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Abstract. We present an end-to-end (equivalent) key recovery attack on the Dilithium
lattice-based signature scheme, one of the top contenders in the NIST postquantum
cryptography competition. The attack is based on a small side-channel leakage we
identified in a bit unpacking procedure inside Dilithium signature generation. We
then combine machine-learning based profiling with various algorithmic techniques,
including least squares regression and integer linear programming, in order to leverage
this small leakage into essentially full key recovery: we manage to recover, from
a moderate number of side-channel traces, enough information to sign arbitrary
messages. We confirm the practicality of our technique using concrete experiments
against the ARM Cortext-M4 implementation of Dilithium, and verify that our attack
is robust to real-world conditions such as noisy power measurements. This attack
appears difficult to protect against reliably without strong side-channel countermea-
sures such as masking of the entire signing algorithm, and underscores the necessity
of implementing such countermeasures despite their known high cost.
Keywords: Dilithium · Lattice-based cryptography · Machine learning · Profiling
attacks · Side-channel analysis · Integer linear programming

1 Introduction
The plausible advent of general-purpose quantum computers in the coming decades is a
mounting threat to currently deployed public-key cryptography, and particularly digital
signatures such as RSA signatures and ECDSA, since those schemes are broken by Shor’s
algorithm [Sho97]. It therefore appears increasingly important to design and implement
quantum-resistant cryptographic schemes that are suitable for real-world deployment,
whether in terms of security, performance or practicality of implementation. This is the
aim of the ongoing NIST-led process to evaluate and standardize post-quantum primitives
for public-key encryption, key encapsulation and signatures [Cen20].

Post-quantum digital signatures can be based on a variety of cryptographic assumptions,
ranging from collision-resistant hash functions to the hardness of solving large multivariate
quadratic systems or finding isogenies between supersingular elliptic curves. Prominently
among those are assumptions related to Euclidean lattices: two of the three finalist digital
signatures in the NIST competition, Dilithium and Falcon, are lattice-based schemes.
Interestingly, those two schemes are instances of the two different design frameworks for
lattice-based signatures: the hash-and-sign approach for Falcon and the Fiat–Shamir with
aborts paradigm for Dilithium.
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Hash-and-sign signatures based on lattices have a longer history, starting with GGH
and NTRUSign [GGH97, HHGP+03], but the early constructions were quickly found to be
insecure [Ngu99, NR06], as each released signature would leak a small amount of information
of the signing trapdoor. The first successful construction dates back to a seminal paper of
Gentry, Peikert and Vaikuntanathan (GPV) [GPV08], who showed that a careful use of
lattice Gaussian sampling could eliminate the statistical leaks that plagued earlier attempts.
While the GPV scheme itself was not very practical, later developments improved the
efficiency of lattice-based hash-and-sign signatures [MP12, DLP14, CGM19, EFG+21], and
Falcon is in particular quite fast and compact. However, like almost all schemes in this
family, it retains the crucial reliance on lattice Gaussian sampling for its security. This
makes it tricky to implement, validate, and protect against side-channels.

In contrast, the Fiat–Shamir with aborts paradigm, introduced by Lyubashevsky
in [Lyu09], tends to give rise to simpler schemes, that have a structure similar to traditional
Fiat–Shamir schemes like Schnorr signatures, but with a twist to deal with the fact that
there is no uniform distribution on a lattice. Typically, those schemes only rely one
one-dimensional discrete Gaussian sampling (as is the case for [DDLL13]; this is already
considerably simpler than the lattice Gaussian sampling used in hash-and-sign signatures)
or no Gaussian sampling at all (as is the case for [GLP12]). Dilithium, in particular,
belongs to the second category, and the submission document states that eliminating the
reliance on Gaussian sampling is a deliberate design choice aiming at a greater ease of secure
implementation, particularly against side-channel attacks [LDK+20]. Indeed, Gaussian
sampling-based schemes have been the target of numerous devastating side-channel attacks.

Side-channel resilience has also been a point of focus of the NIST standardization
process from the get go. Indeed, the original call for proposals states that

Schemes that can be made resistant to side-channel attacks at minimal cost
are more desirable than those whose performance is severely hampered by any
attempt to resist side-channel attacks.

More recently, the latest PQC summary document (NISTIR 8309) notes that
NIST hopes to see more and better data for performance in the third round. This
performance data will hopefully include implementations that protect against
side-channel attacks, such as timing attacks, power monitoring attacks, fault
attacks, etc.

It is thus of particular importance to understand to what extent and at what cost the
finalists, including Dilithium, can be protected against side-channel attacks.

The reference implementation of Dilithium claims security against timing attacks,
and as mentioned earlier, the scheme has been designed with particular consideration for
side-channel resilience, but it does not necessarily offer protection against more powerful
attacks like differential power analysis. In fact, some amount of side-channel leakage has
been demonstrated in certain parts of the Dilithium signing algorithm. They have not
been turned into a complete end-to-end attack so far, however, so implementers may be
reluctant to embrace strong side-channel countermeasures like masking.

Indeed, while Migliore et al. [MGTF19] have described how Dilithium could be masked
at any order, and hence protected against arbitrary-order power analysis attacks, this
countermeasures comes at considerable cost. In fact, Migliore et al. restrict their practical
evaluation to the masking of a simplified version of Dilithium, instantiated with a power-
of-two modulus instead of the original prime modulus (which makes the countermeasure
much less costly), and even so, they find that the first-order masked signature scheme is
around five times slower than the unmasked scheme.

Contributions. In this work, we present a profiling-based power analysis attack on the
Cortex-M4 implementation of Dilithium achieving essentially full key recovery. To the best
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of our knowledge, this constitutes the first end-to-end attack on this signature scheme.
To describe our approach in a bit more details, we need to recall how Dilithium

signature generation proceeds at a high level. It is roughly similarly to Schnorr signatures
in cyclic group G = 〈g〉 of order p, which work by sampling some uniform random value y
modulo p, hashing the message µ together with gy to obtain c = H(µ, gy), and returning
the signature as (z, c) with z = y + cs (where s is the private key and a = gs the public
key). Verification is then carried out by checking whether c = H(µ, gz/as). Accordingly,
Dilithium proceeds as follows:

1. sample y as a random module element with uniform coefficients in some interval;

2. hash the message µ together with Ay (A a public matrix) to obtain c = H(µ,Ay),
a ring element with sparse 0/1 coefficients;

3. let z = y + cs1 (where s1 is the first part of the secret key);

4. return the signature as (z, c) provided that a certain rejection condition is met
(mostly stating that z has its coefficients in a small interval) and reject otherwise.

The starting point of our attack is identifying a power side-channel leakage in the
first step: the generation of the random y, which is carried out by constructing a certain
random string, and expanding it into a module element (a vector of polynomials) using bit
fiddling operations. Then, machine-learning assisted profiling lets us predict with relatively
high accuracy whether a given polynomial coefficient in one of the components of y is zero
or not. If we could do so with perfect accuracy, then the recovery of s1 would be a simple
matter of linear algebra: indeed, for each zero coefficient yi identified in this way, we get
the relation zi = 0 + (cs1)i, and since both zi and c are known, this gives a linear relation
on the coefficients of s1. Collecting sufficiently many of those reveals s1 in full.

However, the machine learning predictor is not perfectly accurate in practice, so two
challenges naturally present themselves. On the one hand, we want to improve the accuracy
of the predictor as much as possible, which is mainly a matter of improving the profiling
phase of the attack (mainly by adjusting the hyperparameters of our ML model, and
by carefully choosing the learning data). On the other hand, we need to solve a noisy
linear system involving the secret key while minimizing the number of required traces. We
consider several possible approaches to do so, and find that expressing the problem as an
integer linear program offers the best results in practice for our particular setting.

We validate our attack by mounting it on the full Cortex-M4 implementation of
Dilithium in a realistic attack setting, by capturing actual, noisy power traces and using
them to train and apply our ML model, and then recovery the full vector s1. Although s1
is not the entire secret key, it has been shown in previous work [RJH+18, GBP18] that
knowing s1 suffices to sign essentially arbitrary messages, so its recovery is essentially as
good as full key recovery.

As an aside, we note that Dilithium has two variants that differ in the way the vector
y is generated: one is deterministic (in the spirit of EdDSA) and the other is probabilistic
(aiming at thwarting certain classes of implementation and fault attacks, in the spirit
of signatures with hedged randomness [AOTZ20]). However, our attack applies to both
variants, since the bit-fiddling step we target is common to both of them. Moreover, our
attack extracts information about the vector y per signature, from a single trace. Thus,
while sampling a different vector y per execution does indeed thwart attacks that rely on
aggregating traces, the randomization does not yield additional protection in our case.

All in all, this paper demonstrates a new power side-channel leakage in Dilithium, and
leverages into an ML-assisted profiling attack that achieves essentially full key recovery.
The attack relies on a novel, non trivial algorithmic decoding step based on integer linear
programming, and is validated against the Cortex-M4 implementation of Dilithium.
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Related work. Side-channel attacks were introduced by Kocher et al. [KJJ99] and are
considered one of the main threat against cryptographic algorithms deployed in embedded
systems, and have also been demonstrated on larger devices like smartphones and desktop
computers, as well as remotely over the internet. In a side-channel attack, an attacker does
not exploit mathematical weaknesses or invalid behavior of an implementation but uses
physical information to reveal secret data. The attacker measures physical information
(for instance, power consumption, electromagnetic emanations, elapsed time, etc.) during
the execution of cryptographic operations in order to gain information about sensitive
internal data, including secret keys.

Although no end-to-end side-channel analysis of Dilithium has been presented so far to
the best of our knowledge, several earlier works did demonstrate potential side-channel
leakage in various parts of the signing algorithm.

In [FDK20], P. Fournaris et al. present a correlation-based differential side-channel
analysis of the polynomial multiplication operation c · s1 during signature generation. The
analysis considers various multiplication algorithms (schoolbook multiplication, NTT or
sparse multiplier), and argues that mounting a correlation power analysis is in principle
feasible with all of them. The authors also verify that the required leakage is detectable on
power traces of Dilithium signature generation implemented on a commercial off-the-shelf
embedded system board. However, they do not mount the full actual attack, evaluate
the number of traces it would actually require in practice, or quantify the sensitivity to
measurement noise.

A more detailed theoretical analysis along the same lines in carried out by Ravi et
al. [RJH+18], although only for schoolbook multiplication and sparse multiplication. The
paper discusses the feasibility of key recovery in several idealized leakage models, and
does some extent of evaluation of the effect of leakage noise. However, they again do not
attempt to actually mount an attack on an actual implementation. Moreover, the NTT,
which is used in the actual implementation of Dilithium, is not considered.

Aside from polynomial-multiplication-related vulnerabilities, several points of interest
are identified by Migliore et al. [MGTF19] as leaking sensitive values, particularly in
the rounding functions (low and high bits calculations), and the rejection sampling
executed during signature generation. Using test vector leakage assessment on a Cortex-
M3 implementation of Dilithium, they show that these functions do present detectable
leakage, and can thus, again in principle, be exploited by differential power analysis. Again,
however, they do not mount an actual attack (and only use those leakage points to evaluate
the side-channel resistance of the masked implementation presented in the paper.

In a different direction, Groot Bruinderink et al. [GBP18] present a fault injection
attack on Dilithium which aims at creating a nonce-reuse scenario. Groot Bruinderink et
al. demonstrate that single random faults in the Dilithium signature can lead to nonce
reuse. They perform their attack on an ARM Cortex-M4 microcontroller and prove that
the success probability for all fault scenarios can reach 91%.

An interesting feature of [RJH+18] and [GBP18] is that they only consider the recovery
of the main secret key element s1, and therefore discuss how signing is possible using just
that knowledge. The same techniques can be used in our setting as well.

Organization of the paper. The remainder of this paper is organized in six sections. In
Sec. 2, we give preliminaries on the Dilithium scheme and the use of machine-learning
classifier in our side-channel attack. In Sec. 3, we give an overview on the attack and the
attacker’s model. Likewise, we analyze the weakness of Dilithium against machine-learning
power side-channel analysis in Sec. 4. In Sec. 5, we present a detailed mathematical
description of the attack strategy and its resistance against noisy measurements. Then,
we describe our experimental setup for the profiling and the attack phases in Sec. 6 and
present the results of our attack. We conclude the paper with Sec. 7 where we discuss
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possible countermeasures against our attack.

2 Background
2.1 Notation
For any integer q, the ring Zq is represented by the set [−q/2, q/2) ∩ Z. We denote
Zq[X] = (Z/qZ[X]) as the set of polynomials with integer coefficients modulo q. We define
Rq = Zq[X]/(Xn + 1), the ring of polynomials with integer coefficients modulo q, reduced
by the cyclotomic polynomial Xn + 1. For any α < q, Rα refers to the set of polynomials
with coefficients in

[
−α2 ,+

α
2
]
. By default, we use the L∞-norm: ‖v‖∞ = maxi |vi|.

By vec(·) we denote the function which maps a vector of polynomials in the ring Rq to
the vector obtained by concatenating all coefficients of the respective polynomials.

In the following expressions, all polynomial operations are performed in Rq. Bold
lowercase letters represent vectors with coefficients in R or Rq . Bold uppercase letters are
matrices. Similarly, vector coefficients are represented by roman lowercase letters.

2.2 Lattices
A lattice Λ is a discrete subgroup of Rn such that given m ≤ n are linearly independent
vectors b1, . . . ,bm ∈ Rn, the lattice Λ = Λ(b1, . . . ,bm) is the set of all integer linear
combinations of the bi’s, i.e.,

Λ(b1, ...,bm) =
{ m∑
i=1

xibi

∣∣∣ xi ∈ Z
}
,

where b1, . . . ,bm is the basis of Λ and m is the rank. In this paper, we consider
full-rank lattices, i.e., with m = n. An integer lattice is a lattice for which the basis vectors
are in Zn. Usually, we consider elements modulo q, i.e., the basis vectors and coefficients,
are taken from Zq.

2.3 Learning With Errors
The Learning with Errors problem (LWE), a generalization of the classic Learning Parity
with Noise problem (LPN), was introduced by Oded Regev [BDK+20].

Definition. Let n, q be positive integers, and χ be a distribution over Z . For s ∈ Znq ,
the LWE distribution As,χ is the distribution over Znq × Zq obtained by choosing a ∈ Znq
uniformly at random and an integer error e ∈ Z from χ. The distribution outputs the pair
(a, 〈a, s〉+ e mod q) ∈ Znq × Zq.

There are two important computational LWE problems:

• The search problem is to recover the secret s ∈ Znq given a certain number of samples
are drawn from the LWE distribution As,χ.

• The decision problem is to distinguish a certain number of samples drawn from the
LWE distribution from uniformly random samples.

2.4 Dilithium Description
The Dilithium signature scheme is based on the Fiat-Shamir with aborts structure [Lyu09].
It can also be seen as a variant of the Bai-Galbraith scheme (BG) [BG14]. Dilithium is
one of the most promising post-quantum signatures submitted to the NIST competition
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[Cen20]. At the moment of writing this paper, Dilithium has reached the third round of
the NIST competition.

Dilithium depends on parameters q, n, k, l, η, d, γ1, γ2, β, w, and τ . Details about
constraints and recommended values for these parameters are provided in the specifications
[BDK+20]. In this paper, we point the reader to the following set of recommended
parameters: (q = 8380417 = 223 − 213 + 1, n = 256, k = 4, l = 4, η = 2, d = 13, γ1 = 217,
γ2 = q − 1/88, β = 78, w = 80, τ = 39). In addition, the scheme also uses:

– H: a collision-resistant hash function

– ExpandMask : A function used to deterministically generate the randomness of the
signature scheme, maps a seed ρ′ and a nonce κ to Slγ1

– ExpandA: A function that maps a uniform seed {0, 1}256 to a matrix A ∈ Rk×lq

– CRH: A collision resistant hash function

For complete details of these functions, please refer to [BDK+20]. The scheme is known to
perform well in terms of its key size (i.e., Dilithium-II has a public key of 1,312 bytes and
a signature of 2,420 bytes) and the signing process speed (i.e., its signing process takes
251,144 cycles and its signature verification takes 72,633 cycles on a Skylake CPU, AVX
implementation) [BDK+20].

Dilithium performs well because of its different techniques. First, Dilithium is instanti-
ated with Module-LWE. Module-LWE deals with matrix of “small” polynomials instead
of a unique one as in Ring-LWE. Module-LWE addresses the limitation of R-LWE: the
size of polynomials increases with security. For Module, only the number of rows and
columns impacts security, not the size of polynomials—which can be set the same for all
instantiations (256 coefficients for Dilithium).

Another optimization employed by Dilithium is the key compression mechanism to
reduce public key size. The compression is done in two different ways. First, the sampling
of A is produced with an XOF function (Extendable Output Function), which generates a
(deterministic) pseudo-random string from a small seed. Therefore, the public key contains
the seed instead of the polynomial A. Another compression is a per-coefficients truncation
(or rounding) associated with a correcting code mechanism to guess truncated bits.

In the following section, we give a description of the key generation, signing, and
verification processes of the Dilithium scheme.

Key Generation. The key generation algorithm is presented in Alg. 1. First, it generates
a uniform seed ρ. Then, the function ExpandA maps a uniform seed to a matrix A. Given
that s1 and s2 are two secret random vectors, each coefficient of these vectors is an element
of the polynomial ring Rq and is of small size at most η (See Tab.1 in the Dilithium
specification [BDK+20]). Next, the public key pk is computed as t = As1 + s2 (Alg. 1,
Line 5). Note here that only the first d bits of t are public. This rounding technique yields
to a public key size reduction.

Signing. The authors of Dilithium specified a non-deterministic signing algorithm. This
was added to avoid recent side-channel attacks that exploit determinism [BDK+20]. The
signing process is described in Alg. 2. It starts with generating a vector of polynomials y
with coefficients less than a defined constant γ1 [BDK+20] (Alg. 2, Line 6). The signer
retrieves the highest-order bits of Ay and computes w. Precisely, each coefficient wi of Ay
is written in the form wi = w1,i.2γ2 + w0,i, where |w0,i| ≤ γ2; w0, w1 are the vectors of
coefficients w0,i and w1,i respectively. Then, a challenge c is generated as the hash of the
message and w1 (Alg. 2, Line 9). The potential signature is then calculated as z = y + cs1,
where c is sampled with the function Bτ . This function generates an element having τ
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Algorithm 1 Key generation
1: ζ ← {0, 1}256

2: (ρ, ς,K) ∈ {0, 1}256×3 := H(ς)
3: (s1, s2) ∈ Slη × Skη :=H(ς)
4: A ∈ Rk×lq := ExpandA(ρ)
5: t = As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}384 := CRH(ρ ‖ t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Signature generation
1: A ∈ Rk×lq := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(tr ‖ M)
3: κ := 0, (z,h) := ⊥
4: ρ′ ∈ {0, 1}384 := CRH(K ‖ µ) (or ρ′ ← {0, 1}384 for randomized signing)
5: while (z,h) := ⊥ do
6: y ∈ S̃lγ1

:= ExpandMask(ρ′, κ)
7: w := Ay
8: w1 := HighBitsq(w, 2γ2)
9: c ∈ Bτ :=H(µ ‖ w1)

10: z := y + cs1
11: r0 := LowBitsq(w− cs2 , 2γ2)
12: if ‖z‖∞ ≥ γ1 − β and ‖r0‖∞ ≥ γ2 − β then
13: (z,h := ⊥)
14: else
15: h := MakeHintq(−ct0 , w− cs2 + ct0 , 2γ2)
16: if ‖ct0‖ ≥ γ2 or the # of 1’s in h is greater than w then
17: (z,h) := ⊥
18: end if
19: end if
20: κ := κ+ l
21: end while
22: return σ=(z,h,c)

coefficients with values either -1 or 1, and the rest, 0. A rejection condition is applied to
the signature z in order to avoid dependency on the security key. The parameter β is set
to be the maximum possible coefficient of csi. Since c has a defined number of non-zero
elements and the maximum coefficients in si is η, the absolute value of each coefficient in
csi is less than or equal to β = τ · η. If any of the z coefficients is larger than γ1 − β, then
a rejection occurs and the signing process restarts (Alg. 2, Line 6). In the same manner,
the restart also occurs if the low-order coefficients of Az− ct is greater than γ2 − β. The
rejection probability as explained in [BDK+20] is low (between 4 and 7 per signature).
The MakeHintq procedure (Alg. 2, Line 15) produces hints to help guessing the shrunk
bits of the public key.

In the deterministic version of Dilithium, a seed is added to the secret key and is used
together with the message to produce the randomness y (Alg. 2, Line 6).

Verification. The verification algorithm is described in Alg. 3. The verifier computes
the high-order bits of Az− ct, and accepts if all the coefficients of z are less than γ1 − β
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Algorithm 3 Signature verification
1: A ∈ Rk×l

q := ExpandA(ρ)
2: µ ∈ {0, 1}384 := CRH(CRH(ρ‖t1)‖ M)
3: w′1 := UseHintq(h, Az− ct1.2d, 2γ2)
4: if ‖z‖∞ < γ1 − β and c = H(µ ‖w′1) and # of 1’s in h is≤ ω then
5: return 1
6: else
7: return 0
8: end if

provided that c is the hash of the message and w′
1. A valid signature should satisfy:

HighBitsq(Ay, 2γ2) = HighBitsq(Ay− cs2, 2γ2).

We know that ‖LowBitsq(Ay − cs2)‖∞ ≤ γ2 − β and cs2 coefficients are smaller than
β. Then, adding cs2 will not cause carries by increasing the low-order coefficient to have
magnitude of at least γ2.

2.5 Universal Forgery Assuming Partial Secret-Key Knowledge

In what follows, we present the universal forgery attack on Dilithium assuming the
knowledge of partial secret key s1. In doing so, we acknowledge the work of Ravi et al. in
[RJH+18].

We assume an attacker has the knowledge of s1. Our goal is to generate a valid
signature of a message. In the deterministic version of Dilithium, K is public and is used
to deterministically generate randomness y (Alg. 2, Line 6). The attacker proceeds from
line 6 to 10 (Alg. 2) by choosing y, uniformly at random, from Slγ1−1 in line 6 (Alg. 2)
and computing the signature z using the partial knowledge of s1 (Alg. 2, Line 10). In the
signature verification (Alg. 3), the attacker requires the knowledge of w1. It is proven that
P [w1 = HighBitsq(w− cs2)] is very close to 1 [BDK+20].

Note that w−cs2 = (−ct0)+(w−cs2+ct0). We write u = −ct0 and r = w−cs2+ct0.
As we know that P [‖u‖∞ ≤ γ2] ≈ 1, which means ‖ − ct0‖∞ ≤ ‖t0‖∞ < 2d < γ2. Hence,
the attacker can compute w1 as:

UseHintq(MakeHintq(u, r, 2γ2)) = HighBitsq(u+r, 2γ2) = HighBitsq(w−cs2, 2γ2) = w1

The attacker needs to compute the hint matrix h = MakeHintq(u, r, 2γ2) without the
knowledge of t0 (u = −ct0). This was done by Ravi et al. in [RJH+18]. The authors
of [RJH+18] showed that the function UseHintq(u, r, α) can be inverted to produce the
correct hint only if ‖u‖∞ ≤ α/2. Therefore, in order to compute the hint h, the attacker
has access to HighBitsq(u + r, 2γ2) = HighBitsq(w− cs2), where r = w− cs2 + ct0 and
can easily be computed as w− cs2 + ct0 = Az− ct1 · 2d. Another condition to satisfy is:
‖LowBitsq(w− cs2, 2γ2)‖∞ ≤ γ2 − β which the attacker cannot, as he is unknown to the
value of s2. However, it has been proven in the Dilithium specification [BDK+20] that
P [‖LowBitq(w− cs2, 2γ2)‖∞ ≤ γ2 − β] is very close to 1.

Bruinderink. et. al. [GBP18] also present a method to achieve signature forgery after
recovering the secret key s1. The method leverages the fact that u = t0 − s2, which can
be computed as u = u = As1 − t1 · 2d = t0 − s2, approximately matches t0, given s2’s
small coefficients. Thus, we can compute a hint h that will be accepted with probability
using u only and instead of t0 and s2.
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2.6 Machine-Learning Model for Profiling Side-Channel Analysis
The main idea behind profiling techniques is that side-channel measurements follow an
unknown distribution that can only be approximated by an assumed statistical distribution
for the leakage. Among all, template attack is known as the first and best-known method
for profiling attacks, where an attacker assumes that the leakage follows a multi-variate
Gaussian distribution [BL12].

The advent of machine learning techniques resulted into more profiling attacks later.
These techniques allow the attacker to train a classifier to learn automatically from the
profiling set of the statistics of the unknown leakage distribution. Thus, one advantage of
machine learning over template attacks is that the profiling model is learned without any
assumption about the statistical distribution of the leakage.

Profiling side-channel attacks are performed in two phases: profiling and attack. The
profiling phase can be achieved by creating a template [APSQ06, CPM+18], or training a
model e.g., artificial neural networks such as Multilayer Perceptron (MLP), Convolutional
Neural Networks (CNN), among others [BFD20, KPH+18, MPP16, SKL+20]. When using
an artificial neural network, the profiling phase requires network training to learn the
target device leakage for all possible values of the sensitive variable. In this paper, we use
MLP models as a methodology to achieve the profiling, which consist of: the input layer,
at least one hidden layer, and the output layer.

The input layer directly receives the data, whereas the output layer creates the required
output. The layers in between are known as hidden layers where the intermediate computa-
tion occurs. In the training phase, the hidden layers enhance the ability of MLP classifiers
to learn a non-linear function f : X → Y by training on data sets X and Y . The set X
represents the traces captured from the profiling device while Y is the label according to
the selected leakage model such as the Hamming weight or value of the desired variable.
MLP models are composed of multiple layers of perceptrons. The perceptron passes the
input into a non-linear activation function and produces an output. Next, in the attack
phase, the trained classifier is used to classify the captured traces from the victim’s device
and predict the sensitive information.

3 Overview of the Attack
3.1 Main Idea
We present a profiling side-channel attack targeting the leakage in the implementation of
the bit-unpacking function. The bit-unpacking function is executed multiple times during
the signing process. It converts a byte buffer into the vector y, an intermediate value
computed and used during the signing process.

We adopt a profiling attack composed of two phases: the profiling phase and the attack
phase. During the profiling phase, we execute the signing process with random input
messages on a device and collect the sub-traces corresponding to the power usage during
the execution of the bit-unpacking function. We label the sub-traces with the sensitive
internal data that will be leaked (i.e., zero and non-zero coefficients) and we train our
classifiers. In a real-world scenario, an attacker would need access to a cloned device
with an architecture identical to the device under attack and can be controlled by the
attacker to facilitate the collection of training data for the classifiers. Likewise, in the
attack phase, by observing the power traces of the signature generation on Device B, the
trained classifier is used to predict the sensitive internal data generated during the signing
algorithm with high accuracy. Together with known challenge vector elements (i.e., A, z,
and c, as described in Sec. 2), we map the (potentially wrong) predictions obtained into a
system of linear equations. We use the Least Squares Method (LSM) to get a solution
candidate. Then, we uncover the secret key s1 by solving an Integer Linear Program (ILP).
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We follow the alternative signing procedure proposed in [RJH+18, GBP18] to generate a
valid signature for arbitrary messages with only the secret key polynomial s1.

3.2 Attacker Model
The goal of this attack is to reconstruct the first part of the secret key of Dilithium. We
conduct a profiling machine-learning-based side-channel attack and assume the following:

– In the profiling phase, the attacker has access to a similar cloned device (Device A)
as the victim’s device. Thus, the attacker can measure the power trace of the entire
signing process.

– There are no additional conditions on the secret key and on the messages used in
the profiling and attack phases.

– In the attack phase, we assume that the attacker can trigger several signatures on the
device under attack (Device B), where the same secret key is used for all signatures.

– There are no conditions on the determinism of the Dilithium-targeted version. Our
attack can be mounted against both the deterministic and non-deterministic versions
of Dilithium.

4 Power Side-Channels Leakage in Dilithium
We enclosed the code and the data required for the profiling and attack phases along with
the paper during the submission. It will be published if the paper is accepted.

4.1 Identifying Leaking Points
The leaking point we identified is a function used when generating the vector y (Alg. 2,
Line 6). In the reference implementation of Dilithium [BDK+], the initial randomness
seed ρ′ is extended through an Extensible Output Function (XOF) such as SHAKE-256
or AES-256. The resulting bit-string is then viewed as a byte string and unpacked into `
polynomials, where each polynomial is unpacked separately. To unpack a bit-string into a
polynomial, the byte-string is transformed into a positive number from {0, . . . , 2γ1}. Then,
we subtract this number from γ1. List. 1 lists the C code of the bit unpacking for one
polynomial as found in the Dilithium reference implementation [BDK+]. Note that in the
ith iteration of the N/4 iterations, four coefficients are unpacked namely the (i)th, (i+ 1)th,
(i+ 2)th, and (i+ 3)th coefficients.

1 void polyz_unpack ( poly ∗r , const uint8_t ∗a ) {
2 unsigned i n t i ;
3 f o r ( i = 0 ; i < N/4 ; ++i ) {
4 r−>c o e f f s [ 4∗ i +0] = a [9∗ i +0] ;
5 r−>c o e f f s [ 4∗ i +0] |= ( uint32_t ) a [9∗ i +1] << 8 ;
6 r−>c o e f f s [ 4∗ i +0] |= ( uint32_t ) a [9∗ i +2] << 16 ;
7 r−>c o e f f s [ 4∗ i +0] &= 0x3FFFF ;
8

9 r−>c o e f f s [ 4∗ i +1] = a [9∗ i +2] >> 2 ;
10 r−>c o e f f s [ 4∗ i +1] |= ( uint32_t ) a [9∗ i +3] << 6 ;
11 r−>c o e f f s [ 4∗ i +1] |= ( uint32_t ) a [9∗ i +4] << 14 ;
12 r−>c o e f f s [ 4∗ i +1] &= 0x3FFFF ;
13

14 r−>c o e f f s [ 4∗ i +2] = a [9∗ i +4] >> 4 ;
15 r−>c o e f f s [ 4∗ i +2] |= ( uint32_t ) a [9∗ i +5] << 4 ;
16 r−>c o e f f s [ 4∗ i +2] |= ( uint32_t ) a [9∗ i +6] << 12 ;
17 r−>c o e f f s [ 4∗ i +2] &= 0x3FFFF ;
18
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19 r−>c o e f f s [ 4∗ i +3] = a [9∗ i +6] >> 6 ;
20 r−>c o e f f s [ 4∗ i +3] |= ( uint32_t ) a [9∗ i +7] << 2 ;
21 r−>c o e f f s [ 4∗ i +3] |= ( uint32_t ) a [9∗ i +8] << 10 ;
22 r−>c o e f f s [ 4∗ i +3] &= 0x3FFFF ;
23

24 r−>c o e f f s [ 4∗ i +0] = GAMMA1 − r−>c o e f f s [ 4∗ i +0] ;
25 r−>c o e f f s [ 4∗ i +1] = GAMMA1 − r−>c o e f f s [ 4∗ i +1] ;
26 r−>c o e f f s [ 4∗ i +2] = GAMMA1 − r−>c o e f f s [ 4∗ i +2] ;
27 r−>c o e f f s [ 4∗ i +3] = GAMMA1 − r−>c o e f f s [ 4∗ i +3] ;
28 }
29 }

Listing 1: C Implementation of the bit-unpacking function as in the Dilithium reference
implementation [BDK+]

To test whether this function leaks information about the coefficients of the generated
polynomial through the power traces of its execution, we leverage Welch’s t-test. We
restrict our measurement setup to collect a power trace of one iteration of the loop executed
in polyz_unpack function. This iteration i unpacks the (i)th, (i + 1)th, (i + 2)th, and
(i+ 3)th coefficients. We now want to test which of the generated coefficients the power
trace leaks information on: (i)th, (i + 1)th, (i + 2)th, or (i + 3)th. For each of the four
coefficients, we follow a fixed-vs-random approach to identify if the power trace leaks:

1. We collect multiple power traces where the respective coefficient is unpacked to zero.
We denote the set of traces so collected by LA.

2. We collect multiple power traces where the respective coefficient is unpacked to
non-zero and denote the set of traces by LB .

3. For each sample in the collected traces, we then perform Welch’s t-test to identify if
the distribution from the traces in LA in that sample is different from LB .

The results of our t-test evaluations are depicted in Fig. 1. For each coefficient, we can see
clear peaks in the t-test values that exceed the necessary value for a t-critical value for a
confidence level of p = 0.05. This is a strong indicator that the power traces indeed leak
information about whether a certain coefficient is zero or non-zero.
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(a) t-values for the (i + 0)th coefficient
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(b) t-values for the (i + 1)th coefficient
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(c) t-values for the (i + 2)th coefficient
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(d) t-values for the (i + 3)th coefficient

Figure 1: t-values for a fixed vs. random t-test of the unpack function (using 21692 traces).
The red line indicates the positive and negative t-critical value at a confidence value of
p = 0.05.

Profiling Phase. To prepare the profiling, we executed the signing process with random
input messages. The bit-unpacking function is called multiple times during the signing
algorithm, when generating the vector y (Alg. 2, Line 6). It converts a byte buffer into a
polynomial of N coefficients. The unpacking routine occurs in N/4 iterations. In every
iteration i, four coefficients are unpacked i.e., the (i)th, (i+ 1)th, (i+ 2)th, and (i+ 3)th
coefficients. We noticed that the unpacking of every coefficient necessitates the execution
of different instructions. For that reason, we trained four different neural networks, each
using 548 samples as input, corresponding to the execution of the unpacking function in
List. 1. While we failed to predict the exact value of the unpacked coefficients from the
obtained power traces, each one of these traces is susceptible to reveal whether the (i)th,
(i + 1)th, (i + 2)th, and (i + 3)th coefficients are zero, which is sufficient to mount our
attack.
Fig. 2 illustrate multiple executions of the unpacking routine to unpack the (i)th, (i+ 1)th,
(i + 2)th, and (i + 3)th coefficients respectively. The blue lines indicate the unpacking
of the non-zero coefficients while the red lines, that of the zero coefficients. In order to
visualize the difference in the graph when the unpacking result is zero or non-zero, the
power consumption traces are overlapped.
Although the difference is clear, an attacker cannot deduce the value of the unpacked
coefficient from the power consumption trace with unaided eyes. Therefore, we train
different machine-learning classifiers to predict the unpacked coefficient.
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(a) (b)

(c) (d)

Figure 2: Overlapped power consumption traces of the bit-unpacking of the polynomial y;
the blue lines illustrate when the unpacked coefficient is zero and the red lines illustrate
when the unpacked coefficient is non-zero; traces (a), (b), (c), and (d) corresponds to the
unpacking of the the (i)th, (i+ 1)th, (i+ 2)th, and (i+ 3)th coefficient, respectively.
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With the prepared traces and their corresponding labels, we are able to build for each
classifier a list of examples (x, y) ∈ Rt × Y , anticipating that x leaks information about y.
The power traces x ∈ Rt act as the features and the unpacked coefficients y ∈ Y as the
labels. The list of these (noisy) examples (x, y) is split into training, validation, and test
set of the Multi-Layer Perceptron (MLP) machine learning model.

As the choice of model and training parameters can have a decisive influence on
the prediction accuracy of the resulting model, our hyper-parameters for each classifier
were chosen by the hyperparameter optimization technique HYPERBAND [LJD+16].
HYPERBAND is a principled early-stoppping algorithm for hyperparameter optimization,
that adaptively allocates a pre-defined resource, e.g., iterations, data samples or number
of features, to randomly sampled configurations [LJD+16]. We present in Tab. 1 the MLP
architecture used for the four classifiers in order to predict respectively the four unpacked
coefficients of the polynomial y in each iteration i of the unpacking routine. An overview
of the obtained accuracy, precision, recall, and specificity of each classifier is shown in
Tab. 2.

Table 1: MLP architecture of the classifiers 0, 1, 2, and 3 used for the predictions of the
(i)th, (i+ 1)th, (i+ 2)th, and (i+ 3)th coefficients respectively; i < 256/4

Layer Type (Input, output) shape # Parameters

C
la
ss
ifi
er

0

Dense (548, 385) 211365
Dropout (385, 385) 0
Dense (385, 17) 6562
Dropout (17, 17) 0
Dense (17, 97) 1746
Dropout (97, 97) 0
Dense (97, 1) 98

C
la
ss
ifi
er

1

Dense (548, 385) 211365
Dropout (385, 385) 0
Dense (385, 17) 6562
Dropout (17, 17) 0
Dense (17, 97) 1746
Dropout (97, 97) 0
Dense (97, 1) 98

C
la
ss
ifi
er

2 Dense (548, 465) 255285
Dropout (465, 465) 0
Dense (465, 257) 119762
Dropout (257, 257) 0
Dense (257, 1) 258

C
la
ss
ifi
er

3

Dense (548, 385) 211365
Dropout (385, 385) 0
Dense (385, 17) 6562
Dropout (17, 17) 0
Dense (17, 97) 1746
Dropout (97, 97) 0
Dense (97, 1) 98

Attack Phase. In the attack phase, we sign a number of uniform, randomly chosen,
attacker-known messages. Then, we collect the trace snippets of the bit-unpacking function.
We store the obtained traces along with all public information about the signature process
(i.e., A, z, and c). With the recorded power trace snippets, the attacker is able to use
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Table 2: Accuracy, Precision, Recall, and Specificity of the classifiers 0, 1, 2, and 3 used
for the predictions of the (i)th, (i+ 1)th, (i+ 2)th, and (i+ 3)th coefficients respectively;
i < 256/4

Classifier 0 Classifier 1 Classifier 2 Classifier 3
Accuracy 0.999 0.999 0.999 0.999
Precision 0.999 0.997 0.999 0.998
Recall 1.0 0.999 0.999 0.996
Specificity 0.999 0.999 0.998 0.999

the four trained classifiers in the profiling phase to obtain a prediction of the unpacked
coefficients i.e., the (i)th, (i+ 1)th, (i+ 2)th, and (i+ 3)th coefficients of the polynomial y,
with precision as determined on the test set during training stage. In Sec. 5, we explain
how to use the leaking information to recover the first part of the secret key s1.

5 Secret Key Retrieval
The source code of the attack is enclosed in the submission of this paper and will be made
publicly available.

Throughout this section, we utilize the indices i, j to refer to the jth coefficient of the
ith polynomial. For NIST 2-security level, i ≤ 256 and j ≤ 4. We denote m to refer to the
mth signature. M is the total number of needed signatures to perform the attack.

After collecting the power traces of approximately hundred thousand runs of the signing
process, we identify the relevant snippets. Then, we use the trained classifiers of Sec. 4 to
predict for each coefficient of the polynomials in y whether it is zero.

The key retrieval proceeds in four steps. First, we define conditional equations in
order to minimize the false-positive predictions. In the second step, we map the filtered
predictions of the yi,j into a system of linear equations. Then, we use the Least Squares
Method (LSM) to get a solution candidate ŝ1 from this noisy equation system. This step is
followed by solving an Integer Linear Program (ILP) which computes the correct secret key
s1 by leveraging the solution candidate ŝ1. We provide a formal algorithmic description of
the attack procedure in Alg. 4.

5.1 Step 1: Predicting which Error Polynomial Coefficients are Zero
Even though the classifiers presented in Sec. 4 provide high accuracy, it is unlikely that the
system of linear equations we want to solve in Sec. 5.3 and Sec. 5.4 has an exact solution.
As we cannot predict accurately whether yi,j = 0, the system is likely not to have a perfect
solution. To accommodate for this, we want to define conditions on the z values to filter
the false-positive predictions. Note that for our purposes, we prefer false-negatives (failing
to predict that a certain coefficient is zero) to false-positives (predicting a coefficient yi,j to
be zero when it is actually not). False-negatives only require us to obtain more signatures
and the respective power traces, while false-positives introduce additional noise and could
affect the success of our attack.

We observe that |(cs1)i,j | ≤ β, where β = τ · η. Assuming the value yi,j = 0,
|zi,j | = |yi,j + (cs1)i,j | ≤ β as well. We can thus dismiss the possibility that a certain
coefficient yi,j = 0 if the corresponding coefficient

|zi,j | ≥ β (1)

To bias our predictions towards false-negatives, we make use of the fact that each coefficient
(cs1)i,j can be approximated by a normal distribution: recall that c is a vector of coefficients
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Algorithm 4 Dilithium secret key retrieval
Input A list of M signatures (z, c) and the respective power traces T
Output The secret key s1

1: L← []
2: for m = 1 . . .M do
3: for i = 1 . . . k do
4: for j = 1 . . . ` do
5: if |zi,j | ≤ (2·η+1)2−1

12 · τ then
6: ŷmi,j ← classifier(Tym

i,j
)

7: if classifier outputs ŷmi,j = 0 then
8: append (m, i, j) to L
9: end if

10: end if
11: end for
12: end for
13: end for
14: for j = 1 . . . ` do
15: for each prediction made on the jthpolynomial, collect the respective challenge

polynomials into matrix C
16: solve least squares z = Cs + e to obtain candidate solution ŝ
17: obtain correct secret key polynomial s by solving the integer linear program described

in Sec. 5.4
18: (s1)j = s
19: end for
20: return the secret key s1

in the set {−1, 0, 1} and thus, each coefficient in the polynomial cs1 can be viewed as
the sum of τ i.i.d. random variables uniformly distributed over the range [−η, . . . , η] ∩ Z,
where τ is the weight of c (the number of non-zero coefficient in polynomial c).

By a central limit theorem argument, this sum is close to a normal distribution with
mean 0 and variance σ2 = (2·η)2−1

12·τ . It follows that if a given coefficient yi,j = 0, then

|zi,j | ≤ 2 · σ (2)

with very high probability. Given the conditions in Eqn. 1 and 2, we only invoke the
machine-learning classifier to predict whether yi,j = 0 if |zi,j | ≤ 2 · σ. Otherwise, if |zi,j | is
larger than that, we assume that yi,j 6= 0. These conditions allow a reduced number of
false positives for a minor increase in false-negative.

5.2 Step 2: Mapping the Predictions Into a Set of Linear Equations
In this section, we build a system of linear equations, which will be used to retrieve the
secret key in Sec. 5.3 and Sec. 5.4. Let’s assume that we traced M signatures in Sec. 5.1.
We denote ym and zm as the error polynomial and the resulting signature value for the
mth signature, respectively. From Sec. 5.1, we obtain a list L of triples (m, i, j), where
each triple represents the assumption that ymi,j = 0. Given zm = ym + cms1, we create a
system of equations from this list in the following way:

zmi,j = ymi,j + (cs1)i,j

For each prediction ŷmi,j = 0, we have:

zmi,j = (cms1)i,j
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Factoring in the erroneous predictions from our classifier, we have a set of equations:

zmi,j = (cms1)i,j + e (3)

where e is zero if the classifier correctly predicted the coefficient ymi,j and e 6= 0 otherwise.
Thus, we want to obtain the secret key s1 from a set of equations z = Cs1 + e, where
C ∈ Z|L|×n is derived from the challenge polynomials c, z contains the signature coefficients
zmi,j , and e is a vector of error coefficients.

Assuming that we correctly predicted yi,j = 0, e is zero for most of the equations.
It also holds that ||e||∞ ≤ 2σ + β. (Recall in Eqn. 2, we dismissed observations where
|zi,j | ≥ 2σ and we know that |(cs1)i,j | ≤ β, thus if |yi,j | > 2σ + β, then |zi,j | ≥ 2σ).

Before we turn our attention to retrieving the secret key s1 from this set of equations,
let us first observe that we can split up the given problem into ` separate sets of equations,
one for each polynomial in the vector s1. Note that

cs1 =


c · (s1)1
c · (s1)2

...
c · (s1)`


i.e., to obtain cs1 we multiply c with each polynomial in the vector s1 independently.
s1 ∈ S`η consists of ` polynomials, each with N = 256 coefficients, while c ∈ Bτ is exactly
one polynomial with τ non-zeroes coefficients. For a given leak ymi,j at polynomial i,
coefficient j, we observe that the equation zmi,j = ymi,j + (cms1) is only influenced by the
ith polynomial (s1)i. As a result, we can create ` independent equation systems (one for
each polynomial in s1) and solve for each polynomial of s1 separately. This will reduce the
computation complexity in the following steps.

The rest of this section describes how to obtain each polynomial in s1 from a given set
of equations. For ease of notation, we denote the polynomial we are currently solving for
as s = (s1)i.

5.3 Step 3: Obtaining a Solution Candidate From a Set of Linear
Equations

In Sec. 5.3 and 5.4, we intend to obtain a secret key polynomial s1 ∈ S`η from the set of
equations (as in Eqn. 3), where e is zero for most of the equations. In Sec. 5.3, we will
first obtain a key candidate ŝ1 ∈ Rn close to the correct secret key polynomial s1.

Since ‖cs + e‖∞ < q, there are no modular reductions involved in the given equations.
We can thus view the problem of obtaining a secret key polynomial ŝ from a system of
linear equations z = Cs + e as an LWE without modular reduction problem. Using an
approach described by [BDE+18], we obtain a solution candidate ŝ ∈ Rn by employing
the least-squares method.

The least-squares method computes ŝ ∈ Rn as the vector minimizing the squared
euclidean norm: ‖Cŝ− z‖2

2. We calculate ŝ by employing the closed-form solution formula
for least squares:

ŝ = (CTC)−1 ·C · z
This solution candidate converges to a correct solution [BDE+18]. Given enough equations,
it holds that bŝie = si for all i ∈ {1, . . . , n}. Even with fewer equations, the solution bŝe is
usually close to the correct solution s i.e., most of the coefficients are correct and some are
wrong by ±1.

More precisely, we leverage our solution candidate ŝ to identify the correct secret key
polynomial s by making use of the following observation. Given enough equations, the
following should hold for each coefficient in the least-squares solution ŝ:
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1. Either rounding up or down should yield the correct solution

bŝjc = (s)j or dŝje = (s)j

2. For coefficients j, where ŝj is close to an integer, the coefficient candidate should be
correct. Formally, define the function:

dist_nint(x) = min
(
x− bxc, 1− (x− bxc)

)
If dist_nint(ŝ1j) u 0 then bŝje = (s)j

5.4 Step 4: Solving an Integer Linear Program Leveraging the Solution
Candidate

Note that for most of the equations in our equation system e = 0, assuming that our classifier
is correct in most instances. As a result, identifying the correct secret key polynomial
s from the set of noisy equations amounts to identifying the secret key polynomial that
maximizes the number of fulfilled equations.

We formulate an Integer Linear Program (ILP) to solve this problem, factoring in the
solution candidate ŝ obtained from the least-squares method.

maximize
|L|∑
l=1

xl

subject to
zl −Cls ≤ K · (1− xl) ∀l ∈ {1, . . . , |L|} (1)
zl −Cls ≥ −K · (1− xl) ∀l ∈ {1, . . . , |L|} (2)
(s)i ∈ {bŝic, dŝie} ∀i ∈ {1, . . . , n} (3)
(s)i = b(s)ie ∀i ∈ {1, . . . , N | dist_nint(ŝi) ≤ 0.01} (4)
xl ∈ {0, 1} ∀l ∈ {1, . . . , |L|} (5)

where constraints (1) and (2) ensure that if xm = 1, zl −Cls = 0 (This is canonically
known as the big-M method, we choose K as the maximum possible distance between zl
and Cls) and constraint (3) and (4) factor in the information from our solution candidate
ŝ obtained by least-squares. Note that constraints (3) and (4) are optional, and can be
removed to trade performance for a higher success chance of the attack. We run two
ILP-solvers in parallel (one with constraints (3) and (4), and one without) until we have
solution s that satisfies at least (1− ε) ·N equations, where ε is our assumed false-positive
rate (the percentage of equations that we assume to be wrong). The obtained solution
should match the secret key polynomial of the secret key s.

We perform step Sec. 5.3 and 5.4 l times, for each polynomial equation independently.
This then yields a secret key candidate s1. We can then perform universal forgery as
described in Sec. 2.5.

5.5 Alternative Attack Strategies
We also explored two alternative attack strategies in addition to the ILP approach: the
LWE with side information technique by Dachman-Soled et al. [DDGR20], and the ternary
LWE attacks by Kirshanova and May [KM21].

LWE with Side Information. The “LWE with side information” technique provides a
framework to integrate additional information about an LWE problem in the form of
so-called hints. To this end, a given LWE instance is transformed into a Distorted Bounded
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Distance Decoding (DBDD) instance, which allows to keep track of a distribution of the
secret vector. Hints can, for example, alter the secret distribution in a way that potentially
makes the problem easier. After providing enough hints, it might be feasible to recover
the LWE secret through lattice-reduction attacks. We explored the option of integrating
the information obtained through the leaking implementation as hints until we can recover
the secret through a lattice-reduction step. However, the Sage toolkit provided by the
authors of [DDGR20] is not yet optimized enough to integrate enough approximate hints
in a reasonable time. So, we were unable to verify this method in practice.

Meeting Ternary LWE Keys. Kirshanova and May [KM21] propose a MITM attack that
can recover a ternary secret key s ∈ {0,±1}n from an LWE instance As = b + e mod q,
where e ∈ {0,±1} in asymptotic complexity S0.25, and S is the size of the search space we
need to consider for s. We explored the option of leveraging this MITM attack to correct
the wrong coefficients in candidate secret key polynomial ŝ as obtained from least-squares.
However, we could not test our ideas in practice, since there are no implementations of
the MITM attack available yet.

The ILP approach proved to be the most practical as far as our parameters are
concerned. However, the techniques above can provide tighter asymptotic complexity
estimates, and when properly optimized, could make it possible to reduce the number of
traces needed to mount the attack. We plan to explore them further in future work.

6 Experimental Setup and Results
6.1 Experimental Setup
Usually, power traces are collected by observing the power usage of the device during
the entire time of signature generation. However, in this work, we propose an analysis
approach that only runs sections of the Dilithium signature and collects only the relevant
power trace snippets. This approach enables us to use low-cost power analysis hardware
and increases the efficiency of the profiling phase of the attack significantly. Due to the
constant-time nature of Dilithium, the power trace snippets as recorded by our setup could
easily be derived from the full power traces of the signature process. Hence, the usage of
power trace snippets does not reveal any additional information to the attacker.

Data Pre-processing. To facilitate our low-cost approach, we conduct the data collection
for both profiling and attack in a phase we call data pre-processing. During this phase, we
ran the Dilithium implementation [BDK+20] on an x86 Ubuntu 20.04 server machine. In
the second stage, we used the profiling and attack devices to rerun sections of Dilithium
code susceptible to leakage (i.e., the bit-unpacking function called multiple times during
the signing process) and record power traces for the profiling and attack phases.

For the profiling, we signed a number of uniform and randomly chosen messages using
random, individual keys. For the attack phase, the key pair generation was invoked to
generate the key under attack and a number of uniform, randomly chosen, and attacker-
known messages were signed. For both profiling and attack, we collected the internal inputs
and outputs of the function susceptible to leakage of sensitive data (i.e., the unpacking
function), and stored them along with all public information about the signature process.
With this prepared data, we were able to rerun and analyze the parts of the code susceptible
to leakage, individually.

Workbench. In our experiment, we considered two identical Cortex M4 CPUs equipped
with two STM32F4 microcontrollers, named Device A and B. Device A will be used for
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profiling, while Device B is the device under attack. Our target is the bit-unpacking
function polyz_unpack() which is called multiple times during the signing process.

As the ChipWhisperer Lite is limited to 24,400 samples per recorded trace and cannot
be used to record the entire power trace of the Dilithium signature process, we used the
data prepared in the pre-processing phase as explained above. During recording, the
ChipWhisperer and the microcontroller both ran on the same 7,372,800 Hz clock. The
sampling rate of the ADC was set to 4 samples/cycle with 10-bit resolution and a 45 dB
low-noise gain filter. Collecting and storing all relevant traces was coordinated using a
Python script.

Compilation. The Dilithium source code [BDK+] was provided as a portable C imple-
mentation, which makes it suitable for compilation to different architectures.

The original benchmarking was done using the SUPERCOP benchmarking frame-
work [BL] on an Intel Core-i7 6600U (Skylake) CPU [BDK+20]. We compiled Dilithium
using the gcc-arm cross-compiler arm-none-eabi-gcc 9.2.1 on an Intel(R) Xeon(R) CPU
E7-4870 running Ubuntu 20.04 and the default SUPERCOP [BL] compiler options (-O3
-fomit-frame-pointer -fwrapv), with the necessary changes to cross-compile it for the two
used devices. We used the SCIP Optimization suite [GAB+20] to solve the ILPs.

6.2 Experimental Results
We evaluate our attack in two settings: The first is a theoretical evaluation, where we run
the Dilithium signature algorithm and simulate erroneous classifiers. A practical evaluation
based on the measurement setup described in Sec. 6.1 gives the results for the experiment
run on the ChipWhisperer.

Theoretical Evaluation. Alg. 5 describes the theoretical evaluation framework. We report
that the number of signatures required to retrieve the secret key s1 is approximately 10
minutes for NIST 2-security level. Fig. 4 shows the number of equations needed for key
retrieval as function of the success rate.

It is worth mentioning that by applying the two conditions in Eqn. 1 and 2 we already
reduced number of false positives. Then, we assumed that we achieved a false-positive and
true-positive rate of 0.981. We noticed that we needed at least 789,965 signatures and
4,524 equations to retrieve the secret key s1.

We believe that a higher rate of false negatives will result in an increasing number of
signatures needed to retrieve the secret key. On the other hand, a higher rate of false
positive has a dramatic influence on the success of Alg. 4.

To investigate the impact of the parameter choices, Table 3 evaluates whether the
described attack was successful in at least 1 in 20 trials for different parameters. The
results show that a lower true positive rate (=lower false negative) can be compensated
for by collecting more signatures, while even a slightly higher false positive rate quickly
becomes prohibitive. Attacking NIST security level 3 was only feasible with a very low
false positive rate, while attacking NIST security Level 5 can be done via increasing the
number of collected signatures.

Practical Evaluation. We conducted a practical evaluation of our attack against the
Dilithium signature scheme variant having a security equivalent to the NIST 2-security
level. The evaluation follows the setup described in Sec. 6.1, using the machine classifiers
described in Sec. 2. We were able to recover the secret key s1 by tracing the polyz_unpack()
function for 756, 589 signatures, out of which we extracted 2, 015 equations. 24 of those
equations were wrong, amounting to a noise level of ≈ 1.19%. We emphasize that our
method can also handle higher noise levels, as can be seen from the theoretical evaluation.

https://github.com/pq-crystals/dilithium/blob/61b51a71701b8ae9f546a1e5d220e1950ed20d06/ref/poly.c#L827
https://github.com/pq-crystals/dilithium/blob/61b51a71701b8ae9f546a1e5d220e1950ed20d06/ref/poly.c#L827
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Algorithm 5 Simulate noise in predictions from an assumed side-channel on y
Input The number of signatures M to try, an assumed true and false positive rate of

the machine-learning classifier equal to 0.981. An equation threshold T .
Output Whether s1 could be recovered in under 10 minutes computation

time.
1: Generate M signatures
2: for m = 1 . . .M do
3: for i = 1 . . . k do
4: for j = 1 . . . ` do
5: if |zmi,j | ≤

(2·η+1)2−1
12 · τ then

6: if ymi,j = 0 then
7: predict that ymi,j = 0 with probability true-positive rate
8: else
9: Predict that ymi,j = 0 with probability false positive rate

10: end if
11: end if
12: if Collected more than T equations then
13: Use Alg. 4 to try to recover the secret key polynomial s1 from predictions
14: end if
15: end for
16: end for
17: end for
18: Use Alg. 4 to try to recover the secret key polynomial s1 from predictions
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Figure 4: Theoretical evaluation as described in Alg. 5 for NIST 2-security level, a false
positive and true-positive rate of 0.981. The number of equations describes the number
of zero coefficients predicted. The success rate describes the percentage of 30 repeated
experiments that resulted in successful key recovery.

7 Conclusion and Possible Countermeasures
In this paper, we presented a profiling power side-channel attack on the Dilithium signature
scheme. Using a leak in a bit-unpacking function, we leverage machine-learning to recover
noisy information about the vector y. Together with known elements (i.e., the signature z
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Table 3: Evaluation on the influence of different parameters on the success of the key
recovery Alg. 4, evaluated using the method described in Alg. 5. Each parameter set
was tested for twenty trials. If there was at least one success, we report the number of
equations in a successful run, otherwise we report the number of equations in any one of
the twenty runs.
Security
Level

True
Negative
Rate

True Posi-
tive Rate

Number
Of Signa-
tures

Number
of Total
Equa-
tions

Number
Of Wrong
Equa-
tions

At Least
One Suc-
cess

2 0.99 0.99 650000 3204 796 Yes
2 0.99 0.9 750000 3315 860 Yes
2 0.99 0.9 650000 2893 767 No
2 0.99 0.8 650000 2719 812 No
2 0.99 0.8 2000000 8451 2506 Yes
2 0.985 1 800000 4480 1484 Yes
2 0.981 0.981 800000 4393 1729 Yes
2 0.97 1 4000000 30811 12465 No
3 0.985 1 800000 1570 755 No
3 0.985 1 2000000 1570 755 No
3 0.985 1 4000000 7750 3734 No
3 0.995 1 3500000 4792 1120 Yes
5 0.985 1 800000 2233 889 No
5 0.985 1 3500000 9321 3631 Yes

and the message digest c), this small leak suffices to achieve the equivalent of key recovery
with a moderate number of signatures.

Defending against our attack requires dedicated countermeasures against power side
channel attacks. Masking Dilithium, as described by Migliore et. al. [MGTF19], constitutes
such a countermeasure. The proposed masking scheme for Dilithium is based on Boolean
and arithmetic masking. Each sensitive variable is split into t + 1 shares, where t is
the so-called masking order. Every operation that acts on the sensitive information is
reformulated to act on each of the shares independently instead. Breaking a fully masked
Dilithium implementation with the attack described in this paper would require to deduce
the value of all shares of y. Power consumption is inherently noisy, implying the potential
for erroneous classifications on each share. As a result, the probability to correctly deduce
the value of a coefficient yi,j decreases exponentially with the number of shares.

However, the masking countermeasure described in [MGTF19] induces a performance
overhead. Migliore et. al. [MGTF19] measure that first-order masking already slows down
signature creation by a factor of five. Arguably, the estimates given by [MGTF19] are a
lower bound, as the authors replaced the real modulus by a modulus that is a power of
2, which boosts performance of the countermeasure. The performance loss could impede
the adoption of such countermeasure. On the other hand, considering that our attack
only requires noisy information about the hamming weight of the coefficients of y, more
efficient countermeasure are non-trivial to design. For example, restricting the masking to
just y is not sufficient. As soon as y would be unmasked, an attacker could again retrieve
all information necessary for the attack.

We highlight that it was thus far unclear whether a dedicated countermeasure against
power side-channels is needed for Dilithium at all: No end-to-end power side-channel attack
against Dilithium had been demonstrated so far. Naturally, this could be taken as an
indicator that Dilithium’s countermeasures against side-channels attacks are sufficient for
preventing power side-channel attacks also, especially when implementing the randomized
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version of Dilthium. This would allow implementations to skip masking in order to not
suffer from its performance impact. Our results show that this is not the case. Consequently,
our work calls attention to an urgent need of further defensive as well as offensive research:
It is paramount for the implementation security of Dilithium to continue to explore possible
countermeasures against power side-channel attacks in order to identify countermeasure
that have only a minor impact on performance. In addition to that, offensive research is
needed to uncover potential bypasses against existing countermeasures.This will ensure
that protective measures taken to prevent power side-channel attacks are indeed sufficient.
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