of problems such as finding short vectors in a lattice or solving systems
of multivariate quadratic equations), SPHINCS+ appears to provide extremely
reliable security, albeit at the cost of larger and slower signatures than most
other post-quantum signature schemes.



Recently, however, Sydney Antonov described a failure of a particular prop-
erty (the DM-SPR property3) claimed by the SPHINCS+ designers when SHA-
256 is the hash function used [1]. It was not clear, however, whether this obser-
vation led to an attack on the full SPHINCS+ signature scheme.

In this paper, we describe such an attack. Specifically, we extend Antonov’s
observation to a forgery attack on both of the recommended parameter sets for
SPHINCS+ that claim category five [17] security (256 bits of classical security)
and use the SHA-256 hash function. Our attack becomes even more powerful
for other choices of SPHINCS+ parameters that use SHA-256 while claiming
category five security, specifically for smaller values of w than are used in the
recommended parameter sets.

Our attack allows forgery of an unlimited number of signatures of the at-
tacker’s choice. While our attack is far too expensive to pose a real-world secu-
rity threat, it demonstrates a failure of SPHINCS+ to meet its claimed security
goals for the category five parameter set. Table 1 gives the results of our attack
for the two category five parameter sets in [2], assuming a SPHINCS+ key that
has been used to sign its maximum allowed number of signatures (264).

Table 1. Summary of Our Results on SPHINCS+ Category Five Parameters

Cost
Parameter Set Herd Link Signable Total Reference

SPHINCS+-256f 2214.8 2216.4 2215.7 ≈ 2217.4 Section 4.3
SPHINCS+-256s 2214.8 2216.4 2215.7 ≈ 2217.4 Section 4.3

Both Antonov’s approach and our extension of it are partly based on prop-
erties of Merkle-Damg̊ard hash functions first described in [9, 11, 12] (notably,
these attacks would not work if the hash function were replaced with a random
oracle), but also incorporate details of the internal structure of SPHINCS+. Ear-
lier [19], another security issue with SPHINCS+ level five parameters was noted,
again due to the use of SHA-256 to provide 256 bits of security.

These results do not seem to us to indicate any fundamental weakness in
SPHINCS+. Instead, they demonstrate that using a 256-bit Merkle-Damg̊ard
hash like SHA-256 to get more than 128 bits of security is quite difficult. If
SHA-512 were used in place of SHA-256 for category five security in SPHINCS+,
all of these observations and attacks would be entirely blocked. Similarly, when
SPHINCS+ uses SHAKE256 to get category five security, none of these attacks
are possible. Very recently [8], the SPHINCS+ team has proposed a tweak which
appears to block these attacks. A discussion of the proposed tweaks appears in
Section 6.

The rest of the paper is organized as follows: We begin by describing SPHINCS+

(Section 2). We then introduce some tools, concepts, and notation that will be

3 For a formal definition of this property, see Section 3.2.



Fig. 1. The SPHINCS+ hypertree.

used in the rest of the paper (Section 3). We then describe our attack (Sec-
tion 4). Next, we justify the costs we assigned to each step of our attack, and
some possible optimizations (Section 5). Finally, we conclude the paper with a
discussion of what can be done to prevent this kind of attack, and where else
the attack or variants of it may apply (Section 6).

2 The SPHINCS+ Signature Scheme

The SPHINCS+ signature scheme consists of a few components: a one-time
signature scheme, WOTS+ (a specific variant of Winternitz signatures defined
in [7]); a few-time signature scheme, FORS (Forest of Random Subsets); and
Merkle trees [14]. SPHINCS+ forms the WOTS+ public keys into a hypertree,
or tree of trees (see Figure 1). Each tree is a Merkle tree in which the leaves are
WOTS+ public keys. The root of each tree is signed by a WOTS+ key from a
tree at the next level up, and the root of the top-level tree is the SPHINCS+

public key. The WOTS+ keys from the lowest-level tree are used to sign FORS
public keys, and the FORS keys are in turn used to sign messages.

SPHINCS+ uses randomized hashing. When a message is to be signed, a
random bit string, R, is generated and is hashed along with the message. Some
bits from the hash value are then used to select a FORS key (which selects a path
through the hypertree); the rest are signed using that FORS key. A SPHINCS+

signature then consists of R, the signature created using the selected FORS key,
the sequence of WOTS+ signatures in the hypertree leading from the top-level
tree to the FORS public key used to sign the message, and the authentication
paths corresponding to each WOTS+ signature needed to compute the roots of
each of the Merkle trees.

In this paper, we apply a multi-target preimage attack (described in Sec-
tion 3) to the WOTS+ public keys that are used to sign the roots of Merkle
trees and FORS public keys. The WOTS+ public keys are computed as shown
in Figure 2. For the parameter sets in [2] that target category five security, which
use a hash function with a 256-bit output and a Winternitz parameter, w, of
16, the public key is the hash of a public seed, PK.seed, which is padded to
64 bytes, a 22-byte compressed address, and 67 public values. Computing the
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Fig. 2. A WOTS+ public key.

public key hash requires 35 iterations of the SHA-256 compression function, as
shown in Figure 7. Each public value is computed by generating a hash chain,
which involves iterating a different secret value through the hash function 15
times. Each call to the hash function includes an unique address as input, which
identifies the tree layer in which the WOTS+ key appears along with the key’s
index within that layer. For the computations of the public values, the address
also identifies which of the 67 public values is being computed as well as the it-
eration of the hash function. It is these addresses that were intended to prevent
multi-target attacks.

A WOTS+ signature consists of one entry from each of the 67 hash chains of
the WOTS+ one-time key.4 The 256-bit hash of the value to be signed is written
as 64 hexadecimal digits, and each is signed using a different hash chain. For
example, if the first hexadecimal digit is 0, then sk0,0 is the signature for the
first digit. If the second digit is f, then pk1 is the signature for that digit. If the
third digit is 3, then the signature value for the third digit is sk2,3 – the result
of iterating sk2,0 through the hash function three times.

A WOTS+ signature is verified by completing the computation of each of
the hash chains. In the example from the previous paragraph, the signature
on the first digit (0) is checked by iterating the signature value through the
hash function 15 times and comparing the result to pk0. The second digit (f)
is checked by simply comparing the signature value to pk1. The third digit (3)
is checked by iterating the signature value through the hash function 12 times

4 This description is accurate for the recommended parameters for SPHINCS+ at
category five security; other choices of parameters would require the description to
be slightly changed.



and comparing the result to pk2. Note that when the digit signed is an f, the
verifier does no additional hashing of the value from the signature. Unlike digits
0-e, the verifier’s calculation on an f digit does not incorporate the value of the
one-time key’s ADRS.

The final three hash chains are used to sign a three-hexadecimal-digit check-
sum value. The checksum value is computed by summing the digits of the 256-bit
hash value and then subtracting the result from the maximum possible sum, 960.
Including the checksum in the signature prevents an attacker from modifying the
signature without performing a preimage attack on the hash function.

The SPHINCS+ submission [2] defines two parameter sets that target cat-
egory five security: SPHINCS+-256s, which contains eight levels of trees, each
with a height of eight; and SPHINCS+-256f, which contains 17 levels of trees,
each with a height of four. So, the SPHINCS+-256s parameter set includes a
little over 264 WOTS+ keys and the SPHINCS+-256f parameter set includes a
little over 268 WOTS+ keys.

3 Building Blocks

3.1 Merkle-Damg̊ard Hash Functions

A Merkle-Damg̊ard hash function is constructed from a fixed-length hash func-
tion called a compression function. In the case of SHA-256, the compression
function takes a chaining value of 256 bits and a message block of 512 bits. In
order to process a message, the message is unambiguously padded to an inte-
ger multiple of 512 bits (the padding incorporates the length of the unpadded
message), broken into a sequence of 512-bit message blocks M0,1,...,L−1, and pro-
cessed sequentially, starting from a constant initial chaining value. Thus, to hash
the above sequence of message blocks, we compute

H−1 = initial chaining value

Hj = COMPRESS(Hj−1,Mj)

Fig. 3. Merkle-Damg̊ard hashing

After each 512-bit message block, the state of the hash is reduced to a 256-
bit chaining value, and this chaining value is the only information about the
message processed so far that is carried forward into the hash computation. A
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Fig. 4. A diamond structure – constructing eight messages with the same hash

consequence of this fact is we can choose the beginning of two different messages
so that their chaining value h1 collides, and then we can get a new collision
by appending any sequence of message blocks to both messages. As noted in
[9], this process can be repeated, constructing many different messages with the
same hash value.

Diamond Structures Applying the techniques from [11], we can extend this at-
tack, finding these internal hash chain collisions in a tree structure. Starting
from 2k different initial message blocks, we find subsequent message blocks that
map them all to a single hash chaining value. This structure of collisions is called
a diamond structure, and is illustrated in Figure 4. In the figure, lines represent
message blocks, labels represent intermediate hash values; each path from iv to
h30 gives a sequence of four message blocks, and all eight possible sequences
of four message blocks yield the same hash value. Constructing the diamond
structure requires a sequence of batched collision searches, resulting in a distinct
message block for each line in the diagram.

3.2 Multi-target Preimage Attacks and SPHINCS+

Consider an attacker asked to find a preimage – that is, a message that hashes
to a single target value, T . If SHA-256 behaves randomly, this should require
about 2256 trial hashes to accomplish – the attacker can simply hash random
messages until one gives the right result. Now consider an attacker asked to find
a message that hashes to any one of 264 different hash values, T0,1,...,264−1. Again,
if SHA-256 behaves randomly, this should require only about 2192 trial hashes –
the attacker hashes random messages until one matches any one of the values
in the target list. Intuitively, the attacker has many targets, so is more likely to
hit one. The situation where the attacker tries to find a message that hashes to
any one of many targets is called a multi-target preimage attack.

Consider the same attacker, given 264 different target hash values, but each
target hash value is associated with a different prefix and the preimage is only
valid if it starts with the correct prefix. The straightforward multi-target preim-
age attack no longer works. The attacker must start each message with a par-



ticular prefix to get a valid preimage, and if the message hashes to a target
associated with a different prefix, it isn’t valid.

The SPHINCS+ specification formalizes the above defense against multi-
target preimage attacks by (in the “simple” SHA-256 parameter sets) treating
the SHA-256 hash of a message, prepended with each prefix, as a separate mem-
ber in a hash function family. SPHINCS+ also includes “robust” parameter sets,
where the hash function members process the input not just by prefixing a con-
stant, but also by XORing the input message with a constant deterministically
generated pseudorandom keystream. Our attack applies to both schemes, but for
simplicity, we will describe the attack only in terms of the “simple” parameter
sets.

Definition 1. PQ-DM-SPR (definition 8 from [5]) Let H : K × {0, 1}α −→
{0, 1}n be a keyed hash function. We define the advantage of any adversary
A = (A1),A2 against distinct-function, multi-target second-preimage resistance
(DM-SPR). This definition is parameterized by the number of targets p.

SuccDM-SPR(A) =
[
{Ki}pi=1 ←− A1(), {Mi}p1 ←−R ({0, 1}α)p;

(j,M ′)←−R A2({(Ki,Mi)}pi−1) : M
′ ̸= Mj

∧H(Kj ,Mj) = H(Kj ,M
′) ∧DIST({Ki}pi=1)

]
.

where we assume that A1 and A2 share state and define the predicate DIST({Ki}pi=1) =
(∀i, k ∈ [1, p], i ̸= k) : Ki ̸= Kk.

3.3 Antonov’s Attack on DM-SPR

In 2022, Sydney Antonov described an attack against the DM-SPR property
of the SHA-256-based keyed hash functions used in SPHINCS+ [1]. The at-
tack takes advantage of SHA-256’s Merkle-Damg̊ard construction, using a series
of collision attacks against the underlying compression function to transform
a distinct-function multi-target second-preimage attack into a single-function
multi-target second-preimage attack, using several of the techniques described
in Section 3.

Figure 5 shows an example of how the attack works.
Suppose there are six target messages, M0 . . .M5, each hashed using a differ-

ent key, ADRS0 . . .ADRS5. The attack begins building a diamond structure, as
shown in Figure 4, above. The SHA-256 compression function is applied to the
addresses for each of the targets using the SHA-256 initialization vector.5 This

results in a set of intermediate hash values, H
(1)
0 . . . H

(1)
5 . Then collision attacks

are performed on pairs of intermediate hash values. For example, the attacker

searches for random values x0 and x1 such that C(H
(1)
0 , x0) = C(H

(1)
1 , x1). The

5 For simplicity, the example assumes that ADRSi is exactly 512-bits in length, but
this is not a requirement for the attack to work.
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Fig. 5. A multi-target second-preimage attack on a SHA-256-based keyed hash func-
tion.

search yields message blocks x0, x1 and the intermediate hash, H
(2)
0,1 . A second

iteration of collision attacks is then performed using the intermediate hash val-
ues generated from the first iteration. In this case, there are three intermediate

hash values, H
(2)
0,1 , H

(2)
2,3 , and H

(2)
4,5 , and a three-way collision can be found such

that H
(3)
0...5 = C(H

(2)
0,1 , x0,1) = C(H

(2)
2,3 , x2,3) = C(H

(2)
4,5 , x4,5), for some H

(3)
0...5, x0,1,

x2,3, and x4,5. (If there were more targets, then more iterations of collision at-
tacks could be performed until all of the targets had been herded6 to a single
intermediate hash value.)

Next, the attack carries out a multi-target preimage attack, as discussed in
Section 3. The attacker searches for some message block z such that

C(H
(3)
0...5, z∥padding) = SHA-256(ADRSi,Mi)

for some i ∈ {0, . . . , 5}. If, for example, the final step finds a second preimage
for M3, then SHA-256(ADRS3∥x3∥x2,3∥z) = SHA-256(ADRS3∥M3).

Given t target messages, the expected cost for the final step in the attack,
finding a preimage, is 2256/t calls to the compression function, C. The preceding
steps require performing Õ(t) collision attacks. The expected cost of each colli-
sion attack will depend on whether a 2-way, 3-way, 4-way, etc. collision is sought.
In general, the expected cost of finding an n-way collision is Õ(2256(n−1)/n) calls
to the compression function.

For a generic second-preimage attack, the attack cost is optimized by using
(t − 1) 2-way collisions to herd t targets down to 1 intermediate hash value.
However, when attacking SPHINCS+, messages have fixed lengths, which limits

6 The combination of building a diamond structure and finding a linking message is
referred to as a herding attack in [11].



the number of targets that may be used in the attack. Using some 3- and 4-
way collisions increases the cost of the collisions-finding step, but increases the
number of targets that may be used, which reduces the overall cost of the attack.

4 Creating Forgeries for SPHINCS+ Category Five
Parameters

4.1 Turning Antonov’s Attack Into a Forgery Attack

Suppose the target of Antonov’s attack is a set of WOTS+ public keys within
the same SPHINCS+ hypertree. After the owner of the key has signed many
messages, the attacker has many choices of one-time public key to choose from.
Each one-time public key that was used to produce a signature can be computed
from the corresponding message and signature, and so is known to the attacker.
Further, the attacker can reconstruct the exact hash computation (every 512-bit
message block and 256-bit intermediate chaining value) that appeared in the
hash computation for each one-time public key used. That hash is computed by
hashing some values that are constant for a given SPHINCS+ key, followed by
a unique ADRSC that is guaranteed to be different for every one-time key used,
followed by a sequence of 67 hash values. In turn, each of those hash values is
the last entry in a hash chain of length 16, and each of the hash computations
in that chain is also done with a unique ADRSC value linked to the ADRSC of the
public key, as shown in Figure 2.

SPHINCS+ uses a huge number of these one-time public keys – after 264

messages are signed, we expect to be able to find more than 262 such hashes,
each a plausible target.7

In this case, we can apply Antonov’s attack to construct a set of many
WOTS+ keys with different ADRSC values, herd them down to a single chain-
ing value, and then carry out a multi-target preimage attack against the original
keys’ hashes. The result is a chimera – a new one-time public key with the ADRSC

value of one of the target messages, many hash chains at the beginning which
the attacker has generated anew, followed by some hash chains at the end from
an existing key.

Original: PK.seed ADRSC PK0 PK1 PK2 . . . PK62 PK63 PK64 PK65 PK66

Chimera: PK.seed ADRSC PK∗
0 PK∗

1 PK∗
2 . . . PK∗

62 PK∗
63 PK64 PK65 PK66

same for both keys new values same for both keys

Fig. 6. Original key and chimera key

7 In this paper we assume that the attacker only chooses target WOTS+ keys from a
single SPHINCS+ key. However, an attacker may choose target WOTS+ keys from
multiple SPHINCS+ keys, in which case a successful attack would result in the ability
to forge messages for one of the targeted SPHINCS+ keys.



H(1) = C(IVSHA-256,PK.seed∥toByte(0, 64− n))
H(2) = C(H(1),ADRSc

i,j∥pki,j,0∥pki,j,1[0 . . . 9])
H(3) = C(H(2), pki,j,1[10 . . . 31]∥pki,j,2∥pki,j,3[0 . . . 9])
H(4) = C(H(3), pki,j,3[10 . . . 31]∥pki,j,4∥pki,j,5[0 . . . 9])
H(5) = C(H(4), pki,j,5[10 . . . 31]∥pki,j,6∥pki,j,7[0 . . . 9])
H(6) = C(H(5), pki,j,7[10 . . . 31]∥pki,j,8∥pki,j,9[0 . . . 9])
. . .
H(32) = C(H(31), pki,j,59[10 . . . 31]∥pki,j,60∥pki,j,61[0 . . . 9])
H(33) = C(H(32), pki,j,61[10 . . . 31]∥pki,j,62∥pki,j,63[0 . . . 9])
H(34) = C(H(33), pki,j,63[10 . . . 31]∥pki,j,64∥pki,j,65[0 . . . 9])
H(35) = C(H(34), pki,j,65[10 . . . 31]∥pki,j,66∥padding)
SHA-256(PK.seed,ADRSi,j , pk) = H(35)

Fig. 7. Computing the SHA-256 hash for a WOTS+ public key.

The chimera key contains the same beginning (PK.seed and ADRSC) as the
original key, and also the same final three hash values. But the rest of the hash
values in the key are newly produced by the attacker, and critically, the chimera
key has the same SHA-256 hash as the original key. To be more specific, the
values of PK∗

0...62, along with the first nine bytes of PK∗
63, must be chosen so

that the intermediate hash of the chimera key after processing those bytes is
identical to that of the original key after processing PK0...62 and the first nine
bytes of PK63. (In Figure 7, this intermediate hash value is H(33).)

Constructing such a chimera key whose hash matches one of the WOTS+

keys in the SPHINCS+ hypertree is a major part of our attack, but several more
steps are needed to get a complete forgery attack. Unfortunately, the chimera
key we get from Antonov’s attack cannot yet be used to create valid WOTS+

signatures.

The problem is as follows: in order to use the diamond structure, many dif-
ferent starting ADRSC values might be associated with the same chimera key. We
will not know which ADRSC value should be used until we have found the linking
message, that is, found a choice of ADRSC , pk0...62, pk63[0 . . . 9] whose intermedi-
ate hash is the same as the value of H(33) for one of the target WOTS+ keys.
Because the verifier will re-derive pk0...66 by iterated hashing of the elements
of the signature, and will incorporate ADRSC into those hash computations, the
value of ADRSC is bound to the hash chains. With very high probability, the
linking message will be to a different ADRSC than the one used to compute the
hash chains used for the herding step, and so the resulting chimera key won’t
work.

This leads to a key insight of our attack: Recall that signing a message with
WOTS+ starts by writing the hash of the message as a hexadecimal number.
Consider the ith digit of the hash. If the digit is any value except f, the verifier
must use the correct ADRSC to derive the value of pki. The value of pki is bound
to a single value of ADRSC in this case. But when the ith digit of the hash is f,
the verifier does not have to do any hashing operation the corresponding element
of the signature, and so ADRSC is not incorporated. Thus, when we construct the



chimera key, the first X hash chain values can be chosen to allow signing of any
digit; the next 62−X chains can be used only to sign the digit f, and the last
three chains will encode the checksum. This allows us to construct a chimera
key that can be used to sign at least some hashes.

4.2 Summary of Our Attack

The full attack thus happens in multiple phases.

1. Choose 2k target keys. Select a set of WOTS+ keys from the SPHINCS+

hypertree to target in the attack. We do this by examining the set of one-
time signature keys that have appeared in at least one SPHINCS+ signature.
Each such one-time key will have been used to sign either a Merkle tree root
or a FORS public key. We select a set of 2k target keys whose signatures
had acceptably low checksum values, for reasons explained below.

2. Generate 2k candidate keys. Each candidate key starts from the ADRSC

of one of the 2k target keys; one of these 2k ADRSC values will appear in our
final chimera key. For each candidate key, we generate X new hash chains
using the new key’s ADRSC , ensuring that we can sign any possible hex digit
in the first X digits of the hash with this key.

3. Build a diamond structure mapping all the new one-time keys to
the same hash chaining value. To do this, we start with 2k distinct
chaining values (one for each candidate key), and carry out a set of collision
attacks to reduce the number to 2k−2, then 2k−4, and so on until we get
down to a single hash chaining value.8 Each 512-bit message block reduces
our number of hash chains by a factor of four. In order to do the herding,
we select random values for the ends of the next Y hash chains. Note that
we only know the end value of these hash chains, and so when this key is
used, the corresponding digits of the hash can only be signed if they are f,
but they can be used in this way with any ADRSC . The result of this step is
a single hash chaining value (internal to SHA-256) that is reached by all 2k

of our new candidate keys.
4. Find a linking message. From that single hash chaining value, select Z

random values for the end of hash chains (filling in the values of one 512-
bit message block for SHA-256), so that the resulting hash chaining value
collides with a hash chaining value at the right position in one of our original
target messages. This is a multitarget preimage attack, and requires about
2256−k hash operations. Steps 1-4 are illustrated in Figure 8. In the diagram,
P1 . . . P8 are used as shorthand for the PK.seed and ADRSC of eight different
target keys; t0...7 are the intermediate hash values of the target keys just
before the checksum chains.

5. Construct the chimera key. We now have a chimera key–a WOTS+ key
whose first X hash chains are newly generated (and can be used to sign any

8 This assumes we search for 4-collisions at each step; optimizing the attack can vary
this–see Section 5.



hash digit), while its next Y +Z chains are random (and can be used to sign
only an f hash digit), and the last three (used to encode the checksum) are
original to the key whose ADRSC our chimera key has taken. The chimera
key has the same ADRSC and the same hash as that original key. The chimera
key produced consists of the following components:
(a) PK.seed
(b) The ADRSC of the target key – the one that will be replaced by the

chimera.
(c) X hash values from newly-generated hash chains with the correct ADRSC .

These will allow us to sign any value in the first X digits of the hash.
(d) Y + Z randomly-generated hash values. These will allow us to sign the

next Y + Z digits of the hash only if those digits are all f.
(e) Three hash values from the key that will be replaced by the chimera.

These encode the checksum from the signature produced by the original
key. Because of the properties of WOTS+, we can increase any digit of
the checksum and get a valid signature, but we cannot decrease any digit
of the checksum.

6. Sign a Merkle tree root or FORS key with the chimera key. Given
the chimera key, we can sign with it. While an ordinary WOTS+ key can
sign any hash, the chimera key can only sign a small subset of hashes–ones
with f digits in each of the Y + Z random chains’ positions, with the sum
of the free digits small enough to yield either the same checksum as the
one that appeared in the key’s original signature, or a checksum that can
be reached by incrementing the original checksum’s digits. We must do a
large brute-force search to find a Merkle tree root full of one-time keys or
a FORS key whose hash this chimera key can sign. However, note that this
need only be done once, to allow an arbitrary number of forged messages to
be produced.

7. Forge a signature. With the chimera key and its signature computed, we
now brute-force search for randomized messages until we find one whose
hypertree path (determined by the idx value) includes the location of the
original key, whose hash is the same as that of our chimera key. (This will
take less than 268 work.) Once we find such a message, we can use the new
one-time key or FORS key we signed with our chimera key to construct a
valid SPHINCS+ signature on the message.

Steps 3, 4, and 6 are each computationally very expensive. However, they
are done sequentially. The total cost of the attack is the sum of the costs of
building the diamond structure (step 3), finding the linking message (step 4),
and constructing a Merkle tree root or FORS key whose hash the chimera key
can sign (step 6).

Step 6 can only succeed for a very limited set of hash values. In this step,
we must create a Merkle tree root or FORS key whose hash value, written as a
hexadecimal string, follows the pattern:

xxxxxxxx xxxxxxxx xxxxxxxf ffffffff

ffffffff ffffffff ffffffff ffffffff



where an x may be any digit, but an f must be a hex digit f. Let C be the
checksum of the original key that was replaced by the chimera key, and S be the
sum of the digits of the hash. Along with following the above pattern, we must
find a hash value for which we can sign a valid checksum. Since 41 of the hex
digits must be f, the lowest possible value of the checksum is 0x159.

Each digit in the checksum can be increased but not decreased, to reach our
goal. If C > 960−S, then the chimera key cannot be used to construct any valid
signature. For this reason, we choose candidate keys based on the checksum they
produced when they signed. In general, we want the lowest checksums possible.
The probability of a random WOTS+ signature having an acceptable checksum
(for example, 0x140-143) is about 2−18, so with many WOTS+ keys that have
been used to create signatures to choose from (around 263 after all possible
signatures have been made with a given SPHINCS+ public key), we can always
find a large set (> 240) of target messages.

Finding a hash that can be signed by the chimera key is accomplished by a
brute force attack–we simply try many inputs to the hash until we get one that
can be signed. Depending on the location in the hypertree of the original key
that is to be replaced by the chimera key, we will either have to sign a root of
a Merkle tree or a FORS key. In either case, we can generate many candidate
values relatively efficiently by keeping most of the tree or key fixed and only
altering a single leaf in the tree (or leaf in the last tree of the FORS key).

Once we have successfully signed a single Merkle tree or FORS key with the
chimera key, we can use the Merkle tree’s WOTS+ keys or the FORS key to
sign arbitrary messages, as many as we like. Since the chimera key has the same
hash as the target WOTS+ key it has replaced, new SPHINCS+ signatures can
be constructed, substituting the chimera key and the new Merkle tree or FORS
key, but otherwise just like previous signatures with the same key.

4.3 Overview of the Forgery Attack on SPHINCS+-SHA-256 with
Category Five Parameters

In this section, we describe the full forgery attack against the SPHINCS+-SHA-
256-256f-simple parameter set from [2]. The basic idea behind the attack also
applies to the other category five SHA-256-based parameter sets from [2] (in-
cluding the ‘robust’ parameter sets), and would also apply to category five SHA-
256-based parameter sets that used a Winternitz parameter, w, other than 16.
The attacks follow the same basic outline, but some of the details differ.

In [1], Sydney Antonov’s goal was simply to find a message of the same
length as a WOTS+ public key (32 · 67 = 2144 bytes) that would hash to the
same value as the WOTS+ public key when using the same prefix (PK.seed and
ADRSC). In order to extend this into an forgery attack against SPHINCS+, we
must construct a chimera key which can be used to generate a valid signature
for at least some hash values.

In order to do this, our attack takes advantage of a detail of WOTS+ signa-
tures: The one-time public key is computed by hashing together the final value
in each of the 67 hash chains used in the signature. The signature contains 67



Fig. 8. Steps 1-4 of the attack

elements, each an entry in one of the hash chains, and the verifier must derive
the final entry in each hash chain from these.

When a given signature element is signing a hex digit of 0 . . . e, computing
the final element in that chain requires hashing the signature element, and that
hash incorporates the correct value of ADRS. But when the signature element
signs a hex digit of f, the verifier simply uses the provided element as the final
entry in that chain.

This means that the verifier’s processing of that signature element will be
identical, regardless of the ADRS.

Step 1 in the attack is to choose a set of t = 3 · 238 ≈ 239.58 targets. In
order to be able to sign a Merkle tree root, each digit in the checksum for that
root must be at least as large as in the original signature. So, targets with small
checksums need to be chosen. For this attack, t = 3 · 238 targets are chosen that
have a checksum of 319 or less. An attacker that has collected about 258 WOTS+

signatures should have access to 3 · 238 signatures with checksums of this form.

Step 2 is to create the starting points for the multi-target second-preimage
attack. For each of the t target keys (0 ≤ i < 3 · 238), we create a new string
which starts with the PK.seed and ADRSC value from the target key, and then
construct 22 hash chains using the ADRSC value and other metadata, so that we
will be able to sign arbitrary digits with these hash chains. We compute 22 secret
values (ski[0], . . . , ski[21]), and iterate through the hash chains to compute the
corresponding public values (pki[0], . . . , pki[21]). We then compute the twelfth

intermediate hash value, H
(12)
i .

Step 3 is to herd these 3·238 targets down to a single intermediate hash chain-
ing value. The process begins by creating 238 3-way collisions for the thirteenth
intermediate hash value, H(13). When creating an input value for the function,



f , values are chosen for sk[22] and the first ten bytes of pk[23]. Performing 238

3-way collision searches would require about 2214 calls to the compression func-
tion, but this cost can be dramatically reduced (to the approximate equivalent
of 2196 compression function calls accounting for memory costs) by performing
a batched multi-target multi-collision search as described in Section 5.4.

The herding process is completed by performing 19 rounds of 4-way collision

searches, resulting in all 3 ·238 targets having the same value for H
(32)
i . For each

round, the input value for the function, f , is an arbitrary 512-bit value. For the
corresponding portions of the WOTS+ key (pk[23], . . . , pk[61]) only the public
value will be known, and so only a digit with a value of 0xf may be signed. The
19 rounds would require about 2230 calls to the compression function, if 236.42

separate 4-way collision searches were performed, but the cost may be signifi-
cantly reduced by performing batched multi-target multi-collision searches. We
estimate the complexity of these searches in Equation 1 in Section 5.4. Account-
ing for memory costs as well as computation, the combined cost is approximately
equivalent to 2214.8 compression function calls.

Step 4 is to find a message block that links with an intermediate chaining
value in the right position in one of the target messages. Finding a message

block that collides with one of these 3 · 238 target vales for H
(33)
i should require

approximately 2256−39.58 = 2216.42 calls to the compression function.

Step 5 is to construct our chimera key, as discussed above.

Step 6 is to construct a Merkle tree or FORS key that can be signed by the
chimera key.

An initial Merkle tree is generated by creating 16 WOTS+ keys and then
computing the root of the Merkle tree for those keys. Additional Merkle tree
roots may be created by changing just the final public value for one of the 16
WOTS+ keys. Computing the new WOTS+ key and updating the Merkle tree
would require 20 calls to the compression function.910 New Merkle tree roots are
created until one is generated that has the form

xxxxxxxx xxxxxxxx xxxxxxxf ffffffff

ffffffff ffffffff ffffffff ffffffff

and that has a checksum that can be signed using the chimera key. More than(
26+23−1

26

)
≈ 244.64 Merkle tree roots that have this form, so finding one should

require less than 20 · 2256−44.64 = 2215.68 calls to the compression function.

The final step is to create a message whose signature makes use of the forged
Merkle tree or FORS key. Since SPHINCS+ uses randomized hashing, any mes-
sage can be signed by finding a randomizer that results in the forged Merkle
tree being used in the signing process. In the worst-case scenario, the forged
Merkle tree or FORS key will appear at the bottom the SPHINCS+ hypertree.

9 This can be optimized so that only one call to the compression function is required
to generate each additional Merkle tree root.

10 If the original key was used to sign a FORS key, then new FORS keys could similarly
be created at a cost for 17 calls to the compression function for each new key.



As there are 268 WOTS+ keys at the lowest level, approximately 268 random-
izers will need to be tried in order to find one that results in the correct path
through the hypertree being used. For each randomizer, two hashes will need to
be computed. One of the messages to be hashed will be short. The length of the
second message to be hashed will correspond to the length of the message to be
signed. Note that once the above steps are completed, we can forge arbitrarily
many new messages, each one costing about 268 work to create.

5 Optimizations and Attack Cost Calculations

Our attack uses subroutines that find multi-collisions and multi-target preimages
in generic functions. Here we review, and where necessary, adapt the best-known
techniques for doing this. We discuss how to estimate costs both in models that
ignore memory costs and in models that try to take them into account. As this
turns out to only make about 2 bits of security difference in the complexity
of our attack, we present our results only in terms of a fairly pessimistic 2-
dimensional model of classical memory. We also briefly discuss known quantum
speedups. While we don’t explicitly analyze how to optimize our attack to take
advantage of quantum computation, the existence of known quantum speedups
for multi-target preimage search, even in models of computation where memory
access is expensive, combined with the ability to drastically reduce the cost of
herding (e.g., by targeting 2-collisions instead of 4-collisions) likely means that
SPHINCS+’s claimed category five parameters using SHA-256, not only fail to
meet category five, but category four as well.

5.1 Collision Search and General Framework

All these techniques follow the paradigm of the Van-Oorschot, Wiener parallel
collision search [18]. In each case the computation is divided up among p par-
allel threads that repeatedly compose the function, f , which is being attacked,
starting with a seed, and stopping when a “distinguished point” is reached. The
distinguished point is defined by an output that meets a rare, easily identifiable
condition. For example, if it is desirable that the expected number of iterations
to reach a distinguished point is m, the distinguished point may be an output
value which is 0 modulo m. If any output value occurring in one chain appears
anywhere in a second chain (i.e., a collision occurs in f), then all subsequent
values in both chains will be the same, and both chains will reach the same dis-
tinguished point. The collision can be recovered by sorting the p distinguished
points to find any duplicates. Once a duplicate resulting from a collision has
been found, the actual colliding inputs can be recovered for an expected cost of
m additional computations of f ; assuming a total iteration count and seed value
have been saved for each thread, the collision is recovered by recomputing the
output values in both chains and comparing each pair of output values with an
iteration count offset by the difference in the number of iterations required to
reach the shared distinguished point.



If the function f can be modeled as random and has an n bit output size, then

it is expected that approximately (mp)2

2·2n collisions will be found (This approxi-

mation holds as long as p ≫ (mp)2

2·2n . When p < (mp)2

2·2n most of the computations
of f are duplicated across multiple chains and are therefore less useful.)

Depending on the parameters of the attack, (m and p), and assumptions on
the relative cost of computation, memory, and memory access, the dominant
cost of the attack may be any of the following:

1. Building and maintaining M = p(n+ p+ log2(m)) bits of memory.
2. Approximately mp computations of f required to compute the distinguished

points.
3. Sorting the list of p distinguished point values.

The last cost depends on assumptions regarding the cost of random access queries
to memory. If one, unrealistically, assumes memory access costs are independent
of the size of memory, the cost of sorting the distinguished points could be
assumed to be as small as np log2(p)). However, it is perhaps more reasonable
to assume the cost of random access to a memory of size M follows a power
law where, for a d-dimensional memory architecture, the cost per bit to read a
register from a memory of size M would be C ·M1/d. A popular choice of C and
d is given by [4], with C = 2−5 bit operation equivalents and d = 2. This latter
estimate likely overestimates the cost of memory access for very large memories,
so we will take it is an upper bound for memory costs in order to demonstrate
that our attack does not lose much efficacy when memory costs are taken into
consideration. For comparison, we will follow [17] in estimating the cost of the
SHA-256 compression function as requiring 218 bit operations.

5.2 Multi-target Preimage Search

The problem of finding a preimage of one of t targets with respect to a function
f with an n-bit output is discussed by [3], which considers classical and quantum
models of computation, with either O(1) or O(M1/2) memory access cost.

Classically, the non-memory cost of multi-target preimage search is 2n

t eval-
uations of f . Section 1.2 of [3] describes how to modify the techniques of [18] to
minimize memory costs without significantly increasing computation costs. By
our calculations, with respect to SHA-256, this technique makes memory access
costs negligible for t≪ 2106, which is the case in all examples we consider.

In the quantum case [3] gives a cost per thread for t-target preimage search,

using p-way parallelism of O(
√

2n

pt ) in the O(1) memory access cost case, and

O(
√

2n

pt1/2
) in the O(M1/2) case (the main result of the paper). If we assume,

following the NIST PQC Call For Proposals [17] that the quantum circuit is
depth-limited, then these costs represent a cost savings factor compared to single
target preimage search of O(t) in the O(1) memory access cost case and O(t1/2)
in the O(M1/2) case.



5.3 Multi-collision Search

The use of parallel collision search techniques for finding k-way collisions is de-
scribed in [10]. As with 2-way parallel collision search, the computation is divided
among p threads, each computing f iteratively on a seed until a distinguished
point is reached after an average of m steps. In order for a k-way collision to be
found with reasonable probability, the total number of computations of f , mp
must satisfy:

(mp)k

k! · 2n(k−1)
≥ 1,

and to ensure that most of the computations of f act on distinct inputs, p
must be set to be comparable to the expected number of 2-way collisions, i.e.,
so that:

p ≥ (mp)2

2 · 2n
.

5.4 Batched Multi-target Multi-collision Search

A key step in our attack requires us to herd together t/k groups of k hash inputs
where each hash input must have a prefix chosen without repetition from a list
of t targets S0, ..., St−1. We can relate this procedure to finding collisions in a
single function f by defining a function f(x) with an n-bit input and output
that hashes an input, injectively derived from x with the prefix Si indexed by
i = x mod t. Then our goal is to find t/k k-collisions in f meeting the constraint
that each input x has a different remainder mod t.

While it is possible to compute each k-collision individually, it is generally
more efficient to compute the k-collisions in large batches, taking advantage of
the fact that we don’t care which prefixes collide. This is because finding t/k
k-collisions in f only requires (t/k)1/k times as many queries to f as finding one
collision. This situation is somewhat complicated by the requirement that each
input has a different prefix, but nonetheless we find that efficiency is optimized
when k-collisions are computed in batches of size α(t/k), where α is a constant
of the same order of magnitude as 1, whose exact value depends on the cost of
f , the value of k, and assumptions about memory costs.

We expect a batch of α(t/k) k-collisions to contain approximately β(t/k)
k-collisions with different prefixes, where β is given by the differential equation
dβ
dα = (1 − β)k and the initial condition β = 0 when α = 0. Once this batch of
k-collisions is computed, the search for k-collisions continues recursively with t
reduced by a factor of 1− β.

Optimal values of α and β depend upon whether the complexity of batched
collision search is dominated by queries to f or memory access while sorting the
list of distinguished points. The number of queries required is proportional to
α1/k, while the size of the list of distinguished points is proportional to the square
of the number of queries, i.e., proportional to α2/k. If we assume, according to
a 2-dimensional memory model, that the cost of sorting the list scales with the



3/2 power of the list size, then rather than scaling as α1/k, the cost of computing
a batch of k collisions will scale like α3/k.

For k = 4 the values of α and β that minimize the cost per k-collision are
α = 3.27; β = 0.548 ignoring memory costs and α = 0.185; β = 0.137 assuming
costs are dominated by square root memory access costs while sorting the list of
distinguished points. Interestingly, the situation relevant to analyzing our attack
in a 2-dimensional memory model will turn out to be intermediate between these
two cases for reasons we will discuss shortly, so we will use α = 1; β = 0.37. For
k = 3 the cost of sorting is dominated by the cost of queries for all values of
t that are of interest to us, so whether memory is included or not, the optimal
values for α and β are α = 1.89 β = 0.543.

We will now go on to give a concrete estimate of the cost of batched 4-collision
search for t > 227 assuming the cost to access a bit of memory in a memory of
size M is equivalent to 2−5 ·

√
M bit operations, and the cost of the SHA-256

compression function is equivalent to 218 bit operations.
First we analyze the cost of computing f : Since the function f must retrieve

a chaining value corresponding to one of t target prefixes, as well as the address
string, computing f will require looking up approximately 29 bits in a memory
of size 29t. (We will assume this memory is shared among many threads so as not
to inflate the size of the memory in which the distinguished points are stored.)
The cost of this memory access is equivalent to 28.5t1/2 bit operations, and this
is the dominant cost of f for t > 227, even if computing f requires computing a
hash chain of length w − 1 = 15

The number of queries required by the first batch is q = 2192(4!αt/4)1/4,
and since the cost of a query is O(t1/2), the cost of a batch is O(t3/4), which
means each subsequent batch is cheaper than the previous batch by a factor of
(1− β)3/4. If we use the summation for a geometric series to estimate the total
cost of computing all batches required to find the full set of t/4 4-collisions, we
find that the total cost of queries to f is 1

1−(1−β)3/4
· α1/4t3/4 · 2200.8.

Now we consider the cost of sorting the list of distinguished points. In order
for p to be at least comparable to the number of 2-collisions existing in q queries,

we need p = q2

2·2256 . The cost of sorting distinguished points associated with the

first batch is then given by 2−5(29p)3/2, which is O(t3/4). We can therefore use
the same rule as before to sum the costs of all the batches. The resulting cost is

1
1−(1−β)3/4

· α3/4t3/4 · 2200.9.
Summing these costs with α = 1 (β = 0.37) gives a total cost of approxi-

mately 2203.7t3/4 bit operations, or the equivalent of approximately

MemoryCost(k = 4, t > 227) ≈ 2185.7t3/4 (1)

SHA-256 compression function calls.
If we instead ignore memory costs , then the cost of batched 4-collision search

is dominated by approximately 2195.5t1/4 queries to f . The computational cost
of the queries will either be 1 SHA-256 compression function computation (if
we can freely choose 256 input bits without needing to know a preimage) or 16
compression functions (if we need to construct a hash chain of length w−1 = 15).



We can do similar calculations for k = 3. In both the free memory cost model
and the square-root memory cost model, the cost is dominated by approximately
2173.4t1/3 queries to f . In the free memory cost model, the cost of each query is
the equivalent of either 1 or 16 compression functions (similar to the 4-collision
case). In the square root memory cost model, the total cost of all the queries is
the equivalent of 2162.8 · t5/6 compression function computations.

6 Conclusions

In this paper, we have shown how to extend Antonov’s attack on the PQ-DM-
SPR property in SPHINCS+ into a full signature forgery attack, allowing an
attacker to forge signatures on arbitrary messages. This attack requires access
to a large number of legitimate signatures formed by the key, and an enor-
mous computation which, while practically infeasible, is substantially below the
claimed security strength for the category five parameter sets of SPHINCS+.

We do not believe this attack calls the general soundness of the SPHINCS+

design into question. Combined with the earlier observations on the PQC forum
regarding weaknesses in category five security in the message hashing [19], it
seems clear that both their attack and ours are made possible by the SPHINCS+

designers’ attempt to use a 256-bit Merkle-Damg̊ard hash like SHA-256 to gener-
ically get 256 bits of security.11

Very recently in [8], Hülsing has described a set of tweaks to SPHINCS+ to
address a number of observations and proposed attacks, including Antonov’s and
ours. The relevant tweak for our attack is to the Tℓ tweakable hash function–for
category three or five security, the function now uses SHA-512 instead of SHA-
256. This change means that building the diamond structure and finding the
linking message (see Section 3) for the hash function requires at least 2256 hash
function computations, effectively blocking both Antonov’s attack and our own.

Our work leaves many questions open. Among them:

1. Are there still places within SPHINCS+ in which the internal properties of
SHA-256 can be used to carry out some attack with less than 2256 work,
despite the tweak? SHA-256 is still used in the definition of F and PRF,
even for category five security.

2. Can these or similar techniques be used to attack the category three (192
bit classical security) parameters?

3. Is there a technique to construct inputs to the hash which can be shown to
prevent all such attacks, despite using SHA-256 to achieve 256-bit security?
This would allow the use of the slightly more efficent SHA-256 instead of
SHA-512 for category three or five security.

11 Modeling a Merkle-Damg̊ard hash function as a random oracle can easily give mis-
leading results for more than 2n/2 queries. Indeed, even modeling the compression
function as a random oracle may not work, since the SHA-256 compression function
is constructed from a large block cipher in Davies-Meyer mode. Note that this means
that fixed points for the hash function are easy to find, as exploited in [6, 12].
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