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Abstract. In this work, we study perfectly-secure multi-party computa-
tion (MPC) against general (non-threshold) adversaries. Known protocols
in a synchronous network are secure against Q(3) adversary structures,
while in an asynchronous network, known protocols are secure against
Q(4) adversary structures. A natural question is whether there exists
a single protocol which remains secure against Q(3) and Q(4) adversary
structures in a synchronous and in an asynchronous network respectively,
where the parties are not aware of the network type. We design the
first such best-of-both-worlds protocol against general adversaries. Our
result generalizes the result of Appan, Chandramouli and Choudhury
(PODC 2022), which presents a best-of-both-worlds perfectly-secure pro-
tocol against threshold adversaries.
To design our protocol, we present two important building blocks which
are of independent interest. The first building block is a best-of-both-
worlds perfectly-secure Byzantine agreement (BA) protocol for Q(3) ad-
versary structures, which remains secure both in a synchronous, as well
as an asynchronous network. The second building block is a best-of-both-
worlds perfectly-secure verifiable secret-sharing (VSS) protocol, which re-
mains secure againstQ(3) andQ(4) adversary structures in a synchronous
network and an asynchronous network respectively.

1 Introduction

Secure multi-party computation (MPC) [31,21,7] is one of the central pillars in
modern cryptography. Informally, an MPC protocol allows a set of mutually dis-
trusting parties, P = {P1, . . . , Pn}, to securely perform any computation over
their private inputs without revealing any additional information about their
inputs. In any MPC protocol, the distrust among the parties is modeled by a
centralized adversary A, who can corrupt and control a subset of the parties
during the protocol execution. We consider computationally unbounded, Byzan-
tine (malicious) adversaries. This is the most powerful form of corruption where
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A can force the corrupt parties to behave arbitrarily during protocol execution.
Security achieved against such an adversary is called perfect security.

Traditionally, the corruption capacity of A is modeled through a publicly-
known threshold t, where it is assumed that A can corrupt any t parties [7,12,30].
A more general form of corruption capacity is the general-adversary model (also
known as the non-threshold setting) [22]. Here, A is characterized by a publicly-
known adversary structure Z ⊂ 2P , which enumerates all possible subsets of
potentially corrupt parties, where A can select any subset from Z for corruption.
Notice that a threshold adversary is a special type of non-threshold adversary,
where Z consists of all subsets of P of size up to t. It is well-known that modelling
A through Z allows for more flexibility, especially when P is small [22,23].

Our Motivation and Results: Traditionally, MPC protocols are designed
assuming either a synchronous or asynchronous communication model. In a
synchronous MPC (SMPC) protocol, the communication channels between the
parties are assumed to be synchronized, and every message is assumed to be
delivered within some known time. Unfortunately, maintaining such time-outs
in real-world networks like the Internet is extremely challenging. Asynchronous
MPC (AMPC) protocols operate assuming an asynchronous communication net-
work, where the channels are not synchronized, and messages can be arbitrarily
(yet finitely) delayed. Designing AMPC protocols is more challenging when com-
pared to SMPC protocols. This is because, inherently, in any AMPC protocol, a
receiver party cannot distinguish between a slow sender party (whose messages
are arbitrarily delayed) and a corrupt sender party (who does not send any mes-
sages). Hence, to avoid an endless wait, no party can afford to receive messages
from all the parties, as corrupt parties may never send their designated messages.
So, at every step in an AMPC protocol, a receiver party can wait for messages
from only a “subset” of parties, ignoring messages from the remaining parties
which may be potentially honest. In fact, in any AMPC protocol, it is impossible
to ensure that the inputs of all honest parties are considered for computation,
since waiting for the inputs of all the parties may turn out to be an endless wait.

Against threshold adversaries, perfectly-secure SMPC can tolerate up to ts <
n/3 corrupt parties [7]. On the other hand, perfectly-secure AMPC can tolerate
up to ta < n/4 corrupt parties [6]. These impossibility results have been gener-
alized to the following bounds against a non-threshold adversary: SMPC against
a general-adversary is possible provided the underlying synchronous adversary
structure Zs satisfies the Q(3) condition [23]. On the other hand, AMPC against
a general-adversary is possible provided the underlying asynchronous adversary
structure Za satisfies the Q(4) condition [25].1

Typically, in any MPC protocol, it is assumed that the parties will be know-
ing whether the underlying network is synchronous or asynchronous beforehand.
We envision a scenario where the parties are not aware of the network type, and
aim to design a single MPC protocol which offers the best possible security guar-

1 An adversary structure Z satisfies the Q(k) condition if the union of any k subsets
from Z does not cover P.
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antees, both in the synchronous and the asynchronous communication model.
We call such a protocol as a best-of-both-worlds MPC protocol. In a recent work,
Appan et al. [2] presented a best-of-both-worlds perfectly-secure MPC protocol
against threshold adversaries which could tolerate up to ts and ta corruptions
in a synchronous and asynchronous network respectively, for any ta < ts where
ta < n/4 and ts < n/3, provided 3ts + ta < n holds. We aim to generalize this
result against general adversaries, and ask the following question:

Let A be an adversary, characterized by adversary structures Zs and Za in a
synchronous network and asynchronous network respectively, where Zs ̸= Za.
Then, is there a best-of-both-worlds perfectly-secure MPC protocol which is

secure against A, irrespective of the network type?

No prior work has addressed the above question. We present a best-of-both-
worlds perfectly-secure MPC protocol, provided Zs,Za satisfy the Q(3,1) condi-
tion and if every subset in Za is a subset of some subset in Zs.

2 Note that we
focus on the case where Zs ̸= Za as otherwise, the question is trivial to solve.
More specifically, if Zs = Za, then the necessary condition of AMPC implies that
even Zs satisfies the Q(4) condition. Hence, one can use any existing perfectly-
secure AMPC protocol against general-adversaries (with appropriate time-outs)
[25,15,3], which will work even in the synchronous network, with the guarantee
that the inputs of all honest parties are considered for the computation. Our goal,
however, is to achieve security against Q(3) adversary structures, if the under-
lying network is synchronous. For example, let P = {P1, . . . , P8}. Consider the
adversary structures Zs = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P5}, {P4, P5, P6},
{P7}, {P8}} and Za = {{P1, P3}, {P2, P4}, {P3, P5}, {P4, P6}}. Since Zs and Za

satisfy Q(3) and Q(4) conditions respectively, it follows that existing SMPC pro-
tocols can tolerate Zs, while existing AMPC protocols can tolerate Za. However,
we show that even if the parties are not aware of the exact network type, then
using our protocol, one can still achieve security against Zs if the network is
synchronous or against Za if the network is asynchronous. The above example
also demonstrates the flexibility offered by the non-threshold adversary model,
in terms of tolerating more number of faults. More specifically, in the thresh-
old model, using the protocol of [2], one can tolerate up to ts = 2 and ta = 1
faults, in a synchronous and asynchronous network respectively. However, in the
non-threshold model, our protocol can tolerate subsets of size larger than the
maximum allowed ts and ta in synchronous and asynchronous network.

Even though our results generalize the results of [2], our protocols are rel-
atively simpler compared to theirs. For instance, one of the main ingredients
used in their protocol is a best-of-both-worlds verifiable secret-sharing (VSS)
protocol. Their VSS is involved and built upon another primitive called weak
polynomial-sharing (WPS). On the contrary, our best-of-both-worlds VSS pro-
tocol is relatively simpler and is not based on any WPS protocol.

2 Zs,Za satisfy the Q(k,k′) condition if the union of any k and k′ subsets from Zs and
Za respectively does not cover P.
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1.1 Technical Overview

Like in any generic MPC protocol, we assume that the underlying computation
(which the parties want to perform securely) is modelled as some publicly-known
function, abstracted by some arithmetic circuit cir, over some algebraic structure
K, consisting of linear and non-linear (multiplication) gates. The problem of
secure computation then reduces to secure circuit-evaluation, where the parties
jointly and securely “evaluate” cir in a secret-shared fashion, such that all the
values during the circuit-evaluation remain verifiably secret-shared and where
the shares of the corrupt parties fail to reveal the exact underlying value. The
secret-sharing used is typically linear [16], thus allowing the parties to evaluate
the linear gates locally (non-interactively). On the other hand, non-linear gates
are evaluated by deploying the standard Beaver’s method [5] using random,
secret-shared multiplication-triples which are generated in a circuit-independent
preprocessing phase. Then, once all the gates are securely evaluated, the parties
publicly reconstruct the secret-shared circuit-output. Apart from VSS [13], the
parties also need to run instances of a Byzantine agreement (BA) protocol [29] to
ensure that all the parties are on the “same page” during the various stages of the
circuit-evaluation. The above framework for shared circuit-evaluation is defacto
used in all generic perfectly-secure SMPC and AMPC protocols. Unfortunately,
there are several challenges to adapt the framework in our setting, where the
parties will be unaware of the exact network type.

First Challenge — A Best-of-Both-Worlds BA Protocol: Informally, a
BA protocol [29] allows parties with private inputs to reach agreement on a
common output (consistency), such that the output is the input of honest par-
ties, if all honest parties have the same input (validity). Perfectly-secure BA
protocols can be designed against Q(3) adversary structures irrespective of the
network type [19,14]. However, the termination (also called liveness) guarantees
are different for synchronous BA (SBA) and asynchronous BA (ABA) proto-
cols. The (deterministic) SBA protocols ensure that all honest parties obtain
their output after some fixed time (guaranteed liveness) [19]. On the other hand,
to circumvent the FLP impossibility result [18], ABA protocols are randomized
and provide almost-surely liveness [1,4,14], where the parties terminate the pro-
tocol with probability 1, if they keep on running the protocol forever. Known
SBA protocols become insecure in an asynchronous network, while existing ABA
protocols can provide only almost-surely liveness in a synchronous network.

The first challenge to perform shared circuit-evaluation in our setting is to
get a best-of-both-worlds BA protocol which provides the security guarantees
of SBA and ABA in a synchronous and an asynchronous network respectively.
We are not aware of any such BA protocol and hence, present a BA protocol
against Q(3) adversary structures with the above properties. As our BA protocol
is technical, we defer its informal discussion to Section 3.

Second Challenge — A Best-of-Both-Worlds VSS Protocol: In a VSS
protocol, there exists a dealer D with some private input s. The protocol al-
lows D to “verifiably” distribute shares of s to the parties, such that adversary’s
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view remains independent of s, provided D is honest (privacy). Moreover, in a
synchronous VSS (SVSS) protocol, every (honest) party obtains its shares after
some known time-out (correctness). The verifiability here guarantees that even a
corrupt D shares some value “consistently” within the known time-out (commit-
ment property). Perfectly-secure SVSS against general adversaries is possible,
provided the underlying adversary structure Zs satisfies Q(3) condition [27,24].

For an asynchronous VSS (AVSS) protocol, the correctness guarantees that
for an honest D, the secret s is eventually secret-shared. However, a corrupt D
may not invoke the protocol in the first place, in which case the honest parties
may not obtain any shares. Hence, the commitment property of AVSS guarantees
that if D is corrupt and if some honest party computes a share (implying that
D has invoked the protocol), then all honest parties eventually compute their
shares. Perfectly-secure AVSS against general adversaries is possible, provided
the underlying adversary structure Za satisfies the Q(4) condition [24,3].

Existing SVSS protocols become completely insecure in an asynchronous net-
work, even if a single expected message from an honest party is delayed. On the
other hand, existing AVSS protocols become insecure against Q(3) adversary
structures (which will be the case, if the network is synchronous). Since ,in our
setting, the parties will not be knowing the exact network type, to maintain
privacy during the shared circuit-evaluation, we need to ensure that each value
remains secret-shared with respect to Zs and not Za, even if the network is
asynchronous.3 The second challenge to perform shared circuit-evaluation in our
setting is to get a perfectly-secure VSS protocol which is secure with respect
to Zs and Za in a synchronous and asynchronous network respectively, where
privacy always holds with respect to Zs, irrespective of the network type. We are
not aware of any VSS protocol against general adversaries with these guarantees.
Hence, we present a best-of-both-worlds perfectly-secure VSS protocol satisfying
the above properties. Since our VSS is slightly technical, we defer the informal
discussion about the protocol to Section 4.

1.2 Other Related Work

All existing works in the domain of the best-of-both-worlds protocols focus
only on threshold adversary model. The works of [9] and [11,17] show that
the condition 2ts + ta < n is necessary and sufficient for best-of-both-worlds
cryptographically-secure BA and MPC respectively, tolerating computationally
bounded adversaries. Using the same condition, [10] presents a best-of-both-
worlds cryptographically-secure atomic broadcast protocol. The work of [28] stud-
ies Byzantine fault tolerance and state machine replication protocols for multiple
thresholds, including ts and ta. The work of [20] presents best-of-both-worlds
protocol for the task of approximate agreement using the condition 2ts+ ta < n.

3 Since we are assuming that every subset in Za is a subset of some subset in Zs,
the privacy will be maintained, both in the synchronous as well as asynchronous
network, if each value remains secret-shared with respect to Zs.
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2 Preliminaries and Definitions

The parties in P are assumed to be connected by pair-wise secure channels. The
underlying communication network can be either synchronous or asynchronous,
with parties being unaware about the exact type. In a synchronous network,
every sent message is delivered in the same order, within time ∆. In an asyn-
chronous network, messages can be delayed arbitrarily, but finitely, and need
not be delivered in the same order. The only guarantee is that every sent mes-
sage is eventually delivered. The distrust is modeled by a centralized malicious
(Byzantine) adversary A, who can corrupt a subset of the parties in P and force
them to behave in any arbitrary fashion during the execution of a protocol. The
adversary is assumed to be static, and decides the set of corrupt parties at the
beginning of the protocol execution. The adversary A is characterized by a syn-
chronous adversary structure Zs ⊂ 2P and an asynchronous adversary structure
Za ⊂ 2P . While in a synchronous network, A can corrupt any subset of parties
from Zs, in an asynchronous network, A can corrupt any subset from Za.

Given an arbitrary P ′ ⊆ P, and an arbitrary adversary structure Z ⊂ 2P ,
we say that Z satisfies the Q(k)(P,Z) condition [22], if the union of any k
subsets from Z, does not cover P ′; i.e. for every Zi1 , . . . , Zik ∈ Z, the condition
P ′ ̸⊆ Zi1 ∪ . . . ∪ Zik holds. Given Zs and Za, we say that Zs and Za satisfy the
Q(k,k′)(P,Zs,Za) condition, if the union of any k subsets from Zs and any k′

subset from Za, does not cover P. That is, for every Zi1 , . . . , Zik ∈ Zs and every
Zj1 , . . . , Zjk′ ∈ Za, the condition P ̸⊆ Zi1 ∪ . . . ∪ Zik ∪ Zj1 ∪ . . . ∪ Zjk′ holds.

We assume that Zs and Za satisfy the following conditions, which we refer
throughout the paper as conditions Con.

Condition 1 (Con) Zs and Za satisfy the following conditions.
– Zs ̸= Za, and Zs,Za satisfy the Q(3,1)(P,Zs,Za) condition.
– For every subset Z ∈ Za, there exists a subset Z ′ ∈ Zs, such that Z ⊆ Z ′;

Conditions Con imply that Zs and Za satisfy the Q(3)(P,Zs) and Q(4)(P,Za)
conditions respectively. In our VSS and MPC protocols, all computations are
done over a finite algebraic structure (K,+, ·), which could be a ring or a field. We
assume that each Pi has an input xi ∈ K, and parties want to securely compute
a function f : Kn → K. Without loss of generality, f is represented by an
arithmetic circuit cir over K, consisting of linear and non-linear (multiplication)
gates, where cir has cM multiplication gates and a multiplicative depth of DM .

Termination Guarantees of Our Sub-Protocols: As done in [2], for sim-
plicity, we will not be specifying any termination criteria for our sub-protocols.
The parties will keep on participating in these sub-protocol instances, even after
receiving their outputs. The termination criteria of our MPC protocol will en-
sure the termination of all underlying sub-protocol instances. We will be using
an existing randomized ABA protocol [14] which ensures that the honest parties
(eventually) obtain their respective output almost-surely. That is:

lim
T→∞

Pr[An honest Pi obtains its output by local time T ] = 1,
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where the probability is over the random coins of the honest parties and adver-
sary in the protocol. The property of almost-surely obtaining an output carries
over to the “higher” level protocols, where ABA is used as a building block.

We next discuss the syntax and semantics of the secret-sharing, used in our
VSS and MPC protocol. The secret-sharing is based on [27], and is defined with
respect to a given sharing specification S, which is a tuple of subsets of P.

Definition 1 ([27]). Let S = (S1, . . . , S|S|) be a sharing specification where, for
m = 1, . . . , |S|, each set Sm ⊆ P. Then a value s ∈ K is said to be secret-shared
with respect to S if there exist shares s1, . . . , s|S| such that s = s1+ . . .+s|S| and,
for m = 1, . . . , |S|, the share sm is available with every (honest) party in Sm.

A secret-sharing of s will be denoted by [s], where [s]m denotes the mth share.
Note that each Pi holds multiple shares {[s]m}Pi∈Sm

, corresponding to the sets
from S to which it belongs. The above secret-sharing is linear as [c1s1 + c2s2] =
c1[s1] + c2[s2] holds for any publicly-known c1, c2 ∈ K. Hence, the parties can
non-interactively compute any linear function over secret-shared inputs.

For our protocols, we consider the specific sharing specification S = (S1, . . . ,

Sq), where, form = 1, . . . , q, the set Sm
def
= P\Zm, and where Zs = {Z1, . . . , Zq}

is the synchronous adversary structure.

2.1 Existing Primitives

Asynchronous Reliable Broadcast (Acast): An Acast protocol allows a
sender S ∈ P to send some message m ∈ {0, 1}ℓ identically to all the parties.
The work of [26] presents an Acast protocol against Q(3) adversary structures
by generalizing the classic Bracha’s Acast protocol against threshold adversaries.
While the protocol has been designed for an asynchronous network, it also pro-
vides certain guarantees in a synchronous network, as stated in Lemma 1. The
Acast protocol ΠACast and proof of Lemma 1 are available in Appendix A.

Lemma 1. Let A be an adversary characterized by an adversary structure Z
satisfying the Q(3)(P,Z) condition. Then ΠACast achieves the following.

– Asynchronous Network: (a) Z-Liveness: If S is honest, all honest parties
eventually have an output. (b) Z-Validity: If S is honest, then each honest
Pi with an output, outputs m. (c) Z-Consistency: If S is corrupt and some
honest Pi outputs m⋆, then all honest parties eventually output m⋆.

– Synchronous Network: (a) Z-Liveness: If S is honest, then all honest parties
obtain an output within time 3∆. (b) Z-Validity: If S is honest, then every
honest party with an output, outputs m. (c) Z-Consistency: If S is corrupt
and some honest party outputs m⋆ at time T , then every honest Pi outputs
m⋆ by the end of time T + 2∆.

– Communication Complexity: O(n2ℓ) bits are communicated by the honest
parties, where S’s message is of size ℓ bits.
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Terminologies for Using ΠACast: We will say that Pi Acasts m to mean that
Pi acts as a sender S and invokes an instance of ΠACast with input m, and the
parties participate in this instance. Similarly, we say that Pj receives m from the
Acast of Pi to mean that Pj outputs m in the corresponding instance of ΠACast.

Public Reconstruction of a Secret-Shared Value: Let s ∈ K be a value,
which is secret-shared with respect to the sharing specification S = {Sm : Sm =
P\Zm and Zm ∈ Zs}. Let the goal is to publicly reconstruct s. Since Zs satisfies
the Q(3)(P,Zs) condition, we can use the reconstruction protocol ΠRec(s,S)
of [27] which, irrespective of the network type, allows the parties to robustly
reconstruct s. In a synchronous network, the protocol will take ∆ time, while in
an asynchronous network, the parties eventually output s. The protocol incurs
a communication of O(|Zs| · n2 log |K|) bits; see Appendix A for the details.

Beaver’s Circuit-Randomization Method [5]: Let u and v be secret-shared
among the parties. The goal is to compute a secret-sharing of w = u · v. More-
over, let (a, b, c) be a shared multiplication-triple available with the parties such
that c = a · b. Then, Beaver’s method allows the parties to compute a secret-
sharing of w such that, if a and b are random for the adversary, then the view
of the adversary remains independent of u and v. In a synchronous network,
the parties compute [w] within time ∆, while in an asynchronous network, the
parties eventually compute [w]. Protocol ΠBeaver(([u], [v]), ([a], [b], [c])) incurs a
communication of O(|Zs| · n2 log |K|) bits, and is presented in Appendix A.

3 Best-of-Both-Worlds Byzantine Agreement (BA)

We begin with the definition of BA, which is adapted from [11,2].

Definition 2 (BA). Let Π be a protocol for P, where every party Pi has an
input bi ∈ {0, 1} and a possible output from {0, 1,⊥}. Moreover, let A be an
adversary, characterized by adversary structure Z, where A can corrupt any
subset of parties from Z during the execution of Π.
– Z-Guaranteed Liveness: Π has Z-guaranteed liveness if all honest parties

obtain an output.
– Z-Almost-Surely Liveness: Π has Z-almost-surely liveness if, almost-

surely, all honest parties obtain some output.
– Z-Validity: Π has Z-validity if the following holds: If all honest parties have

input b, then every honest party with an output, outputs b.
– Z-Weak Validity: Π has Z-weak validity if the following holds: If all honest

parties have input b, then every honest party with an output, outputs b or ⊥.
– Z-Consistency: Π has Z-consistency if all honest parties with an output,

output the same value (which can be ⊥).
– Z-Weak Consistency: Π has Z-weak consistency if all honest parties with

an output, output either a common v ∈ {0, 1} or ⊥.
Π is called a Z-perfectly-secure synchronous BA (SBA) protocol if, in a syn-
chronous network, it has Z-guaranteed liveness, Z-validity, and Z-consistency.
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Π is called a Z-perfectly-secure asynchronous BA (ABA) protocol if, in an asyn-
chronous network it has Z-almost-surely liveness, Z-validity and Z-consistency.

To design our BoBW BA protocol, we will be using an existing perfectly-secure
SBA and a perfectly-secure ABA protocol, whose properties we review next.

Existing SBA and ABA Protocols: We assume the existence of a Z-perfectly-
secure SBA protocol ΠSBA with Q(3)(P,Z) condition, which also provides Z-
guaranteed liveness in an asynchronous network.4. For the sake of efficiency, we
design a candidate forΠSBA by generalizing the simple SBA protocol of [8], which
was designed to tolerate t < n/3 corruptions. The protocol requires at most 3n

rounds in a synchronous network and hence, within time TSBA
def
= 3n · ∆, all

honest parties will get an output in a synchronous network. The protocol incurs
a communication of O(n3ℓ) bits if the inputs of the parties are of size ℓ bits.
To achieve Z-guaranteed liveness in an asynchronous network, the parties can
run ΠSBA till time TSBA, and then output ⊥ if no “valid” output is computed
as per the protocol at time TSBA. This guarantees that even in an asynchronous
network, all honest parties obtain some output at local time TSBA. Our ΠSBA

protocol and the proof of its properties are available in Appendix B.
For the asynchronous network, [14] presents a Z-perfectly-secure ABA pro-

tocol ΠABA, provided Z satisfies the Q(3)(P,Z) condition. Protocol ΠABA has
the following properties in the synchronous and asynchronous network.

Lemma 2 ([14]). Let A be an adversary characterized by an adversary struc-
ture Z, satisfying the Q(3)(P,Z) condition. Then, there exists a BA protocol
ΠABA tolerating A such that:
– Asynchronous Network: The protocol is a Z-perfectly-secure ABA proto-

col with the following liveness guarantees.
– If the inputs of all honest parties are the same, then ΠABA achieves Z-

guaranteed liveness. Else, ΠABA achieves Z-almost-surely liveness.
– Synchronous Network: The protocol achieves Z-validity, Z-consistency,

and the following liveness guarantees.
– If the inputs of all honest parties are the same, then ΠABA achieves Z-

guaranteed liveness, and all honest parties obtain their output within
time TABA = k ·∆, for some constant k.

– Else, ΠABA achieves Z-almost-surely liveness and requires O(poly(n) ·∆)
expected time to generate the output.

– Communication Complexity: O(|Z| · n5 log |F| + n6 log n) bits are com-
municated by the honest parties, if their inputs are the same. Else, ΠABA

incurs an expected communication of O(|Z| · n7 log |F|+ n8 log n) bits. Here
F is a finite field such that |F| > n holds.

We note that ΠABA cannot be considered as a best-of-both-worlds BA protocol.
This is because it achieves Z-guaranteed liveness in a synchronous network only
when all honest parties have the same input. If the honest parties start ΠABA

4 We do not require any other property from ΠSBA in an asynchronous network.
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with different inputs, then instead of guaranteed liveness, the parties may keep
on running the protocol forever, without obtaining any output (though the prob-
ability of this happening is asymptotically 0). We next design a BA protocol
which gets rid of this problem, and which is secure in any network. To design
the protocol, we need a special type of broadcast protocol, which we design first.

3.1 Synchronous Broadcast with Asynchronous Guarantees

We begin with the definition of broadcast, adapted from [11,2].

Definition 3 (Broadcast). Let Π be a protocol, where a sender S ∈ P has
input m ∈ {0, 1}ℓ, and parties obtain a possible output, including ⊥. Moreover,
let A be an adversary, characterized by adversary structure Z, where A can
corrupt any subset of parties from Z during the execution of Π.
– Z-Liveness: Π has Z-liveness if all honest parties obtain some output.
– Z-Validity: Π has Z-validity if the following holds: if S is honest, then every

honest party with an output, outputs m.
– Z-Weak Validity: Π has Z-weak validity if the following holds: if S is

honest, then every honest party with an output, outputs either m or ⊥.
– Z-Consistency: Π has Z-consistency if the following holds: if S is corrupt,

then every honest party with an output, outputs a common value.
– Z-Weak Consistency: Π has Z-weak consistency if the following holds:

if S is corrupt, then every honest party with an output, outputs a common
m⋆ ∈ {0, 1}ℓ or ⊥.

Π is called a Z-perfectly-secure broadcast protocol if it has Z-Liveness, Z-Validity,
and Z-Consistency.

We next design a special broadcast protocol ΠBC, which is a Z-perfectly-secure
broadcast protocol in a synchronous network. Additionally, in an asynchronous
network, the protocol has Z-Liveness, Z-Weak Validity and Z-Weak Consis-
tency. Looking ahead, we will combine the protocols ΠBC and ΠABA to get our
best-of-both-worlds BA protocol. We note that the existing Acast protocolΠACast

does not guarantee the same properties as ΠBC since, for a corrupt S, there is no
liveness guarantee (irrespective of the network type). Moreover, in a synchronous
network, all honest parties may not obtain an output within the same time, if S
is corrupt (see Lemma 1).5

To design ΠBC (Fig 1), we generalize an idea used in [2] against threshold
adversaries. The idea is to carefully “stitch” together protocol ΠACast with the
protocol ΠSBA. In the protocol, S first Acasts its message. If the network is
synchronous, then at time 3∆, all honest parties should have an output. To
confirm this, the parties start participating in an instance of ΠSBA, where the
input of each party is the output that party has obtained from S’s Acast instance
at time 3∆. It is possible that a party has no output at time 3∆ (implying that
either the network is asynchronous or S is corrupt), in which case the input of

5 Looking ahead, this property from ΠBC will be crucial when we design our best-of-
both-worlds BA protocol.
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the party for ΠSBA will be ⊥. Finally, at time 3∆+TSBA, the parties output m
⋆,

if it has been received from the Acast of S and is the output of ΠSBA as well,
else, they output ⊥. It is easy to see that the protocol has guarantees liveness in
any network since all parties will have some output at (local) time 3∆ + TSBA.
Moreover, in a synchronous network, if some honest party has an output m⋆ ̸= ⊥
at time 3∆ + TSBA, then all the honest parties will also have the output m⋆ at
time 3∆+TSBA. This is because if any honest party obtains an output m⋆, then
at least one honest party must have received m⋆ from S’s Acast by time 3∆ and
so by time 3∆+ TSBA, all honest parties will receive m⋆ from S’s Acast.

Eventual Consistency and Validity for ΠBC in Asynchronous Network:
In ΠBC, the parties set a “time-out” of 3∆+TSBA to guarantee liveness. However,
in this process, the protocol only guarantees weak validity and weak consistency
in an asynchronous network. This is because some honest parties may receive
S’s message from the Acast of S within time 3∆ + TSBA, while others may fail
to do so. The time-out is essential, as we need liveness from ΠBC (irrespective
of the network type) when used later in our best-of-both-worlds BA protocol.

Looking ahead, we will use ΠBC in our VSS protocol for broadcasting val-
ues. However, the weak validity and weak consistency properties may lead to a
situation where, in an asynchronous network, one subset of honest parties may
output a value different from ⊥ at the end of the time-out, while others may
output ⊥. For the security of the VSS protocol, we would require the latter
category of parties to eventually output the common non-⊥ value if the parties
continue participating in ΠBC. To achieve this goal, we make a provision in ΠBC.
Namely, each Pi who outputs ⊥ at time 3∆+TSBA “switches” its output to m⋆,
if Pi eventually receives m⋆ from S’s Acast. We stress that this switching is only
for the parties who obtained ⊥ at time 3∆+ TSBA. To differentiate between the
two ways of obtaining output, we use the terms regular-mode and fallback-mode.
Regular-mode consists of the process of deciding the output at time 3∆+ TSBA,
while fallback-mode is the process of deciding the output beyond time 3∆+TSBA.

(Regular Mode)

– On having the input m ∈ {0, 1}ℓ, sender S Acasts m.
– At time 3∆, each Pi ∈ P participates in an instance of ΠSBA, where the input of

Pi is m
⋆ if m⋆ ∈ {0, 1}ℓ is received from the Acast of S, else the input is ⊥.

– (Local Computation): At time 3∆+ TSBA, each Pi ∈ P does the following.
– If some m⋆ ∈ {0, 1}ℓ is received from the Acast of S and m⋆ is computed as

the output during the instance of ΠSBA, then output m⋆. Else output ⊥.
(Fallback Mode)

– Every Pi ∈ P who has computed the output ⊥ at time 3∆+ TSBA, changes it to
m⋆, if m⋆ is received by Pi from the Acast of S.

Protocol ΠBC

Fig. 1: Synchronous broadcast with asynchronous guarantees.

The properties of ΠBC, stated in Theorem 2, are proved in Appendix C.
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Theorem 2. Let A be an adversary, characterized by Z, satisfying Q(3)(P,Z)
condition. Let S has input m ∈ {0, 1}ℓ for ΠBC. Then ΠBC achieves the following,
with a communication complexity of O(n3ℓ) bits, where TBC = 3∆+ TSBA.
– Synchronous network: (a) Z-Liveness: At time TBC, each honest party has

an output. (b) Z-Validity: If S is honest, then at time TBC, each honest
party outputs m. (c) Z-Consistency: If S is corrupt, then the output of
every honest party is the same at time TBC. (d) Z-Fallback Consistency:
If S is corrupt, and some honest party outputs m⋆ ̸= ⊥ at time T through
fallback-mode, then every honest party outputs m⋆ by time T + 2∆.

– Asynchronous Network: (a) Z-Liveness: At time TBC, each honest party has
an output. (b) Z-Weak Validity: If S is honest, then at time TBC, each
honest party outputs m or ⊥. (c) Z-Fallback Validity: If S is honest, then
each honest party with output ⊥ at time TBC, eventually outputs m through
fallback-mode. (d) Z-Weak Consistency: If S is corrupt, then at time
TBC, each honest party outputs a common m⋆ ̸= ⊥ or ⊥. (e) Z-Fallback
Consistency: If S is corrupt, and some honest party outputs m⋆ ̸= ⊥ at
time T where T ≥ TBC, then each honest party eventually outputs m⋆.

In the rest of the paper, we use the following terminologies while using ΠBC.

Terminologies for ΠBC: We say that Pi broadcasts m to mean that Pi invokes
an instance ofΠBC as S with inputm, and the parties participate in this instance.
Similarly, we say that Pj receives m from the broadcast of Pi through regular-
mode (resp. fallback-mode), to mean that Pj has the output m at time TBC

(resp. after time TBC) during the instance of ΠBC.

3.2 Protocols ΠBC + ΠABA ⇒ Best-of-Both-Worlds BA

We now combine protocols ΠBC and ΠABA, by generalizing the idea used in [2]
against threshold adversaries. In the protocol, every party first broadcasts its
input bit (for the BA protocol) through an instance of ΠBC. If the network is
synchronous, then all honest parties should have received the inputs of all the
(honest) sender parties from their broadcasts through regular-mode by time TBC.
Consequently, at time TBC, the parties decide an output for all the n instances
of ΠBC. Based on these outputs, the parties decide their respective inputs for
the ΠABA protocol. Specifically, if “sufficiently many” outputs from the ΠBC

instances are found to be same, then the parties consider this output value as
their input for the ΠABA instance. Else, they stick to their original inputs. The
overall output for ΠBA is then set to be the output from ΠABA.

– On having input bi ∈ {0, 1}, broadcast bi.
– For j = 1, . . . , n, let b

(j)
i ∈ {0, 1,⊥} be received from the broadcast of Pj through

regular-mode. Include Pj to a set R if b
(j)
i ̸= ⊥. Compute the input v⋆i for an

instance of ΠABA as follows.
– If P \ R ∈ Z, then compute v⋆i as follows.

Protocol ΠBA
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– If there exists a subset of parties Ri ⊆ R, such that R \ Ri ∈ Z and

b
(j)
i = b for all the parties Pj ∈ Ri, then set v⋆i = b.a

– Else set v⋆i = 1.
– Else set v⋆i = bi.

– At time TBC, participate in an instance of ΠABA with input v⋆i . Output the result
of ΠABA.

a If there are multiple such Ri, then break the tie using some pre-determined rule.

Fig. 2: The best-of-both-worlds BA. The above code is executed by every Pi ∈ P.

The properties of ΠBA, stated in Theorem 3, are proved in Appendix C.

Theorem 3. Let A be an adversary characterized by an adversary structure
Z satisfying the Q(3)(P,Z) condition. Moreover, let ΠABA be an ABA protocol,
satisfying the conditions as stated in Lemma 2. Then, ΠBA achieves the following.

– Synchronous Network: The protocol is a Z-perfectly-secure SBA protocol,
where all honest parties obtain an output within time TBA = TBC+TABA. The
protocol incurs a communication of O(|Z| · n5 log |F|+ n6 log n) bits.

– Asynchronous Network: The protocol is a Z-perfectly-secure ABA proto-
col, with an expected communication of O(|Z| · n7 log |F|+ n8 log n) bits.

4 Best-of-Both-Worlds VSS Protocol

We present our best-of-both-worlds VSS protocol ΠVSS (Fig 3), assuming that
the conditions Con (see Condition 1 in Section 2) hold. In the protocol, there
exists a dealer D ∈ P with a private input s ∈ K. The goal is to “verifiably”
generate a secret-sharing of s with respect to the sharing specification S = {Sm :
Sm = P \ Zm and Zm ∈ Zs}, irrespective of the network type. If D is honest,
then in an asynchronous network, s is eventually secret-shared. In a synchronous
network, s is secret-shared after a fixed time such that the view of the adversary
remains independent of s, irrespective of the network type. Note that s is always
secret-shared with respect to S, which is defined with respect to the synchronous
adversary structure Zs, even if the network is asynchronous.

The verifiability of ΠVSS guarantees that if D is corrupt, then either no honest
party obtains any output (this happens if D does not invoke the protocol at the
first place), or there exists some value s⋆ ∈ K (which may be different from s)
to which D is “committed” and which is secret-shared with respect to S. Note
that in the latter case, we cannot bound the time within which s⋆ will be secret-
shared, even if the network is synchronous. This is because a corrupt D may
delay its messages arbitrarily, and the parties will not know the network type.

Protocol ΠVSS is obtained by carefully “stitching” together the synchronous
VSS (SVSS) and asynchronous VSS (AVSS) protocols of [27] and [15] respec-
tively. We first explain the idea behind these protocols individually, and then
proceed to explain how we stitch them together.
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SVSS Against Q(3) Adversary Structures: The SVSS protocol of [27] is
executed in a sequence of synchronized phases, and can tolerate Q(3) adversary
structures. Consider an arbitrary adversary structure Z satisfying theQ(3) condi-
tion, and let SZ = (S1, . . . , S|Z|) be the sharing specification where Sm = P\Zm,
for m = 1, . . . , |Z|. To share s, during the first phase, D picks a random vector
of shares (s1, . . . , s|Z|), which sum up to s. Then all the parties in Sm are given
the share sm. To verify if all the (honest) parties in Sm have received the same
share from D, the parties in Sm perform a pairwise consistency check of their
supposedly common share during the second phase, and publicly broadcast the
results during the third phase. If any party in Sm publicly complaints for an in-
consistency, then during the fourth phase, D makes the share sm corresponding
to Sm public by broadcasting it. Note that this does not violate the privacy for
an honest D, since a complaint for inconsistency from Sm implies that Sm has
at least one corrupt party and so, the adversary will already know the value of
sm. If D does not “resolve” any complaint during the fourth phase (implying D
is corrupt), then it is publicly discarded, and everyone takes a default sharing of
some publicly-known value on the behalf of D. The protocol ensures that by the
end of the fourth phase, all honest parties in Sm have the same share, and that
the sum of these shares across all the Sm sets is the value shared by D.

AVSS Against Q(4) Adversary Structures: The AVSS protocol of [15]
closely follows the SVSS protocol of [27]. However, the phases are no longer
synchronized. Moreover, during the pairwise consistency phase, the parties can-
not afford to wait to know the status of the consistency checks between all pairs
of parties, since the potentially corrupt parties may never respond. Instead, cor-
responding to every Sm, the parties check for the existence of a set of “core”
parties Cm ⊆ Sm, with Sm \ Cm ∈ Z, who publicly confirmed the receipt of the
same share from D. To ensure that all the parties agree on the core sets, D is as-
signed the task of identifying the core sets and broadcasting them. The protocol
proceeds only upon the receipt of core sets from D and their verification. While
an honest D will eventually find and broadcast core sets, a corrupt D may not do
so, in which case the parties obtain no shares. Once the core sets are identified
and verified, it guarantees that all the (honest) parties in every core set Cm have
received the same share from D. The goal will then be to ensure that even the
(honest) parties “outside” Cm (namely, the parties in Sm \ Cm) get this common
share. Since Z now satisfies the Q(4) condition, the “majority” of the parties in
Cm are guaranteed to be honest. Hence, the parties in Sm \ Cm can “filter” out
the common share held by the parties in Cm, by applying the “majority rule”
on the shares received from the parties in Cm during pairwise consistency tests.

Best-of-Both-Worlds VSS Protocol with Conditions Con: In protocol
ΠVSS, the parties first start executing the steps of the above SVSS protocol,
assuming a synchronous network, where all the instances of broadcast happen by
executing an instance ofΠBC with respect to the adversary structure Zs. If indeed
the network in synchronous, then within time 2∆+ TBC, the results of pairwise
consistency tests will be publicly available. Moreover, if any inconsistency is
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reported, then within time 2∆ + 2TBC, the dealer D should have resolved all
those inconsistencies by making public the “disputed” shares. However, unlike
the SVSS protocol, the parties cannot afford to discard D if it fails to resolve
any inconsistency within time 2∆+2TBC, as the network could be asynchronous,
and D’s responses may be arbitrarily delayed, even if D is honest. Moreover, in
an asynchronous network, some honest parties may be seeing the inconsistencies
being reported within time 2∆+ TBC as well as D’s responses within time 2∆+
2TBC, while other honest parties may not be seeing these inconsistencies and D’s
responses within these timeouts. This may result in the former set of honest
parties considering the shares made public by D, while the latter set of honest
parties, thinking that the network is asynchronous, wait for core sets of parties
to be made public by D (as done in the AVSS). However, this may lead to
the violation of the commitment property in case D is corrupt, and network is
asynchronous. In more detail, consider a set Sm for which pairwise inconsistency
is reported, and for which D also finds a set of core parties Cm. Then, it might
be possible that the parties in Cm have received the common share sm from D,
but in response to the inconsistencies reported for Sm, dealer D responds with
s′m, where s′m ̸= sm. This will lead to a situation where one set of honest parties
(who see inconsistencies and s′m within the timeout of 2∆+ TBC and 2∆+2TBC

respectively) consider s′m as the share for Sm, while another set of honest parties,
who do not see the inconsistencies and s′m within the timeout, eventually see Cm
and filter out the share sm.

To deal with the above problem, apart from resolving the inconsistencies
reported for any set Sm, the dealer D also finds and broadcasts a core set of
parties Cm, who have confirmed receiving the same share from D corresponding to
all the sets Sm, such that Sm\Cm ∈ Zs. Additionally, if there is any inconsistency
reported for Sm, then apart from D, every party in Sm also makes public its
version of the share corresponding to Sm, which it has received from D. Now, at
time 2∆ + 2TBC, the parties check if D has broadcasted a core set Cm for each
Sm. Moreover, if any inconsistency has been reported corresponding to Sm, the
parties check if “sufficiently many” parties from Cm have made public the same
share, as made public by D. This prevents a corrupt D from making public a
share, which is different from the share which it distributed to the parties in Cm.

If the network is asynchronous, then different parties may have different
“opinion” regarding whether D has broadcasted “valid” core sets Cm. Hence,
at time 2∆ + 2TBC, the parties run an instance of our ΠBA protocol to decide
what the case is. If the parties find that D has broadcasted valid core sets Cm
corresponding to each Sm, then the parties in Sm proceed to compute their share
as follows: if D has made public the share for Sm in response to any inconsistency,
then it is taken as the share for Sm. If no share has been made public for Sm,
then the parties check if “sufficiently many” parties have reported the same share
during the pairwise consistency test within time 2∆, which we show should have
happened if the network is synchronous, and if the parties maintain sufficient
timeouts. If none of these conditions hold, then the parties proceed to filter out
the common share, held by the parties in Cm, through “majority rule”.
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If ΠBA indicates that D has not made public core sets within time 2∆+2TBC,
then either the network is asynchronous or D is corrupt. So the parties resort to
the steps used in AVSS. Namely, D finds and broadcasts a set of core parties Em
corresponding to each Sm, where Sm \ Em ∈ Za. Then, the parties filter out the
common share, held by the parties in Em, through majority rule.

Let S = (S1, . . . , Sm, . . . , Sq), where for m = 1, . . . , q, the set Sm
def
= P \ Zm, and

where Zs = {Z1, . . . , Zq} is the synchronous adversary structure.
– Phase I — Share Distribution: D, on having the input s, does the following.

– Randomly select shares s(1), . . . , s(q) ∈ K such that s = s(1) + . . .+ s(q). For
m = 1, . . . , q, send the share s(m) to every party in the set Sm.

– Phase II — Pairwise Consistency Checks: For m = 1, . . . , q, each party
Pi ∈ Sm does the following.
– Upon receiving s

(m)
i from D, wait till the local time becomes a multiple of ∆.

Then, send s
(m)
i to every party Pj ∈ Sm.

– Phase III — Broadcasting Results of Pairwise Consistency Checks:
For m = 1, . . . , q, each party Pi in Sm does the following.
– On receiving s

(m)
j from any Pj ∈ Sm, wait till the local time becomes a

multiple of ∆. Then, do the following.
– If a share s

(m)
i corresponding to Sm has been received from D, then,

broadcast OK(m, i, j) if s
(m)
i = s

(m)
j holds. Else, broadcast NOK(m, i).

– If s
(m)
j and s

(m)
k have been received from any Pj and Pk respectively,

belonging to Sm such that s
(m)
j ̸= s

(m)
k , then broadcast NOK(m, i).

– Local Computation — Constructing Consistency Graphs: Each party
Pi ∈ P does the following.
– For m = 1, . . . , q, construct an undirected consistency graph G

(m)
i over the

parties in Sm, where the edge (Pj , Pk) is included in G
(m)
i if Pi has

received OK(m, j, k) and OK(m, k, j) from the broadcast of Pj and Pk

respectively, either through regular or fallback mode.
– Phase IV — Resolving Complaints and Broadcasting Core Sets

Based On Zs: Each Pi ∈ P (including D) does the following at time 2∆+ TBC.
– If NOK(m, j) is received from the broadcast of any Pj ∈ Sm through

regular-mode corresponding to any m ∈ {1, . . . , q}, then do the following:
– If Pi = D: Broadcast Resolve(m, s(m)).

– If Pi ̸= D: Broadcast Resolve(m, s
(m)
i ), provided Pi ∈ Sm and Pi has

received s
(m)
i from D.

– (If Pi = D): For m = 1, . . . , q, check if there exists some Cm ⊆ Sm which

constitutes a clique in the graph G
(m)
D , such that Sm \ Cm ∈ Zs. If

C1, . . . , Cq are found, then broadcast C1, . . . , Cq.
– Local Computation — Verifying and Accepting Core sets: Each party

Pi ∈ P (including D) does the following at time 2∆+ 2TBC.
– If C1, . . . , Cq is received from the broadcast of D through the regular mode,

then accept these sets, if all the following hold.
– For m = 1, . . . , q, the set Cm constitutes a clique in the consistency

graph G
(m)
i at time 2∆+ TBC. In addition, Sm \ Cm ∈ Zs.

Protocol ΠVSS(D, s, S)
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– For m = 1, . . . , q, if NOK(m, j) was received from the broadcast of any
Pj ∈ Sm through regular mode at time 2∆+ TBC, then the following
must hold true at time 2∆+ 2TBC.
– Resolve(m, s(m)) is received from the broadcast of D through

regular-mode.
– Resolve(m, s(m)) is received from the broadcast of a set of parties

C′
m through regular-mode, where C′

m ⊆ Cm, and Cm \ C′
m ∈ Zs.

– Phase V — Deciding Whether Core Sets Based on Zs have Been
Accepted by Any Honest Party: At time 2∆+ 2TBC, each Pi ∈ P
participates in an instance of ΠBA with input bi = 1 if it has accepted sets
C1, . . . , Cq, else, with input bi = 0, and waits for time TBA.

– Local Computation — Computing Shares Through Core Sets Based
on Zs: If the output of ΠBA is 1, then each party Pi ∈ P does the following.
– If C1, . . . , Cq are not received yet, then wait to receive them from the

broadcast of D through fallback-mode.
– For m = 1, . . . , q, compute the share s

(m)
i corresponding to Sm as follows,

provided Pi ∈ Sm.
– If, at time 2∆+ 2TBC, Resolve(m, s(m)) was received from the broadcast

of D and from a subset of parties C′
m ⊆ Cm through regular-mode,

where Cm \ C′
m ∈ Zs, then output s

(m)
i = s(m).

– Else, if a common value, say s(m), was received from a subset of parties
C′′
m ⊆ Cm at time 2∆ where Cm \ C′′

m ∈ Zs, then output s
(m)
i = s(m).

– Else wait till there exists a subset of parties C′′′
m ⊆ Cm where

Cm \ C′′′
m ∈ Za, such that a common value, say s(m), is received from all

the parties in C′′′
m . Upon finding such a C′′′

m , output s
(m)
i = s(m).

– Phase VI — Broadcasting Core Sets Based on Za: If the output of ΠBA

is 0, then for m = 1, . . . , q, dealer D does the following in its graph G
(m)
D .

– Check if there exists a subset of parties Em ⊆ Sm, which constitutes a clique
in the graph G

(m)
D , such that Sm \ Em ∈ Za.

– Upon finding E1, . . . , Eq, broadcast E1, . . . , Eq.
– Local Computation — Computing Shares Through Core Sets Based

on Za: If the output of ΠBA is 0, then each party Pi ∈ P does the following.
– Participate in any instance of ΠBC invoked by D for broadcasting sets

E1, . . . , Eq, only after time 2∆+ 2TBC + TBA.
– Wait till sets E1, . . . , Eq are received from the broadcast of D, and then

accept these sets if they satisfy the following conditions.
– For m = 1, . . . , q, the set Em constitutes a clique in the graph G

(m)
i .

– For m = 1, . . . , q, the condition Sm \ Em ∈ Za holds.

– If E1, . . . , Eq are accepted, then compute the share s
(m)
i corresponding to

every Sm where Pi ∈ Sm as follows.
– If Pi ∈ Em, then output s

(m)
i received from D.

– Else, wait till there exists a subset E ′
m ⊆ Em where Em \ E ′

m ∈ Zs, such
that there exists a common values, say s(m), received from all the
parties in E ′

m. Upon finding such an E ′
m, output s

(m)
i = s(m).

Fig. 3: Best-of-both-worlds VSS protocol for the sharing specification S.

The properties of ΠVSS, stated in Theorem 4, are proved in Appendix D.
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Theorem 4. Let Zs and Za be adversary structures, satisfying the conditions
Con (see Section 2). Moreover, let S = {Sm : Sm = P \ Zm and Zm ∈ Zs}.
Then, ΠVSS achieves the following, where D has input s ∈ K for ΠVSS.

– If D is honest, then the following hold.
– Zs-correctness: In a synchronous network, s is secret-shared with respect

to S at time TVSS = 2∆+ 2TBC + TBA.
– Za-correctness: In an asynchronous network, almost-surely, s is eventu-

ally secret-shared with respect to S.
– Privacy: Adversary’s view remains independent of s in any network.

– If D is corrupt, then either no honest party obtains any output or there exists
some s⋆ ∈ K, such that the following hold.6

– Za-commitment: In an asynchronous network, almost-surely, s⋆ is even-
tually secret-shared with respect to S.

– Zs-commitment: In a synchronous network, s⋆ is secret-shared with re-
spect to S, such that the following hold.
– If any honest party outputs its shares at time TVSS, then all honest

parties output their shares at time TVSS.
– If any honest party outputs its shares at time T > TVSS, then every

honest party outputs its shares by time T + 2∆.
– Communication Complexity: The protocol incurs a communication of

O(|Zs| ·n4(log |K|+log |Zs|+log n)+n5 log n) bits, and invokes one instance
of ΠBA.

ΠVSS for L Secrets: If D has L secrets to share, then it can invoke L inde-
pendent instances of ΠVSS. However, instead of computing and broadcasting L
number of C1, . . . , Cq sets, D can compute and broadcast sets C1, . . . , Cq once, for
all the L instances of ΠVSS.

7 The parties will need to execute a single instance
of ΠBA to decide whether D has broadcasted valid C1, . . . , Cq sets, corresponding
to all L instances of ΠVSS. The resultant protocol will incur a communication of
O(L · |Zs| ·n4(log |K|+ log |Zs|+ log n)+n5 log n) bits and invokes one instance
of ΠBA. To avoid repetition, we do not provide the formal details.

5 The Preprocessing Phase Protocol

Our protocol for the preprocessing phase allows the parties to generate secret-
sharing of cM number of multiplication-triples, random for the adversary, with
respect to the sharing specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}.
Before discussing the protocol, we discuss two sub-protocols used.

6 In the best-of-both-worlds setting, it is not necessary that the honest parties obtain
an output within a known time-out in a synchronous network for a corrupt D (unlike
the commitment property of traditional SVSS). This is because a corrupt D may not
invoke the protocol and the parties will not be knowing the network type.

7 Such common C1, . . . , Cq sets for all the L instances are guaranteed for an honest D.
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5.1 Agreement on a Common Subset (ACS)

In the protocol ΠACS, there exists a set Q ⊆ P, such that it will be guaranteed
that Zs and Za either satisfy the Q(1,1)(Q,Zs,Za) condition or Q(3,1)(Q,Zs,Za)
condition. Moreover, each party in Q will have L values, which it would like to
secret-share using ΠVSS.

8 As corrupt dealers may not invoke their instances of
ΠVSS, the parties can compute outputs from only a subset of ΠVSS instances
corresponding to a subset of partiesQ\Z, for some Z ∈ Zs (even in a synchronous
network). However, in an asynchronous network, different parties may compute
outputs fromΠVSS instances of different subsets ofQ\Z parties, corresponding to
different Z ∈ Zs. Protocol ΠACS allows the parties to agree on a common subset
CS of parties, where Q \ CS ∈ Zs, such that all honest parties will be able to
compute their outputs corresponding to the ΠVSS instances of the parties in CS.
Moreover, in a synchronous network, all honest parties from Q are guaranteed to
be present in CS.9 Protocol ΠACS is obtained by generalizing the ACS protocol
of [2], which was designed for threshold adversaries. The formal description of
the protocol ΠACS and its properties are available in Appendix E.

5.2 The Multiplication Protocol

ProtocolΠMult takes as input the secret-shared pairs of values {([a(ℓ)], [b(ℓ)])}ℓ=1,...L,
and securely generates {[c(ℓ)]}ℓ=1,...,L, where c(ℓ) = a(ℓ) · b(ℓ), without revealing
any additional information to the adversary. The protocol is obtained by “com-
bining” the synchronous multiplication protocol of [27], with the asynchronous
multiplication protocol of [15], and adapting them to the best-of-both-worlds
setting. For simplicity, we discuss the idea of ΠMult for the case when L = 1. The
modifications for a general L are straight forward.

Let [a] and [b] be the inputs to the protocol. The goal is to securely compute
[c], where c = a ·b. For this, the parties securely compute a secret-sharing of each
summand [a]l · [b]m. A secret-sharing of c can then be obtained by summing the
secret-sharing of each summand [a]l · [b]m. To generate a secret-sharing of the
summand [a]l · [b]m, the parties do the following: let Ql,m be the set of parties
who are guaranteed to have both the shares [a]l, as well as [b]m. Notice that Ql,m

is not empty and Zs and Za satisfy the Q(1,1)(Ql,m,Zs,Za) condition, since Zs

and Za satisfy the Q(3,1)(P,Zs,Za) condition. Hence, irrespective of the network
type, the set Ql,m is bound to have at least one honest party. Each party in the
set Ql,m is asked to independently secret-share the summand [a]l · [b]m, and
the parties then agree on a common subset of parties Rl,m from Ql,m, where
Ql,m\Rl,m ∈ Zs, which have shared some summand. For this, the parties execute
an instance of the ΠACS protocol. The properties of ΠACS guarantees that in a
synchronous network, all honest parties from Ql,m are present in Rl,m. On the
other hand, even if the network is asynchronous, the set Rl,m is bound to have at

8 Looking ahead, in our preprocessing phase protocol, Q = Sl ∩ Sm corresponding to
some Sl, Sm ∈ S and hence, the Q(1,1)(Q,Zs,Za) condition will be satisfied. In our
MPC protocol, Q = P and hence the Q(3,1)(Q,Zs,Za) condition will be satisfied.

9 This property will be very crucial in a synchronous network.
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least one honest party from Ql,m. Hence, irrespective of the network type, it will
be guaranteed that at least one party in Rl,m has secret-shared the summand
[a]l · [b]m. However, since the exact identity of the honest parties in Rl,m is
not known, the parties check if all the parties in Rl,m have shared the same
summand. The idea here is that if all the parties in Rl,m have shared the same
summand, then any of these secret-sharings can be taken as a secret-sharing
of [a]l · [b]m. Else, the parties publicly reconstruct the shares [a]l and [b]m and
compute a default secret-sharing of [a]l · [b]m. Notice that in the latter case, the
privacy of a and b is still preserved, as in this case, the set Rl,m consists of
corrupt parties, who already know the values of both [a]l as well as [b]m.

Protocol ΠMult and its properties are available in Appendix E.

5.3 The Preprocessing Phase Protocol

Given protocols ΠACS and ΠMult, the preprocessing phase protocol ΠPreProcessing

is standard and straight forward. The protocol has two stages. During the first
stage, the parties securely generate secret-sharing of cM pairs of random values.
For this, the parties run an instance of ΠACS, where the input for each party
will be cM pairs of random values. During the second stage, a secret-sharing of
the product of each pair is computed securely by executing an instance of ΠMult.
Protocol ΠPreProcessing and its properties are available in Appendix E.

6 Best-of-both-Worlds Circuit-Evaluation Protocol

Given protocols ΠPreProcessing and ΠACS, the circuit-evaluation protocol ΠCirEval

for evaluating cir is standard and straight forward. Here, we outline the protocol
steps and state its properties. We defer the full details to Appendix F. Protocol
ΠCirEval consists of four phases. In the first phase, the parties generate secret-
sharing of cM random multiplication-triples through ΠPreProcessing. Additionally,
they invoke ΠACS to generate secret-sharing of their respective inputs for f , and
agree on a common subset of parties CS, where P\CS ∈ Zs, such that the inputs
of the parties in CS are secret-shared. The inputs of the remaining parties are
set to 0. Note that in a synchronous network, all honest parties will be in CS.
In the second phase, the parties securely evaluate each gate in the circuit in
a secret-shared fashion, after which the parties publicly reconstruct the secret-
shared output in the third phase. The last phase is the termination phase, where
the parties check whether “sufficiently many” parties have obtained the same
output, in which case the parties “safely” take that output and terminate the
protocol (and all the underlying sub-protocols).

Theorem 5. Let A be an adversary, characterized by adversary structures Zs

and Za in a synchronous and asynchronous network respectively, satisfying the
conditions Con (see Condition 1 in Section 2). Moreover, let f : Kn → K be
a function represented by an arithmetic circuit cir over K, consisting of cM
number of multiplication gates, with a multiplicative depth of DM , with each
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party having an input xi ∈ K. Then, ΠCirEval incurs a communication of O(cM ·
|Zs|3 · n5(log |K| + log |Zs| + log n) + |Zs|2 · n6 log n) bits, invokes O(|Zs|2 · n)
instances of ΠBA, and achieves the following.
– In a synchronous network, all honest parties output y = f(x1, . . . , xn) at

time (30n+DM + 6k + 38) ·∆, where xj = 0 for every Pj ̸∈ CS, such that
P \CS ∈ Zs, and every honest party is present in CS; here k is the constant
from Lemma 2, as determined by the protocol ΠABA.

– In an asynchronous network, almost-surely, the honest parties eventually out-
put y = f(x1, . . . , xn) where xj = 0 for every Pj ̸∈ CS and where P\CS ∈ Zs.

– The view of A remains independent of the inputs of the honest parties in CS.

References

1. I. Abraham, D. Dolev, and J. Y. Halpern. An Almost-surely Terminating Poly-
nomial Protocol for Asynchronous Byzantine Agreement with Optimal Resilience.
In PODC, pages 405–414. ACM, 2008.

2. A. Appan, A. Chandramouli, and A. Choudhury. Perfectly-Secure Synchronous
MPC with Asynchronous Fallback Guarantees. In PODC, pages 92–102. ACM,
2022.

3. A. Appan, A. Chandramouli, and A. Choudhury. Revisiting the Efficiency of Asyn-
chronous Multi Party Computation Against General Adversaries. IACR Cryptol.
ePrint Arch., page 651, 2022.

4. L. Bangalore, A. Choudhury, and A. Patra. The Power of Shunning: Efficient
Asynchronous Byzantine Agreement Revisited. J. ACM, 67(3):14:1–14:59, 2020.

5. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In
J. Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in Computer Sci-
ence, pages 420–432. Springer, 1991.

6. M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous Secure Computation. In
STOC, pages 52–61. ACM, 1993.

7. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract). In
STOC, pages 1–10. ACM, 1988.

8. P. Berman, J. A. Garay, and K. J. Perry. Towards Optimal Distributed Consensus
(Extended Abstract). In FOCS, pages 410–415. IEEE Computer Society, 1989.

9. E. Blum, J. Katz, and J. Loss. Synchronous Consensus with Optimal Asynchronous
Fallback Guarantees. In TCC, volume 11891 of Lecture Notes in Computer Science,
pages 131–150. Springer, 2019.

10. E. Blum, J. Katz, and J. Loss. Tardigrade: An Atomic Broadcast Protocol for
Arbitrary Network Conditions. In ASIACRYPT, volume 13091 of Lecture Notes
in Computer Science, pages 547–572. Springer, 2021.

11. E. Blum, C. L. Zhang, and J. Loss. Always Have a Backup Plan: Fully Secure
Synchronous MPC with Asynchronous Fallback. In CRYPTO, volume 12171 of
Lecture Notes in Computer Science, pages 707–731. Springer, 2020.
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Supplementary Material

A Existing Primitives

A.1 Asynchronous Reliable Broadcast with Weak Synchronous
Guarantees

Let Z be an adversary structure such that Z satisfies the Q(3)(P,Z) condition.
The Acast protocol ΠACast with respect to Z is presented in Fig 4. The current
description of the protocol is taken from [3].

1. If Pi = S, then send the message (init,m) to all the parties in P.
2. If a message (init,m) is received from S, then send the message (echo,m) to

all the parties in P. Execute this step at most once.
3. If a message (echo,m′) is received from a set of parties P \ Z for some Z ∈ Z,

then send the message (ready,m′) to all the parties.
4. If a message (ready,m′) is received from a set of parties C where C ̸∈ Z, then

send the message (ready,m′) to all the parties in P.
5. If (ready,m′) is received from a set of parties P\Z for some Z ∈ Z, then output

m′.

Protocol ΠACast(S,m)

Fig. 4: The perfectly-secure Acast protocol with respect to an adversary structure Z
satisfying the Q(3)(P,Z) condition. The above code is executed by every Pi ∈ P

We next prove the properties of the protocol ΠACast. The proofs for the case
of asynchronous network are borrowed from [3].

Lemma 1. Let A be an adversary characterized by an adversary structure Z,
satisfying theQ(3)(P,Z) condition, such thatA can corrupt any subset of parties
from Z during the execution of ΠACast. Then ΠACast achieves the following.
– Asynchronous Network:

– Z-Liveness: If S is honest, then all honest parties eventually obtain an
output.

– Z-Validity: If S is honest, then every honest party with an output, outputs
m.

– Z-Consistency: If S is corrupt and some honest party outputs m⋆, then
every honest party eventually outputs m⋆.

– Synchronous Network:
– Z-Liveness: If S is honest, then all honest parties obtain an output within

time 3∆.
– Z-Validity: If S is honest, then every honest party with an output, outputs

m.
– Z-Consistency: If S is corrupt and some honest party outputs m⋆ at time

T , then every honest Pi outputs m
⋆ by the end of time T + 2∆.

– Communication Complexity: O(n2ℓ) bits are communicated, where S’s mes-
sage is of size ℓ bits.
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Proof. We first prove the properties assuming an asynchronous network. Let
Zc ∈ Z be the set of parties corrupted by the adversary during the protocol

execution, and let H def
= P \ Zc be the set of honest parties. We start with the

validity property, for which we consider an honest S. We show that all honest
parties eventually output m. This is because all honest parties complete steps
2 − 5 in the protocol even if the corrupt parties do not send their messages.
This follows from the fact that the messages of the parties in H are eventually
delivered to all the honest parties, and P \ H = Zc ∈ Z. The parties in Zc may
send echo messages for m′, where m′ ̸= m. Similarly, the parties in Zc may
send ready messages for m′, where m′ ̸= m. However, since Zc ∈ Z, and since
P \Zc = H ̸∈ Z, no honest party ever generates a ready message for m′, neither
in step 3, nor in step 4.10 This also proves the liveness property.

We next prove the consistency property for which we consider a corrupt S. Let
Ph be an honest party who outputs m⋆. We have to show that all honest parties
eventually obtain the output m⋆. Since Ph obtained the output m⋆, it received
ready messages for m⋆ during step 5 of the protocol from a set of parties P \Z,
for some Z ∈ Z. Let H(m⋆) be the set of honest parties whose ready messages
are received by Ph during step 5. It is easy to see that H(m⋆) ̸∈ Z, as otherwise,
Z does not satisfy the Q(3)(P,Z) condition, which is a contradiction. The ready
messages of the parties in H(m⋆) are eventually delivered to every honest party
and hence, each honest party (including Ph) eventually executes step 4 and sends
a ready message for m⋆. It follows that the ready messages of all the parties
in P \Zc are eventually delivered to every honest party (irrespective of whether
the parties in Zc send all the required messages) guaranteeing that all honest
parties eventually obtain some output. We wish to show that this output is m⋆.

On the contrary, let Ph′ ̸= Ph be an honest party who outputs m⋆⋆ ̸= m⋆.
This implies that Ph′ received ready message for m⋆⋆ from at least one honest
party. From the protocol steps, it follows that an honest party generates a ready
message for some potential m, only if it either receives echo messages for m
during step 3 from a set of parties P \Z for some Z ∈ Z, or ready messages for
m from a set of parties C ̸∈ Z during step 4. So, in order that a subset of parties
P \ Z, for some Z ∈ Z, eventually generates ready messages for some potential
m during step 5, it must be the case that some honest party has received echo

messages for m during step 1 from a set of parties P \ Z ′ for some Z ′ ∈ Z, and
has generated a ready message for m.

Since Ph received the ready message for m⋆ from at least one honest party,
it must be the case that some honest party has received echo messages for m⋆

from a set of parties P \ Zα, for some Zα ∈ Z. Similarly, since Ph′ received
a ready message for m⋆⋆ from at least one honest party, it must be the case
that some honest party has received echo messages for m⋆⋆ from a set of parties
P \ Zβ , for some Zβ ∈ Z. Let T = (P \ Zα) ∩ (P \ Zβ). Since Z satisfies the
Q(3)(P,Z) condition, it follows that Z satisfies the Q(1)(T ,Z) condition, and
hence, T is guaranteed to have at least one honest party. This further implies
that there exists some honest party who generated an echo message for m⋆ as

10 If H ∈ Z, then Z does not satisfy the Q(2)(P,Z) condition, which is a contradiction.
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well as m⋆⋆ during step 1, which is impossible. This is because an honest party
executes step 1 at most once, and hence, generates an echo message at most
once.

The proofs of the properties in a synchronous network closely follow the
proofs of the properties in the asynchronous network. Abusing the notation, let

Zc ∈ Z be the set of corrupt parties, and let H def
= P \ Zc be the set of honest

parties. If S is honest, then its init message for m is delivered within time ∆.
As a result, every honest party sends an echo message for m to all the parties,
which is delivered within time 2∆. Consequently, every honest party sends a
ready message for m to all the parties, which is delivered within time 3∆. Since
P \H = Zc ∈ Z, every honest party will receive the ready messages for m from
all the parties in H within time 3∆ and output m. This proves the liveness and
validity in the synchronous network.

If S is corrupt, and some honest party Ph outputs m⋆ at time T , then it
implies that Ph has received ready messages for m⋆ during step 5 of the protocol
at time T from a set of honest parties H(m⋆), such that H(m⋆) ̸∈ Z. These ready
messages are guaranteed to be received by every other honest party within time
T +∆. Consequently, every honest party who has not yet executed step 4 will
do so, and will send a ready message for m⋆ at time T +∆. Hence, by the end
of time T + ∆, every honest party would have sent a ready message for m⋆

to every other honest party, which will be delivered within time T + 2∆. As a
result, every honest party will output m⋆ latest at time T +2∆. This proves the
consistency in the synchronous network.

The communication complexity (both in a synchronous as well as asyn-
chronous network) simply follows from the fact that every honest party may
need to send an echo and ready message for m to every other party.

A.2 Reconstruction Protocol

Let s ∈ K be a value, which is secret-shared with respect to the sharing speci-
fication S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Then protocol ΠRec (Fig 5)
allows the parties to publicly reconstruct s.

Let S = (S1, . . . , Sm, . . . , Sq), where for m = 1, . . . , q, the set Sm
def
= P \ Zm and

where Zs = {Z1, . . . , Zq} is the synchronous adversary structure.
– Corresponding to every Sm ∈ S, each Pi ∈ Sm sends the share [s]m to all the

parties in P.
– Each Pi ∈ P computes its output as follows.

– Corresponding to every Sm ∈ S, wait till a common value, say s(m), is
received from a subset of parties Sm \ Z, for some Z ∈ Zs.

– Output s = s(1) + . . .+ s(m).

Protocol ΠRec(s, S)

Fig. 5: Protocol for publicly reconstructing a secret-shared value

We next prove the properties of the protocol ΠRec.
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Lemma 3. Let s ∈ K be a value, which is secret-shared with respect to the shar-
ing specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Then protocol ΠRec

achieves the following with a communication complexity of O(|Zs| · n2 log |K|)
bits.

– Synchronous network: All honest parties output s within time ∆.
– Asynchronous network: All honest parties eventually output s.

Proof. The communication complexity follows easily from the protocol steps,
since corresponding to each Sm ∈ S, every party in Sm needs to send its version
of the share [s]m to all the parties in P.

Next, consider an asynchronous network and let Z⋆ ∈ Zs be the set of corrupt
parties. Consider an arbitrary Sm ∈ S and an arbitrary honest party Pi. We show
that Pi eventually sets s(m) to [s]m. This will imply that Pi eventually outputs

s. Let Hm
def
= Sm \Z⋆ be the set of honest parties in Sm. All the parties in Hm

send [s]m to Pi, which are eventually delivered to Pi. Moreover, Sm \ Hm ∈ Zs.
Hence, it is confirmed that Pi eventually sets s(m) to some value. To complete
the proof, we need to show that this values will be the same as [s]m. So, let
there exist some Zα ∈ Zs, such that Pi received a common value from all the
parties in Sm \ Zα, and sets s(m) to this common value. Since Zs satisfies the
Q(3)(P,Zs) condition, it follows that Hm ∩ (Sm \ Zα) ̸= ∅. Thus there exists
at least one honest party in the set Sm \ Zα, who would have sent [s]m to Pi,
implying that Pi sets s

(m) to [s]m.

The proof of the lemma statement in a synchronous network is exactly the
same as above. Moreover, all honest parties will output s within time ∆, since
the shares of all honest parties will be delivered within time ∆.

A.3 Beaver’s Protocol

Let u and v be two values from K, which are secret-shared with respect to the
sharing specification S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Moreover, let
(a, b, c) ∈ K3 be a multiplication-triple, where a, b and c are secret-shared with
respect to S and where c = a · b. Then, Beaver’s protocol for securely computing
[u · v], is given in Fig 6.

– The parties in P locally compute [d] and [e], where [d] = [u]− [a] = [u− a] and
[e] = [v]− [b] = [v − b].

– The parties publicly reconstruct d and e by executing ΠRec(d, S) and ΠRec(e, S).
– The parties in P locally compute [u · v] = d · e+ d · [b] + e · [a] + [c] and output

[u · v].

Protocol ΠBeaver(([u], [v]), ([a], [b], [c]))

Fig. 6: Beaver’s protocol for securely computing a secret-sharing of the product of two
secret-shared values

The properties of the protocol ΠBeaver are stated in Lemma 4.
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Lemma 4. Let A be an adversary, characterized by an adversary structure Zs in
a synchronous network and adversary structure Za in an asynchronous network,
satisfying the conditions Con (see Condition 1 in Section 2). Moreover, let u
and v be two values from K, which are secret-shared with respect to the sharing
specification S = {Sm : Sm = P\Zm and Zm ∈ Zs}. Furthermore, let (a, b, c) ∈
K3 be a multiplication-triple, where a, b and c are secret-shared with respect to S
and where c = a · b. Then protocol ΠBeaver achieves the following.

1. Zs-correctness: In a synchronous network, all honest parties output [w]
within time ∆, where w = u · v.

2. Za-Correctness: In an asynchronous network, all honest parties eventually
output [w], where w = u · v.

3. Privacy: If (a, b, c) is random from the point of view of the adversary,
then the view of A is distributed independent of u and v, irrespective of the
network type.

4. Communication Complexity: The protocol incurs a communication of
O(|Zs| · n2 log |K|) bits.

Proof. Note that u · v = ((u − a) + a) · ((v − b) + b) = de + db + ea + c holds,
where d = u − a and e = v − b. From the linearity property of the secret-
sharing, the parties will be able to locally compute [d] and [e]. Moreover, from
the properties of ΠRec, all honest parties will be able to compute d and e in a
synchronous network, within time ∆. On the other hand, in an asynchronous
network, the honest parties will eventually compute d and e. The Zs-correctness
and Za-correctness now follow easily.

The privacy is argued as follows: the only step where the parties communicate
is during the reconstruction of d and e. As d = u− a, if a is random for A, then
even after learning d, in the view of A, the value of u remains as secure as it
was before. Similarly, if b is random, then even after learning e, in the view of
A, the value v remains as secure as before.

The communication complexity follows from the communication complexity
of ΠRec.

B Synchronous BA with Asynchronous Guarantees

Let Z be an adversary structure satisfying the Q(3)(P,Z) condition. We present
a protocol ΠSBA (Fig 7) which is Z-perfectly-secure in a synchronous network,
and which has Z-guaranteed liveness in an asynchronous network. The protocol
is obtained by generalizing the SBA protocol of [8] which was designed against
threshold adversaries to tolerate t < n/3 corruptions.

Let K ⊆ P denote a predetermined set of publicly-known parties, such that
K ̸∈ Z. Such a set K always exists, as the set P trivially constitutes a candidate
K set. Protocol ΠSBA proceeds in phases, where in each phase, a unique party
from K is publicly designated as the king. Hence, the number of phases is |K|.
The general idea behind the protocol is very simple. In each phase, the parties
attempt to check if all honest parties have the same bit. Then, depending upon
the answer, the parties do one of the following.
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(1): If all honest parties are found to hold a common bit, then the parties “stick”
to that bit for all subsequent phases, irrespective of the king parties.

(2): Else, the parties take the “help” of the king-party of this phase so that if the
king-party is honest, then, at the end of this phase, all honest parties have
the same bit

If all the honest parties start the protocol with a common input bit, say b, then
throughout the protocol, the parties retain the bit b, and finally output b, thus
ensuring validity. On the other hand, consistency is guaranteed because there
will be at least one phase where the corresponding king-party is guaranteed to
be honest, and hence, at the end of that phase, all honest parties will have a
common bit, which they retain till the end of the protocol.

Let K ⊆ P be a publicly-known predetermined set of king-parties, such that K ̸∈ Z.
For simplicity and without loss of generality, let K = {P1, . . . , P|K|}.
• On having the input bi, initialize the preference bit prefi = bi.
• For k = 1, . . . , |K|, do the following in phase k, where Pk ∈ K is the predetermined

designated king-party for phase k:

1. Send the current preference bit prefi to every party in P.
2. If some preference bit b is received from a set of parties P \Z for some Z ∈ Z,

then send (propose, b) to every party in P.
– If (propose, b) is received from some set of parties C ̸∈ Z, then update the

preference bit prefi = b
3. If Pi = Pk, then send (king, k, prefk) to every party in P.
4. Setting the preference bit for the next phase:

– If, during step 2, (propose, b) was received from a set of parties P \ Z for
some Z ∈ Z, then set prefi = b.

– Else, set prefi = prefk, where (king, k, prefk) was received from the king-
party during step 3.

• Output prefi.

Protocol ΠSBA

Fig. 7: A perfectly-secure SBA protocol with asynchronous guaranteed liveness. The
above code is executed by every Pi ∈ P

Before proving the properties of ΠSBA, we prove some helping lemmas which will
be useful later.

Lemma 5. In a synchronous network, if all honest parties hold the same pref-
erence bit b at the beginning of a phase k in ΠSBA, then they retain the same bit
b at the end of phase k.

Proof. Let Zc ∈ Z be the set of corrupt parties and H def
= P \ Zc be the set

of honest parties. Since every party in H holds the same preference bit b at the
beginning of phase k, they will all send b to each party in step 1 of phase k.

Thus, each party in H receives the bit b from the set of parties H, where
H = P \ Zc. The parties in Zc may send the bit b̄ as their preference bit.
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However, since Z satisfies the Q(3)(P,Z) condition, H ̸∈ Z. Consequently, each
party in H sends (propose, b) to each party in step 2 of phase k.

Thus, each party in H receives (propose, b) from the set of parties H during
step 2 of phase k. Now due to the same reasons as above, it follows that every
party in H sets b as their preference bit at the end of phase k.

Lemma 6. In a synchronous network, if any honest party Pi ∈ P proposes a
bit b in step 2 of phase k in ΠSBA, then no other honest party Pj ∈ P proposes
a bit b̄.

Proof. We prove the lemma through a contradiction. So, let there exist two hon-
est parties Pi, Pj ∈ P, such that Pi sends (propose, b), and Pj sends (propose, b̄)
during step 2 of phase k. This implies that Pi must have received the preference
bit b during step 1 of phase k from a set of parties P \ Zα, for some Zα ∈ Z.
Similarly, Pj must have received the preference bit b̄ during step 1 of phase k
from a set of parties P \Zβ , for some Zβ ∈ Z. Let T = (P \Zα)∩ (P \Zβ). Since
Z satisfies the Q(3)(P,Z) condition, it follows that Z satisfies the Q(1)(T ,Z)
condition, and hence, there exists at least one honest party in T , say Pk. Hence,
Pk must have sent b as its preference bit to Pi and b̄ as its preference bit to Pj

during step 1 of phase k, which is impossible.

Lemma 7. In a synchronous network, for any phase k, if the designated king-
party Pk is honest, then all honest parties have the same preference bit at the
end of phase k.

Proof. Since Pk is honest, it sends the same (king, k, prefk) message to all the
parties during the step 3 of phase k. To prove the lemma, we consider two cases
that are possible for the honest parties during step 4 of phase k:
• Case I — All honest parties set prefk as their preference bit: In this

case, the lemma holds trivially.
• Case II — Some honest Pi does not set prefk as its preference bit: In

this case, during step 4, party Pi must have set its preference bit to b, where
the bit b is proposed to Pi during step 2 by a set of parties P \ Z, for some
Z ∈ Z. Then, consider the set (P \ Z) \ Zc = P \ (Z ∪ Zc), where Zc ∈ Z is
the set of corrupt parties. The set P \ (Z ∪ Zc) is non-empty, consisting of
only honest parties and P \ (Z ∪Zc) ̸∈ Z. This is because the set Z satisfies
the Q(3)(P,Z) condition.
Now, during step 2 of phase k, party Pk will receive the (propose, b) message
from all the parties in P \ (Z ∪Zc). Moreover, from Lemma 6, it follows that
any honest party outside P\(Z∪Zc) will never send a (propose, b̄) message to
Pk during step 2 of phase k. Furthermore, even though the parties in Zc may
send a (propose, b̄) message to Pk during step 2 of phase k, these messages
will not be considered by Pk to determine prefk, since Zc ∈ Z. Based on the
above arguments, it follows that Pk would set prefk = b at the end of step 2
of phase k. Since Pk is honest, it sends b as prefk during the step 3 of phase
k. Thus, even in this case, every honest party sets the same preference at
the end of phase k.
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We now prove the properties of the protocol ΠSBA in a synchronous network.

Lemma 8. Let A be an adversary characterised by an adversary structure Z,
satisfying the Q(3)(P,Z) condition, such that A can corrupt any subset of parties
from Z during the execution of ΠSBA. Then, ΠSBA achieves the following in a
synchronous network.
– Z-Liveness: All honest parties obtain an output within time 3n ·∆.
– Z-Validity: If all honest parties have input b, then they output b.
– Z-Consistency: All honest parties output the same value.
– Communication Complexity: The protocol incurs a communication of

O(n3) bits.11

Proof. Each phase involves 3 rounds of communication and consequently, each
phase requires 3∆ time. The Z-liveness then follows from the fact that all the
parties will output something after |K| phases, where |K| ≤ n.

If all honest parties hold the same input b, then at the start of phase 1,
they will all set their preference bit as b. Then from repeated application of
Lemma 5, it follows that the honest parties retain the bit b as their preference
bit throughout at the end of each phase. Thus, ΠSBA achieves Z-validity.

For Z-consistency, let there exist a phase k ∈ {1, . . . , |K|}, such that the
designated king-party Pk of this phase is honest. From Lemma 7, it follows that
at the end of phase k, every honest party sets the same preference bit. Then,
from repeated application of Lemma 5, it follows that the honest parties retain
the same preference bit till the end of the protocol and output that bit. To
complete the proof for consistency, we need to show that there exists at least
one honest Pk ∈ K. However, this follows from the fact that K ̸∈ Z.

In each phase, O(n2) bits are exchanged and so overall O(|K| · n2) bits are
exchanged. The communication complexity then follows, since |K| ≤ n.

Remark 1 (Z-guaranteed liveness for ΠSBA in an asynchronous network).
For any given adversary structure Z, the largest possible set K is the set P of all
parties, as P ̸∈ Z. So the maximum time taken by ΠSBA to generate an output
(in a synchronous network) is 3n ·∆. Thus, to achieve Z-guaranteed liveness in
an asynchronous network, it suffices to execute ΠSBA till time 3n×∆ and then
output ⊥, if no output can be deduced from ΠSBA. Therefore, ΠSBA achieves
Z-guaranteed liveness even in an asynchronous network.

C Properties of the Best-of-Both-Worlds BA Protocol

We first start with the properties of the protocol ΠBC (see Fig 1 for the formal
steps of the protocol).

Theorem 2. Let A be an adversary characterized by an adversary structure

11 If the inputs of the parties are of size ℓ bits, then the parties can run ℓ independent
instances of the protocol, one corresponding to each bit of their input. This will incur
a communication complexity of O(n3ℓ) bits.
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Z satisfying the Q(3)(P,Z) condition. Moreover, let S have input m ∈ {0, 1}ℓ
for ΠBC. Then, ΠBC achieves the following with a communication complexity of
O(n3ℓ) bits, where TBC = 3∆+ TSBA and TSBA ≤ 3n ·∆.
– Synchronous network:

– (a) Z-Liveness: At time TBC, each honest party has an output.
– (b) Z-Validity: If S is honest, then at time TBC, each honest party outputs

m.
– (c) Z-Consistency: If S is corrupt, then the output of every honest party

is the same at time TBC.
– (d) Z-Fallback Consistency: If S is corrupt and some honest party

outputs m⋆ ̸= ⊥ at time T through fallback-mode, then every honest
party outputs m⋆ by time T + 2∆.

– Asynchronous Network:
– (a) Z-Liveness: At time TBC, each honest party has an output.
– (b) Z-Weak Validity: If S is honest, then at time TBC, each honest party

outputs m or ⊥.
– (c) Z-Fallback Validity: If S is honest, then each honest party with

output ⊥ at time TBC, eventually outputs m through fallback-mode.
– (d) Z-Weak Consistency: If S is corrupt, then at time TBC, each honest

party outputs a common m⋆ ̸= ⊥ or ⊥.
– (e) Z-Fallback Consistency: If S is corrupt and some honest party

outputs m⋆ ̸= ⊥ at time T where T ≥ TBC, then each honest party
eventually outputs m⋆.

Proof. The Z-liveness property follows from the fact that every honest party
outputs something (including ⊥) at (local) time TBC, irrespective of the type
of the network. We next prove the rest of the properties of the protocol in the
synchronous network.

If S is honest, then due to the Z-liveness and Z-validity properties ofΠACast in
the synchronous network, all honest parties receivem from the Acast of S at time
3∆. Consequently, all honest parties participate with input m in the instance
of ΠSBA. The Z-guaranteed liveness and Z-validity properties of ΠSBA in the
synchronous network guarantees that at time 3∆+ TSBA, all honest parties will
have m as the output from the instance of ΠSBA. As a result, all honest parties
output m at time TBC, thus proving the Z-validity property.

To prove the Z-consistency property, we consider a corrupt S. From the Z-
consistency property of ΠSBA in the synchronous network, all honest parties will
have the same output from the instance of ΠSBA at time TBC. If all honest parties
have the output ⊥ for ΠBC at time TBC, then Z-consistency holds trivially. So,
consider the case when some honest party, say Pi, has the output m⋆ ̸= ⊥ for
ΠBC at time TBC. This implies that all honest parties have the output m⋆ from
the instance ofΠSBA. Moreover, at time 3∆, at least one honest party, say Ph, has
receivedm⋆ from the Acast of S. If the latter does not hold, then all honest parties
would have participated with input ⊥ in the instance of ΠSBA, and from the Z-
validity of ΠSBA in the synchronous network, all honest parties would compute
⊥ as the output during the instance of ΠSBA, which is a contradiction. Since Ph
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has received m⋆ from S’s Acast at time 3∆, it follows from the Z-consistency
property of ΠACast in the synchronous network that all honest parties will receive
m⋆ from S’s Acast by time 5∆. Moreover, 5∆ < 3∆+TSBA holds. Consequently,
at time 3∆ + TSBA, all honest parties will have m⋆ from S’s Acast and as the
output of ΠSBA, implying that all honest parties output m⋆ for ΠBC.

We next prove the Z-fallback consistency property for which we again con-
sider a corrupt S. Let Ph be an honest party who outputs m⋆ ̸= ⊥ at time T
through fallback-mode. Note that T > TBC, as the output during the fallback-
mode is computed only after time TBC. We also note that each honest party
has output ⊥ at time TBC. This is because, from the proof of the Z-consistency
property of ΠBC (see above), if any honest party has an output m′ ̸= ⊥ at time
TBC, then all honest parties (including Ph) must have computed the output m′

at time TBC. Hence, Ph will never change its output to m⋆.12 Now since Ph has
obtained the output m⋆, it implies that at time T , it has received m⋆ from the
Acast of S. It then follows from the Z-consistency of ΠACast in the synchronous
network that every honest party will also receive m⋆ from the Acast of S, latest
by time T + 2∆ and output m⋆. This completes the proof of all the properties
in the synchronous network.

We next prove the properties of the protocolΠBC in an asynchronous network.
The Z-weak validity property follows from the Z-validity property of ΠACast in
the asynchronous network, which ensures that no honest party ever receives an
m′ from the Acast of S, where m′ ̸= m. So, if at all any honest party outputs
a value different from ⊥ at time TBC, it has to be m. The Z-weak consistency
property follows using similar arguments as used to prove Z-consistency in the
synchronous network; however we now rely on the Z-validity and Z-consistency
properties of ΠACast in the asynchronous network. The latter property ensures
that for a corrupt S, two different honest parties never end up receiving m1 and
m2 from the Acast of S, where m1 ̸= m2.

For the Z-fallback validity property, consider an honest S, and let Pi be an
arbitrary honest party who outputs ⊥ at (local) time TBC. Since the parties
keep on participating in the protocol beyond time TBC, it follows from the Z-
liveness and Z-validity properties of ΠACast in the asynchronous network that
party Pi will eventually receive m from the Acast of S, by executing the steps of
the fallback-mode of ΠBC. Consequently, party Pi eventually changes its output
from ⊥ to m.

For the Z-fallback consistency property, we consider a corrupt S. Let Pj be an
honest party who outputs some m⋆ different from ⊥ at time T , where T ≥ TBC.
This implies that Pj has obtained m⋆ from the Acast of S. Now, consider an
arbitrary honest Pi. From the Z-liveness and Z-weak consistency properties of
ΠBC in asynchronous network proved above, it follows that Pi outputs either m

⋆

or ⊥ at local time TBC. If Pi has output ⊥, then from the Z-consistency property
of ΠACast in the asynchronous network, it follows that Pi will also eventually

12 Recall that in the protocol ΠBC, the parties who obtain an output different from ⊥
at time TBC, never change their output.
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obtain m⋆ from the Acast of S, by executing the steps of the fallback-mode of
ΠBC. Consequently, party Pi eventually changes its output from ⊥ to m⋆.

The communication complexity (both in the synchronous as well as asyn-
chronous network) follows from the communication complexity of ΠSBA and
ΠACast.

C.1 Properties of the Protocol ΠBA

In this section, we prove the properties of our best-of-both-worlds BA protocol
ΠBA (see Fig 2 for the formal description of the protocol).

Theorem 3. Let A be an adversary, characterized by an adversary structure
Z, satisfying the Q(3)(P,Z) condition. Moreover, let ΠABA be an ABA protocol
satisfying the conditions as stated in Lemma 2. Then ΠBA achieves the following.

– Synchronous Network: The protocol is a Z-perfectly-secure SBA protocol,
where all honest parties obtain an output within time TBA = TBC+TABA. The
protocol incurs a communication of O(|Z| · n5 log |F|+ n6 log n) bits.

– Asynchronous Network: The protocol is a Z-perfectly-secure ABA proto-
col with an expected communication of O(|Z| · n7 log |F|+ n8 log n) bits.

Proof. We start with the properties in a synchronous network. The Z-liveness
property of ΠBC in the synchronous network guarantees that all honest par-
ties will have some output, from each instance of ΠBC, at time TBC. Moreover,
the Z-validity and Z-consistency properties of ΠBC in the synchronous network
guarantee that irrespective of the sender parties, all honest parties will have a
common output from each individual instance of ΠBC, at time TBC. Now since
the parties decide their respective inputs for the instance of ΠABA deterministi-
cally based on the individual outputs from the n instances of ΠBC at time TBC, it
follows that all honest parties participate with a common input in the protocol
ΠABA. Hence, all honest parties obtain an output by the end of time TBC+TABA,
thus ensuring Z-guaranteed liveness of ΠBA. Moreover, the Z-consistency prop-
erty of ΠABA in the synchronous network guarantees that all honest parties have
a common output from the instance of ΠABA, which is taken as the output of
ΠBA, thus proving the Z-consistency of ΠBA.

For proving the validity property in a synchronous network, let all honest
parties have the same input bit b. Let Zc ∈ Z be the set of corrupt parties

and H def
= P \Zc be the set of honest parties. From the Z-validity of ΠBC in the

synchronous network, all honest parties will receive b as the output at time TBC in
all the ΠBC instances corresponding to the sender parties in H. Since Z satisfies
the Q(3)(P,Z) condition, it follows that H ̸∈ Z. Consequently, all honest parties
will find a common subset R in the protocol, as the set H constitutes a candidate
R. Moreover, H ⊆ R. Furthermore, R\H ⊆ Zc ∈ Z and R\Zc ⊆ H ̸∈ Z. Hence,
all honest parties Pi will find a common subset Ri ⊆ R, as per the protocol, such
that b is computed as the output during the ΠBC instances of all the parties in
Ri. As a result, all honest parties will participate with input b in the instance of
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ΠABA and hence, output b at the end of ΠABA, which follows from the Z-validity
of ΠABA in the synchronous network. This proves the Z-validity of ΠBA.

We next prove the properties of ΠBA in an asynchronous network. The Z-
consistency of the protocol ΠBA follows from the Z-consistency of the protocol
ΠABA in the asynchronous network, since the overall output of the protocol ΠBA

is same as the output of the protocol ΠABA. The Z-liveness of the protocol
ΠBC in the asynchronous network guarantees that all honest parties will have
some output from all the n instances of ΠBC at local time TBC. Consequently,
all honest parties will participate with some input in the instance of ΠABA. The
Z-almost-surely liveness of ΠABA in the asynchronous network then implies the
Z-almost-surely liveness of ΠBA.

For proving the validity in an asynchronous network, let all honest parties

have the same input bit b. Let Zc ∈ Z be the set of corrupt parties and H def
=

P \ Zc be the set of honest parties. We claim that all honest parties participate
with the input b during the instance of ΠABA. The Z-validity of ΠABA in the
asynchronous network then automatically implies the Z-validity of ΠBA.

To prove the above claim, consider an arbitrary honest party Ph. There are
two possible cases. If Ph fails to find a subsetR satisfying the protocol conditions,
then the claim holds trivially, as Ph participates in the instance of ΠABA with its
input for ΠBA, which is the bit b. So, consider the case when Ph finds a subset
R such that P \R ∈ Z, and where, corresponding to each Pj ∈ R, party Ph has

computed an output b
(j)
h ∈ {0, 1} at local time TBC during the instance Π

(j)
BC .

Now, consider the subset of honest parties H ∩ R in the set R. It follows that
R\(H∩R) ⊆ Zc ∈ Z. Also, since Z satisfies the Q(3)(P,Z) condition, it follows
that (H∩R) ̸∈ Z. Moreover, Ph will compute the output b at local time TBC in
the instance of ΠBC corresponding to every Pj ∈ (H∩R), which follows from the
Z-weak validity of ΠBC in the asynchronous network. From these arguments, it
follow that Ph will find a candidate subset Rh, where R\Rh ∈ Z and where b is
computed as the output at local time TBC in the instance of ΠBC, corresponding
to every Pj ∈ Rh. This is because the subset of parties H ∩ R constitutes a
candidate Rh. Consequently, Ph will set b as its input for the instance of ΠABA,
thus proving the claim.

The communication complexity, both in a synchronous as well as in an asyn-
chronous network, follows easily from the protocol steps and from the commu-
nication complexity of ΠSBA and ΠABA.

D Properties of the Best-of-Both-Worlds VSS Protocol

In this section we prove the properties of the protocol ΠVSS (see Fig 3 for the
formal description of the protocol). Recall that we want to prove the properties
of ΠVSS assuming an adversary A characterized by an adversary structure Zs

in a synchronous network, and an adversary structure Za in an asynchronous
network, satisfying the following conditions.
– Zs ̸= Za;
– For every subset Z ∈ Za, there exists a subset Z ′ ∈ Zs, such that Z ⊆ Z ′;
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– Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition.
Moreover, we are considering the sharing specification S = {Sm : Sm = P \
Zm and Zm ∈ Zs}. Note that the above conditions automatically imply that
Zs satisfies the Q(3)(P,Zs) condition and Za satisfies the Q(4)(P,Za) condition.
Before proving the properties, we prove a related property, which will later be
useful while proving the properties of ΠVSS.

Lemma 9. In protocol ΠVSS if the network is synchronous and if the output of
ΠBA is 1, then the following hold.
– All honest parties participated in the instance of ΠBA with input 1.
– Corresponding to every Sm ∈ S, all honest parties in Cm received a common

share from D by time ∆.

Proof. Let the network be synchronous and let all the honest parties output
1 during the instance of ΠBA. This implies at least one honest party, say Ph,
has participated in ΠBA with input 1. If this is not the case and if all honest
parties participated with input 0 in ΠBA, then from the Zs-validity of ΠBA in
the synchronous network, all honest parties would compute the output 0 during
the instance of ΠBA, which is a contradiction.

Since Ph has participated with input 1 in the instance of ΠBA, it implies that
Ph has received the sets C1, . . . , Cq from the broadcast of D at time 2∆ + 2TBC

through regular-mode and accepted these sets. From the Zs-validity and Zs-
consistency of ΠBC in the synchronous network, every other honest party would
also receive these sets from the broadcast of D at time 2∆+ 2TBC. Since Ph has
accepted C1, . . . , Cq, it implies that Ph has checked that all the following hold.
– For m = 1, . . . , q, the set Cm constitutes a clique in the consistency graph

G
(m)
h of Ph at time 2∆ + TBC. That is, for every Pi, Pj ∈ Cm, the messages

OK(m, i, j) and OK(m, j, i) have been received from the broadcast of Pi and
Pj respectively by time 2∆+ TBC. By the Zs-validity and Zs-consistency of
ΠBC in the synchronous network, these messages are also received by every
other honest party by time 2∆+TBC. Consequently, C1, . . . , Cq will constitute
a clique in the consistency graphs G

(1)
k , . . . , G

(m)
k respectively of every honest

party at time 2∆+ TBC.
– For m = 1, . . . , q, the condition Sm \ Cm ∈ Zs holds. It is easy to see that

every honest party will find that this condition holds.
– Form = 1, . . . , q, if NOK(m, j) was received from the broadcast of any Pj ∈ Sm

through regular mode at time 2∆ + TBC, then the following hold at time
2∆+ 2TBC.
– Resolve(m, s(m)) is received from the broadcast of D through regular-

mode.
– Resolve(m, s(m)) is received from the broadcast of a subset of parties C′

m

through regular-mode, where C′
m ⊆ Cm and Cm \ C′

m ∈ Zs.
From the Zs-validity and Zs-consistency of ΠBC in the synchronous network,
the above conditions will be also satisfied for every honest party. In more
detail, if any NOK(m, j) was received by Ph from the broadcast of any Pj ∈ Sm

through regular-mode at time 2∆ + TBC, then the same NOK(m, j) message
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would be received through regular-mode at time 2∆+ TBC by every honest
party. Due to a similar reason, any corresponding Resolve(m, s(m)) message
which is received by Ph through regular-mode at time 2∆+2TBC, either from
the broadcast of D or from the broadcast of any party in Cm, will also be
received by every honest party.

It thus follows that the conditions for accepting the C1, . . . , Cq will hold for every
honest party at time 2∆+2TBC and so, all honest parties participate with input
1 during the instance of ΠBA. This proves the first part of the lemma.

We now prove the second part of the lemma. The statement is obviously true,
if D is honest. So, we consider a corrupt D. Let Sm be an arbitrary set in S. We
first note that all the honest parties in Cm received a common share, say s(m),
from D. This is because, from the proof of the first part of the lemma, there exists
some honest party Ph, who has received Cm from the broadcast of D through
regular-mode at time 2∆ + 2TBC and has accepted Cm. And while accepting
Cm, party Ph has verified that Cm constitutes a clique in its consistency graph

G
(m)
h at time 2∆+TBC. Hence, the messages OK(m, i, j) and OK(m, j, i) have been

received by Ph from the broadcast of every honest Pi, Pj ∈ Cm by time 2∆+TBC.

This automatically implies that s
(m)
i = s

(m)
j holds, where s

(m)
i and s

(m)
j denotes

the shares received from D by Pi and Pj respectively, corresponding to Sm. We
wish to show that both Pi and Pj would have received their respective shares
within time ∆.

On the contrary, let Pi receive s
(m)
i from D at time ∆+ δ, where δ > 0. From

the protocol steps, Pi starts performing pairwise consistency checks only when
its local time becomes a multiple of ∆. Hence, Pi must have started sending

its share s
(m)
i to the other parties at time c · ∆, where c > 1. Similarly, from

the protocol steps, Pj will start broadcasting the OK(m, j, i) message, only at
time (c+ 1) ·∆, since it waits till its local time becomes a multiple of ∆, before
broadcasting any OK or NOK messages. Now, by the Zs-validity of ΠBC in the
synchronous network, it takes TBC time for the OK(m, j, i) messages to be received
by any honest party. Hence, the edge (Pi, Pj) gets added in the consistency graph

G
(m)
k of every honest party only at time (c + 1) · ∆ + TBC. However, this is a

contradiction, since (c+ 1) ·∆+ TBC > 2∆+ TBC.

We now proceed to prove the properties of the protocol ΠVSS. We start with
the correctness property in the synchronous network.

Lemma 10. In protocol ΠVSS, if D is honest and participates with input s,
then in a synchronous network, s is secret-shared, with respect to the sharing
specification S, at time TVSS = 2∆+ 2TBC + TBA.

Proof. Let Z⋆
s ∈ Zs be the set of corrupt parties, and let Hs

def
= P \ Z⋆

s be
the set of honest parties. We show that corresponding to every Sm ∈ S, all
honest parties in Sm output the share s(m) at time TVSS, where s(m) is the
share picked by D, corresponding to Sm. The lemma then follows from the fact
that since D is honest, it selects the shares s(1), . . . , s(q), satisfying the condition
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s(1) + . . .+ s(q) = s. So, consider an arbitrary Sm ∈ S, and let Hm = Sm \Z⋆
s be

the set of honest parties in Sm.

During Phase I, every Pi ∈ Hm receives the share s
(m)
i from D within time

∆, where s
(m)
i = s(m). During Phase II, every Pi ∈ Hm sends s

(m)
i to every

Pj ∈ Sm, which takes at most ∆ time to be delivered. Hence, by time 2∆,

every Pi ∈ Hm receives s
(m)
j from every Pj ∈ Hm, such that s

(m)
i = s

(m)
j

holds. Consequently, during Phase III, every Pi ∈ Hm broadcasts OK(m, i, j)
corresponding to every Pj ∈ Hm, and vice versa. From the Zs-validity of ΠBC

in the synchronous network, it follows that all the parties in Hm receive the
OK(m, i, j) and OK(m, j, i) messages through regular-mode at time 2∆ + TBC,
from the broadcast of every Pi ∈ Hm and every Pj ∈ Hm. Hence, corresponding

to every Pi, Pj ∈ Hm, the edge (Pi, Pj) will be added to the graph G
(m)
k of

every Pk ∈ Hm. Furthermore, from the Zs-consistency property of ΠBC in the

synchronous network, the graph G
(m)
k will be the same for every Pk ∈ Hm

(including D) at time 2∆+ TBC.

From the above arguments, the set of parties in Hm will constitute a clique
in the consistency graph of all the parties in Hm. Moreover, Sm\Hm ⊆ Z⋆

s ∈ Zs.
Hence, during Phase IV, D will be able to find a candidate Cm set and broadcast
it, which will be received by all the parties in Hs through regular-mode within
time 2∆+2TBC (follows from the Zs-validity ofΠBC in the synchronous network).
Now, consider an arbitrary honest party Pk, who receives the message NOK(m, j)
from a party Pj ∈ Sm through regular-mode at time 2∆ + TBC. From the Zs-
validity and Zs-consistency properties of ΠBC in the synchronous network, this
NOK(m, j) message will be received by all the parties inHm through regular-mode
at time 2∆+TBC. Consequently, all the parties in Hm (including D) will respond
by broadcasting the Resolve(m, s(m)) message, which will be received by all the
honest parties through regular mode at time 2∆+2TBC. Since Cm \Hm ⊆ Z⋆

s ∈
Zs, it follows that the conditions for accepting Cm will hold for all the honest
parties at time 2∆+2TBC. Consequently, all honest parties will participate with
input 1 in the instance of ΠBA and from the Zs-validity and Zs-guaranteed
liveness properties of ΠBA in the synchronous network, all honest parties will
compute the output 1 in the instance of ΠBA at time 2∆+ 2TBC + TBA.

Finally, we show that all the parties in Hm output s(m) at time 2∆+2TBC+
TBA. For this, we consider the following possible cases with respect to Cm.

1. An NOK(m, ⋆) message was received at time 2∆+TBC through regular-
mode from the broadcast of some party in Sm: Since all honest parties
accept Cm, it implies that corresponding to this NOK message, all honest
parties have received a (Resolve, s(m)) message from the broadcast of D
through regular-mode, as well as from the broadcast of a subset of parties
C′
m ⊆ Cm through regular-mode, where Cm \ C′

m ∈ Zs, at time 2∆ + 2TBC.
Hence, according to the protocol steps, every honest party in Sm outputs
s(m) as the share, corresponding to Sm. Also, it is easy to see that the
honest parties output s(m) as the share at time 2∆+ 2TBC + TBA.
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2. No NOK(m, ⋆) message was received through regular-mode from the
broadcast of any party in Sm within time 2∆+ TBC: From Lemma 9,
all parties in Hm ∩ Cm would have received the common share s(m) from
D, corresponding to the set Sm, within time ∆. As part of the pairwise
consistency test, the share s(m) from all the parties in Hm ∩ Cm would have
been delivered to all the honest parties in Sm within time 2∆. This implies
that within time 2∆, all honest parties would have received s(m) from a
subset of parties C′′

m ⊆ Cm, where Cm \ C′′
m ∈ Zs. This is because the set

(Cm ∩Hm) definitely constitutes a candidate C′′
m. Moreover, no honest party

would have ever received a value different from s(m) within time 2∆, from any

party in Sm. On the contrary, if any honest Pi receives s
(m)
j from Pj and s

(m)
k

from Pk within time 2∆, where Pj , Pk ∈ Sm and where s
(m)
j ̸= s

(m)
k , then Pi

would have broadcasted an NOK(m, i) message at time 2∆, which would have
been received by all honest parties through regular-mode at time 2∆+ TBC,
which is a contradiction.
Hence, in this case also, every honest party in Sm outputs s(m) as the share,
corresponding to Sm. Also, it is easy to see that the honest parties output
s(m) as the share at time 2∆+ 2TBC + TBA.

We next prove the correctness property in an asynchronous network.

Lemma 11. In protocol ΠVSS, if D is honest and participates with input s,
then in an asynchronous network, almost-surely s is eventually secret-shared
with respect to the sharing specification S.

Proof. Let Z⋆
a ∈ Zs be the set of corrupt parties, and let Ha

def
= P\Z⋆

a be the set
of honest parties. We show that corresponding to every Sm ∈ S, almost-surely,
all honest parties in Sm eventually output the share s(m), where s(m) is the share
picked by D corresponding to Sm. The Za-correctness then follows from the fact
that since D is honest, it selects the shares s(1), . . . , s(q), satisfying the condition
s(1) + . . .+ s(q) = s. So consider an arbitrary Sm ∈ S and let Hm = Sm \ Z⋆

a be
the set of honest parties in Sm.

We first note that every honest party participates with some input in the in-
stance of ΠBA at local time 2∆+2TBC. Hence from the Za-almost-surely liveness
and Za-consistency properties of ΠBA in the asynchronous network, all honest
parties eventually compute a common output, during the instance of ΠBA. Now
there are two possible cases with respect to the output of ΠBA, according to
which the parties proceed to compute their shares.

1. The output of ΠBA is 1: Since the output of ΠBA is 1, due to the Za-
validity of ΠBA in the asynchronous network, at least one honest party, say
Ph, has received the sets C1, . . . , Cq from the broadcast of D through regular-
mode, within time 2∆+TBC and accepted these sets. It then follows that all
honest parties also receive the sets C1, . . . , Cq from the broadcast of D, either
through regular-mode or through fallback-mode. This follows from the Za-
weak validity and Za-fallback validity properties of ΠBC in the asynchronous
network. Since Ph has accepted Cm, it has verified that Cm constitutes a
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clique in the consistency graph G
(m)
h . This implies that corresponding to

Sm, all honest parties in Cm have received the same share from D, which
is s(m), since we are considering an honest D. We will show that all honest
parties in Sm eventually output s(m) as the share, corresponding to Sm.
So consider an arbitrary honest Pi ∈ Sm. From the protocol steps, if the
output of ΠBA is 1, then Pi computes its share corresponding to Sm, based
on one of the following three conditions. Assuming that at least one of these
conditions eventually hold for Pi, we first show that the share computed by
Pi corresponding to Sm, is bound to be s(m). This is followed by showing
that indeed at least one of these conditions eventually hold for Pi.
– Condition A: At time 2∆+2TBC, party Pi received the Resolve(m, s(m))

message from the broadcast of D, as well as from the broadcast of a subset
of parties C′

m ⊆ Cm through regular-mode, where Cm \ C′
m ∈ Zs. Clearly,

in this case, Pi outputs s
(m) as the share corresponding to Sm.

– Condition B: At time 2∆, there exists a subset of parties C′′
m ⊆ Cm

where Cm \ C′′
m ∈ Zs, such that Pi received a common value from all

the parties in C′′
m. We claim that the subset C′′

m is bound to contain
at least one honest party from Cm, which would have sent s(m) to Pi,
due to which Pi will output s(m) as the share corresponding to Sm. In
more detail, let Sm \ Cm = Zα ∈ Zs, and Cm \ C′′

m = Zβ ∈ Zs. Also,
note that P \ Sm = Zm ∈ Zs. Now, if C′′

m does not contain any honest
party from Cm, it implies that C′′

m ⊆ Z⋆
a ∈ Za. This further implies that

P ⊆ Zm∪Zα∪Zβ ∪Z⋆
a , which is a contradiction to the Q(3,1)(P,Zs,Za)

condition.
– Condition C: There exists a subset of parties C′′′

m ⊆ Cm, where Cm \C′′′
m ∈

Za, such that Pi received a common value from all the parties in C′′′
m . In

this case also, one can show that the subset C′′′
m is bound to contain at

least one honest party from Cm, who would have sent s(m) to Pi. This
is because Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition and every
subset in Za is a subset of some subset in Zs. Clearly, Pi outputs s(m)

as the share corresponding to Sm.
Thus, we have shown that irrespective of the way Pi would have computed
its output share corresponding to Sm, it is bound to be the same as s(m). To
complete the proof, we just need to show that at least one of the conditions
from A, B and C above eventually holds for Pi. For this, we note that in
the worst case, the condition C is bound to eventually hold, irrespective of
conditions A and B. This is because the set of honest parties in Cm, namely
the parties in Cm \ Z⋆

a , always constitute a candidate C′′′
m set for Pi. This

follows from the fact that the share s(m) from all the parties in Cm \Z⋆
a will

be eventually delivered to Pi.
2. The output of ΠBA is 0: Since D is honest, every pair of parties Pj , Pk ∈

Hm eventually broadcast OK(m, j, k) and OK(m, k, j) messages, as they even-
tually receive the same share s(m) from D and exchange among themselves.
From the Za-validity of ΠBC in the asynchronous network, these messages
are eventually delivered to every honest party. Also from the Za-consistency
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of ΠBC in the asynchronous network, any OK message which is received by D
from the broadcast of any corrupt party, will eventually be received by every
other honest party as well. Since Sm \ Hm ∈ Za, it follows that all honest
parties will eventually find a subset of parties Em ⊆ Sm, where Sm\Em ∈ Za,
which constitutes a clique in the consistency graph G(m) of all honest parties.
This is because the set Hm constitutes such a candidate Em. Consequently,
D eventually finds and broadcasts Em. From the Za-weal validity and Za-
fallback validity properties of ΠBC in the asynchronous network, Em will be
eventually received and accepted by all honest parties.
Next, consider an arbitrary Pi ∈ Hm. We wish to show that Pi eventually
outputs s(m) as the share, corresponding to Sm. Now, there are two possible
cases. If Pi ∈ Em, then from the protocol steps, Pi indeed outputs s(m) as its
share, corresponding to Sm. So, consider the other case when Pi ̸∈ Em. Note
that all the parties in Hm eventually receive the common share s(m) from D,
since D is honest. Also note that Em \Hm ∈ Zs; this is because every subset
in Za is a subset of some subset in Zs. Hence, it follows that party Pi will
eventually find a candidate subset E ′

m ⊆ Em, where Em \ E ′
m ∈ Zs, such that

Pi receives a common value from all the parties in E ′
m and set that value

as its share, corresponding to Sm. This is because the subset (Hm ∩ Em)
always constitute such a candidate E ′

m set. Hence, it is confirmed that Pi

is guaranteed to output some share corresponding to Sm. To complete the
proof, we need to show that this share is the same as s(m).
So, let Pi find a candidate E ′

m set, satisfying the above conditions, based on
which it computes its output share corresponding to Sm. We claim that this
set E ′

m contains at least one honest party from Hm; i.e. Hm∩E ′
m ̸= ∅. On the

contrary, let the candidate E ′
m for Pi consists of only corrupt parties. That

is, E ′
m ⊆ Z⋆

a . We consider the worst case scenario where Z⋆
a ∈ Zs as well,

since every subset in Za is assumed to be a subset of some subset in Zs. Also
note that Sm = P \ Zm, where Zm ∈ Zs. Let Sm \ Em ⊆ Zβ ∈ Za. And let
Em \ E ′

m ⊆ Zα ∈ Zs. Hence, we get that P ⊆ Zm ∪ Z⋆
a ∪ Zα ∪ Zβ , which is a

contradiction, since Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition.

We next prove the privacy property.

Lemma 12. In protocol ΠVSS, if D is honest and participates with input s, then
irrespective of the type of network, the view of the adversary remains independent
of s.

Proof. We prove privacy in a synchronous network. The privacy in an asyn-
chronous network automatically follows, since every subset in Za is a subset of
some subset in Zs. So, consider a synchronous network, and let D be honest.
Let Zc ∈ Zs be the set of corrupt parties. Then consider the set Sc ∈ S, where
Sc

def
= P \ Zc. We claim that, throughout the protocol, the adversary does not

learn anything about the share s(c), and its view remains independent of s(c).
The Zs-privacy then follows from the fact that D selects the share s(c) randomly,
and the probability distribution of s(c) is independent of s.
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Since D is honest, it sends the share s(c), only to the parties in Sc, which
consists of only honest parties. Similarly, as part of the pairwise consistency
tests, the share s(c) is exchanged only among the parties in Sc. Moreover, since
Sc consists of no corrupt parties, it follows that no party from Sc ever broadcasts
an NOK(c, ⋆) message, corresponding to Sc. Consequently, no party from Sc, as
well as D, ever broadcasts a Resolve(c, s(c)) message. Thus, throughout the
protocol, the view of the adversary remains independent of the share s(c).

We next proceed to prove the commitment properties. We start with the
synchronous network.

Lemma 13. In protocol ΠVSS, if D is corrupt, then either no honest party ob-
tains any output, or there exists a value s⋆ ∈ K held by D, which is secret-shared
with respect to the sharing specification S, such that the following hold.
– If any honest party outputs its shares at time TVSS = 2∆+ 2TBC + TBA, then

all honest parties output their shares at time TVSS.
– If any honest party outputs its shares at time T > TVSS, then every honest

party outputs its shares by time T + 2∆.

Proof. If no honest party obtains any output, then the lemma holds trivially. So,
consider the case when some honest party, say Ph, obtains an output. We note
that every honest party participates with some input in the instance of ΠBA

at time 2∆ + 2TBC. Hence, by the Zs-consistency and Zs-guaranteed liveness
properties of ΠBA in the synchronous network, the instance of ΠBA generates
an output at time 2∆ + 2TBC + TBA for every honest party. Now there are two
possible cases.

1. The output of ΠBA is 1: In this case, from Lemma 9, it follows that
all honest parties participated with input 1 at time 2∆ + 2TBC during the
instance of ΠBA. This implies that all honest parties received C1, . . . , Cq from
the broadcast of D through regular-mode at time 2∆ + 2TBC and accepted
these sets. We next claim that corresponding to every Sm ∈ S, all honest
parties in Sm output some common share say s(m), corresponding to Sm, at

time 2∆ + 2TBC + TBA. Let s⋆
def
= s(1) + . . . + s(m). It will then follow that

the value s⋆ is secret-shared at time 2∆+ 2TBC + TBA.
The proof of the above claim closely follows the Zs-correctness proof in the
synchronous network (see the proof of Lemma 10). Consider an arbitrary
Sm ∈ S. Then there are two possible cases.

– An NOK(m, ⋆) message was received at time 2∆ + TBC through
regular-mode from the broadcast of some party in Sm: In this
case, all honest parties in Sm will output some common share, say s(m),
corresponding to Sm at time 2∆ + 2TBC + TBA. The proof for this is
exactly the same as the proof of Lemma 10 for the same case.

– No NOK(m, ⋆) message was received within time 2∆+TBC through
regular-mode from the broadcast of any party in Sm: Let Hm be
the set of honest parties in Sm. Since Cm is accepted by all the honest
parties, it follows that the parties in Hm ∩ Cm constitute a clique in the
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consistency graph G(m) of all honest parties. This further implies that all
the parties in Hm∩Cm received a common share from D corresponding to
Sm, say s(m). Moreover, from Lemma 9, all the parties in Hm∩Cm would
have received s(m) from D, within time ∆. Now similar to the proof for
the same case in Lemma 10, it can be concluded that all honest parties
output s(m) as the share corresponding to Sm, at time 2∆+2TBC+TBA.

2. The output of ΠBA is 0: Since Ph has obtained an output, it implies
that it has received sets E1, . . . , Eq from the broadcast of D and accepted
them. Let T be the time at which Ph accepted E1, . . . , Eq. Note that T >
2∆+2TBC+TBA. This is because from the protocol steps, the honest parties
start participating in the instance of ΠBC of D for broadcasting E1, . . . , Eq,
only after time 2∆ + 2TBC + TBA. By the Zs-consistency and Zs-fallback
consistency of ΠBC in the synchronous network, all honest parties will receive
and accept the sets E1, . . . , Eq, latest by time T + 2∆. Since the parries
have accepted E1, . . . , Eq, it implies that corresponding to every Sm ∈ S,
all the honest parties in Em have received a common value from D, say
s(m). We claim that all the honest parties in Sm output s(m) as the share,
corresponding to Sm, latest by time T + 2∆. This will automatically imply

that the value s⋆
def
= s(1)+ . . .+ s(m) is secret-shared, latest by time T +2∆.

The proof for the above claim is exactly the same as the proof of Lemma 11,
for the case when the output of ΠBA is 0 and is omitted.

We finally prove the commitment property in an asynchronous network.

Lemma 14. In protocol ΠVSS, if D is corrupt, then either no honest party ob-
tains any output or there exists some value s⋆ ∈ K held by D, such that almost-
surely s⋆ is secret-shared, with respect to the sharing specification S.

Proof. If no honest party obtains an output, then the lemma holds trivially. So,
consider the case when some honest party, say Ph, has obtained an output in
ΠVSS. Note that every honest party participates with some input in the instance
of ΠBA at local time 2∆+ 2TBC. Hence, from the Za-almost-surely liveness and
Za-consistency properties of ΠBA in the asynchronous network, it follows that
the instance of ΠBA eventually generates a common output for every honest
party. Now, there are two possible cases.

1. The output of ΠBA instance is 1: This implies that all honest parties
eventually receive the sets C1, . . . , Cq from the broadcast of D (either through
regular-mode or fallback-mode), and accept these sets. The proof for this is
identical to the case “when the output of ΠBA instance is 1”, in the proof of
Lemma 11. This further implies that corresponding to each Sm ∈ S, all the
honest parties in Cm have received a common value from D, say s(m), since
the honest parties in Cm constitute a clique. We claim that all the honest
parties in Sm eventually output s(m) as the share, corresponding to the set

Sm. This will automatically imply that the value s⋆
def
= s(1) + . . . + s(q) is

eventually secret-shared among the parties. The proof for the claim again
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closely follows the case “when the output of ΠBA instance is 1”, in the proof
of Lemma 11.
So, consider an arbitrary honest Pi ∈ Sm, and let Z⋆

a be the set of corrupt
parties. From the protocol steps, Pi computes its share corresponding to
Sm based on one of the following three conditions. Assuming that at least
one of these conditions eventually hold for Pi, we first show that the share
computed by Pi corresponding to Sm is bound to be s(m). This is followed
by showing that at least one of these conditions eventually hold for Pi.
– Condition A: At time 2∆+2TBC, there exists some value s′(m) such that

party Pi received the Resolve(m, s′(m)) message from the broadcast of
D, as well as from the broadcast of a subset of parties C′

m ⊆ Cm through
regular-mode, where Cm \C′

m ∈ Zs. And consequently Pi sets s
′(m) as its

share corresponding to Sm.
We argue that C′

m is bound to contain at least one honest party from
Cm, which broadcasts Resolve(m, s′(m)) message, where s′(m) = s(m).
In more detail, let Sm \ Cm = Zα ∈ Zs and Cm \ C′

m = Zβ ∈ Zs. Also,
note that P \ Sm = Zm ∈ Zs. Now if C′

m does not contain any honest
party from Cm, it implies that C′

m ⊆ Z⋆
a ∈ Za. This further implies that

P ⊆ Zm∪Zα∪Zβ ∪Z⋆
a , which is a contradiction to the Q(3,1)(P,Zs,Za)

condition.
– Condition B: At time 2∆, there exists a subset of parties C′′

m ⊆ Cm,
where Cm \ C′′

m ∈ Zs, such that Pi received a common value from all
the parties in C′′

m, say s′(m). And consequently, Pi sets s
′(m) as its share

corresponding to Sm.
We claim that the subset C′′

m is bound to contain at least one honest
party from Cm, who would have sent s′(m) = s(m) to Pi within time 2∆.
The proof for the claim is similar to the case above where we have shown
that C′

m is bound to contain at least one honest party from Cm.
– Condition C: There exists a subset of parties C′′′

m ⊆ Cm where Cm \ C′′′
m ∈

Za, such that Pi received a common value from all the parties in C′′′
m , say

s′(m). And consequently, Pi sets s
′(m) as its share, corresponding to Sm.

In this case also, one can show that the subset C′′′
m is bound to contain

at least one honest party from Cm, who would have sent s′(m) = s(m)

to Pi. This is because Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition
and every subset in Za is a subset of some subset in Zs.

Thus, we have shown that irrespective of the way Pi would have computed
its output share corresponding to Sm, it is bound to be the same as s(m).
Now it is easy to see that at least one of the conditions A, B and C above,
eventually holds for Pi. Specially, the condition C is bound to eventually
hold, irrespective of conditions A and B. This is because the set of honest
parties in Cm, namely the parties in Cm \ Z⋆

a , always constitute a candidate
C′′′
m set for Pi. This follows from the fact that the share s(m) from all the

parties in Cm \ Z⋆
a will be eventually delivered to Pi.

2. The output of ΠBA instance is 0: Since Ph has computed its output,
it follows that it has received the sets E1, . . . , Eq from the broadcast of D,
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and accepted these sets. From the Za-weak consistency and Za-fallback con-
sistency properties of ΠBC in the asynchronous network, it follows that all
honest parties eventually receive these sets and accept them. We also note
that corresponding to every Sm ∈ S, all honest parties in Em received the
same share from D, say s(m). Now similar to the proof for the case “the
output of ΠBA instance is 0” in the proof of Lemma 14, it can be shown
that all honest parties in Sm eventually set s(m) as the share, corresponding

to Sm. This automatically implies that the value s⋆
def
= s(1) + . . . + s(q) is

eventually secret-shared.

Lemma 15. Protocol ΠVSS incurs a communication of O(|Zs| · (n4 log |K| +
n5(log n+ log |Zs|))) bits and invokes one instance of ΠBA.

Proof. During phase I, corresponding to every Sm ∈ S, dealer D needs to send
a share, consisting of one element of K, to all the parties in Sm. This incurs
a total communication of O(|Zs| · n) elements from K. During phase II, every
party in Sm sends an element from K to every other party in Sm. This incurs
a total communication of O(|Zs| · n2) elements from K. During phase III, every
party in Sm may broadcast an OK message for every other party in Sm. This
requires broadcasting O(|Zs| · n2 · (log n + log |Zs|)) bits, as each OK message
encodes the identity of two parties and the identity of a set from Zs, requiring
2 log n+log |Zs| bits. Additionally, during phase III, corresponding to any Sm ∈
S, each party in Sm may broadcast an NOK message. This requires broadcasting
O(|Zs| · n · (log |Zs|+ log n)) bits, as each NOK message encodes the identity of a
party and the identity of a set from Zs. During phase IV, corresponding to each
Sm ∈ S, up to O(n) elements from K may be broadcasted to resolve the conflicts.
This incurs a total broadcast of O(|Zs|·n) elements from K. Additionally, D may
broadcast sets C1, . . . , Cq, where each set can be encoded by an n-bit vector.

The communication complexity now follows by summing up all the above
costs and from the communication complexity of the protocol ΠBC, along with
the fact that each element from K can be represented by log |K| bits, and the
fact that q = |Zs|.

Remark 2 (Further improvement in the communication complexity of
ΠVSS). The complexity of the phase III can be significantly reduced by making
the following modification: party Pi now broadcasts a single OK(i, j) message
corresponding to Pj , if the pairwise consistency test is positive between Pi’s and
Pj ’s share across all the sets in S, to which both Pi and Pj belongs. That is,

if corresponding to every Sm ∈ S such that Pi, Pj ∈ Sm, the condition s
(m)
i =

s
(m)
j holds. Consequently, during phase III, only O(n2) OK messages need to be
broadcasted, where the size of each message will now be only O(log n) bits. This
will reduce the communication complexity of ΠVSS to O(|Zs| · n4 · (log |K| +
log |Zs|+ log n) + n5 log n) bits, along with one instance of ΠBA.

The proof of the following theorem now follows from Lemma 10-15 and Re-
mark 2.
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Theorem 4. Let A be an adversary characterized by an adversary structure
Zs in a synchronous network and adversary structure Za in an asynchronous
network satisfying the following conditions.
– Zs ̸= Za;
– For every subset Z ∈ Za, there exists a subset Z ′ ∈ Zs, such that Z ⊆ Z ′;
– Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition.
Moreover, let S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Then protocol ΠVSS

achieves the following properties, where D has a private input s ∈ K for ΠVSS.
– If D is honest, then the following hold.

– Zs-correctness: In a synchronous network, s is secret-shared with respect
to S, at time TVSS = 2∆+ 2TBC + TBA.

– Za-correctness: In an asynchronous network, almost-surely, s is eventu-
ally secret-shared, with respect to S.

– Privacy: The view of A remains independent of s, irrespective of the
network type.

– If D is corrupt, then either no honest party obtains any output or there exists
some s⋆ ∈ K, such that the following hold.
– Za-commitment: In an asynchronous network, almost-surely, s⋆ is even-

tually secret-shared, with respect to S.
– Zs-commitment: In a synchronous network, s⋆ is secret-shared, with re-

spect to S, such that the following hold.
– If any honest party outputs its shares at time TVSS, then all honest

parties output their shares at time TVSS.
– If any honest party outputs its shares at time T > TVSS, then every

honest party outputs its shares by time T + 2∆.
– Communication Complexity: The protocol incurs a communication of

O(|Zs| ·n4 ·(log |K|+log |Zs|+log n)+n5 log n) bits and invokes one instance
of ΠBA.

E Properties of the Preprocessing Phase Protocol

In this section, we formally present our preprocessing phase protocol and prove
its properties. We first start with the description of our ACS protocol and proof
of its properties.

E.1 Protocol ΠACS and Its Properties

For simplicity, we present ΠACS when L = 1; the modifications for a general L
are straightforward.

– Phase I — Secret Sharing the Input: If Pi ∈ Q, the do the following.
– On having the input xi, act as a dealer D and invoke an instance Π

(i)
VSS of

ΠVSS with input xi.

Protocol ΠACS(Q)
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– Participate in the instance Π
(j)
VSS invoked by every Pj ∈ Q, and wait for time

TVSS. Initialize a set Ci = ∅ after time TVSS and include Pj ∈ Q in Ci if an

output is computed in the instance Π
(j)
VSS.

– Phase II — Identifying the Common Set of Selected Parties:
– Corresponding to every Pj ∈ Q, participate in an instance of Π

(j)
BA of ΠBA

with input 1, if Pj ∈ Ci.
– Once 1 has been obtained as the output from instances of ΠBA

corresponding to a set of parties in Q \ Z for some Z ∈ Zs, participate

with input 0 in all the ΠBA instances Π
(j)
BA , such that Pj ∈ Q and Pj ̸∈ Ci.

– Once all the instances of ΠBA corresponding to the parties in Q have
produced a binary output, then output CS, which is the set of parties
Pj ∈ Q such that 1 is obtained as the output in the instance Π

(j)
BA .

Fig. 8: Agreement on a common subset of parties. The above code is for each Pi ∈ P.

We next prove the properties of the protocol ΠACS, assuming L = 1.

Lemma 16. . Let A be an adversary characterized by an adversary structure
Zs in a synchronous network and adversary structure Za in an asynchronous
network satisfying the following conditions.
– Zs ̸= Za;
– For every subset Z ∈ Za, there exists a subset Z ′ ∈ Zs, such that Z ⊆ Z ′;
– Zs and Za satisfy the Q(3,1)(P,Zs,Za) condition.
Moreover, let S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Furthermore, let
Q ⊆ P, such that Zs and Za either satisfy the Q(1,1)(Q,Zs,Za) condition or
the Q(3,1)(Q,Zs,Za) condition. Then, ΠACS achieves the following, where every
(honest) Pi ∈ Q has input xi ∈ K for ΠACS.

– Zs-correctness: If the network is synchronous, then at time TACS
def
= TVSS+

2TBA, all honest parties output a common subset of parties CS ⊆ Q, where
Q \ CS ∈ Zs, such that the following hold.
– All honest parties from Q will be present in CS.
– Corresponding to every Pj ∈ CS, there exists some x⋆

j ∈ K, where x⋆
j = xj

for an honest Pj, such that x⋆
j is secret-shared with respect to S.

– Za-correctness: If the network is asynchronous, then almost-surely, the hon-
est parties eventually output a subset CS ⊆ Q where Q\CS ∈ Zs. Moreover,
corresponding to every Pj ∈ CS, there exists an x⋆

j ∈ K, where x⋆
j = xj for

an honest Pj, such that x⋆
j is eventually secret-shared with respect to S.

– Privacy: Irrespective of the network type, the view of the adversary remains
independent of the inputs xi corresponding to the honest parties Pi ∈ Q.

– Communication Complexity: The protocol incurs a communication of
O(|Zs| · n5 · (log |K| + log |Zs| + log n) + n6 log n) bits and invokes O(n)
instances of ΠBA.

Proof. The privacy property simply follows from the privacy property of ΠVSS,
while communication complexity follows from the communication complexity of
ΠVSS and the fact that up to O(n) instances of ΠVSS may be involved, since
|Q| = O(n). We next prove the correctness property.



Title Suppressed Due to Excessive Length 47

We first consider a synchronous network. Let Z⋆
s ∈ Zs be the set of corrupt

parties, and let H def
= Q \ Z⋆

s be the set of honest parties. We note that H ̸= ∅,
since it is given that Zs and Za either satisfy the Q(1,1)(Q,Zs,Za) condition
or Q(3,1)(Q,Zs,Za) condition. Corresponding to each Pj ∈ H, every honest Pi

obtains the output {[xj ]m}Pi∈Sm
at time TVSS during Π

(j)
VSS, which follows from

the Zs-correctness of ΠVSS in the synchronous network. Consequently, at time
TVSS, the set Ci of every honest Pi will satisfy the condition Q \ Ci ∈ Zs. This
is because H ⊆ Ci will hold at time TVSS. Now, corresponding to each Pj ∈ H,

each Pi ∈ H starts participating with input 1 in the instance Π
(j)
BA at time

TVSS. Hence, from the Zs-validity and Zs-guaranteed liveness properties of ΠBA

in the synchronous network, it follows that at time TVSS + TBA, every Pi ∈ H
obtains the output 1 during the instance Π

(j)
BA corresponding to every Pj ∈ H.

Consequently, at time TVSS + TBA, every honest party will start participating in
the remaining ΠBA instances for which no input has been provided yet (if there
are any), and from the Zs-guaranteed liveness and Zs-consistency properties
of ΠBA in the synchronous network, these ΠBA instances will produce common
outputs for every honest party at time TACS = TVSS+2TBA. Hence, at time TACS,
every honest party outputs a common CS, where Q \ CS ∈ Zs, and where each
Pj ∈ H will be present in CS. We next wish to show that corresponding to every
Pj ∈ CS, there exists some value which is secret-shared among the parties with
respect to S.

Consider an arbitrary party Pj ∈ CS. If Pj ∈ H, then as argued above, every
Pi ∈ H computes the shares {[xj ]m}Pi∈Sm

at time TVSS itself. Next, consider a

corrupt Pj ∈ CS. Since Pj ∈ CS, it follows that the instance Π
(j)
BA produces the

output 1 for all honest parties. This further implies that at least one honest Pi

must have computed some output during the instance Π
(j)
VSS by time TVSS + TBA

(implying that Pj ∈ Ci) and participated with input 1 in the instance Π
(j)
BA .

This is because if, at time TVSS + TBA, party Pj does not belong to the Ci set
of any honest Pi, then it implies that all honest parties start participating with

input 0 in the instance Π
(j)
BA at time TVSS + TBA. Then, from the Zs-validity of

ΠBA in the synchronous network, every honest party would have obtained the

output 0 in the instance Π
(j)
BA and hence, Pj will not be present in CS, which

is a contradiction. Now, if Pi has computed some output during Π
(j)
VSS at time

TVSS +TBA, then from the Zs-commitment of ΠVSS in the synchronous network,
it follows that there exists some value x⋆

j , such that x⋆
j will be secret-shared with

respect to S by time TVSS + TBA + 2∆. Since 2∆ < TBA, it follows that at time
TACS, every Pi ∈ H has {[x⋆

j ]m}Pi∈Sm , thus proving the correctness property in
a synchronous network.

We next consider an asynchronous network. Let Z⋆
a ∈ Za be the set of corrupt

parties, and let H def
= Q\Z⋆

a be the set of honest parties. Notice that Q\H ∈ Zs,
since every subset in Za is a subset of some subset in Zs. Now, irrespective of
the way messages are scheduled, there will eventually be subset of parties Q\Z
for some Z ∈ Zs, such that all the parties in H participate with input 1 in
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the instances of ΠBA corresponding to the parties in Q \ Z. This is because
corresponding to every Pj ∈ H, every Pi ∈ H eventually computes an output

during the instance Π
(j)
VSS, which follows from the Za-correctness of ΠVSS in the

asynchronous network. So, even if the corrupt parties Pj do not invoke their

respective Π
(j)
VSS instances, there will be a set of ΠBA instances corresponding

to the parties in Q \ Z for some Z ∈ Zs in which all the parties in H eventu-
ally participate with input 1. Consequently, from the Za-almost-surely liveness
and Za-consistency properties of ΠBA in the asynchronous network, these ΠBA

instances eventually produce the output 1 for all the parties in H. Hence, all
the parties in H eventually participate with some input in the remaining ΠBA

instances, which almost-surely produce some output for every honest party even-
tually. From the properties of ΠBA in the asynchronous network, it then follows
that all the honest parties output the same CS.

Now, consider an arbitrary Pj ∈ CS. It implies that the honest parties com-

puted the output 1 during the instance Π
(j)
BA , which further implies that at least

one honest Pi participated with input 1 in Π
(j)
BA after computing its output

in the instance Π
(j)
VSS. If Pj is honest, then the Za-correctness of ΠVSS in the

asynchronous network guarantees that xj will be eventually secret-shared with

respect to S, during Π
(j)
VSS. On the other hand, if Pj is corrupt, then the Za-

commitment of ΠVSS in the asynchronous network guarantees that there exists
some x⋆

j ∈ K, such that x⋆
j will eventually be secret-shared with respect to S,

during Π
(j)
VSS.

We next discuss the modifications needed in the protocol ΠACS when each party
in Q has L inputs.

ΠACS for L Inputs: Protocol ΠACS can be easily extended if each party has L
inputs. Now, each Pj shares L values through instances of ΠVSS. Moreover, the

parties participate with input 1 in the instance Π
(j)
BA if they have computed some

output in all the L instances of ΠVSS invoked by Pj as a dealer. The rest of the
protocol steps remain the same. The protocol will now incur a communication
of O(L · |Zs| · n5(log |K| + log |Zs|) + n6 log n) bits and invokes O(n) instances
of ΠBA.

E.2 Multiplication Protocol and Its Properties

In this section, we formally present our multiplication protocol ΠMult and prove
its properties. For simplicity, we first consider the case when L = 1, and present
the formal details of the protocol in Fig 9.

Let [a]1, . . . , [a]q and [b]1, . . . , [b]q be the shares, corresponding to [a] and [b] respec-
tively, where every Pi ∈ P holds the shares {[a]m, [bm]}Pi∈Sm .
– For every ordered pair (l,m) ∈ {1, . . . , q}×{1, . . . , q}, the parties do the following

to compute [al · bm], where al
def
= [a]l and bm

def
= [b]m.

Protocol ΠMult([a], [b])
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– Let Ql,m
def
= Sl ∩ Sm. The parties execute an instance ΠACS(Ql,m) of ΠACS,

where every Pi ∈ Ql,m participates with the input al · bm.
– Let Rl,m ⊆ Ql,m be the common subset of parties obtained as the output from

the instance ΠACS(Ql,m), where Ql,m \ Rl,m ∈ Zs. Let r
def
= |Rl,m| and let

Rl,m = {Pα1 , . . . , Pαr}. Moreover, corresponding to Pαi ∈ Rl,m, let vi be
the value which is secret-shared on the behalf of Pαi during ΠACS(Ql,m).a.

– The parties publicly check whether v1, . . . , vr are all equal. For this, the parties

locally compute r− 1 differences [d1]
def
= [v1]− [v2], . . . , [dr−1]

def
= [v1]− [vr].

This is followed by publicly reconstructing the differences d1, . . . , dr−1 by
invoking instances of ΠRec, and checking if all of them are 0.
– If d1 = . . . = dr−1 = 0, then the parties set [al · bm] = [v1].
– Else, the parties publicly reconstruct [a]l and [b]m by invoking instances

ΠRec([a]l, S) and ΠRec([b]m, S) of ΠRec. The parties then set [al · bm] to
the default sharing of al · bm, where [al · bm]1 = al · bm and [al · bm]2 =
. . . = [al · bm]q = 0.b

– The parties output [a · b] =
∑

(l,m)∈{1,...,q}×{1,...,q}

[al · bm].

a If Pαi is honest, then vi = al · bm holds.
b The vector of shares (s, 0, . . . , 0) can be considered as a default sharing of any
given s ∈ K.

Fig. 9: The perfectly-secure multiplication protocol

We next prove the properties of ΠMult. We first start with a helping lemma.

Lemma 17. In protocol ΠMult, the following hold for every ordered pair (l,m) ∈
{1, . . . , q} × {1, . . . , q}.
– Zs and Za satisfy the Q(1,1)(Ql,m,Zs,Za) condition, where Ql,m = Sl ∩ Sm.
– In a synchronous network, at time TACS, all honest parties will compute a set

Rl,m ⊆ Ql,m, where Ql,m \ Rl,m ∈ Zs, such that Rl,m contains all honest
parties from Ql,m.

– In an asynchronous network, almost-surely, all honest parties will eventually
compute a set Rl,m ⊆ Ql,m, where Ql,m\Rl,m ∈ Zs, such that Rl,m contains
at least one honest party from Ql,m.

Proof. The first property follows from the fact that Zs and Za satisfy the

Q(3,1)(P,Zs,Za) condition, and Ql,m
def
= Sl ∩ Sm = P \ (Zl ∪ Zm). Hence, if

Zs and Za do not satisfy the Q(1,1)(P,Zs,Za) condition, then it implies that
there exist sets Zα ∈ Zs and Zβ ∈ Za such that Ql,m ⊆ Zα ∪ Zβ . This further
implies that Zα ∪Zβ ∪Zl ∪Zm ⊆ P, which contradicts the fact that Zs and Za

satisfy the Q(3,1)(P,Zs,Za) condition.
For proving the second property, we consider a synchronous network. Let

Z⋆
s ∈ Zs be the set of corrupt parties. Since Zs and Za satisfy theQ(1,1)(Ql,m,Zs,

Za) condition, from the Zs-correctness of ΠACS in the synchronous network, it
follows that all honest parties will compute Rl,m as the output of the instance
ΠACS(Ql,m), such that Ql,m\Rl,m ∈ Zs. Moreover, all the parties from Ql,m\Z⋆

s

will be present in Rl,m. This proves the second property.
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We next consider an asynchronous network. Let Z⋆
a ∈ Za be the set of corrupt

parties. From the Za-correctness of ΠACS in the asynchronous network, it follows
that, almost-surely, all honest parties will eventually computeRl,m as the output
of the instance ΠACS(Ql,m) such that Ql,m \ Rl,m ∈ Zs. Moreover, Rl,m ̸⊂ Z⋆

a ,
as otherwise, Zs and Za do not satisfy the Q(1,1)(Ql,m,Zs,Za) condition, which
is a contradiction. Consequently, Rl,m will consists of at least one honest party
from Ql,m.

We now proceed to prove the properties of ΠMult.

Lemma 18. In a synchronous network, all honest parties output [c] within time
TMult = TACS +2∆, where c = a · b. Moreover, the view of the adversary remains
independent of a and b.

Proof. To prove the lemma, we claim that for each ordered pair (l,m) ∈ {1, . . . , q}
×{1, . . . , q}, all honest parties securely compute a secret-sharing of the summand
[a]l · [b]m, within time TACS + 2∆, without revealing any additional information
to the adversary. The proof then follows from the fact that the following holds:

[c] = [a · b] =
∑

(l,m)∈{1,...,q}×{1,...,q}

[[a]l · [b]m].

We now proceed to prove our claim, for which we consider an arbitrary ordered
pair (l,m) ∈ {1, . . . , q} × {1, . . . , q}.

From Lemma 17, at time TACS, all honest parties will compute the set Rl,m

as the output of the instance ΠACS(Ql,m), where Rl,m ⊆ Ql,m, and where all
honest parties from Ql,m will be present in Rl,m. Let |Rl,m| = r and Rl,m =
{Pα1 , . . . , Pαr}. Moreover, without loss of generality, let Pα1 be honest. From
the Zs-correctness of ΠACS in the synchronous network, corresponding to every
Pαj

∈ Rl,m, there exists some value, vj , which will be secret-shared among the
parties on the behalf of Pαj

during the instance ΠACS(Ql,m). Moreover, since
Pα1

is assumed to be honest, from the protocol steps, v1 = [a]l · [b]m.
Now there are two possible cases:

• Every party in Rl,m participates with input [a]l · [b]m during ΠACS(Ql,m): In
this case, v1 = v2 = . . . = vr = [a]l·[b]m and hence d1 = . . . = dr−1 = 0. From
the properties of ΠRec, within time TACS +∆, the honest parties reconstruct
the r−1 differences d1, . . . , dr−1 and find all of them to be 0. Hence, they set
[[a]l · [b]m] to [v1], where v1 is the same as [a]l · [b]m. The privacy in this case
follows from privacy of ΠACS and the fact that the adversary only learns the
r − 1 differences, which are all 0.

• Some party in Rl,m participates with an input, which is different from [a]l ·
[b]m, during ΠACS(Ql,m): Let Pi ∈ Rl,m be a corrupt party, corresponding
to which vi is shared during ΠACS(Ql,m), where vi ̸= [a]l · [b]m. Since vi ̸= v1,
it follows that at least one of the r − 1 differences d1, . . . , dr−1 will be non-
zero, and the parties detect the same when these differences are publicly
reconstructed at time TACS + ∆. In this case, the parties reconstruct the
shares [a]l and [b]m at time TACS + 2∆, and take a default secret-sharing
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of [a]l · [b]m. The privacy in this case follows from the fact that since there
exists a corrupt party in Rl,m, the adversary is already aware of the shares
[a]l and [b]m and hence, publicly reconstructing these values does not add
any new information to the view of the adversary.

We next consider prove the properties in an asynchronous network.

Lemma 19. In an asynchronous network, almost-surely, all honest parties even-
tually output [c], where c = a · b. Moreover, the view of the adversary remains
independent of a and b.

Proof. The proof is very similar to the proof of Lemma 18. Namely, we show
that almost-surely, corresponding to each ordered pair (l,m) ∈ {1, . . . , q} ×
{1, . . . , q}, all honest parties eventually and securely compute a secret-sharing
of the summand [a]l · [b]m. For this, we consider an arbitrary ordered pair
(l,m) ∈ {1, . . . , q}×{1, . . . , q}. From Lemma 17, almost-surely, all honest parties
will eventually compute a set Rl,m as the output of the instance ΠACS(Ql,m),
where Rl,m ⊆ Ql,m, and where at least one honest party from Ql,m will be
present in Rl,m. Let |Rl,m| = r and Rl,m = {Pα1

, . . . , Pαr
}. Moreover, without

loss of generality, let Pα1 be honest. From the Za-correctness of ΠACS in the
asynchronous network, corresponding to every Pαj ∈ Rl,m, there exists some
value, vj , which will be eventually secret-shared among the parties on the behalf
of Pαj

, during the instance ΠACS(Ql,m). Moreover, since Pα1
is assumed to be

honest, from the protocol steps, v1 = [a]l · [b]m.
Now there are two possible cases:

• Every party in Rl,m participates with input [a]l · [b]m during ΠACS(Ql,m): In
this case, v1 = v2 = . . . = vr = [a]l · [b]m and hence d1 = . . . = dr−1 = 0.
From the properties of ΠRec, the honest parties eventually reconstruct the
r − 1 differences d1, . . . , dr−1 and find all of them to be 0. Hence they set
[[a]l · [b]m] to [v1], where v1 is the same as [a]l · [b]m. The privacy in this case
follows from privacy of ΠACS, and the fact that the adversary only learns
r − 1 differences which are all 0.

• Some party in Rl,m participates with an input, which is different from [a]l ·
[b]m, during ΠACS(Ql,m): Let Pi ∈ Rl,m be a corrupt party, corresponding
to which vi is shared during ΠACS(Ql,m), where vi ̸= [a]l · [b]m. Since vi ̸= v1,
it follows that at least one of the r − 1 differences d1, . . . , dr−1 will be non-
zero, and the parties detect the same when these differences are eventually
reconstructed. In this case, the parties eventually reconstruct the shares [a]l
and [b]m, and take a default secret-sharing of [a]l · [b]m. The privacy in this
case follows from the fact that since there exists a corrupt party in Rl,m, the
adversary is already aware of the shares [a]l and [b]m and hence, publicly
reconstructing these values does not add any new information to the view
of the adversary.

The proof of Lemma 20 now easily follows from Lemma 18 and Lemma 19.
The communication complexity follows from the fact that q2 = |Zs|2 instances
of ΠACS are executed.
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Lemma 20. Let A be an adversary, characterized by an adversary structure
Zs in a synchronous network and adversary structure Za in an asynchronous
network, satisfying the conditions Con (see Condition 1 in Section 2). Moreover,
let S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Then protocol ΠMult achieves the
following properties, where the inputs of the parties are [a] and [b].
– Zs-correctness: In a synchronous network, all honest parties output [c]

within time TMult = TACS + 2∆, where c = a · b.
– Za-correctness: In an asynchronous network, almost-surely, the honest par-

ties eventually output [c], where c = a · b.
– Privacy: Irrespective of the network type, the view of the adversary remains

independent of a and b.
– Communication Complexity: ΠMult incurs a communication of O(|Zs|3 ·

n5(log |K| + log |Zs|+ log n) + |Zs|2 · n6 log n) bits and invokes O(|Zs|2 · n)
instances of ΠBA.

We next discuss the modifications needed in the protocol ΠMult to handle the
case when L > 1.

Protocol ΠMult for L Pairs of Inputs: If the input for ΠMult is {([a(ℓ)],
[b(ℓ)])}ℓ=1,...L, then during the instance of ΠACS(Ql,m), each party in Ql,m will
have to share L summands. Similarly, corresponding to Rl,m, the parties recon-
struct (|Rl,m| − 1) ·L number of difference values. The rest of the protocol steps
remain the same. With these modification, ΠMult will now incur a communica-
tion of O(L · |Zs|3 ·n5(log |K|+log |Zs|+log n)+ |Zs|2 ·n6 log n) bits and invokes
O(|Zs|2 · n) instances of ΠBA.

E.3 Protocol ΠPreProcessing and Its Properties

In this section, we formally present our preprocessing phase protocolΠPreProcessing

and prove its properties. For the sake of simplicity, we first explain the proto-
col to generate one random secret-shared multiplication-triple. The protocol is
presented in Fig 10.

– Generating random pairs of values: The parties do the the following.
– Participate in an instance ΠACS(P) of ΠACS, where the input of each Pi is a

random pair of values (ai, bi) ∈ K.
– Let R be the output of the instance ΠACS(P), where P \ R ∈ Zs. Moreover,

corresponding to Pi ∈ R, let (a⋆
i , b

⋆
i ) ∈ K be the pair of values such that the

parties hold [a⋆
i ] and [b⋆i ] during the instance ΠACS(P).

– The parties locally compute [a] =
∑
Pi∈R

[a⋆
i ] and [b] =

∑
Pi∈R

[b⋆i ].

– Computing the product: The parties compute [c] by executing ΠMult([a], [b]).
– The parties output ([a], [b], [c]).

Protocol ΠPreProcessing

Fig. 10: The preprocessing phase protocol for generating a secret-sharing of one random
multiplication-triple
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We next prove the properties of the protocol ΠPreProcessing.

Lemma 21. Let A be an adversary characterized by an adversary structure Zs

in a synchronous network and adversary structure Za in an asynchronous net-
work, satisfying the conditions Con (see Condition 1 in Section 2). Moreover,
let S = {Sm : Sm = P \ Zm and Zm ∈ Zs}. Then ΠPreProcessing achieves the
following.
– Zs-correctness: In a synchronous network, all honest parties output ([a], [b],

[c]) within time TPreProcessing = TACS + TMult, where c = a · b.
– Za-correctness: In an asynchronous network, almost-surely, the honest par-

ties eventually output ([a], [b], [c]), where c = a · b.
– Privacy: Irrespective of the network type, the view of the adversary remains

independent of a, b and c.
– Communication Complexity: ΠPreProcessing incurs a communication of

O(L · |Zs|3 · n5(log |K|+ log |Zs|+ log n) + |Zs|2 · n6 log n) bits and invokes
O(|Zs|2 · n) instances of ΠBA.

Proof. We first consider a synchronous network. From the Zs-correctness ofΠACS

in the synchronous network, it follows that at time TACS, all honest parties will
output a common subset of parties R ⊆ P, where P \ R ∈ Zs. Moreover,
corresponding to every Pi ∈ R, there will be a pair of values (a⋆i , b

⋆
i ) ∈ K, which

will be secret-shared with respect to S on the behalf of Pi, during the instance
of ΠACS. Furthermore, (a⋆i , b

⋆
i ) = (ai, bi) for every honest Pi ∈ R. Also, if Pi ∈ R

is honest, then the privacy property of ΠACS guarantees that the view of the
adversary remains independent of (ai, bi). The Zs-correctness property of ΠACS

in the synchronous network also guarantees that all honest parties from P will
be present in R. Now, since the honest parties in P secret-share random pairs of
values during ΠACS, it follows that (a, b) will be random from the point of view of
the adversary. Finally, the Zs-correctness property of ΠMult in the synchronous
network guarantees that the parties output ([a], [b], [c]) at time TACS + TMult,
where c = a · b. Moreover, the privacy property of ΠMult in the synchronous
network guarantees that adversary does not learn any additional information
about a, b and c (except that c = a · b), during the instance of ΠMult as well.

The proof of the properties in an asynchronous network is almost the same
as above, except that we now use the Za-correctness property of ΠACS in the
asynchronous network (which guarantees that the parties eventually compute a
common R, containing at least one honest party) and the Za-correctness prop-
erty of ΠMult in the asynchronous network. To avoid repetition, we do not give
the formal details.

The communication complexity follows from the communication complexity
of ΠACS and ΠMult.

We next discuss the modifications needed in the protocolΠPreProcessing to generate
cM number of secret-shared multiplication-triples.

ΠPreProcessing for Generating cM Random Multiplication-triples: To gen-
erate secret-sharing of cM random multiplication-triples, the instance of ΠACS
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during the first stage is executed by setting L = cM . Consequently, there will be
cM pairs of secret-shared values generated on the behalf of each party inR. More-
over, the pairs of values shared by the honest parties in R will be random from
the point of view of the adversary. Consequently, summing the secret-sharing
of the pairs of values shared by the parties in R, leads to cM pairs of random
values being secret-shared during the first stage. Then, during the second stage,
the parties execute an instance of ΠMult, with the input being the cM pairs of
random secret-shared pairs of values from the first stage. This securely leads to a
secret-sharing of the product of each pair. The resultant protocol will now incur
a communication of O(cM · |Zs|3 · n5(log |K|+ log |Zs|+ log n) + |Zs|2 · n6 log n)
bits, and invokes O(|Zs|2 · n) instances of ΠBA.

F The Circuit-Evaluation Protocol and Its Properties

Protocol ΠCirEval for securely evaluating the circuit cir is presented in Fig 11.

– Preprocessing and Input-Sharing — The parties do the following:
– Each Pi ∈ P, on having the input xi for f , participates in the instance

ΠACS(P) of ΠACS with input xi. Let CS be the common subset of parties
obtained as the output during ΠACS(P), where P \ CS ∈ Zs. Corresponding
to every Pj ̸∈ CS, set xj = 0, and set [xj ] to the default secret-sharing,
where [xj ]1 = [xj ]2 = . . . = [xj ]q = 0.

– Participate in an instance of ΠPreProcessing to generate cM number of
secret-shared, random multiplication-triples {[a(j)], [b(j)], [c(j)]}j=1,...,cM .

– Circuit Evaluation — Let G1, . . . , Gm be a publicly-known topological
ordering of the gates of cir. For k = 1, . . . ,m, the parties do the following for
gate Gk:
– If Gk is an addition gate: the parties locally compute [w] = [u] + [v], where u

and v are gate-inputs, and w is the gate-output.
– If Gk is a multiplication-with-a-constant gate with constant c: the parties

locally compute [v] = c · [u], where u is the gate-input, and v is the
gate-output.

– If Gk is an addition-with-a-constant gate with constant c: the parties locally
compute [v] = c+ [u], where u is the gate-input, and v is the gate-output.

– If Gk is a multiplication gate: Let Gk be the ℓth multiplication gate in cir,
where ℓ ∈ {1, . . . , cM}, and let ([a(ℓ)], [b(ℓ)], [c(ℓ)]) be the ℓth shared
multiplication-triple generated during ΠPreProcessing. Moreover, let [u] and [v]
be the shared gate-inputs of Gk. Then, the parties participate in an
instance ΠBeaver(([u], [v]), ([a

(ℓ)], [b(ℓ)], [c(ℓ)])) of ΠBeaver, and obtain [w],
where w = u · v.

– Output Computation — Let [y] be the secret-shared circuit-output. The
parties participate in an instance ΠRec(y, S) of ΠRec and reconstruct y.

– Termination: Each Pi does the following.
– If y has been obtained during output computation, then send the message

(ready, y) to all the parties.

Protocol ΠCirEval(cir,Zs,Za)
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– If the message (ready, y) is received from a set of parties C, where C ̸∈ Zs,
then send (ready, y) message to all the parties if no ready message is sent
earlier.

– If the message (ready, y) is received from a set of parties P \ Z, for some
Z ∈ Zs, then terminate all sub-protocols, output y, and terminate.

Fig. 11: A best-of-both-worlds perfectly-secure protocol for securely evaluating the
arithmetic circuit cir

Theorem 5. Let A be an adversary characterized by an adversary structure
Zs in a synchronous network and adversary structure Za in an asynchronous
network satisfying the conditions Con (see Condition 1 in Section 2). Moreover,
let f : Kn → K be a function represented by an arithmetic circuit cir over
K, consisting of cM number of multiplication gates, with a multiplicative depth
of DM and where each party Pi has an input xi ∈ K for f . Furthermore, let
S = {Sm : Sm = P \Zm and Zm ∈ Zs}. Then, ΠCirEval incurs a communication
of O(cM · |Zs|3 · n5(log |K| + log |Zs| + log n) + |Zs|2 · n6 log n) bits, invokes
O(|Zs|2 · n) instances of ΠBA, and achieves the following.
– In a synchronous network, all honest parties output y = f(x1, . . . , xn) at

time (30n+DM + 6k + 38) ·∆, where xj = 0 for every Pj ̸∈ CS, such that
P \ CS ∈ Zs and every honest party from P will be present in CS; here k
is the constant from Lemma 2, as determined by the underlying (existing)
perfectly-secure ABA protocol ΠABA.

– In an asynchronous network, almost-surely, the honest parties eventually
output y = f(x1, . . . , xn), where xj = 0 for every Pj ̸∈ CS, and where
P \ CS ∈ Zs.

– The view of the adversary remains independent of the inputs of the honest
parties in CS.

Proof. Consider a synchronous network. Let Z⋆
s ∈ Zs be the set of corrupt par-

ties, and let Hs
def
= P \Z⋆

s be the set of honest parties. From the Zs-correctness
property of ΠPreProcessing in the synchronous network, at time TPreProcessing, the
(honest) parties will have cM number of secret-shared multiplication-triples,
shared with respect to S, from the instance ofΠPreProcessing. From the Zs-correctness
property of ΠACS in the synchronous network, at time TACS, the (honest) parties
will have a common subset CS from the instance of ΠACS, where all honest par-
ties will be present in CS, and where P \ CS ∈ Zs. Moreover, corresponding to
every Pj ∈ CS, there will be some xj ∈ K held by Pj (which will be the same as
Pj ’s input for f for an honest Pj), such that xj will be secret-shared with respect
to S. As CS will be known publicly, the parties take a default secret-sharing of
0 on the behalf of the parties Pj outside CS, by considering x(j) = 0. Since
TACS < TPreProcessing, it follows that at time TPreProcessing, the parties will hold a
secret-sharing of cM multiplication-triples and secret-sharing of x1, . . . , xn.

The circuit-evaluation will take DM ·∆ time. This follows from the fact that
linear gates are evaluated locally (non-interactively), while all the independent
multiplication gates can be evaluated in parallel by running the correspond-
ing instances of ΠBeaver in parallel, where each such instance requires ∆ time.
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From the Zs-correctness property of ΠBeaver in the synchronous network, the
multiplication-gates will be evaluated correctly and hence, during the output-
computation phase, the parties will hold a secret-sharing of y (with respect to
S), where y = f(x1, . . . , xn). From the properties of ΠRec, it will take ∆ time
for every party to reconstruct y. Hence, during the termination phase, all hon-
est parties will send a ready message for y. Since P \ Hs ∈ Zs, every honest
party will then terminate with output y at time TPreProcessing + (DM +2) ·∆. By
substituting the values of TPreProcessing, TVSS, TACS, TBC, TBA, TSBA and TABA and
by noting that all instances of ΠBC in ΠCirEval are invoked with Z = Zs, we get
that the parties terminate the protocol at time (DM +30n+6k+38) ·∆, where
k is the constant from Lemma 2, as determined by the underlying (existing)
perfectly-secure ABA protocol ΠABA.

If we consider an asynchronous network, then the proof is similar as above, ex-
cept that we now use the security properties of the building blocks ΠPreProcessing,
ΠACS, ΠBeaver and ΠRec in the asynchronous network. Let Z⋆

a ∈ Za be the set

of corrupt parties, and let Ha
def
= P \ Z⋆

a be the set of honest parties. During
the termination phase, the parties in Z⋆

a may send ready messages for y′, where
y′ ̸= y. Since every subset in Za is a subset of some subset in Zs, it follows
that no honest party will terminate with output y′, where y′ ̸= y. On the other
hand, all the parties in Ha will eventually compute the output y, and will send
a ready message for y, which is eventually delivered to every honest party. Now,
consider an honest party Ph, who terminates with output y. We wish to show
that every honest party eventually terminates the protocol with output y. This
is because Ph must have received ready messages for y from a subset of parties
P \Zα, for some Zα. Since Zs satisfies the Q(3)(P,Zs) condition, it follows that
that Ha ∩ (P \ Zα) ̸∈ Zs. Now the ready messages for y from the set of parties
Ha ∩ (P \ Zα) are eventually delivered to every honest party. Consequently, ir-
respective of which stage of the protocol an honest party is in, every party in
Ha (including Ph) eventually sends a ready message for y, which is eventually
delivered. Since P \ Ha ∈ Zs (as every subset in Za is a subset of some subset
from Zs), this implies that every honest party eventually terminates with output
y.

From the privacy property of ΠACS, corresponding to every honest Pj ∈ CS,
the input xj will be random from the point of view of the adversary. Moreover,
from the privacy property of ΠPreProcessing, the multiplication-triples generated
through ΠPreProcessing will be random from the point of view of the adversary.
During the evaluation of linear gates, no interaction happens among the parties
and hence, no additional information about the inputs of the honest parties is
revealed. The same is true during the evaluation of multiplication-gates as well,
which follows from the privacy property of ΠBeaver.

The communication complexity of the protocol follows from the communica-
tion complexity of ΠPreProcessing, ΠACS and ΠBeaver.
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