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Abstract. In this work, we evaluate the security of Merkle-Damgard (MD) hash functions and their
combiners (XOR and concatenation combiners) in quantum settings. Two main quantum scenarios
are considered, including the scenario where a substantial amount of cheap quantum random access
memory (QRAM) is available and where qRAM is limited and expensive to access. We first convert a
rich set of known tools invented for generic attacks in the classical setting to quantum versions. That
includes Joux’s multi-collision, expandable message, diamond structure, and interchange structure. With
these basic tools in hand, we then present generic quantum attacks on the MD hash functions and
hash combiners, and carefully analyze the complexities under both quantum scenarios. The considered
securities are fundamental requirements for hash functions, including the resistance against collision,
(second-)preimage, and herding attacks. The results are consistent with the conclusions in the classical
setting, that is, the considered resistances of the MD hash functions and their combiners are far less
than ideal, despite the significant differences in the expected security bounds between the classical
and quantum settings. Particularly, the generic attacks can be improved significantly using quantum
computers under both scenarios. These results serve as an indication that classical hash constructions
require careful security re-evaluation before being deployed to the post-quantum cryptography schemes.
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1 Introduction

In light of recent and projected progress in building quantum computers [18,21], more and more
quantum algorithms have recently been applied to cryptanalysis against classical cryptography
systems to assess their security strength against quantum computers. In the past, most if not
all crypto-systems were designed to resist attacks by conventional computers taking advantage
of the limited computation power the real world may possess in the classical setting. In other
words, these crypto-systems are only computationally secure, not information theoretically secure,
under conventional computers. However, quantum computers have significant advantage of speedup
computing (a.k.a. quantum supremacy) over conventional ones, which results in completely broken
of some crypto-systems, and others with security strength weakened. For instance, Shor’s factoring
algorithm [31] is a powerful quantum algorithm to factorize an integer M in polynomial time with
respect to the bit length of M, which can be used to break all current RSA standards and many other
public-key crypto-systems. Therefrom, public-key crypto-systems have attracted a lot of attention
from the research community and government agencies, e.g., the ongoing effort by NIST on post-
quantum cryptography standardization [30]. On the other hand for symmetric-key cryptography,
Grover’s search algorithm [19] is able to find a marked data in an unstructured database of size N
in just O(v/N) time, vs. O(NN) for brute-force search in classical setting. This generally reduces the
security strength in bits by half of most keyed symmetric-key crypto-systems, e.g., the secret key
of AES-128 can be recovered within a complexity of roughly 264 vs. 2128 in the classical setting by
brute-force search.
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In this paper, we re-assess the fundamental security properties, i.e., collision, preimage, and
second-preimage resistance, of some hash constructions that have existed for long in the classical
setting of the real world, under some quantum settings. We focus on iterated hash functions, in par-
ticular those following the Merkle-Damgard construction (MD) [12,29], where a single compression
function is called iteratively in order to extend the input domain from a fixed length to arbitrary
length and the digest length is the same as that of internal state as for most of the standards like
MD5, SHA-1, and SHA-2.

The security of hash constructions has been well studied in the classical setting in the past few
decades. For Merkle-Damgard construction, it is known that the collision resistance of the hash
function can be reduced to that of the underlying compression function [12,29]. The existence of
multi-collisions was formally introduced by Joux [24] in 2004, and the first generic second-preimage
was found by Kelsey and Schneier [26] in 2005 and later improved by Andreeva et al. [3,5]. Herding
attack was introduced first by Kelsey and Kohno [25] in 2006 and was later improved by Andreeva
et al. [4]. Tt is noted that second-preimage attacks and herding attacks are all utilizing collisions
and hence complexities are well above birthday bound.

In the quantum setting, the security of these hash constructions has also received some inves-
tigations. In [34], Zhandry proved that the Merkle-Damgérd construction with ideal (cannot be
distinguished from a random oracle) underlying compression function cannot be distinguished from
a random oracle with more than negligible advantage. In [20], Hosoyamada and Yasuda proved
that Merkle-Damgard construction with Davies-Meyer (DM-mode) compression function is quan-
tum one-way function, and the lower bound of the number of queries required by preimage attacks
is 0(2”/ 2) — that given by the generic Grover’s search algorithm. It is reckoned in [10] that similar
proof to that in [20] could be done also with the MatyasMeyerOseas (MMO) mode compression
function. These works provide provable security lower bound for the Merkle-Damgard constructions
in quantum settings. Yet, the rich set of tools invented in previous work to do generic attacks,
which provide security upper bound, on Merkle-Damgard hash constructions in classical settings
still remain to be fully exploited in quantum settings.

Besides the single hash functions, we also re-evaluate the security of hash combiners in quantum
settings. We focus on two typical hash combiners, i.e., the concatenation combiner and the exclusive-
or (XOR) combiner. Given two (independent) hash functions H; and Ha, the concatenation combiner
returns Hi (M )||Ha2(M ), and the XOR combiner returns H, (M) @ Ha(M ). In practice, people may
wonder whether we can combine existing hash functions to achieve long term security instead of
replacing existing infrastructure to new ones (in SSL v3 [17] and TLS 1.0/1.1 [13,14], MD5 and
SHA-1 were combined in various ways, including concatenation combiner and XOR combiner [16]).
The main purpose of hash combiners might be to achieve security amplification, i.e., the hash
combiner offers higher security strength than its component hash functions, or to achieve security
robustness, i.e., the hash combiner remains secure as long as at least one of its component hash
functions is secure. We know from the results of previous cryptanalyses that in the classical setting,
the hash combiners are not as secure as expected (e.g., guarantee its security if either underlying
hash function remains secure, or as secure as a single ideal hash function). Concretely, the attacks
on XOR combiners by Leurent and Wang [28] in 2015 and on concatenation combiners by Dinur [15]
in 2016 showed surprising weaknesses, which either contradicts the intended purposes of security
robustness or security amplification. These results were then improved and summarized by Bao et al.
in [6,7]. However, some techniques used in previous cryptanalyses of hash combiners in the classical
setting cannot be directly accelerated using quantum computers (e.g., those attacks on combiners
exploiting properties of random functional graphs). Whereas generic attack is accelerated in the
quantum setting, that is, the security upper bound of an ideal hash function is lower. Thus, the
broken primitives (e.g., the investigated hash combiners) in the classical setting might be unbroken
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(no better attacks than the most generic attack) in the quantum setting. So, we investigate this
question and aim to provide references.

1.1 Owur Contributions

In this paper, we port most of the important and generic attacks in the classical settings against
Merkle-Damgard construction and hash combiners, make adjustments of the attack algorithms when-
ever necessary, and carefully evaluate the complexities in the quantum setting. Table 1 summarizes
detailed complexities. Surprisingly, most of the (second-)preimage attacks and herding attacks in
the classical setting still constitute valid attacks in the quantum setting.

CS Scenario R1 Scenario Ro

Target |[Property Reference
CTime ‘CMem QTime‘QMem QTime ‘QMem‘CMem

Collision on/2 | O(1) | 2n/3 | 2n/3 | 92n/5 | O(n) | 27/5 [9,11]
u Preimage 2" o@1) | 2™2 |Oo(n)| 272 |O(n)|O(1) [19]
20d Preimage2”/2  [26] 27/ | 2n/3 | 2n/3 | 23n/T 1 O(n) | 2377 | Sect. 4.2
Herding 22n/3 (5] 2n/3 | 23n/7 | 93n/7 |911n/23| O(p) [277/23| Sect. 4.3
Collision on/2 | O(1) | 273 | 2n/3 | 22n/5 | O(n) | 27/5 [9,11]
Preimage 911n/18 [6}21177./1821011/21 on/3 [952n/105 on/7 | 9n/5 Sect. 5.1
H1@Ha 270 Preimage2! /18 [g][2117/18[a10n/21[ gn/3 [952n/105[ on/T | 9n/5 | Sect. 5.1
Herding 22n/3 [4} 2n/3 24n/9 2n/3 224n/49 2n/7 2n/5 Sect. 5.3
Collision ™2 [24] O(n) | 27/3 | 2n/3 | 23n/7 | 9n/7 | 9n/5 | Sect. 5.2
oM Preimage 2" [24] O(n) | 272 | 27/3 | 272 | O(n) | 27/° | Sect. 5.2
Y752 ond preimagel225n/34 [6])225m/34) on/2 | 2n/3 | on/2 1 O(n) | 27/5 | Sect. 5.2
Herding 22n/3 (4]l 2n/3 | 24n/9 | gn/3 |924n/49 | 9n/T | 9n/5 | Sect. 5.3

CS: Classical Setting QTime: Quantum Time

QMem: Quantum Memory CMem: Classical Memory

Table 1: Security status of Merkle-Damgand hash functions and hash combiners (polynomial factors are ignored for
exponential complexities)

The attacks in quantum settings are divided into two scenarios, depending on whether cheaply
accessible quantum random access memory is available or not, and they are named Scenario R and
Scenario Ry. Scenario R refers gqRAM supporting access in constant time regardless of the size of
the memory, while it costs O(R) time for each access to quantum memory of size O(R) and also
linear time for each access to classical memory in Scenario Rs.

This article is organized as follows. In the next Section 2, we introduces some basic notions and
algorithms used in quantum computation. Section 4 and 5 are the demonstration of several attacks
on Merkle-Damgard structures and hash combiners. Section 6 concludes the results and presents
some open problems. We revise some important techniques for our attack belong with the quantum
version of these techniques in Section 3.

2 Basic Quantum Algorithms for Collision and Search

In this section, we briefly introduce hash functions, hash combiners, qRAM, and quantum algorithms
used throughout this paper.
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2.1 Merkle-Damgard Hash Construction

Define H for a cryptographic hash function that maps arbitrarily long messages to an n bit digest,

e., H:{0,1}* - {0,1}". Like most iterated hash functions, to hash a message M, the Merkle-
Damgard (MD) construction first pads and splits the message bits into message blocks of fixed
length (e.g., b bits), i.e., M = my|msz]|--|mr, where the last message block mj, comprises the bit
encoding of the original message length. Then, starting from a public initial value IV = zg, the
message block with the intermediate state is hashed by the same compression function H iteratively,
i.e., ©; = h(x;—1,m;) for i = 1,... L (see Fig 1). In the quantum setting, the MD hash functions
are proven to be quantum one-way functions [20], while other security properties remain largely
un-exploited in the quantum setting.

miy mo
W\ n n n n
G L0 oo Wl e Ll i ) el

Figure 1: Merkle-Damgéard hash function

The XOR combiner and concatenation combiner based hash functions following MD structure
are demonstrated in the following figures.
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Figure 2: The XOR combiner
AN A )
B A e I I A T AN EY)
my mo m; mr ., ’H(M)
LN U LIN L) e
v Yo &J Y1 \’EJ cee o Yi—1 \h_zJ Yi o Yr—1 ha

Figure 3: The concatenation combiner

2.2 QRAM

Quantum random access memory (QRAM) can be considered as a quantum counterpart of random
access memory (RAM) from the classical setting, which allows accessing (read or write) the elements
in memory with constant time regardless of storage size. There are two types of qRAM: quantum-
accessible classical memory (QRACM), which allows to access the classical data in quantum superpo-
sitions, and quantum-accessible quantum memory (QRAQM), where the data is stored in quantum
memory. Suppose that we want to store a list of data (classical or quantum) D = (xg,z1, ", Zok_q ),
where x; is an n-bit data. Then the gRAM for accessing data D is constructed as a quantum gate
and defined via a unitary operator Ugram(D) by

Ugranm(D) : [i) |y) = [i} [y @ i)
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p ¢ I Classical Setting Quantum Setting
ropery ‘ CTime ‘ CMem | QTime ‘ qRAM ‘ CMem ‘ Optimal ‘Reference

N . 2/3 | 273 | . | YES |Scenario Ry [9,33]
Collision 22 o) 22n/5 ‘ O(n) ‘ on/5 ‘ unknown ‘ Scenario R2 [11]
Preimage | 2" | 0o(1) | 272 | o(m) | 0(1) | YES |Scenario Ry [19,32]

Table 2: Comparison of security upper bounds of ideal hash functions in classical and quantum settings (polynomial
factors are ignored for exponential complexities).

where i € {0,1}* and y is an n-bit value. Since qRAM is a powerful model with requirement of specific
physical architecture, many quantum algorithms take advantage of it to reduce time complexity,
such as the algorithm for collision search [9] requires QRACM and element distinctness [2] requires
QRAQM. Though qRAM is still a controversial issue, it is essential to evaluate the cryptography
systems in the scenario that qRAM is big and cheap to access (we will call this quantum model
as Scenario R1). On the other hand, a relatively more realistic model is to assume that qRAM is
costly and accessing to R quantum qubit memory costs O(R) time as in [11,22] (we will call this
quantum model as Scenario Ry). We will analyze the complexities of our attacks in both Scenario
R1 and Scenario Ry with respective optimal choices of attack parameters.

2.3 Grover’s Search Algorithm

The quantum algorithm for searching a marked point in a database is firstly introduced by Grover
in [19]. In 1999, Zalka [32] proved that Grover’s algorithm is optimal for the searching problem. It
considers the following problem.

Problem 1. Let F be a Boolean function, F' : {0,1}" — {0,1}. Suppose that there is only one z
such that F(x) = 1. Then, find x.

In the classical setting, the number of queries to find x is approximately 2", while Grover’s al-
gorithm can find z by making only O(y/2" = o/ 2) queries. That is, in the quantum setting, the
time complexity for the database search problem is quadratic faster than the classical ones. Due to
the optimality of the algorithm, the 2"/2 complexity is the tight security level of preimage resistance
of hash functions in quantum setting, as summarized in Table 2.

Some variants of Problem 1 involve the general case with |{z : F(z) = 1}| = 2. Then, with high
probability, Grover’s algorithm returns x after making O(1/2"/2¢) quantum queries to F'.

2.4 Quantum Collision Finding Algorithms

Brassard, Hgyer, and Tapp in [9] first introduced a quantum algorithm (so-called BHT algorithm)
to find a collision for a (2-to-1) random function in time O(2"?) and O(2"?) quantum queries, with
an additional assumption that quantum random access memory (qQRAM) is available. Subsequently,
Zhandry in [33] extended this result to any random function with the size of the domain at least the
square root of the size of the codomain, which is more relevant for hash functions or permutations
in cryptographic settings. It considers the following problem.

Problem 2. Let H :{0,1}" - {0,1}" be a random function. Find x and z’ such that H(z) = H(z").
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In the classical setting, finding collisions of a random function in range {0,1}" can be done af-
ter making O(2"/?) queries, following the Birthday Paradox. While the BHT algorithm makes use
of Grover’s algorithm to find a collision in 0(2”/ 3) queries. Due to the optimality of the algorithm,
23 is also the tight security level of the collision resistance of hash functions, in Scenario R1. In this
paper, we consider the situation where qRAM is available, and the BHT algorithm can be applied
efficiently for the collision finding problem of hash functions.

SCENARIO Ro. In this situation, each lookup operation within the memory of size 0(2”/3) costs
O(2"/3) time, hence resulting in an inefficient algorithm even slower than the birthday attack.
Chailloux et al. [11] proposed an efficient algorithm (denoted by CNS) to find a collision of hash
function in time O(22*/%) with a quantum computer of O(n) qubits, but large classical memory of
size O(2V°).

2.5 Quantum Walk Algorithm for the Element Distinctness Problem

In the quantum setting, it is proven in [1] that the number of quantum queries for solving this
problem is at least O(N 2/ 3). Up to now, only one algorithm, named as the quantum walk algorithm
proposed in [2] reaches this bound. Recall this quantum walk algorithm for the following problem.

Problem 3. Given a set S = {x1,x2,...,xn}, does it exist ¢, j such that 1 <i<j <N and z; = ;7 If
yes, return 1, j.

The element distinctness problem cannot be solved by an algorithm more efficiently than a brute
force approach in the classical setting. This is because, only after O(NN') queries and sorting can one
find two elements of the same value in a set of N elements. The Ambainis’s quantum walk algorithm
makes O(N?/3) queries and requires O(N?/?log N') qubits memory.

SCENARIO R3. The Ambainis’s quantum walk algorithm for element distinctness problem can work
efficiently and better than other algorithms in the scenario where the qRAM is available and it
costs constant time to access qRAM gates (i.e., Scenario R1). Very recently, to tackle with the
situation that qRAM is not cheap and accessing R qubits quantum memory costs O(R) operators
or quantum gates, Jaques and Schrottenloher in [22] improved the quantum walk algorithm for
golden collision problem (a more general case of the element distinctness problem), there the new
algorithm requires O (N 6/ ™) computations and O(N 2/ ") quantum memory, without using the qRAM.
More explicitly, the assumption on the memory model in the quantum walk algorithm in [22] is that
quantum memory is costly to access but free to maintain, which seems more realistic than Scenario
R1. Thus, in this paper, when discussing the complexities of the presented attacks that calling a
quantum walk algorithm in Scenario Ry, we follow this assumption.

3 Collision-Search-Based Tools and Their Quantum Versions

In this section, we introduce several collision-search-based tools commonly used in generic attacks in
classical settings. For each of them, we discuss how to transform it into a tool in quantum settings
and re-evaluate the complexity. In the sequel, we denote by H an MD hash function, A for its
compression function, and A* for arbitrary times of iteration on h.
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3.1 Multi-Collision (MC [24]).

Joux in [24] proposes an efficient way to obtain a large set of messages mapping a starting state to
a common ending state on iterated hash functions, which is known as Joux’s multi-collisions.

mi mo myg t
L0 &3 peerel 30Tt = To {O00000000000000e Tt
my my my

Figure 4: Multi-collision and its condensed representation in R.H.S. [23]

Multi-Collision (MC) in Quantum Settings. In Scenario R, the ¢ birthday attacks for finding ¢
collisions to build a 2¢- My can be done by calling ¢ times of BHT algorithm. As a result, the total
complexity, which is ¢ - 272 i the classical setting, is ¢ - 27/3 in the quantum setting. The quantum
counterpart of building a 2!- My is given in Algorithm 1.

The complexity of Algorithm 1 is dominated by calling the BHT algorithm ¢ times; hence, it requires

Algorithm 1: Building a 2-Joux’s MC in Quantum Settings

Require: Given an oracle of the compression hash function A, an initial value o and qRAM.
1. Initialize the data structure Muyc to store pairs of message blocks.
2. Fori=1,... t:
(a) Start a BHT algorithm by querying on/3 message blocks m); to the oracle of h, sort according to the second
entry and store all the pairs in list L, if L contains a collision, output the collision immediately.
Store all pairs (mj, h(zi-1,m})) in L to qRAM.
Construct the oracle: F': {0,1}" - {0,1} by defining F(m) = 1 if and only if there exist (m}, h(zi-1,m}))
in qRAM such that h(zi-1,m}) = h(zi-1,m) and mj = m.
(b) In the BHT algorithm, apply the Grover’s search algorithm using oracle F:
i. Initialize the state of the Grover’s search to be the uniform superposition of 2" messages;

ii. After running about T 9n/3 Grover steps, measure the state and return a pair of message blocks
(mi,m;) such that h(wi—1,m;) = h(wi—1,m;).
(c) Obtain z; = h(zi-1,m;), append (m;, m;) to Muc.
3. Output (x¢, Muc).

O(t-2"3) quantum queries, O(t - 2*/3) computations, and O(2"/%) qRAM.

In Scenario Ry, we can replace the BHT algorithm with the algorithm in [11], which requires
0(2%) computations and O(2"°) classical memory. Then, the resulted quantum algorithm 1
requires O (t . 920/ 5) quantum queries and 0(2”/ %) classical memory.

Note that this quantum version of the Joux’s multi-collision will be used in building more
complex structures (interchange structure in Sect. 3.4), and in the presented preimage attacks
(Sect. 5.1 and 5.2).

3.2 Expandable Message (EM [26]).

Kelsey and Schneier in [26] invented the expandable message, which is similar to Joux’s multi-
collision. By generating ¢ collisions with pairs of message fragments of length (1,2° + 1) for i €
{0,1,...,t—1}, one can get 2¢ colliding messages whose lengths cover the range of [t,t +2¢ - 1] (see
Fig. 5). The complexity is of 2! +¢ - 2712 computations. This expandable message can be used to
bypass the Merkle-Damgérd strengthening and carry out a long message second-preimage attack
on MD with roughly 2" /L computations for a given challenge of L blocks.
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mi m2
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t—1
2 Hmt
Figure 5: Expandable message and its condensed representation in R.H.S. [23]

Expandable Message (EM) in Quantum Settings. Since the main idea of building a 2!-expandable
message is finding the collision between a message of a single block and a message of length 2¢ + 1
for 0 <¢ <t-1, this step can be done by applying the BHT algorithm in quantum setting. Similar to
finding collisions in quantum setting for building Joux’s multi-collision, for each ¢, we calculate the
hash value z;_; of message [0]% from the hash value z;_; , and find a pair of message blocks (m;, m;)
such that h(x;-1,m;) = h(x}_1,m}) = z;. Then the constructing a message of length s € [t,¢ +2' - 1]
step is proceeded in the same way as in the classical setting, as we look at the decomposition of
s —t in t-bit binary base. We select the long message [0]* |m/ in the iteration i if the i-th LSB of
s —tis equal to 1, otherwise, we select the single block message m,; instead. The complexity of this
quantum algorithm is different from classical expandable message algorithm just by the collision
search step; hence, it is of 2! + ¢ - on/3 quantum computations in Scenario Ry, or of 2! +¢ - 9215
quantum computations using CNS algorithm in Scenario Rs.

This quantum version of the expandable message will be used in the presented quantum second-
preimage attack on the MD hash function (Sect. 4.2).

3.3 Diamond Structure (DS [25]).

Kelsey and Kohno in [25] invented the diamond structure. Similar to Joux’s multi-collisions and
Kelsey and Schneier’s expandable message, diamond is also a kind of multi-collision. The difference
is that, instead of mapping a single starting state to a final state in the form of sequential chain, a
2t_diamond maps a set of 2! starting states to a common final state in the form of a complete binary
tree (see Fig. 6). Blackburn in [8] pointed out that the construction method and its complexity

provided in [25] have a flaw, and offered a more rigorous analysis and construction method. The
t

method in [8] requires O(v/t - 25" ) message blocks and n -/ - 95" computations, and will be
converted into quantum method later in this section. Kortelainen and Kortelainen in [27] presented
another method for constructing the diamond structure. The new method could reduce the message

requirement to 0(2 ) However, it becomes more intricate by separating the procedure into
jumps, phases, and steps. During different phases and steps, different number of new messages are
added and old messages are recycled, which makes the phases and steps more dynamic and the
workloads are not balanced compared with previous methods.

Diamond is originally used in herding attacks on hash functions [25]. In [3,4,5], Andreeva et
al. exploited the diamond structure to develop generic second-preimage attacks on Dithered hash
function and Hash-Twice. Besides, the diamond structure was also used to device a second-preimage
attack on Merkle-Damgard hash function with shorter messages than that in the long-message
second-preimage attack in [26].

Diamond Structure (DS) in Quantum Settings. We adapt the construction method in [8] to build
the diamond in the quantum setting. The framework is to build the complete binary tree of the
diamond with given 2! states as the leaves, layer by layer. The following description in Algorithm 2
focuses on the construction from one layer to the next, and takes the first two layers for example.



Evaluating the Security of Merkle-Damgard Hash Functions and Combiners in Quantum Settings 9

799 21

To

Figure 6: A 23-diamond

In Algorithm 2, according to [8], to find a perfect matching” in G, the probability p for each pair of
vertices being connected by an edge should be no less than (In2%)/2! ~ t-27¢. So, for each state x;, the
required number of other states that can lead to a collision with x; is t. At this condition, we repeat
Grover’s algorithm ¢ times for each state in Step 2. Then, the probability for each pair of (x;,x;)
being mapped to a collision is p ~ (¢t-(L-S))/2". That requires p ~ (t-(L-S))/2" = (t-2"7*)/2". That is,

L=t%.2¢ dy +dy =0,
L-S~2" Let d then { * 2 To balance the complexity of Step 1 and Step
S =1t .2%, l+s=n-t.
2+dy = 2dy, di=2/3, £=(n-1)/3

2, we set 2¢-t-1/S = 2t L, that is, { Accordingly, we have {

s = dy =-2/3, s=2(n-1)/3.
L = t2/3 . 9(n-1)/3

G- 239203 As a conclusion, using the above method in Scenario R, the total

Therefore, {

time complexity for building ¢ layers of a 2‘-diamond is O(¢%/3 - 2("*20)/3) "and memory complexity
is O(t2/3 . 2(n+20/3) qRAM.

In Scenario R2, the time complexity to find a collision is of ( computations. Therefore,
building a 2'-diamond structure requires O(t*/? . 2t . 22(n=0/5) = O(¢?/3 . 227+30)/5) computations,
with O(2/3 . 2t . 2(n=0/5) = O(¢2/3 . 2(n+4)/5) (lassical memory.

This quantum version of the diamond structure will be used in the presented quantum herding
attack on the MD hash function (Sect. 4.3) and the quantum herding attack on combiners (Sect.

=

5.3).

2n7t)2/5

3.4 Interchange Structure (IS [28]).

Leurent and Wang in [28] invented the interchange structure, which is used to devise a preimage
attack on the XOR combiner. The interchange structure contains a set of messages M1 and two
sets of states A and B, such that for any pair of states (A;, Bj | A; € A, B; € B), one can pick a
message M from Mig such that A; = H1(IVy, M) and B; = Ha(IV2, M). To build a 2'-interchange
structure (with 2¢ states for each hash function), one can cascade 2% — 1 building modules named
switches. The effect of a switch is that a state in one computation chain of one hash function can
make pair with two states in two computation chains of the other hash function. A switch can be
built using multi-collisions and the birthday attack (see Fig. 7a). The total complexity to build a
2'-interchange structure is of O(22*"/2) computations.

4 In graph G, if there exists a set of edges, no two of which share a vertex, then the set of edges is called a matching.
M is a maximum matching in G if no matching in G contains more edges than M does. If matching M in G contains
every vertex, then M is called a perfect matching. Our goal here, is to find a perfect matching in G = (V, ), of
which the vertex set is V = {z1,..., 29t } and (z;,z;) € £ if x; and x; generate an obtained collision.
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Algorithm 2: Building One Layer of Diamond in Quantum Settings

Denote by X = {z1,...,x5 } the set of states at the first layer of the diamond.
Let M = {m1,...,mr} be a space of L message blocks.

1. For each z; € X, compute a table T; = {(h(xi,m;), (z:|m;)) | m; € M} with the hash values as the index and
the concatenation of z; and m; as the contents of entries. Combine all 2" tables into a single table without
merging and store in the qRAM.

2. For each x; € X, repeat the following t times:

(a) Let M' = {mj,...,m%s} be a new space of S message blocks.

(b) Initialize the uniform superposition state of message blocks in space M'.

(c) Use Grover’s algorithm to search for a collision between the set of hash values {h(xzi,m}) | m}; € M'} and
the set of 2¢- L values store in the QqRAM. Each step in Grover’s algorithm, after accessing gRAM, it
returns |b @ 1) if A(z;,m) collides with some element in qRAM, otherwise, it returns |b).

With the collisions obtained by the quantum computation, construct the associated graph G = (V, £), of which

the vertex set is V = {z1,...,2z9¢} and (z;,z;) € £ if x; and x; generate an obtained collision. This is same as

did in the last part of Step 2 of the method in the classical setting (see [8]).

3. Find the perfect matching contained in G same as Step 3 of the method in the classical setting (see [8]).

”
1
) =, )=
N .C»”i =1 S e - - 4
e ! o
’Cl> — — |Cl> “ RV -22( 3 & Grover steps
R ... \
S T R R e P S =
7)) — — |9) £ 1) — — [borb@1)
R | N = = = - 7/
’y> ] B |y v Cq> I‘— =3 .22(11371) Grover steps
>
The qRAM stores \\y\'fj
{(h(zi, my), zillm;) v

| i € {1,...,2t},

i€ {L....L}},
where |g) is the superposition
of indices and corresponds to
the value of h(z;, m;). The >
entry indexed by h(x;,m;) is
the concatenation of x; and
myj, €.8-, Ch(zg,mq) = wOHmO;

2 (n—t)
L=t3.2"3 ,and D =2t L.

m) —u,, , — Im—A=
|b) — —I|b0rbEB1)

1

1

1

1

1

! A

1 N == = 7/
1

\

Vit 3.27 3 Grover steps

t times

Interchange Structure (IS) in Quantum Settings. The interchange structure starts with building a
single switch, which is constructed by building a 2"/2_Joux’s multi-collision for the hash function
Ho and finding a collision between the hash value of H; from different states (a;,a;) and some
pair of message (M MY ). These two steps can be replaced by the quantum algorithm for building
Joux’s multi-collisions and the quantum walk algorithm for the element distinctness problem. The
quantum algorithm for building a single switch is described as follows in Algorithm 3.

In Scenario R1, the complexity of Algorithm 3 is dominated by the building a multi-collision in
Step 1, since Step 2 requires O((2/2+1)?/3) = 0(2"/?) quantum computations and O(2"/?) quantum
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(a) Building a switch (b) Interchange structure

Figure 7: Interchange structure and its building block

Algorithm 3: Building a Single Switch in Quantum Settings

1. Use the quantum Joux’s multi-collision algorithm to build a set Muyc of on/? messages for hs that link the
starting state by to the same state by, i.e., VM € Myc, h3 (b, M) =bj,.

2. Use a quantum walk algorithm to find a collision in the set of 2"/**! clements which are h}(a;, M) and
hi(aj, M) for all the messages M in Myc. With high probability (constant), the algorithm return a pair of
messages denoted as (M;, M) that hi(a;, M;) = hi(a;, M;).

3. Use the message M; to compute the missing chains: b; = h3(b;, M;), a; = hi(a;, M;). With high probability,
all the chains reach distinct values; if not, restart the algorithm with a new multi-collision.

n
memory. Hence, Algorithm 3 requires O (5 -on/ 3) quantum queries to the compression functions,

(@) (g onl 3) quantum time and O(2™3) quantum memory.

In Scenario R, Step 1 needs O (g . 92n/ 5) quantum computations and 0(2”/ %) classical memory,

but when it comes to Step 2, the number of computations is higher, that is, O((2"/2*1)6/7 = O(2%"/7)
quantum computations and O((22)%/7) = 0(2") quantum memory. Therefore, in this model, the
time complexity for Algorithm 3 to build a single switch is of O(23"/7).

The framework for building a 2'-interchange structure in quantum setting is the same as in
the classical setting. One builds the required 2% — 1 switches as the following: first, build a single
switch from (ag,bg) to each of (ao,by); then, for each k, build switches from (ag, bi) to all (aj,by)
for all j = 0,...,2" — 1. To reach the chain (aj,bx) from (ag,bp), we first find the switch to jump
from (ao,bo) to (ao,br) in the first step, then find the switch to jump from (ag,bs) to (aj,b;) in

the second step. Then the complexity to build an interchange structure is O (g L 92+n/3 ) for both

quantum queries and time and O(2"/3) quantum memory in Scenario R1, or O(22+3™7) and O(2"/%)
classical memory, O(2"" ™) quantum memory in Scenario Ro.

This quantum version of the interchange structure will be used in the presented quantum preim-
age attack on the XOR-combiners (Sect. 5.1).
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4 Security of Merkle-Damgird Structure in Quantum Settings

In this section, we explicate baselines for the security of Merkle-Damgard hash functions with
respect to basic requirements in quantum settings, considering both Scenario R and Scenario Rs.
That includes the resistance against multi-collision, preimage, second-preimage attacks, and herding
attacks.

4.1 Multi-Collision Attack

For the multi-collision attack on the Merkle-Damgard structure, as has been introduced in Sect.
3, following Joux’s method and using BHT algorithm for each collision search, finding 2'-collisions
requires O(t - 2*%) quantum computations and O(2"/3) qRAM in Scenario R;. Since the time
complexity to find a collision of any hash function is 0(2"/ 3) in Scenario R, we can see that, same
as in the classical setting, the quantum security of MD structure against multi-collision attack is
only polynomial higher than the collision resistance of its compression function. In Scenario R, 2¢-
collisions of an MD hash function can be obtained by combining Joux’s method and CNS algorithm
with time complexity O(¢ - 227/5) and requires 0(2"/ %) classical memory.

4.2 Preimage and Second-Preimage Attack

For an n-bit hash function, a security upper bound with respect to (second-) preimage attack in
the quantum setting is directly provided by a plain Grover’s algorithm, that is 0(2”/ 2) quantum
computations. Thus, only attacks with complexity lower than the Grover’s search algorithm can be
seen as successful attacks. For the preimage resistance of MD hash construction, we cannot achieve
better attacks than a plain Grover’s search on an ideal hash. For the second-preimage resistance of
MD hash construction, basing on the long-message second-preimage attack in [26], one can launch
a quantum attack with the complexity lower than the generic Grover’s attack.

Given message Myqrger Of length 2k 4k + 1, the goal is to find a second-preimage whose hash
value is equal to that of the M4 ger. The quantum attack is described in Algorithm 4.

Attack in Scenario Ri. The total complexity includes the complexity to build the expandable
message with 2% + k- 273 computations, O(2¥) evaluations of compression function to compute the
intermediate hash values of Mgrger and m/4- 2(n=k)/2 gyaluations to find Mk Therefore, the total
workload to find a second-preimage for a given message of length 25 + k + 1 is 21 + k. 27/3 + w/4-
2(n=k)/2 quantum computations. Since the complexity of this attack in the classical setting is about
k-on/2+1 ok 4 2n=k+1 the quantum version speeds up the attacks in classical setting when the given
message is of length less than on/2,

n-k

THE BEST-CASE COMPLEXITY. The minimum attack complexity is achieved when 3 =5 i.e.,

k= g Therefore, the second-preimage attack for a long message of length O(2"/3) requires O(n~2”/ %)

quantum computations and 0(2"/ 3) quantum memory. This complexity is only higher than that of
the collision attack by BHT algorithm by a polynomial factor.

Attack in Scenario Rs. The set of expandable messages can be built with 2% + & - 227/5 quantum
computations, using 0(2"/ %) classical memory. In Step 2, we store 2F intermediate hash values of
Miarger to classical memory. In Step 3, different from using the Grover’s algorithm as in Scenario
R1, we apply the multi-target preimage search algorithm in [11] to search for message block Mj;,.

The other steps do not change in this model, then the total work can be done in time 2% + k -
92n/5 4 on/2-k[6 | ok
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Algorithm 4: Second-Preimage Attack on MD Hash in Quantum Settings

1. Build a set of expandable messages to cover the whole range of [k, k + 2k _ 1] using the quantum algorithm
as described in Sect. 3.2. Denote this set by Mg, and the hash value after processing expandable message in
MEM by z.

2. Let @o = IV, Miarget = ma|mal||-|mok 4 pr1-

Compute z; = h(wi—1,m;) for ¢ from 1 to 2° + k + 1.
This step is to compute 2% intermediate hash values of Miarger and store results Tpi1 ... %qk, 5y t0 QRAM.

3. Use Grover’s algorithm to find a message block to link the iterated hash value of expandable message to one
of the intermediate hash values of Migrget, i.€. find My;nk such that h(Z, Miink) = z; for some j. Since the
probability of the appearance of M,k is 2" we proceed w/4- 2(n=0)/2 Grover steps before measure the
superposition state to get Myink.

4. Find a message M~ of length j — 1 in Mgy.

5. Return the second-preimage M ™| Myink | mje1 | |mok i1

my Mo my Mj+1 Mokt f+1
....... e o— >0 H(M)
Step 2) Lok 4 k+1

THE BEST-CASE COMPLEXITY. The best-case complexity of this attack in Scenario R is achieved

k 3
when k = g et i.e., k= 7n The optimal time complexity is 0(23”/7), with classical memory of

size O(2°7).

4.3 Herding Attack

The herding attack on Merkle-Damgard constructions is first introduced in [25], which is a special
form of chosen-target preimage attack. In this attack, an adversary chooses a public hash value hr,
and then, she is challenged with a prefix P. Her goal is to find a suffix S such that hy = H(P||S).
Since hr is chosen by the adversary, she can specifically choose it after some pre-computations, such
as the root value of a diamond structure built on the compression function h.

In the following, we extend the classical herding attack to its quantum version, which uses the
diamond structure and Grover’s search algorithm. The attacker first builds the diamond structure
by a quantum computer. In this diamond structure, from any of the intermediate hash values, she
can produce a message which leads to the same final hash value hp. She then publicizes hr to
commit. After receiving the challenged message P, the attacker applies Grover’s algorithm to find
a suffix message block S. The detailed attack is described in Algorithm 5.

Attack in Scenario R;. The total complexity of the herding attack is k3 . 2(n+2k)/3 | o(n-k)/2
quantum computations, with O(k2/3 . 2(n+2k)/3 ) quantum memory.

+ 2k -k
THE BEST-CASE COMPLEXITY. The best complexity is achieved when r 5 - nT, i.e. k= 2

which results in the optimal 0(23"/ ™) quantum computations.

Attack in Scenario Ry. In this model, the 2*-diamond structure can be built with time complexity
of O(k2/3.2(n+3k)/ ®); and the search of M, can be done by using multi-target preimage algorithm
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Algorithm 5: Herding Attack on MD Hash in Quantum Settings

1. Build the diamond structure using the quantum algorithm describe in Sect. 3.3: from 2F starting hash values

D= {zl}ffl to the root value hr. This step can be done in 0(1432/3 . 2("+2k)/3) computations. Commit hr and
publicize it.

2. Receive the challenged prefix: P.

3. Find a linking message: apply Grover’s algorithm to search for a single block message M;ini such that the
value h(P| Mjiny) collides with some value z; in D. This step can be done in O(2""¥/2) quantum queries
and returns My;nk.

4. Produce the message: M = P| Mjini|M; where M; is a sequence of message blocks linking z; to hr following
the diamond structure built before.

TV (Step 2)

with time complexity of O(2%7%/6). Then the total complexity is O(k?/3.22n+3k)/5 . 9n/2-k/6) quan-
tum computations, with O(k?/3 . 2(n*4k)/5) classical memory.
2n+3k n k

———, i€,

2 6

THE BEST-CASE COMPLEXITY. The optimal time complexity is achieved when

3 - ~
k= %, which results in 0(211”/ 23) time and 0(27”/ 23) classical memory.

5 Security of Hash Combiners in Quantum Settings

In this section, we present quantum attacks on hash combiners. For preimage, second-preimage, and
herding attacks, the ideal quantum security are all 2"/2 (resp. 2") for XOR (resp. concatenation)
combiners, which are bounded by attacks directly using Grover’s search algorithm. For collision at-
tack, the ideal quantum security bound is 2"/3 (resp. 22/3) for XOR (resp. concatenation) combiners,
which is provided by the BHT’s algorithm.

In the following, we present a quantum preimage attack on XOR combiners, which provides
updated security upper bound in quantum settings for its resistance against (second-) preimage
attack. We then present quantum collision, (second-) preimage attacks, and herding attacks on
concatenation combiners. We note that, the presented herding attack on concatenation combiners
applies to XOR combiners as well.

In the sequel, we denote by H1 and Hs the underlying hash functions, h; and hs their compression
functions, and h] and hj the arbitrary times of iterations of hy and hg, respectively.

5.1 Preimage Attack on XOR Combiners in Quantum Settings

In this section, we extend the preimage attack on XOR combiners in [28] to its quantum version.
Let V' denote the target value. The goal is to find a message M such that Hq (M) @ Ha(M) =V.
The framework of the attack in the quantum setting is the same as that in the classical setting,
which can be described as follows, and also detailed in Algorithm 6.

1. Build an interchange structure starting from the initialization vectors (IV1, IV52) and ending up
with two sets of terminal states A= {A;|j=1,...,2¥} and B={B;|i=1,...,2F}.
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2. Launch a meet-in-the-middle procedure between the two sets A and B, to find a message block
m, and a state A+ € A and a state B;+ € B, such that hi(Aj+,m) =V @ ha(Bx, m).
This procedure contains two levels of iteration. The outer level of iteration is on the message
block m, and the inner level of iteration is on the pairs of states (A;, Bj) € A x B under a fixed
value of m. In the quantum version, the inner lever of iteration is implemented using a quantum
walk algorithm, and the outer level of iteration is implemented using Grover’s search algorithm.

The details of the quantum algorithm is described in Algorithm 6.

Algorithm 6: Preimage attack on XOR combiners in Quantum Settings

1. Build a 2*-interchange structure using the quantum algorithm described in Sect. 3.4. This structure starts
with IVi and IVz and ends with two ending point sets {A;[j = 1---2"} and {B;|i = 1---2"}, so that for any state
pair (Aj, B;), we can easily find a message linking from starting points to it.

2. For each message block m, let F'(m) be the indicator function that F(m) = 1 if there exist a pair (A;+, B;»)
in the two sets of ending points such that hi(Aj«,m) =V @ ha(B;+,m), and F(m) = 0 otherwise. To calculate
F(m), we use the quantum walk algorithm to find a collision between the two sets { A} = h1(A;,m)|j = 12"}
and {B] = V @ h2(B;,m)|i = 1---2¥}. Denote this step by Ugy-tess and the ancillary qubit to indicate the value
of F by |b).

3. Use Grover’s algorithm to find a message block m* satisfying F'(m”) = 1 in the space of 2"72F message blocks.
Since the probability of finding a match between the above two sets is 227", it requires performing about

T gn-2k)/2 Grover’s steps.

4. Return M = M*|m* where M~ is the message mapping (IV1,IV2) to (A;+,B;») corresponding to the hash
values of H1 and Hs.

rA i
/, , , , , , P82 7 {h1(Aj,m) | j
R e e e 7> e Im) — "2 ok [ Im)
P . / . P ;A

2 UQW—test

T s s e =V b)) —V @ hy(B;,m)— |borb& 1)
L k
p 7\-§/’\¢/’\¢Z N i=1,...,2"}

- 2(n=2k)/2 Grover iterations

M M M M M M M M M M M

Attack in Scenario R;. Since the evaluation of F'(m) is performed during Grover’s algorithm, the
total computational complexity is the multiplication of the complexity of evaluating F'(m) and the
total number of Grover’s steps plus the complexity of building the interchange structure. It requires

. 22k+n/3

n
approximately 5 quantum computations to build a 2*-interchange structure, (2- 2k)2/ 3

T
quantum computations to find a collision between the two sets of 25*! elements, and 1 on-2k

iterations in Grover’s algorithm. Then, the total workload required is

g L 92k+n/3 | 92(k+1)/3 ™ o(n=2k)/2 g .92k+n/3 | on/2-k/[3

THE BEST-CASE COMPLEXITY. The minimum complexity of the quantum preimage attack on XOR
combiners based on the interchange structure can be achieved by selecting a message block that
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makes two parts of the complexity equal. When n is large enough that g is negligible compared to

23 we select the parameter k such that
e lon_k
3 2 3

re., k= 2 This results in a total complexity 0(210”/ 21y which is slightly faster than Grover’s

algorithm.When n is small, we choose the value of k such that

n n k
1 -1+2k+-=—--—,
o821 37273

3
e, k= - (% +1-log n) For the attack to be faster than Grover’s, it requires k£ > 0 and the value

of n should be large enough to satisfy % +1-logyn >0, e.g., n>20.

Attack in Scenario R,. As analyzed in Sect. 3.4, the complexity of building a 2*-interchange struc-
ture in this situation is O(22+37) time, O(2°) classical memory and O(2"/7) quantum memory.

Step 3 of Algorithm 6 can be done after O (26(’”1)/7 . % . 2(”_2k)/2) = 0(2"/2_k/7) evaluations, since

the quantum walk to search a collision in a set of 2"*! elements requires 0(26(k+1)/ ™) computations

and O(2"/7) quantum memory. Combined with the complexity of Step 1, the total computational
complexity is Q(22F+30/7 4 gn/2-k[T)

3n

k
THE BEST-CASE COMPLEXITY. Choosing k such that 2k + - = g - =

, i.e., k = — can minimize

30
the time complexity of the preimage attack on XOR combiners to 2°2%/105,

5.2 Collision Attack, Preimage Attack, and Second-Preimage attack on
Concatenation Combiners in Quantum Settings

In this section, we present the collision attack and preimage attack on concatenation combiners in
the quantum setting, which are directly converted from the classical attacks in [24]. Both quantum
attacks use the quantum algorithm for building the Joux’s multi-collision (refer to Sect. 3.1) and
the quantum walk algorithm (refer to Sect. 2.5) for finding a collision from a set, which is different
from the classical method by brute-force search.

Collision Attack. Here we introduce the quantum collision attack, which aims to find a pair of
message blocks (M, M") such that Hy(M)|Ha2(M) = H1(M")|H2(M"). The collision attack follows
two steps:

Step 1: Apply Algorithm 1 to build 2™/2-Joux’s multi-collision for the first compression hash

function. Denote this set by Myc. This step can be done in O (g -on/3 ) time complexity.

Step 2: Apply quantum walk algorithm to find a collision of the second hash function in a set of
22 message blocks constructed from Myc. This step can be done in O ((2”/2)2/3) = O(2"3) time.

The time complexities of the two steps are balanced at O(2"/3), using O(2"?) quantum memory.
In Scenario Ro, Step 1 can be done in O (g . 22”/5) time, using 0(2”/5) classical memory; Step 2

can be done in O ((2”/ 261/ 7) = O(2°7) time, using O(27) memory. The total time and classical
memory complexities under this scenario are 0(23"/ ™) and 0(2”/ %), respectively.
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Preimage Attack. Let ViV, be a prefix of 2n bits. The goal of a preimage attack is to find
a message M such that the concatenation of the outputs of the hash functions, H; and Ho acting
on M, isequal to V', i.e., H1(M)|Ho(M) = V1| V2. We can directly generate a quantum attack based
on Grover’s algorithm to search for M in a space of 22" message blocks. With high probability, there
exists one message M that satisfies the above condition; this attack require approximately /4 - 2™
Grover steps to find M. This attack is considered as a generic quantum attack on any ideal hash
construction of 2n output bits.

To devise a more efficient attack on concatenation combiners of MD hashes than the above
most generic attack, we extend the attack in [24] to its quantum version. That is, we first build a
2"™-Joux’s multi-collision for the first hash function #H; by Algorithm 1, and denote this set by M.
All messages in Myc have the same hash value as x. From the hash value x, we find a message block
m among 2" message blocks so that h(xz,m) = Vi. This step can be done by Grover’s algorithm in
0(2"/2) time. For the hash function Hso, search M; from the set Myc such that Ho(M7|m) = Va.
Since the cardinality of Myc is 27, it is expected there is at least one such message M;. This step
can be done by Grover’s algorithm searching in the space of messages in Myc with time complexity
O(2M?). Therefore, the total workload required is O(n-2"/3+2%?2) = 0(2"/?), using O(2""?) quantum
memory in Scenario R1. In Scenario R, the time complexity of a quantum attack does not change so
much, which is O(n-22"% +2"2) = O(2/?); because it is dominated by the searching step, in which
we can simply replace the quantum memory by a classical memory of size 0(2”/ ®). This attack
exponentially speeds up the plain quantum attack using Grover’s search, and also exponentially
improves the classical attack, of which the time complexity is O(2").

Compared to the quantum preimage attack on one MD hash function of n bits, the attack on
concatenated combiners only require a constant factor of more evaluations.

Second-Preimage Attack. Since the second-preimage attack can be implied from the preimage
attack, the complexity is similar to the preimage attack.

5.3 Herding Attack on Concatenation Combiners in Quantum Settings

The quantum herding attack on a single MD hash function has been introduced in Sect. 4.3. In this
section, we adapt the quantum herding attack to concatenation of two MD hashes. The framework
of the attack follows that of the classical attack in [4], in which the main idea is that by constructing
a multi-collision My for Hq one can use the messages in Myc to builds a diamond structure for
Ho. The high level description of the attack is as follows, which is also illustrated by the figure in
Algorithm 7.

1. Phase 1 - off-line precomputation.
(a) Build a succeeding of three structures for Hi: a diamond structure Mpgq, a Joux’s multi-
collision Myc,, and a Joux’s multi-collision Mycy. Terminate at a state T7.
(b) Build one structure for Hs: a diamond structure Mpg, using the messages in Mygy. Terminate
at a state Th.
(¢) Commit 77 |T% to the public.
2. Phase 2 - on-line.
(a) Being challenged by a prefix P, compute the two intermediate states zp = hi(IVi, P) and
yp = h3(IVa, P).
(b) For #i, find a message block m* mapping zp to one of the leaf states x; of Mpgy, re-
trieve the message fragment S7 mapping x; to the root of Mpg;. For Ha, compute yr =
B3 (IVa, Plm*|$1)
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(c) For Ha, find a message fragment Sz in Myc, mapping yr to one of the leaf states y; of Mpgs.

Retrieve the message fragment S3 mapping y; to the root of Mpgy, which is T5.
(d) Response with M = P|m*|S1||S2Ss.

Attack in Scenario R;. The details of the quantum herding attack is presented in Algorithm 7.

Algorithm 7: Herding Attack on Concatenation Combiners in Quantum Settings

Phase 1 - off-line precomputation.

(a) Build a diamond Mpg; for H1, which starts from 2F states Dy = {ml}fk and are all mapped to the root value
zr. That can be done using the quantum algorithm in Sect. 3.3. From the hash value z7, build a 2" k_Joux’s
multi-collision Mucg, in which all messages map zr to a state xa. Continue to build a 27%/2_Joux’s multi-
collision (consists of k fragments and each fragment is of length n/2) on H; from the starting state zas, and
mapping to the state 71, and denote it by Muycy. Denote the terminal states of each of the k fragments of
Muc, by zp, for i from 1 to k (note that xar, =T1).

(b) Build a diamond Mps, for Hz, which starts from 2¥ states Dy = {yl}%k The messages used to building Mpss
are all chosen from the set Mycy. For example, the messages mapping the first layer of 2* states to the 287!
states in Mpgy are chosen from the set of on/? messages in the first fragment of Muc, mapping xns, to xa, .
To build the next layer from D2, use the quantum walk algorithm to find a collision in the set of on/2 messages
for pairs of states in D, with 0(2”/ 3) quantum computations. Repeats this step until reaching a root T» for
Mbpss. Note that, the building method for Mpg, is different from the quantum algorithm describe in Sect. 3.3.
That is because, the messages should be selected from the set Mucg, which is limited. Therefore, building the
diamond structure Mpsy costs O(27 - 27/3) = O(2("*3¥)/3) computations.

(¢) Commit 7|75 to the public.

Phase 2 - on-line. Being challenged with a prefix P, proceed as follows.

(a) Compute the two intermediate states zp = hi(IV1, P) and yp = hy(IVa, P).

(b) Search for a message block m* that maps xp to one of the leaf states x; of Mpg;. This is done by using
Grover’s algorithm, which accesses the quantum oracle of h; to find m”* in 0(2("7’“)/2) steps.

(¢) Retrieve the message S1 in Mps; that maps z; to the root. Compute yr = hy (IVa, P|m*||S1).

(d) Search for a message fragment S> among Myc, that maps yr to one of the leaf states y; of Mpss. This is done
by using Grover’s algorithm again.

(e) Retrieve the message fragment S3 in Mpsy that maps y; to the root, which is T5. Due to the way of construction
of Mps, in Phase 1, for H1, the message fragment Ss also maps the starting state of Muyc, to T1.

(f) Response with M = P|m™|S1]S2]Ss.

1

(Phase 1)

(Phase 1)
[‘/Z (Phase 2) TQ

Yor

The time complexity of the precomputation phase includes that of building n — k + nk/2 Joux’s-
multicollision and that of building the two diamond structures Mpg; and Mpgy. Therefore, the total
time complexity is O ((n -k + (nk)/2) - o3 4 2(”*3’“)/3) = O(2("*38)/3) The online phase is done in
time complexity O(2("¥)/2)_ Therefore, the total work is done in O(2("+3%)/3 4 2("=k)/2) quantum
time, with O( onl 3) quantum memory since the quantum memory can be re-used after each iteration.
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THE BEST-CASE COMPLEXITY. To minimize the time complexity of the herding attack on concate-
nated hashes, we choose the length of the message which balances the time complexity of two phases,
i.e., (n+3k)/3 = (n - k)/2. Then with the value k = n/9, the attack is optimized with O(2"/?) time,
while a naive quantum herding attack using Grover’s algorithm requires about O(2") quantum com-
putations to search for the suffix S.

Attack in Scenario R,. The difference in this model lies in the complexity of building n—k+ (nk)/2
Joux’s multi-collisions, building the diamonds, and finding message fragments linking from collision
values to one of starting points of diamonds. To build Mpg,, we need 2* iterations to merge pairs
of hash values into one. This step costs O(2F - (27/2)6/7) = O(23™/7+F) computations and O(27)
quantum memory size. Then, the precomputation phase is of O ((n -k+(nk)/2)- 22n/5 1 93n[T+k ) =

O(23™7™F) time complexity, using O(2"/%) classical memory, and O(2™7) quantum memory size.

THE BEST-CASE COMPLEXITY. The best attack is achieved when k satisfies 3n/7 + k = n/2 - k/6,
i.e., k= 3n/49. It gives the time complexity of O(2%4%/4).

6 Conclusions

In this paper, we studied the security of various constructions of hash functions in quantum settings
with respect to important attacks: collision attacks, (second-) preimage attacks, and herding attacks.
We analyzed the complexities of these attacks under different quantum memory models.The results
show that our attacks in both models have better time complexity than that of the generic attacks by
directly applying Grover’s algorithm, and exponentially reduce both time and memory complexities
compared to the classical attacks. The cryptanalysis results of hash combiners in quantum settings
is consistent with that in the classical setting, that is, the security of most hash combiners are not
as high as commonly expected, and can be even lower than that of a single underlying hash function.
These results serve as an indication that, to achieve long-term security to the post-quantum era,
current symmetric-key crypto-systems require careful security re-evaluation or even re-design before
being adopted by post-quantum cryptography schemes.
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