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Abstract
Verifiable random functions (Micali et al., FOCS’99) allow a key-pair holder to verifiably

evaluate a pseudorandom function under that particular key pair. These primitives enable fair
and verifiable pseudorandom lotteries, essential in proof-of-stake blockchains such as Algorand
and Cardano, and are being used to secure billions of dollars of capital. As a result, there is
an ongoing IRTF effort to standardize VRFs, with a proposed ECVRF based on elliptic-curve
cryptography appearing as the most promising candidate.

In this work, towards understanding the general security of VRFs and in particular the
ECVRF construction, we provide an ideal functionality in the Universal Composability (UC)
framework (Canetti, FOCS’01) that captures VRF security, and show that ECVRF UC-realizes
this functionality.

We further show how the range of a VRF can generically be extended in a modular fashion
based on the above functionality. This observation is particularly useful for protocols such
as Ouroboros since it allows to reduce the number of VRF evaluations (per slot) and VRF
verifications (per block) from two to one at the price of additional (but much faster) hash-function
evaluations.

Finally, we study batch verification in the context of VRFs. We provide a UC-functionality
capturing a VRF with batch-verification capability, and propose modifications to ECVRF that
allow for this feature. We again prove that our proposal UC-realizes the desired functionality.
We provide a performance analysis showing that verification can yield a factor-two speedup for
batches with 1024 proofs, at the cost of increasing the proof size from 80 to 128 bytes.

1 Introduction
A Verifiable Random Function (VRF, [MRV99]) is a pseudo-random function whose correct evaluation
can be verified. It can be seen as a hash function that is keyed by a public-private key pair: the
private key is necessary to evaluate the function and produce a proof of a correct evaluation, while
the public key can be used to verify such proofs. VRFs were originally considered as tools for
mitigation of offline dictionary attacks on hash-based data structures; more recently they have found
applications in the design of verifiable lotteries. In particular, VRFs are fundamental primitives
∗This is the full and extended version of the paper “A Composable Security Treatment of ECVRF and Batch

Verifications” which is due to appear in the proceedings of ESORICS 2022 published by Springer Nature.
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to several proof-of-stake ledger consensus protocols, such as those underlying the blockchains
Algorand [GHM+17] and Cardano [DGKR18]. They allow for a pseudo-random selection of block
leaders in the setting with adaptive corruption, an important security feature of these protocols.

There is an ongoing effort to standardize this primitive via an IRTF draft [GRPV22] that describes
the desirable properties of VRFs and proposes (as of August ’22) two concrete constructions. One of
these constructions is based on RSA, while the other one relies on elliptic-curve cryptography (ECC);
this latter construction is referred to as ECVRF. A clear advantage of ECVRF over the RSA-based
alternative is the considerable improvement in key sizes it provides (for the same security level).
Indeed, both Algorand and Cardano employ ECVRF, as do most of the existing implementations
listed in the draft.

One of the VRF security properties articulated in the IRTF draft is that of random-oracle-
like unpredictability. Roughly speaking, it requires that if the VRF input has sufficient entropy
(i.e., cannot be predicted), then the output is indistinguishable from uniformly random. As the
draft observes, this property is essential for the security of the leader-election mechanisms in PoS
blockchains. The property is not formally defined in the draft, though a definition in the form
of an ideal functionality in the Universal Composability (UC) framework [Can01, Can20] is given
in [DGKR18]. The IRTF draft states that this strong notion is “believed” to be satisfied by the
ECVRF construction; however, to the best of our knowledge, no formal proof of this claim exists to
date. This state of affairs is clearly unsatisfactory: UC security is a desirable notion of security as
it guarantees that the proven security provisions (in the sense of realizing an ideal functionality)
are retained, by virtue of the composition theorem, when employing the scheme in higher-level
applications. This is especially relevant for VRFs as a low-level primitive used in many protocols,
including those mentioned above.

Returning to the ECVRF construction, another important benefit it provides is structural:
it is essentially a Fiat-Shamir transformed [FS87] Σ-protocol [CDS94] and therefore—at least in
principle—suitable for batch verification. The idea for batch verification first appears in foundational
work by Naccache et al. [NMVR95] and consists of verifying a batch of linear equations by verifying
a random linear combination of these. Bernstein et al. [BDL+12] exploited this technique with the
state-of-the-art algorithms in multi-scalar multiplication, achieving a factor-two improvement in
signature verification using batches of 64 signatures. Such an improvement in verification times
is of direct relevance for blockchains, as the routine task of joining the protocol—which requires
synchronizing with the current ledger—involves verification of many blocks and their VRF proofs.
Indeed, typical synchronization conventions demand verification of the entire existing blockchain.
We note in passing that the possibility of batch verifications for Schnorr signatures [Sch91] (derived
from another type of Σ-protocol) is a significant competitive advantage over ECDSA, and was one
of the reasons for Bitcoin [Nak08] to switch to that type of signature [WNR20]. The possibility of
batch verification for ECVRF has already appeared in the IRTF draft mailing list [Rey21]. However,
a concrete proposal for the design, along with a formal security notion and a corresponding security
proof, has not been given.

Our Contributions. In this work we close the above gaps and have the following results:

1. We propose a cleaner formalization of the VRF functionality in the UC framework, building
on the original proposal from [DGKR18] (later revised in [BGK+18] to remove some issues in
the original formulation).

2. We show a generic and modular way to extend the range of an arbitrary VRF using the above
UC formalization. As a case study, we show in Section 6 precisely how range extensions can
be used in Ouroboros [DGKR18, BGK+18] to reduce the number of invocations of the VRF.
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3. We show that ECVRF UC-realizes this functionality in the random-oracle model (ROM). The
proof of this claim is surprisingly involved, requiring a rather complex simulation. We point out
that this is the first comprehensive UC proof for this type of VRF construction and further shows
that the simulation can be done in a responsive manner [CEK+16], a desirable property that
simplifies the analysis of higher-level protocols using the VRF functionality (e.g., [BGK+18]).
In particular, the simulation strategy described in [DGKR18] is not applicable (cf. related
work below) and [DGKR18] does not provide a proof for the revised functionality.

4. We introduce a UC formalization for a VRF providing batch verification via a natural extension
of the above VRF functionality.

5. We define a concrete instantiation of batch verification for the ECVRF construction and prove
that it UC-realizes the above ideal functionality of a VRF with batch verification. Despite our
focus on VRFs, we believe that our formalization would naturally carry over to other widely
used Fiat-Shamir transformed Σ-protocols, such as Schnorr signatures or Ed25519.

6. To evaluate the efficiency improvements of the batch-compatible version, we compare the
efficiency of the current draft version versus the batch-compatible primitive presented in
this work. Roughly speaking, we observe that the batch compatible primitive can achieve a
factor-two efficiency gain with batches of size 1024 in exchange for a trade-off with respect to
its size, growing from 80 bytes to 128 bytes.

Related Work. The VRF notion was introduced by Micali et al. [MRV99]. A stronger notion
of VRF with security in the natural setting with malicious key generation was presented as a UC
functionality by David et al. [DGKR18]. A particular instantiation, based on 2HashDH [JKK14],
was claimed to satisfy this stronger notion, but the provided simulation argument only holds for
a revised version of the functionality which is first described in [BGK+18]. Jarecki et al. [JKK14]
provide a UC functionality of a slightly different notion, which is that of a Verifiable Oblivious
Pseudo Random Function where two parties need to input some secret information in order to
compute the random output.

The first systematic treatment of batch verification for modular exponentiation was presented by
Bellare et al. [BGR98], and adapted to digital signatures by Camenisch et al. [CHP12]. The batch
verification technique that we adopt was initially developed by Naccache et al. [NMVR95], and used
by Bernstein et al. [BDL+12] and Wuille et al. [WNR20]. Exploiting the batching technique in the
context of VRFs was informally discussed in the IRTF group and mailing list [Rey21, GRPV22].

Organization. The UC formalization of VRFs is presented in Section 3. The modular range
extension and the proof appear in Sections 4 and 5, respectively. The Ouroboros case study is
given in Section 6. We recall the ECVRF construction in Section 7 and give our specification
for batch verifications in Section 8, and showcase the performance improvement of our proposal.
Finally, Section 9 is devoted to the security proofs regarding ECVRF: In Section 9.1 we show the
UC security of ECVRF and in Section 9.2 we provide the UC formalization of batch verifications
and prove the security of our batch verification technique for ECVRF.

2 Preliminaries
UC security. We give a very brief overview of the UC security framework necessary to understand
the rest of this work. For details we refer to [Can20]. In this framework a protocol execution (the
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so-called “real-world process”) is represented by a group of interactive Turing machine instances
(ITIs) running a protocol π, forming a protocol session. The environment Z orchestrates the inputs
and receives the outputs of these machines. Additionally, an adversary is part of the execution
and can corrupt parties and thereby take control of them (we assume throughout this work the
standard UC adaptive corruption model defined in [Can20]). To capture security guarantees, UC
defines a corresponding ideal process which is formulated w.r.t. an ideal functionality F . In the ideal
process, the environment Z interacts with the ideal-world adversary (called simulator) S and with
functionality F (or more precisely, with protocol machines that simply relay all inputs and outputs
to and from F , respectively). A protocol π UC-realizes F if for any (efficient) adversary there exists
an (efficient) simulator S such that for any (efficient) environment Z the real and ideal processes
are indistinguishable. This means that the real protocol achieves the desired specification F .

VRF syntax. We denote by κ the security parameter. The domain of the VRF is denoted by X
and its finite range is denoted by Y and typically represented by Y = {0, 1}`VRF(κ), where `VRF(.) is a
function of the security parameter. For notational simplicity we often drop the explicit dependence
on κ.

Definition 2.1 (VRF Syntax). A verifiable random function (VRF) consists of a triple of PPT
algorithms VRF := (Gen,Eval,Vfy):

• The probabilistic algorithm (sk, vk) ← Gen(1κ) takes as input the security parameter κ in
unary encoding and outputs a key pair, where sk is the secret key and vk is the (public)
verification key.

• The probabilistic algorithm (Y, π)← Eval(sk,X) takes as input a secret key sk and X ∈ X
and outputs a function value Y ∈ Y and a proof π.

• The (possibly probabilistic but usually deterministic) algorithm b← Vfy(vk,X, Y, π) takes as
input a verification key vk, input value X ∈ X , output value Y ∈ Y , as well as a proof π, and
returns a bit b. (If X 6∈ X or Y 6∈ Y, we assume that b is 0 by default.)

In the context of Ouroboros [DGKR18, BGK+18]], we need that the VRF algorithms implement
an ideal object that we call the VRF functionality. For security this means intuitively that all
outputs generated by the VRF algorithms are indistinguishable from outputs of a truly random
function—even to an attacker who could potentially craft its own private VRF key. We assume in
the following some familiarity with the UC framework [Can20].

3 UC Security of Verifiable Random Functions
Modeling VRFs as a UC protocol. Any verifiable random function VRF can be cast as a simple
protocol πVRF in the UC framework [Can20] as follows: Each party Ui in session sid acts as follows: on
its first input of the form (KeyGen, sid), run (sk, vk)← VRF.Gen(1κ), output (VerificationKey, sid, vk)
and internally store sk; any further key generation requests are ignored. On input (EvalProve, sid,m)
for an input m ∈ X (and if a key has been generated before) evaluate (Y, π) ← VRF.Eval(sk,m)
and output (Evaluated, sid, Y, π). (If no key has been generated yet, evaluation queries are ignored.)
On input (Verify, sid,m, y, π, v′), the party evaluates b ← VRF.Vfy(v′,m, y, π) and finally returns
(Verified, sid, v′,m, y, π, b).
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Ideal Functionality FX ,`VRF
VRF

The functionality interacts with parties denoted by P = {U1, . . . , U|P|} as well as the adversary/sim-
ulator S. It maintains tables T [·, ·] that are initially empty (denoted by symbol ⊥). The tables are
initialized on-the-fly. The functionality maintains a set Spk to keep track of registered keys, and Seval to
keep track of all known VRF evaluations.

• Key Generation. Upon receiving a message (KeyGen, sid) from Ui s.t. (Ui, ·) 6∈ Spk,
hand (KeyGen, sid, Ui) to S (ignore the request if (Ui, ·) ∈ Spk). Upon receiving
(VerificationKey, sid, Ui, v) from S:

1. If Ui is corrupted, ignore the request.
2. If (Ui, ·) 6∈ Spk and ∀(·, v′) ∈ Spk : v 6= v′, set Spk ← Spk ∪ {(Ui, v)} and return

(VerificationKey, sid, v) to Ui.
3. Else, ignore the request.

• Malicious Key Generation. Upon receiving a message (KeyGen, sid, v) from S, do the following:
if ∀(·, v′) ∈ Spk : v 6= v′, set Spk ← Spk ∪ {(S, v)}. Return the activation to S.

• VRF Evaluation and Proof. Upon receiving a message (EvalProve, sid,m) from Ui withm ∈ X ,
verify that some (Ui, v) ∈ Spk is recorded. If such an entry is not stored or m 6∈ X , then ignore
the request. Else, send (EvalProve, sid, Ui,m) to S and upon receiving (EvalProve, sid, Ui,m, π)
from S, do the following:

1. Ignore the request if the proof is not unique, i.e., if ∃T [v′,m′] = (y′, S′) such that π ∈
S′ ∧ ((v′ 6= v) ∨ (m′ 6= m)).

2. If T [v,m] = ⊥, assign y $← {0, 1}`VRF and set T [v,m]← {y, {π}}.
3. If T [v,m] = (y, S) 6= ⊥, set T [v,m]← {y, S ∪ {π}}.
4. Set Seval ← Seval ∪ {(v,m, y)} and output (Evaluated, sid,m, y, π) to Ui.

• Malicious VRF Evaluation. Upon receiving a message (Eval, sid, v,m), m ∈ X , from S (if
m 6∈ X the request is ignored), do the following:

Case 1: ∃(Ui, v) ∈ Spk where Ui is not corrupted: if T [v,m] = (y, S) for S 6= ∅, return
(Evaluated, sid, y) to S. Otherwise, ignore the request.

Case 2: (S, v) ∈ Spk or ∃(Ui, v) ∈ Spk, Ui corrupted: if T [v,m] = ⊥, first choose y $← {0, 1}`VRF

and set T [v,m]← (y, ∅). Return (Evaluated, sid, y) to S.
Else: Ignore the request.

• Verification. Upon receiving a message (Verify, sid,m, y, π, v′) from any ITI M , send
(Verify, sid,m, y, π, v′, Seval) to S. Upon receiving (Verified, sid,m, y, π, v′, φ) from S do:

Case 1: v′ = v for some (·, v) ∈ Spk s.t. T (v,m) = (y, S) for some set S.
1. If π ∈ S, then set f ← 1.
2. Else, if φ = 1 and ∀T [ṽ, m̃] = (y′, S′) : π 6∈ S′, then set T [v,m] = (y, S ∪ {π}) and

f ← 1.
3. Else, set f ← 0.

Else: Set f ← 0.

Provide the output (Verified, sid, v′,m, y, π, f) to the caller M .

• Adversarial Leakage [New compared to [DGKR18, BGK+18]]. On input
(PastEvaluations, sid) from S, return Seval to S.

Figure 1: The VRF functionality.
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Ideal Functionality FX ,`VRF
VRF . In Figure 1 we present the functionality FX ,`VRF

VRF that captures the
desired properties of a VRF. The functionality provides interfaces for key generation, evaluation
and verification, as well as separate adversarial interfaces for malicious key generation, evaluation,
and leakage. The function table corresponding to each public key is a truly random function (and
thus also guarantees a unique association of the key-value pair to output Y ) even for adversarially
generated keys. Furthermore, no incorrect association can be ever verified and every completed
honest evaluation can be later verified correctly.

The functionality is based on [DGKR18, BGK+18], but contains several modifications. First,
verification is now more in line with typical UC formulations for (signature) verification, where the
adversary is given some limited influence (in prior versions, the adversary had to inject proofs in
between verification request and response to accomplish the same thing). Second, the uniqueness
notion for proofs has been correctly adjusted to catch the corner case that schemes might choose to
de-randomize the prover (akin signatures) which is a crucial point later when we look at ECVRF.
The remaining changes are merely syntactical compared to [BGK+18]. If πVRF UC realizes this
functionality, then this means that the triple of algorithms VRF is essentially computationally
indistinguishable from this functionality and therefore can be considered correct and secure.

Definition 3.1 (UC security of a VRF). A verifiable random function VRF with input domain X
and range Y = {0, 1}`VRF is called UC-secure if πVRF UC-realizes FX ,`VRF

VRF specified in Figure 1.

Random oracles in UC. When working in the random-oracle model, the UC protocol above
is changed as follows: whenever VRF prescribes a call to a particular hash function to hash some
value x, this is replaced by a call of the form (eval, sid, x) to an instance of a so-called random
oracle functionality, which internally implements an ideal random function {0, 1}∗ → Y ′ and returns
the corresponding function value back to the caller. This functionality is specified in Figure 2. We
will often use the notation H(x) in the specifications to refer to a general hash function with the
understanding that this call will be treated as a random oracle call in the security proof.

FYRO

The functionality is parameterized by the finite output domain Y . It maintains a (dynamically updatable)
function table T (initially T = ∅). For simplicity we write T [x] to denote the function value assigned to
x in the table T (if defined) and use the expression T [x] =⊥ to denote that no pair of the form (x, ·) is
in T .

• Upon receiving (eval, sid, x) from some party Up (or from the adversary), do the following:

1. If T [x] = ⊥ sample a value y uniformly at random from Y, set T [x]← y and add (x, T [x])
to T .

2. Return (eval, sid, x, T [x]) to the caller.

Figure 2: The random-oracle functionality idealizing a hash function {0, 1}∗ → Y.
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4 Generic VRF Range Extension in the ROM

4.1 Specification

Let H : {0, 1}∗ → Y denote a general hash function. Let VRF be a verifiable random function with
input-value domain X and output domain Y.

We construct a VRF ṼRF with input-value domain X and output domain Yc for a fixed
constant c > 0. In the following, we let CONSTi, i = 1, . . . , c be c fixed and pairwise different
constants (of fixed length) and || denotes concatenation of bitstrings. The algorithms are defined
as follows:

Key Generation: Key generation remains unchanged: ṼRF.Gen(1κ) := VRF.Gen(1κ).

Evaluation: The algorithm ṼRF.Eval(sk,X) for X ∈ X is defined as follows:

1. Run (Y, π)← VRF.Eval(sk,X).
2. Compute Yi ← H(CONSTi ||Y ).
3. Return the pair ((Y1, . . . , Yc), (π, Y )).

Verification: The algorithm ṼRF.Vfy(vk,X, Y, π) is defined as follows, where X ∈ X and Y ∈ Yc:

1. Parse π = (π′, Y ′) where Y ′ ∈ Y (return 0 in case of parsing error).

2. Return b := VRF.Vfy(vk,X, Y ′, π′) ∧
(

c∧
i=1

Yi = H(CONSTi ||Y ′)
)
.

Rationale of the construction. Before we cast the above construction in the provable security
parlance of Ouroboros [DGKR18, BGK+18], we provide here a non-technical justification of the above
construction. Assume that the underlying VRF provides all guarantees we informally demanded
above, then our construction enjoys basically the same properties: the correctness properties follows
from the correctness properties of the underlying VRF and the fact that H is a public function.

For security, we observe three properties for Yi: (1) it is unpredictable to anyone not knowing
the secret key, (2) it cannot be manipulated even by the owner of the secret key, and (3) it is
unpredictable to the owner of the secret key without evaluating the VRF. In particular note
that Yi can only be determined by someone who knows the value Y ′ (since in the ROM, H is a
random function), and Y ′ can only be computed by someone having the secret key and otherwise
is unpredictable thanks to the security of the underlying VRF. Furthermore, since H is a public
function, Yi is determined fully by Y ′ (and the constant CONSTi).

5 Security Analysis of the Range-Extension Construction
The required level of security of a VRF in the setting of Ouroboros is UC security. UC security
is a strong notion and this strength is the main reason why the above construction needs a more
formal security argument. In the following, we assume some familiarity with the security arguments
in [DGKR18, BGK+18].

5.1 Range Extension as a Modular UC Protocol

The construction ṼRF can be cast as a modular UC protocol πṼRF, where we assume that the
protocol has access to the hybrid functionality FX ,`VRF

VRF idealizing the underlying scheme VRF with
range {0, 1}`VRF (and also access to the random oracle FYRO to idealize H):
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Each party Ui in session sid acts as follows: on input (KeyGen, sid), relay this input to FX ,`VRF
VRF

and when receiving the answer (VerificationKey, sid, vk) return this answer as output. On input
(EvalProve, sid,m) relay this input to FX ,`VRF

VRF and when receiving the answer (Evaluated, sid, Y, π),
query, for i ∈ [1, c], the random oracle FYRO with input (eval, sid, (CONSTi ||Y )). Let Yi be
the obtained answers. Then output the return value (Evaluated, sid, (Y1, . . . , Yc), (π, Y )). Fi-
nally, on input (Verify, sid,m, y, π, v′), parse π = (π′, Y ′) and y = (Y1, . . . , Yc) ∈ {0, 1}c·`VRF . If
the format is wrong, return (Verified, sid, v′,m, y, π, 0). Otherwise, query (Verify, sid,m, Y ′, π′, v′)
to FX ,`VRF

VRF and let the returned decision bit be b. Then query the FYRO, for i ∈ [1, c], via

(eval, sid, (CONSTi ||Y ′)) and denote the RO outputs by yi. Then compute b′ ← b ∧
(

c∧
i=1

Yi = yi

)
and return (Verified, sid, v′,m, y, π, b′).

5.2 The UC Realization Statement

The formal theorem of our range extension can be stated in very simple terms:

Theorem 5.1. Protocol πṼRF UC-realizes FX ,c·`VRF
VRF .

Proof. We first describe the simulator S for the so-called dummy real-world adversary that is
under the control of the environment Z.1 The simulator interacts with functionality FX ,c·`VRF

VRF and
simulates towards the environment a transcript that is indistinguishable from a protocol run of
πṼRF, where the environment interacts with parties running algorithms as specified in πṼRF and
additionally has access to the adversarial interface of the assumed (hybrid) functionality FX ,`VRF

VRF and
the random-oracle functionality FYRO. The simulator internally emulates an execution of FX ,`VRF

VRF
and emulates the random oracle by maintaining a function table H[x] (initially empty).

Reaction on requests from FX ,c·`VRF
VRF . We first define the simulation upon the different outputs

of FX ,c·`VRF
VRF (provoked as reactions of inputs by honest parties).

On (KeyGen, sid, Ui): Then obtain a new verification key from the emulated instance FX ,`VRF
VRF ; that

is, ask the environment to provide a new key vki and return (VerificationKey, sid, Ui, vki) to
FX ,c·`VRF

VRF .

On (EvalProve, sid, Ui,m): The simulator obtains the output (y, π) on input m from its simulated
instance FX ,c·`VRF

VRF ; this means it first obtains a proof π from the environment and then
sampling a new value y ∈ {0, 1}`VRF at random provided m has not been asked before. Then,
the simulator defines π′ := (π, y) and returns (EvalProve, sid,m, π′) to FX ,c·`VRF

VRF . The simulator
stores internally (PROG, i,m, y) to prepare for programming the RO.

On (Verify, sid,m, y, π, v′, Seval): The simulator first checks for new entries (PROG, i,m, y) added in
previous activations. For each of these entries, it parses the set Seval of all previously evaluated
VRF values to obtain (vi,m, (y1, . . . , yc)) where (y1, . . . , yc) ∈ ({0, 1}`VRF)c and assigns for
each of these new entries the random-oracle value H[(CONSTj || y)] ← yj , j = 1, . . . , n if the
locations xj = (CONSTj || y) have not been programmed already. If such an assignment is not
possible because the location (CONSTi || y) have already been programmed with different values
yi respectively, then abort the simulation. We call this event SIMFAIL.

1We point out that a UC proof w.r.t. this adversary implies security against any adversary.
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Next, the simulator parses y as (y1, . . . , yc) and π as pair (π′, y′) and verifies the combi-
nation (m, y′, π′, v′) using the internally emulated functionality FX ,`VRF

VRF . Part of this is
sending (Verify, sid,m, y′, π, v′, S′eval) to the environment (for the set S′eval maintained by the
internally emulated functionality), and when the environment returns the verification result
(Verified, sid,m, y′, π′, v′, b′) to this query, S provides this input to its internally emulated
instance. It then checks that yi = H[(CONSTj || y′)] for all i = 1 . . . c. If all checks are fulfilled
S sends the reply (Verified, sid,m, y, π, v′, b) to FX ,c·`VRF

VRF . If any check fails, it sends the reply
(Verified, sid,m, y, π, v′, 0) to FX ,c·`VRF

VRF .

Interaction with environment (adversarial interface). Whenever invoked with an input
from the environment, the simulator first checks for new entries (PROG, i,m, y) added in previous
activations. It thus first obtains the set via query Seval (PastEvaluations, sid) to FX ,c·`VRF

VRF . For each
of the entries (PROG, i,m, y), it parses the set Seval of all previously evaluated VRF values to obtain
(v,m, (y1, . . . , yc)) for (y1, . . . , yc) ∈ ({0, 1}`VRF)c and assigns H[(CONSTj || y)]← yj , j = 1, . . . , n, if
the locations xj = (CONSTj || y) have not been programmed already. If such an assignment is not
possible because the location (CONSTi || y) have already been programmed with different values yi
respectively, then abort the simulation. We call this event SIMFAIL.

Whenever the environment asks for an RO-evaluation for a new value x, then S samples a value
y ∈ {0, 1}`VRF at random and assigns H[x]← y. If a function value for x is already defined, then
return H[x].

Whenever activated by (KeyGen, sid, v) from the environment, S provides this as input to the
internally emulated instance and invokes FX ,c·`VRF

VRF on input (KeyGen, sid, v) and returns whatever is
returned by the functionality.

Whenever activated with (Eval, sid, v,m) from Z (malicious evaluation of the underlying VRF
functionality), S emulates this input on the internally emulated functionality FX ,`VRF

VRF . When
a simulated value y is obtained, then S invokes FX ,c·`VRF

VRF with (Eval, sid, v,m) to receive the
function values (y1, . . . , yc) it sampled for m (and w.r.t. v) and S programs the RO by setting
H[CONSTi || y]← yi for i = 1, . . . , c unless the locations have already been written to with different
values. As above, if such an assignment cannot be made because the location (CONSTi || y) have
already been programmed with different values yi respectively, then abort the simulation (event
SIMFAIL). Finally, return to Z with output (Evaluated, sid, y).

When activated with input (PastEvaluations, sid) or with verification requests or verification
results towards the internally emulated functionality FX ,`VRF

VRF , then provide the received input to
the emulated instance of FX ,`VRF

VRF and return to the environment whatever the emulated instance
outputs.

Finally, whenever a party is corrupted, S corrupts the corresponding party in FX ,c·`VRF
VRF and

marks it as corrupted in its internally emulated instance of FX ,`VRF
VRF .

Analysis of the simulation. We observe that the simulation only fails in case it has to abort.
The probability of event SIMFAIL corresponds to the probability that a location x = (CONSTi || y)
of the random oracle has been evaluated before the simulator could program it correctly with the
value yi chosen by the ideal functionality. This probability is, however, negligible since upon each
new evaluation of an honest party, the value y simulated by S is chosen uniformly at random. The
probability of a collision with any previously queried value x′ = (CONSTi || y′) is negligible. As long as
the simulator does not abort, it exactly mimics πṼRF: it internally simulates the underlying hybrid
VRF functionality and ensures that whenever a proof π is defined to be a valid proof (w.r.t. FX ,`VRF

VRF )
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StakingProcedure(. . . )

The following staking procedure is executed by party p. We highlight the usage of the VRF functionality and how the
block is created.

Send (EvalProve, sid, ηj ‖ sl ‖ NONCE) to FVRF, denote the response from FVRF by (Evaluated, sid, yρ, πρ).

Send (EvalProve, sid, ηj ‖ sl ‖ TEST) to FVRF, denote the response from FVRF by (Evaluated, sid, yT , πT ).

Send (EvalProve, sid, ηj ‖ sl) to FX ,2·`VRF
VRF ; obtain response (Evaluated, sid, (yρ, yT ), π). (S1)

if yT < T
ep
p then

...
Create new valid content for the block st (for details see [BGK+18]). . Local ops, party does not lose activation.
...
Set crt = (Up, yT , π), ρ = (yρ, π ) and h← H(head(Cloc)). (S2)
Send (USign, sid, Up, (h, st, sl, crt, ρ), sl) to FKES; obtain (Signature, sid, (h, st, sl, crt, ρ), sl, σ). . This call
returns immediately and the party does not lose activation.
Set B ← (h, st, sl, crt, ρ, σ) and update Cloc ← Cloc ‖B.
Send (multicast, sid, Cloc) to Fbc

N-MC and proceed from here upon next activation.
else

. . .
end if

Figure 3: Staking procedure (excerpt).

for output value y on input m (for some party resp. verification key), then (π, y) is a valid proof for
m for the vector (y1, . . . , yc) that FX ,c·`VRF

VRF samples for that same party resp. verification key. This
establishes the claim.

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediately2 This is a useful modeling property and we refer to [CEK+16, BGK+18] for
the relevant details, as they are outside the scope of this paper.

6 Case Study: Usage of the Range-Extension Construction in
Ouroboros

The purpose of this section is twofold: first, we show how to define formally the staking procedure
of Ouroboros using the extended VRF functionality and we have to argue about the security. Next,
we apply the composition theorem and show how the construction offers room for optimizations.
The two most important places where VRF evaluation and verification happens are the staking
procedure, cf. Figure 3 (for full details, we refer to the original papers), and the procedure to verify
chains, cf. Figure 4, respectively. In each case, we show how the introduction of FX ,`VRF

VRF affects the
code. We depict in gray boxes the original code which is no longer needed and is deleted. The
dashed boxes show the effective changes and additions to the code. Note that the input domain of
the VRF is X = {0, 1}∗ in this section.

Security. The reader might have noticed that we have proven the statement with a slightly
different (weaker) VRF functionality than what is used in [DGKR18, BGK+18]. The reason is

2That is, without activating any other machine for any other purpose than providing the answer back to FVRF.
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IsValidChain(. . . )

...
Instructions to parse a chain and a first bunch of syntactical validity checks (see [BGK+18] for details).
...
for each block B in C from epoch ep with epoch randomness ηep do

Parse B as (h, st, sl, crt, ρ, σ).
...
Parse crt as (Up′ , yT , πT ) for some p′.

Parse crt as (Up′ , yT , π) for some p′. (V 1)

Parse ρ as (yρ, πρ).

Parse ρ as VRF output yρ. (V 2)

Send (Verify, sid, ηep ‖ sl ‖ TEST, yT , πT , vvrf
p′ ) to FVRF; obtain response (Verified, sid, ηep ‖ sl ‖ TEST, yT , πT , b1).

Send (Verify, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, vvrf
p′ ) to FVRF; obtain response (Verified, sid, ηep ‖ sl ‖ NONCE, yρ, πρ, b2).

Send (Verify, sid, ηep ‖ sl, (yT , yρ), π, vvrf
p′ ) to FX ,2·`VRF

VRF ; obtain (Verified, sid, vvrf
p′ , ηep ‖ sl, (yT , yρ), π, b). (V 3)

Set badvrf ←
(
b1 = 0 ∨ b2 = 0 ∨ yT ≥ T ep,C

Up
′

)
.

Set badvrf ←
(
b = 0 ∨ yT ≥ T ep,C

Up
′

)
. (V 4)

...
Further instructions to verify a block (see [BGK+18] for details).
...

end for
. . .

Figure 4: Chain validation (excerpt).

that the range extension does not work for the stronger functionality presented there. However,
the VRF functionality that we put forth here is sufficient to prove the security of Ouroboros by a
straightforward inspection of the staking procedure.3

Consider Figure 3. First, we observe that thanks to the range extension, we can simply deal
with one VRF invocation. The protocol needs two verifiable random values: first the value yT to
determine slot leadership, second the value yρ which contributes to the epoch randomness of the
future epoch. We obtain both these values in one go from FX ,2·`VRF

VRF . The functionality, however,
has a weakness: it allows the adversary to learn the output values (yT , yρ), but only after the call
returned to the party with value (Evaluated, sid, (yρ, yT ), π). In other words, the adversary is only
able to learn the output values (yT , yρ) from functionality FX ,2·`VRF

VRF (via input (PastEvaluations, sid)
or via a subsequent verification query) only once the party loses or gives up its activation token. The
original formulation of FVRF in [DGKR18, BGK+18] guaranteed that FVRF never by itself would
leak this. But now we see that this change is immaterial to the security of Ouroboros: the party,
once the values (yT , yρ) are obtained, it never loses the activation until it multicasts the block on
the last depicted instruction in Figure 3. At this point, however, the function values are revealed to
the adversary “for free”, as we multicast the values over the Internet. Since there is no additional

3Note that any VRF that realizes the stronger functionality also realizes the weaker one presented here. Therefore,
any previously deployed VRF can be used as the basis of our range-extension construction.
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security concern regarding verification, we conclude that the introduction of FX ,`VRF
VRF is sound.

Implementation and Optimization. After showing security, we now can invoke the UC com-
position theorem by which we can securely replace the modular invocation of FX ,2·`VRF

VRF by the
construction based on VRF and H. We now showcase what this means for the protocol and how one
can apply optimizations at several places. Consider again Figure 3 (and the lines S1 and S2) as
well as Figure 4 (and lines V 1 to V 4).

S1: This line is implemented by evaluating (y, π) ← VRF.Eval(skp, ηj ‖ sl) and then defines
yT ← H(TEST || y) and yρ ← H(NONCE || y).

S2: In this line, we can apply an optimization: we can set crt = (Up, (y, π)) and set ρ = ε (empty
string). The reason is that whenever the protocol needs the verifiable values yT and yρ, they
can be computed on-the-fly based on the knowledge of (y, π), i.e., the output VRF.Eval(.).
Thus, storing (y, π) in a block is sufficient. This also means that computing yρ above is
actually not needed in the staking procedure.

V 1, V 2: Here, we can apply an optimization and in view of the above parse crt = (Up, (y, π)) and
recompute the values yT ← H(TEST || y) and yρ ← H(NONCE || y).

V 3: This line can be implemented by just computing b := VRF.Vfy(vvrf
p′ , ηep ‖ sl, y, π). Since we

recomputed the values yT and yρ above in V 1, V 2, b = 1 directly implies the validity of yT
and yρ for input ηep ‖ sl and w.r.t. verification key vvrf

p′ .

V 4: This line is implemented using the recomputed value of yT .

As a final remark note that when computing the epoch randomness at an epoch boundary
based on a sequence of valid blocks, then the contribution of a block B ← (h, st, sl, crt, ρ, σ) to the
epoch randomness must be recomputed based on crt = (Up, (y, π)) analogously to above, i.e., by
computing yρ ← H(NONCE || y).

In summary, this shows that we have reduced the number of VRF evaluations (per slot) and
VRF verifications (per block) from two to one, as well as reducing the number of VRF proofs needed
to be stored, at the price of an additional hash function evaluation in each case.

7 The ECVRF Standard
This section recalls the elliptic-curve based schemes described in the IRTF draft [GRPV22] and
focuses on the cipher suites suite_s ∈ {0x03, 0x04} for the sake of concreteness.

7.1 Notation

We denote by E(Fp) the finite abelian group based on an elliptic curve over a finite prime-order
field Fp (note that we simplify the notation and drop the explicit dependency on Fp and security
parameter κ). Most importantly, we assume the order of the group E to be of the form cf · q for
some small cofactor cf and large prime number q, and that the (hence) unique subgroup G of order
q is generated by a known base point B, i.e., G = 〈B〉 (q is represented by ≈ 2κ bits) in which the
computational Diffie-Hellman (CDH) problem is believed to be hard. Group operations are written
in additive notation, scalar multiplication for points P ∈ E is denoted by m ∗ P = P + · · ·+ P︸ ︷︷ ︸

m

, and
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Gen(1κ):

1. sk $← {0, 1}2κ.

2. (sk0, sk1)← Expand_key(sk).

3. x← Compute_scalar(sk0).

4. vk ← x ∗B.

5. Return (sk, vk).

Eval(sk,X):

1. π ← Prove(sk,X).

2. Y ← Compute(π).

3. Return (Y, π).

Prove(sk,X):

1. Derive vk, x from sk as in Gen(1κ).

2. H ← Encode_to_curve(E2Cs ||X).

3. Γ← x ∗H.

4. k ← Nonce_generation(sk,H).

5. c← Hash_pts(vk,H,Γ, k ∗B, k ∗H).

6. s← (k + c · x) mod q.

7. π ← (Γ, c, s).

8. Return π.

Compute(π = Γ || ...): Precondition: Γ ∈ Ea.

1. Return Hash(suite_s || DS3 || (cf ∗Γ) || DS0),
where cf is the co-factor (for curve25519,
cf = 8).

Vfy(vk,X, Y, π):

1. If vk 6∈ E or cf ∗ vk = O, return 0.b

2. Parse (Γ, c, s)← π. If Γ 6∈ E return 0. Inter-
pret the κ bits of c and the 2κ bits of s as
little-endian integers. If s ≥ q, return 0.

3. H ← Encode_to_curve(E2Cs ||X).

4. U ← s ∗B − c ∗ vk.

5. V ← s ∗H − c ∗ Γ.

6. c′ ← Hash_pts(vk,H,Γ, U, V ).

7. If c = c′ return b := (Y = Compute(π));
otherwise return 0.

aOtherwise an implementation could return some ERR 6∈
Y. For the analysis this is not needed as the protocol ensures
the precondition and the adversary is free to invoke the
hash-function at will.

bThis check excludes low-order elements, i.e., P ∈ E,
ord(P ) < q.

Figure 5: Description of ECVRF, where B denotes the generator of the subgroup G of E. Note that
the salt value E2Cs leaves room for more general use cases. We consider the case E2Cs = vk in the
analysis of the standard and its extensions.
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the neutral element by O = 0 ∗ P . We use a $← S to denote that a is selected uniformly at random
from a set S. When working with binary arrays, a ∈ {0, 1}∗, we denote by a[X..Y ] the slice of a
from position X till position Y − 1. Moreover, we denote by a[..X] and a[X..] the slice from position
0 till X − 1 and from X till the end, respectively. As usual, the operator || denotes concatenation
of strings; thus, for A = 0 || 1 we have A[..1] = 0 and A[1..] = 1.

The standard makes use of helper functions, all of which are defined and introduced in [GRPV22].
For sake of simplicity we only state the specification of the security-relevant helper functions. As
domain separators we use values between 0 and 5 in hexadecimal representation. In particular, we
use DSi ← 0x0i for i ∈ [0, 5]. The standard also uses encode_to_curve_salt to denote the salt
used for the Encode_to_curve function, which we denote by E2Cs. Note that all EC-ciphersuites
define the salt as the prover’s public key which is the case we consider and analyze in this work.

Hash: This is a concrete hash function which will be modeled as a general hash function, respectively
a random oracle, H : {0, 1}∗ → {0, 1}`(κ), in the analysis. Conveniently, we choose `(κ) = 4κ.

Encode_to_curve: This is a particular hash function (specified by the cipher suite) that takes an
arbitrary string S ∈ {0, 1}∗ as input, and hashes it to a point in the prime order group G.
Specific details of this function can be found in [GRPV22]. This function will be modeled as
a separate random oracle He2c : {0, 1}∗ → G in the security proof.

Expand_key: This function takes as input a secret seed sk ∈ {0, 1}2κ, and returns a pair (sk0, sk1) ∈
{0, 1}2κ × {0, 1}2κ. The specification prescribes that the seed is hashed hsk ← Hash(sk), and
that the pair (hsk[..2κ], hsk[2κ..]) is returned. The function can thus be modeled as a very
simple, random key-derivation function KDF : {0, 1}2κ → {0, 1}4κ based on the random oracle
directly as KDF(sk) := H(sk).

Compute_scalar: A helper function used to derive the secret exponent from a (random) bitstring
s ∈ {0, 1}2κ. The output domain of this function is a set S ⊆ [|G|] of size 22κ−c, for some
small constant c, and Compute_scalar(X) is the uniform distribution on S, where X is the
random variable with the uniform distribution over 2κ bistrings.

Nonce_generation: A function that derives a nonce k ∈ Zq from a pair (sk,H) ∈ {0, 1}2κ × E.
Internally, the algorithm first extends the secret key into a pair of random strings (sk0, sk1) =
Expand_key(sk). It then appends to sk1 the given input, H, in binary form and computes
k ← Hash(sk1 ||H) (that is, interpreting the bitstring as an integer) and returns k mod q. As
we elaborate later, the distribution of the function RFnonce

sk1 (H) := H(sk1 ||H) mod q derived
from a random oracle (again interpreting the output as an integer) has negligible statistical
distance to the distribution obtained from choosing a function uniformly at random from the
set of all functions F : E→ Zq.

Hash_pts: A function that takes as input five EC points, Ai ∈ E for i ∈ {1, . . . , 5}, and hashes
them (together with some padding), into an integer of κ bits in little-endian representation.
In more detail, the points are interpreted in binary form and hashed into a binary array
r ← Hash(suite_s || DS2 ||A1 ||A2 ||A3 ||A4 ||A5 || DS0) (where the “wrapping” constants are
domain separators, see below). Finally, the string r[..κ] is returned. This is the helper function
to instantiate the Fiat-Shamir heuristic, which computes a challenge in a sigma protocol by
hashing the transcript. In the security proof, this will thus be treated as the random-oracle
evaluation H(suite_s || DS2 ||A1 ||A2 ||A3 ||A4 ||A5 || DS0)[..κ]. The associated challenge space
is thus the set C := {0, 1}κ interpreted as integers.
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To give a concrete example, the deployed VRF construction in Cardano is instantiated with κ = 128
and elliptic curve edwards25519 which has cofactor 8. The prime order q is represented by 32 octets,
or more precisely 253 bits, and the hash function is SHA512 : {0, 1}∗ → {0, 1}512. Conveniently, we
choose `(κ) = 4κ. The function Hash_pts defines the associated challenge space, thus being the
set C := {0, 1}κ interpreted as integers. For the function Compute_scalar(sk0), the string is first
pruned: the lowest three bits of the first octet are cleared, the highest bit of the last octet is cleared,
and the second highest bit of the last octet is set. This buffer is interpreted as a little-endian integer,
forming the secret scalar x, which results in an output domain containing 2251 different elements.

7.2 The VRF Algorithms

The formal definition of a VRF in Section 3 denotes by Eval the function that computes the output
of the VRF evaluation together with its proof. In this section the two actions are treated separately
to follow the approach taken by the standard, and we define the functions Prove and Compute to
represent the proof generation and the output computation, respectively. The algorithms from the
standard are given in Figure 5.

8 ECVRFbc: Batch Verification for ECVRF
In the interest of performance, we now study the possibility of batch-verifying the proofs generated
by ECVRF. To this end, we introduce slight modifications that allow for an efficient batch-verification
algorithm. Next, we prove that batch-verification does not affect the security properties of individual
proofs.

We divide the exposition of the changes in two steps. First, in Section 8.1 we present the changes
on the protocol (involving the prover and the verifier) to make the scheme batch-compatible. Second,
in Section 8.2 we describe the specific computation performed by the verifier to batch several proof
verifications.

The approach we use was first mentioned in the mailing group of the IRTF draft [Rey21].
However, as far as we know, no formal description or analysis of the technique was given so far.

Intuition. The operations performed in steps 4 and 5 of Vfy appear as good candidates for
batching across several proofs. Namely, instead of sequential scalar multiplications, one could
perform a single multiscalar multiplication for all proofs that are being verified. This batching
technique was already introduced by Naccache [NMVR95], and later used by Bernstein [BDL+12]
for signature verification batching. However, this trick can only be exploited if steps 4 and 5 are
equality checks rather than computations. In ECVRF, the verifier has no knowledge of points U and
V , and has to compute them first. We hence modify the scheme so that the prover includes points
U and V in the transcript and the verifier can simply check for equality.

8.1 Making the Scheme Batch-Compatible

As discussed, in order to allow batch verification, steps 4 and 5 need to be equality checks. This
requires a change in step 7 of Prove and changes in steps 2, 4, 5, and 7 of Vfy. Moreover, the
challenge computation needs to be moved from step 6 to the position in between steps 3 and 4 (we
call it step 3.5). The modifications result in scheme ECVRFbc, summarized in Figure 6.

Intuitively, this change has no implications on the security of the scheme, as it is common for
(Fiat-Shamir-transformed) Σ-protocols to send the commitment of the randomness (sometimes
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Prove(sk,X) remains unchanged except for step 7, which changes as follows:

7. Let π ← (Γ, (k ∗B), (k ∗H), s).

Compute(π) remains unchanged.

Vfy(vk,X, Y, π) changes as follows:
1. Remains unchanged.

2. Parse π as tuple (Γ, U, V, s). If
{Γ, U, V } 6⊆ E, return 0. Inter-
pret the 2κ bits of s as a little-
endian integer. If s ≥ q, re-
turn 0.

3. Remains unchanged.

3.5. c← Hash_pts(vk,H,Γ, U, V ).

4. If U 6= s ∗B − c ∗ vk, return 0.

5. If V 6= s ∗H − c ∗ Γ, return 0.

6. [Moved to step 3.5]

7. Return b := (Y = Compute(π)).

Figure 6: Description of modifications in ECVRFbc compared to ECVRF.

called the announcement) instead of the challenge4. The choice of sending the challenge instead of
the two announcements in ECVRF is simply to optimize communication complexity and efficiency.

8.2 Batch-Verification

To see how the changes described above allow for batch verification, first observe how steps 4 and 5
in ECVRFbc can be combined into a single check: if they validate, then so does the equation

O = r ∗ (s ∗B − c ∗ vk − U) + l ∗ (s ∗H − c ∗ Γ− V )

where r, l are scalars chosen by the verifier. The reverse is also true with overwhelming probability
if r and l are taken uniformly at random from a set of sufficient size (in particular, we choose the
set C for convenience).

More generally, to verify n different ECVRFbc proofs, the verifier needs to check whether the
equality relations

Ui = si ∗B − ci ∗ vki,
Vi = si ∗Hi − ci ∗ Γi

hold for each of the proofs. This can be merged into a single equality check

O = ri ∗ (si ∗B − ci ∗ vki − Ui) + li ∗ (si ∗Hi − ci ∗ Γi − Vi)

for each i ∈ [1, n] and, moreover, into a single verification

O =
∑
i∈[1,n]

(ri ∗ (si ∗B − ci ∗ vki − Ui) + li ∗ (si ∗Hi − ci ∗ Γi − Vi))

across all proofs, where ri and li are random scalars. By using the state of the art multi-scalar
multiplication algorithms, leveraging this trick provides significant running time improvements, as
discussed in Section 8.3.

4As a matter of fact, ed25519 [BDL+12] is also a sigma protocol and encodes the announcement instead of the
challenge in the non-interactive variant of this sigma-protocol.
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Invalid batches. Note that if batch verification fails, one would need to break down the batch to
determine which proof is invalid. However, in several practical cases (most notably, when validating
the state of a blockchain), the verifier is primarily interested in whether the whole batch is valid
(so that the respective part of the chain can be adopted); if the batch verification fails this has
protocol-level consequences (e.g., disconnecting from the peer providing the invalid batch) that
obviate the need for individual identification of the failed verification.

Pseudorandom coefficients. We describe how the coefficients li, ri can be securely computed
in a deterministic manner, a feature that is favorable from a practical perspective. Similarly to the
well-known Fiat-Shamir heuristic for Σ-protocols, it is essential that the values cannot be known
to the prover when defining the proof string. To this end, we propose to compute the scalars by
hashing the contents of the proof itself, the value of H for the corresponding public key, and an
index.

Concretely, for a batch proof of proofs π1, . . . , πn, one computes, for i ∈ [1, n]:

1. π′i ← Hi ||πi,

2. ST ← π′1 ||π′2 || . . . ||π′n,

3. hi ← Hash(suite_s || DS4 ||ST || i || DS0),

4. li ← hi[..κ], and ri ← hi[κ..2 · κ].

The values li and ri are treated as little-endian integers and are thus picked from the domain C
as the challenge defined earlier. As before, the security analysis can treat the invocation as an
evaluation of a random oracle obtained using domain separation on Hash (where we follow the usual
format).

Summary and specification. In summary, batch verification of a sequence of tuples Ti =
(vki, Xi, Yi, πi), i = 1, . . . , n, encompasses the following steps:

1. Perform the basic consistency check for each Ti, i = 1, . . . , n:

• Verify that vki ∈ E and then that cf ∗ vki 6= O.
• Parse and verify πi as tuple (Γi, Ui, Vi, si) ∈ E3 × Zq (cf. Section 8.1, Step 2. of Vfy(.)).
• Compute Hi ← Encode_to_curve(E2Csi ||Xi).
• Compute ci ← Hash_pts(vki, Hi,Γi, Ui, Vi).

2. If any of the above check fails then return 0.

3. Compute ST ← π′1 ||π′2 || . . . ||π′n, and perform the batch verification:

• For all i ∈ [n] evaluate:
– Set π′i ← Hi ||πi for all i ∈ [n],
– Let ST ← π′1 || . . . ||π′n,
– hi ← Hash(suite_s || DS4 ||ST || i || DS0),
– li ← hi[..κ], and
– ri ← hi[κ..2 · κ],

and interpret li, ri as little-endian integers.
• Evaluate

b1 ←

O =
∑
i∈[n]

(ri ∗ (si ∗B − ci ∗ vki − Ui) + li ∗ (si ∗Hi − ci ∗ Γi − Vi))
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4. Evaluate b2 ← (∀i ∈ [n] : Yi = Compute(πi)).

5. Output b1 ∧ b2.

8.3 Performance Evaluation

In this section we evaluate the performance of the ECVRF-EDWARDS25519-SHA512-TAI ciphersuite
as defined in the standard [GRPV22] against the batch-compatible variant proposed in this paper.
Essentially, these are ECVRF and ECVRFbc, respectively, over the curve edwards25519 with SHA512
as a hashing algorithm. We implement a Rust prototype of version 10 of the draft which we
provide open source [QA22]. We use the curve25519-dalek [LdV22] rust implementation for the
curve arithmetic operations, which implements multiscalar multiplication with Strauss’ [BS64] and
Pippenger’s [BDLO12] algorithms, and optimize the choice depending on the size of the batch. We
ran all experiments in MacOS on a commodity laptop using a single core of an Intel i7 processor
running at 2,7 GHz. For the batch-compatible version we implement both a deterministic verification
(using the hashing techniques as described in Section 8) as well as a random verification where
the scalars ri, li are sampled uniformly at random from Z2128 . We benchmark the proving and
verification times for each, using batches of size 2l for l ∈ {1, . . . , 10}. In the standard version, the
size of a VRF proof consists of a (32-byte) elliptic curve point, a 16-byte scalar, and a 32-byte scalar.
In the batch compatible version, rather than sending the challenge we send the two announcements,
which results in three elliptic curve points and a 32-byte scalar. Therefore the modifications increase
proof size from 80 to 128 bytes.

This results in a considerable improvement in verification time.Figure 7 shows that proving time
is unaffected, and there is no difference between the normal ECVRF and ECVRFbc (as expected).
In Figure 8 we show the verification time per proof for different sized batches. We interpret the
times of batch verification as a ratio with respect to ECVRF. Using deterministic batching, the
verification time per proof is reduced to 0.71 with batches of 64 and to 0.56 with batches of 1024
signatures. With random coefficients, batching times get a bit better given that we no longer need
to compute hashes for scalars li and ri. The verification time per proof can be reduced to 0.6 with
batches of 64 signatures, and up to 0.47 with batches of 1024.

9 Security Analysis of ECVRFbc and Batch Verifications
We first analyze the security of the standard without batch verifications in the next section and
prove the security including batch verifications afterwards.

9.1 Security Analysis of ECVRFbc

We first recall some preliminaries about zero-knowledge proofs of knowledge for a generic class of
protocols.

9.1.1 On Σ-Protocols for Group Homomorphisms

We recall here a general class of zero-knowledge proofs of knowledge, namely the three-round protocols
that prove the knowledge of a preimage of a (presumably one-way) group homomorphism [Mau15].
Consider two groups (H, ◦) and (T, ?) together with a homomorphism f : H→ T, i.e.,

f(x ◦ y) = f(x) ? f(y).
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Let Rf be the relation defined by (z, x) ∈ Rf :↔ f(x) = z. Consider the following three-round
protocol between prover P and verifier V for the language LRf := {z | ∃x : (z, x) ∈ Rf}. That is,
the common input is the proof instance z ∈ T (and the relation Rf ), where the prover is supposed
to know a value x ∈ H s.t. f(x) = z.

1. P → V : P samples k $← H and sends t := f(k) to V .

2. V → P : V picks at random an integer c ∈ C ⊂ N and sends it to P .

3. P → V : P computes s := k ◦ xc and sends s to V . V accepts the protocol run if and only if
the equality

f(s) = t ? zc

holds.

The security of this protocol follows from the following lemma:

Lemma 9.1 ([Mau15]). Let Rf a relation as described above relative to a group homomorphism
f : H→ T. The above protocol is a Σ-Protocol for the language LRf if there are two publicly known
values ` ∈ Z and u ∈ H s.t.

1. ∀c, c′ ∈ C, c 6= c′: gcd(c− c′, `) = 1, and

2. ∀z ∈ LRf , f(u) = z`.

Proof Sketch. We give an outline of the proof of [Mau15]. We need to prove three properties:

• Completeness: The property that on input z and private input x with (z, x) ∈ Rf , then an
honest execution always accepts. This is clearly satisfied.
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• Special soundness: From any z and any pair of accepting conversations for z denoted
(t, c, s), (t, c′, s′) with c′ 6= c, one can efficiently compute x such that (z, x) ∈ Rf . The
protocol satisfies this. The solution is

x := ua ◦ (s′−1 ◦ s)b,

and a and b are computed using the Extended Euclidean algorithm (EEA) as solutions to the
equation `a+ (c′ − c)b = 1 over the integers. Note that f(s′−1 ◦ s) = zc

′−c and

f(x) = f(ua ◦ (s′−1 ◦ s)b) = f(u)a ? f(s′−1 ◦ s)b = z`a+(c−c′)b = z.

• Special honest-verifier zero-knowledge: the property that there is an efficient simulator S such
that on input z ∈ LRf and a random challenge c ∈ C, it generates an accepting conversation
(t, c, s) with the same probability distribution as generated by a conversation between honest
prover P and honest verifier V on common input z and private input x (s.t. f(x) = z) for P .
This is achieved by the above protocol: given a challenge c and the statement z, the simulator
selects s ∈ H at random, computes t := f(s) ? z−c and outputs (t, c, s).

This concludes the proof sketch.

The lemma implies that the protocol is a proof-of-knowledge with knowledge error 1/|C|. For
our analysis, we only need the implication that if we have a statement z 6∈ LRf , then the probability
that a malicious prover convinces the verifier is at most 1/|C|, as in this case, no extractor can exist.
We implicitly assume that any run is rejected if the values do not belong to the expected domain.

On domain checks of the proof instance. The above protocol assumes that the values are
indeed in the domain of interest as in particular the existence of values u ∈ H and ` ∈ Z Lemma 9.1
could depend on the group order of T (such as the one discussed below). We need to relax the
relation a bit if domain checks on the instance z ∈ T are omitted.5 This is especially relevant if T is
a subgroup of some larger group T′ s.t. the protocol could be run on input z ∈ T′ \T by a dishonest
party while the verifier does not perform a domain check for z ∈ T (but only for z ∈ T′).
Corollary 9.2. Consider the Σ-Protocol as in Lemma 9.1 in the above setting, where an honest
prover aborts on instances z ∈ T′ \ T and otherwise executes the protocol. The protocol is a zero-
knowledge proof of knowledge for relation Rf as above on instances z ∈ T, and additionally, it
provides special soundness on instances z ∈ T′ \ T for the relation (z, x) ∈ Rf,e :↔ f(x) = ze if we
can fix u ∈ H and ` ∈ Z as above such that

1. ∀c, c′ ∈ C, c 6= c′: gcd(c− c′, `) | e, and

2. f(u) = z`.
Proof. We find the greatest common divisor of ` and c′−c and let it equal g. We further obtain values
a, b s.t. `a+ (c′ − c)b = g by the EEA. By the same reasoning as above, x̃ := ua ◦ (s′−1 ◦ s)b satisfies
f(x) = zg. Now, we assume that e = d · g for some d, thus x := x̃d and f(x) = f(x̃)d = ze.

If for each instance z ∈ T′ we can identify such an exponent e, the protocol can be assumed to
be sound for any z in the sense that the probability of passing a protocol run on an instance z such
that ze has no preimage under the homomorphism, is at most 1/|C|.

5Note that the expected security guarantees indeed become weaker: consider a cyclic group 〈g〉 of order 2q with
q > 2 and let T = 〈h := g2〉 be a subgroup together with the homomorphism f(x) = hx (which is the instantiation to
obtain the typical Schnorr DL-proof). A malicious prover might choose the instance z = hx ? gq and with probability
1/2 the challenge c is even in which case the correct answer is s := k + cx as f(s) equals f(k) ? zc. Still z is not a
power of h (z has order 2q) and thus no x can exist such that (z, x) ∈ Rf .
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Non-interactive Σ-Protocols. A standard result about Σ-protocols is that they can be made
non-interactive (via the Fiat-Shamir transform) in the random-oracle model while preserving
soundness and zero-knowledge. Consider the proof w.r.t. a given instance z. A prover P can,
instead of sending the first message to the verifier, evaluate H(t) to obtain a random challenge c
and conclude the proof by generating the string s as above. The proof string can be represented by
(z, t, s). A verifier can thus verify the proof by calling the oracle on input t to obtain the challenge c
and verify as in the protocol above.

Soundness is preserved since talking to the verifier is equivalent to talking to the random oracle.
As long as the number of random-oracle queries is limited and the challenge space is larger, soundness
is broken with only negligible probability.

Zero-knowledge is preserved since the interaction with the verifier is completely removed and
replaced by the random oracle that has the behavior of an honest verifier in Step 2. Note that
in the random-oracle model, the simulator is allowed to program the RO outputs as long as the
outputs have the same uniform distribution. Simulation thus works by choosing a challenge c at
random, simulate the protocol conversation as above on input z to obtain (t, c, s) and define the
oracle’s output on input t to be c. The proof string is the tuple (z, t, s). Note that this strategy
works as long as the position on a random input t is programmable, which only fails with negligible
probability if |H| is large.

The above arguments can be generalized to settings where the instance is not fixed (but for
example derived by some context protocol). The above mentioned mapping between (interactive)
protocol runs (with an honest verifier) and evaluations of the random oracle is retained when
the random oracle is invoked as H(aux || t), where aux contains sufficient information to identify
the “protocol run” in the above reasoning (which binds the oracle output to a context such as
the instance, the relation etc.). This is of particular importance when proving the security in a
composable framework.

9.1.2 Instantiation for ECVRFbc

We recall that in ECVRFbc we deal with a prime-order subgroup G of order q of an elliptic curve
of order cf · q. Let B1 and B2 be two generators of this subgroup. Essentially, the Σ-protocol of
interest is an equality proof of discrete logarithm, i.e., given two values z1 and z2 prove knowledge of
x such that x ∗B1 = z1 ∧ x ∗B2 = z2. To instantiate the above generic scheme, we let H := (Zq,+)
and define (T,⊕) := (G,+)× (G,+) as the direct product of G, where the binary operation ⊕ on T
is defined component-wise. The homomorphism is given by

fB1,B2 : Zq → T; x 7→ (x ∗B1, x ∗B2),

as obviously, ((x+y)∗B1, (x+y)∗B2) = (x∗B1+y∗B1, x∗B2+y∗B2) = (x∗B1, x∗B2)⊕(y∗B1, y∗B2).
The relation RB1,B2 ⊆ T× Zq is formally defined by

((z1, z2), x) ∈ RB1,B2 :↔ x ∗B1 = z1 ∧ x ∗B2 = z2. (1)

Since G is of prime order q, we can satisfy the conditions of Lemma 9.1 by letting u = 0 and ` = q,
and defining the challenge space to be a large subset C ⊆ [0, . . . , q − 1].

We therefore conclude that the embedded non-interactive zero-knowledge proof of knowledge
in ECVRFbc has (in the random-oracle model) simulatable executions, and with only negligible
probability can a valid proof for a wrong statement be generated.

As for the above mentioned domain checks, we conclude that the embedded protocol, without
having the verifier check that z ∈ T, we fall into the realm of Corollary 9.2 (where instances (z1, z2)
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are checked to merely belong to E×E). Therefore, since the elliptic curve group E satisfies |E| = cf ·q
(with cf = 8 in the concrete case of curve25519) we can pick ` = cf · q and thus obtain the guarantees
from Corollary 9.2 for the choice e = cf, that is for the relation Rcf

B,H ⊆ E×E (and B,H generators
of subgroup G), defined by

(z1, z2) ∈ Rcf
B,H :↔ x ∗B = cf ∗ z1 ∧ x ∗H = cf ∗ z2. (2)

The canonical epimorphism. Viewed from a different angle, Corollary 9.2 is a general statement
that says that the verification equations of a particular run of the protocol can be interpreted in a
different but related way (that might depend on the order of the particular instance) for which it
constitutes a proof of knowledge. For finite elliptic curve groups as above, we can see that any run
of the protocol can be interpreted in group G: Consider the map P 7→ cf ∗ P which is the canonical
epimorphism φcf : E→ G and the corresponding map P + ker(φcf) 7→ φcf(P ) which identifies the
isomorphism establishing E/ ker(φcf) ∼= G by the fundamental theorem on homomorphisms. From
this we can deduce by Lagrange’s Theorem that |E| = |G| · | ker(φcf)|. Since the choice of the
representatives is immaterial one can think of each coset P + ker(φcf) to be represented by a point
P ∈ G (and the kernel consists of the low-order points, i.e., elements of order strictly less than q).

Denoting the first round message of the prover by (U, V ), the projected verification equation
in step 3 of the Σ-Protocol becomes (O,O) = (φcf(s ∗ B − U − c ∗ z1), φcf(s ∗ H − V − c ∗ z2))
which is an equation in the prime-order group T. More generally speaking, the above equality is
satisfied when, in a run of the given Σ-protocol, it holds that (s ∗ B − V − c ∗ z1) ∈ ker(φcf) and
(s ∗H −V − c ∗ z2) ∈ ker(φcf). By the reasoning in the proof of Lemma 9.1, from any two runs (with
the same first round message) that are accepting under the mapping φcf , we can extract a solution
x for which (x ∗ φcf(B), x ∗ φcf(H)) = (φcf(z1), φcf(z2)). Since B and H are known generators of
group G, the above identification of the associated isomorphism implies φ−1

cf (φcf(B)) = B and
φ−1

cf (φcf(H)) = H and in the other case, we have φ−1
cf (φcf(zi)) ∈ Pi + ker(φcf) for representatives

Pi ∈ G. In summary, this establishes special soundness with respect to the relation

(z1, z2) ∈ Rcf
B,H :↔ x ∗B = φcf(z1) ∧ x ∗H = φcf(z2) (3)

for the Σ-protocol above, where we could relax the checks performed by the verifier to (s ∗B − V −
c∗z1) ∈ ker(φcf) and (s∗H−V −c∗z2) ∈ ker(φcf) instead of equality checks (s∗B−V −c∗z1) = O
and (s ∗H − V − c ∗ z2) = O.

9.1.3 The UC Construction Statement

Recall from Section 3 how any VRF can be understood as a UC protocol. We now establish the
security of the ECVRFbc protocol without the batching step, but with the (minor) modifications
introduced in Section 8.1. We work in the random-oracle model; that is, we introduce the two general
functions H (abstracting the details of Hash) and He2c (abstracting the details of Encode_to_curve)
which are in the model represented by two instances of the random oracle functionality, which are
FYRO, for Y = {0, 1}`VRF , and FG

RO, respectively, so that invocations of H and He2c correspond to
invocations of the respective functionalities as explained in Section 3. For simplicity and clarity in
the UC protocols, we continue to write H(x) (resp. He2c(x)) with the understanding that it stands
for a call to an ideal object. Note that the remaining helper functions obtain their claimed security
properties based on the assumption on H as is established in the proof.

Theorem 9.3. Let E and its prime-order subgroup G be defined as in Section 7.1. The protocol
πECVRF UC-realizes FX ,`VRF

VRF , for X = {0, 1}∗ and `VRF(κ) = 4κ, in the random-oracle model and
under the assumption that the CDH problem is hard in G.
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We note that the theorem translates to the unmodified algorithms by converting proof strings of
the form π = (Γ, c, s) for a VRF evaluation (vk,m, y) to proof strings of the form π′ = (Γ, U, V, s)
which is straightforward to do as explained before.

Proof. We first describe the simulator and include in its description a variety of consistency checks.
We later argue that the simulation is identical to the real-world execution, until the point where a
consistency check fails. We then bound the associated probabilities of these bad events.

Description of the simulator. We now describe the simulator S for the construction. While
formally the simulator simulates two instances of the random-oracle functionality towards Z, we
keep the notation He2c and H for simplicity. S maintains two tables Te2c and Th to store the mapping
corresponding to the ideal function implemented by the RO. We use Tz to store all instances of
completed VRF evaluations and their associated proofs (mirroring what the functionality stores)
and Texp to store the random base points H assigned to pairs (v,m) together with its exponent
w.r.t. base B of the group G. We further keep a table TDisallowed to store information on which
outputs of the RO yield inconsistent simulations. Finally, we have Tpk to store the mapping of
honest users to public keys and we store private parameters of honest parties in Tpriv.6

• On receiving (KeyGen, sid, Ui) from FX ,`VRF
VRF : Pick three random strings, s, s0, s1 ∈ {0, 1}κ.

Compute the scalar x from s0 as in the real world and define the public key v ← x ∗ B.
Evaluate KGENFAIL ← ∃i : Tpk[i] = (·, v) and abort if true. Otherwise, store the tuple
(sk, Ui, s, s0, s1, x) in Tpriv and (Ui, v) in Tpk and provide the input (VerificationKey, sid, Ui, v)
to FX ,`VRF

VRF .

• On receiving (EvalProve, sid, Ui,m) from FX ,`VRF
VRF the following steps are preformed:

1. Obtain the entry (Ui, v) from Tpk.
2. If for this honest party Ui we have (v,m, ·, π) ∈ Tz, then return (EvalProve, sid, Ui,m, π, 1)

to FX ,`VRF
VRF . Otherwise, proceed to the next step.

3. Invoke He2c(v,m) (i.e., make a simulated RO call) to obtain the instance base point H
and retrieve the tuple (v,m,H,B, t) from Texp, where H := t ∗B (which is guaranteed
to exist after the RO call). Define Γ := t ∗ v.

4. At this point, the statement and the relation of the NIZK proof are defined: z = (v,Γ)
and the relation is defined by RB,H as defined in equation (1).

5. The proof string π is now simulated as explained in Section 9.1.1: For the above relation,
this means we pick random s ∈ Zq and c ∈ C, compute t = (U, V )← (s ∗ B − c ∗ v, s ∗
H − c ∗ Γ), and define π := Γ ||U ||V || s.

6. Evaluate EVALFAIL1 ← (Th[suite_s || DS2 || v ||H ||Γ ||U ||V || DS0] 6= ⊥). If EVALFAIL1

holds, then abort the simulation, otherwise pick r $← {0, 1}3κ and program the RO by
Th[suite_s || DS2 || v ||H ||Γ ||U ||V || DS0]← c || r (where c is represented as a bitstring).

7. Evaluate EVALFAIL2 ← ∃(v′,m′, ·,P ′) ∈ Tz such that π ∈ P ′ ∧ ((v′ 6= v) ∨ (m′ 6= m)).
Abort if EVALFAIL2 holds (proof is not unique).

8. If (v,m, ·, ·) 6∈ Tz then insert (v,m, ?, {π}) into Tz. Otherwise retrieve the entry of the
form (v,m, y,P) and update it to (v,m, y,P ∪ {π}).

6Looking ahead, this distinction is crucial when arguing security. The simulation is design such that except for
corruption queries, the set Tpriv is not used in the simulation. In particular, if party Ui is never corrupted, knowledge
of its secret key is not required for a correct simulation.
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9. Store (proof, Ui, H, s, c) in Tpriv.
10. Return (EvalProve, sid, Ui,m, π) to FX ,`VRF

VRF .

• On receiving (Verify, sid,m, y′, π, v′, Seval) from FX ,`VRF
VRF , do the following:

1. Parse π as four values (Γ, U, V, s) ∈ E3×Zq and verify that the order of v′ is at least q. If
these conditions are not satisfied but (v′,m, y′,P) ∈ Tz with π ∈ P, then VERFAIL1 ← 1
and the simulation is aborted. Otherwise return (Verified, sid,m, y, π, v′, 0) to FX ,`VRF

VRF .
2. Make a call to He2c(v′,m) to obtain the base point H. Retrieve the associated exponent
t from Texp. Invoke H(suite_s || DS2 || v ||H ||Γ ||U ||V || DS0) to derive challenge c.

3. Evaluate the truth value of the proof string: fπ ← (s∗B = U+c∗v′)∧ (s∗H = V +c∗Γ).
Evaluate VERFAIL2 ← (fπ = 0) ∧ (v′,m, y′,P) ∈ Tz with π ∈ P. Abort the simulation if
VERFAIL2 holds.

4. If fπ = 0 then return (Verified, sid,m, y, π, v′, 0) to FX ,`VRF
VRF .

5. At this point we have a claimed instance (v′,Γ), and a valid proof π for the claim
(v′,Γ) ∈ LRcf

B,H
where the relation is defined by equation (2). Define VERFAIL3 ←

t ∗ (cf ∗ v′) 6= (cf ∗ Γ). Abort if VERFAIL3 holds.
6. If (v′,m, ·, ·) ∈ Tz, then make an internal call to H(suite_s || DS3 || (cf ∗ Γ) || DS0) to

obtain the hash y and go to the next step. Otherwise, let VERFAIL4 ← (v′,m, ·, ·) 6∈
Tz∧Th[suite_s || DS3 || (cf ∗Γ) || DS0] 6= ⊥, abort if the condition holds and else set y ← ⊥
and set TDisallowed ← TDisallowed ∪ {(cf ∗ Γ, y′)}.

7. Evaluate VERFAIL5 ← (y = y′) ∧ ∃(v′′,m′′, ·,P ′′) ∈ Tz such that π ∈ P ′′ ∧ ((v′′ 6=
v) ∨ (m′′ 6= m)). Abort if VERFAIL5 holds (proof is not unique).

8. If y = y′ then retrieve the record (v′,m, y′,P) ∈ Tz (for some P), update the entry to
(v′,m, y′,P∪{π}) and return (Verified, sid,m, y, π, v′, 1). Otherwise the simulator returns
(Verified, sid,m, y, π, v′, 0) to FX ,`VRF

VRF .

The simulation for the random oracle is done as follows:

• Invocation of He2c on input s ∈ {0, 1}∗:

If s = (v ‖m) s.t. (v,m) ∈ {P ∈ E : ord(P ) ≥ q} × {0.1}`: If Te2c[(v,m)] 6= ⊥, return Te2c[(v,m)].
Otherwise, pick a random t ∈ Zq, define H := t ∗ B, and store (v,m,H,B, t) in Texp.
Define ROCOL ← (∃i, j, i 6= j, Te2c[i] = (·, ·, Hi, ·, ·), Te2c[j] = (·, ·, Hj , ·, ·) : Hi = Hj),
define ROIDENT← ∃i : Te2c[i] = (·, ·, Hi, ·, ·) ∧ ord(Hi) = 1.

Else: If Te2c[s] = ⊥, pick H $← G and set Te2c[s]← H. Return Te2c[s].

• Invocation of H on input s ∈ {0, 1}∗:

If s = (suite_s || DS3 ||P || DS0), P ∈ G: Perform the following steps:
1. Ensure consistency with the functionality:

(a) If this is an internal call, the set Seval is provided by the functionality as part
of the most recent input.7 Otherwise, the set Seval is obtained via querying
(PastEvaluations, sid) to FX ,`VRF

VRF .
7Recall that an internal call is a call from within another part of the simulator, in this case from within a verification

simulation. Note that this distinction is crucial to achieve a responsive simulator, because such a simulator must not
activate any other machine before returning the result to a verification request.
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(b) Let the entries of Texp be denoted by (vi,mi, Hi, B, ti).
(c) Define S := {(vi,mi, Hi, B, ti) ∈ Texp | ti ∗ (cf ∗ vi) = P}.
(d) Evaluate ROFAIL1 ← |S| > 1 and abort if ROFAIL1 holds.
(e) If S = ∅:

i. If Th[s] = ⊥, assign y to a random value in {0, 1}`VRF .
ii. Otherwise, let y ← Th[s].

(f) If S = {(v,m,H, t)} ∧ (v,m, ·) ∈ Tz:
i. If there is an entry (v,m, y′,P) ∈ Tz for y′ ∈ {0, 1}`VRF , then set y ← y′.
ii. Otherwise, find (v,m, y′) ∈ Seval and update the entry (v,m, ?,P) in Tz to

(v,m, y′,P). Set y ← y′.
(g) If S = {(v,m,H, t)} ∧ (v,m, ·) 6∈ Tz; do the following:

i. If (·, v) 6∈ Tpk, then send (KeyGen, sid, v) to FX ,`VRF
VRF and add (S, v) to Tpk.

ii. Set ROFAIL2 ← 1 if (Ui, v) ∈ Tpk for Ui that is not corrupted. Abort if
ROFAIL2 holds.

iii. At this point, send (Eval, sid, v,m) to FX ,`VRF
VRF and obtain the result (Evaluated, sid, y′),

y ← y′ and add (v,m, y, ∅) to Tz.
2. Evaluate ROFAIL3 ← T [s] 6= ⊥ ∧ T [s] 6= y. Abort if ROFAIL3 holds.
3. If Th[s] 6= ⊥, return Th[s]. Otherwise, set Th[s]← y

4. Evaluate ROFAIL4 ← (P, y) ∈ TDisallowed. Abort if ROFAIL4 holds.
5. Return y.

If s = (suite_s || DS2 || v ||H ||Γ ||U ||V || DS0), (v,H,Γ, U, V ) ∈ E5: If Th[s] 6= ⊥, return Th[s].
Otherwise, pick a random challenge c and an additional random string r $← {0, 1}3κ and
assign Th[s]← c || r (where c is represented as a bitstring).

Else: If Th[s] = ⊥, pick y at random from the set {0, 1}4κ and set Th[s]← y. Return Th[s].

• Upon corruption of party Ui: Retrieve the record (sk, Ui, s, s0, s1, x) and all records of the
form (proof, Ui, H, s, c) from Tpriv and ensure a correct programming of the RO as follows:

1. If Th[s] 6= ⊥ then set CORRFAIL1 ← 1 and abort. Otherwise, set Th[s]← s0 || s1.
2. If Th[x] 6= ⊥ for some x = s1 ||x′ then set set CORRFAIL2 ← 1 and abort. Otherwise, for

each record (proof, Ui, H, s, c) program the RO as follows:
(a) Compute the nonce as k ← s− cx.
(b) Set Th[s1 ||H] $← {n ∈ [24κ − 1] |n mod q = k} (where integers are encoded as

bitstrings).
3. Mark Ui as corrupted (in the functionality) and return s to the adversary.

This concludes the description of the simulator.

Analysis of the simulation. The failure conditions of the simulator play a crucial role in our
argument. Recall that the simulator performs consistency checks, and if they fail to hold, it aborts.
We first note that the checks performed by the simulator can be phrased as bad events for both
the real and the ideal executions. Recall that the real execution refers to the random experiment
where the environment Z interacts with protocol πECVRF and the dummy adversary, and the ideal
execution refers to the random experiment, where the environment interacts with the ideal protocol
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for FX ,`VRF
VRF and the ideal-world adversary (aka simulator) S as defined above. We define the events

in Figure 9 that imply a consistent simulation. We now argue by a that Z’s views in the real and
ideal executions are indistinguishable as long as none of the bad events Fx of Figure 9 occur (we
denote by Fx the complement of Fx). We analyze the different inputs that Z can provide:

Key Generations: New keys are sampled identically in the real and ideal world and all public
keys are unique until the point when bad event FKG occurs. In particular, FKG implies
KGENFAIL = 0 and the simulation is perfect.

Evaluations: During the proof generation performed by an honest party with public key v on
message m, in both worlds, the base point H is derived by an invocation of He2c(v,m) which is
distributed identically. As long as bad events Fcol and Fid do not occur, both worlds proceed
to generating a proof string. If the party has already performed a proof on input m, then
in both worlds, the exact same proof string is returned and otherwise, a new base point H
is derived in the same way. The proof string consists of four values Γ, U , V , and s which
are simulated as derived in Lemma 9.1 (based on a random exponent k $← Zq) unless the
random oracle turns out not to be programmable at location (v,H,Γ, U, V ), which can only
be if the location has been queried before which is exactly captured by FEvl1. The output
distribution in the real world on the other hand is generated using function RFnonce

sk1 (H), which
implies an output distribution on a fresh input H that has a statistical distance of at most
2−2κ from the uniform distribution on Zq.8 Both worlds output this proof string unless it is
not unique, which can only happen if bad event FEvl2 occurs. Therefore, the simulation is
indistinguishable from the real world and does not abort.

Verifications: Consider the tuple I = (v,m, y, π) submitted for verification, where π = Γ || . . .
is a proof string which is either valid or invalid with respect to (v,m) (recall that Γ and the
fixed based point B together with v,m precisely define the instance and the relation of the
NIZK). We observe that in both worlds the proof is rejected if it does not have the correct
format or the public key v has low order, as long as FV F1 does not occur. Furthermore as
long as bad event FV F2 does not occur, all verification results are consistent, in particular no
invalid proof string π has ever be contained in a tuple that has been deemed valid.
We observe that in both worlds as long as FV F3 does not occur (i.e., the environment provides
a convincing proof of a wrong statement and hence breaks soundness), the tuple I can
only successfully verify, if it encodes a valid statement, i.e., by Corollary 9.2 we get that
in this case π correctly asserts the fact that (v,m, .) is such that there is an x such that
x ∗B = cf ∗ v ∧ x ∗H = cf ∗ Γ, where H is the unique base point associated to (v,m) (unless
Fcol or Fid would occur). This in particular implies that as long as FV F3 does not occur, the
function value y for (v,m, ., π) can only be H(... ||P || ...) with P = cf ∗ Γ = x ∗H because
there is exactly one x ∈ Zq such that x ∗B = cf ∗ v ∈ G is fulfilled, where B is the reference
base point of G of order q. We further see that unless FV F4 occurs, the function value
y = H(... || cf ∗ Γ || ...) has been queried after He2c(v,m) was invoked the first time and in this
case both worlds do define H(... || cf ∗ Γ || ...) to be the output unless any of the bad events
FROFi occur during the evaluation of the random oracle. And if H(... || cf ∗ Γ || ...) has never
been invoked so far, both worlds let the tuple I be deemed invalid unless Fpred happens (in
which case, the environment predicted a RO output correctly in the real world). Finally, the
proof string is unique in both worlds unless FV F5 occurs. In conclusion, as long as none of the

8The skew simply comes from the fact that the cardinalities |{n ∈ [24κ − 1] |n mod q = k}|, for a given k ∈ Zq
where q is a 2κ-bit integer, are not identical as they might differ by at most one.
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above bad events occur, we see that both worlds (in particular the ideal world) can deem the
tuple valid if the function output y specified in I is the correct value, and there is only one
correct value for the function output for (v,m) for this tuple, which is H(... || cf ∗ Γ || ...). In
any other case, the tuple will be rejected.

RO queries to He2c: Both worlds sample random elements with identical distributions, and both
worlds return the sampled values as long as Fcol or Fid do not occur.

RO queries to H: For any input other than x = DS4 || DS3 ||P || DS0, both worlds return consistent
function values, which have been sampled uniformly at random. Also, for any fresh input
x = DS4 || DS3 ||P || DS0, both worlds compute uniformly random values to be result of the
query (where the simulator either samples on its own or obtains a uniformly random value
from FX ,`VRF

VRF ), but the simulator might fail to achieve consistency in which case it aborts. As
long as it does not abort, the outputs are thus identically distributed and consistent with the
entire Z. To see consistency, we argue as follows:
First, observe that if a point P (from the set of distinct points queried to the random oracle)
is associated with a key-message pair (v,m), then this is a valid association, in the sense that
valid proof strings π = Γ || . . . can only exist that assert (v,Γ) ∈ LRcf

B,H
, where cf ∗ Γ = P and

H is derived from (v,m). The assignment is unique assuming FROF1. Also the converse is
true, i.e., at most one of the distinct points P queried to the random oracle can be associated
with (v,m) as long as none of the bad events occur. Based on Fcol and Fid we can assume
that H is a generator uniquely associated to (v,m) and we have b ∗ B = φcf(v) for some
b 6= 0 (since we exclude low-order public keys by conditioning on FV F1). Excluding soundness
failure, in view of equation (3) from any two valid proofs π = Γ || . . . and π′ = Γ′ || . . .
asserting (v,Γ), (v,Γ′) ∈ LRcf

B,H
, we conclude using φcf(Γ) = p ∗ B and φcf(Γ′) = p′ ∗ B (for

some exponents p, p′), that H = p/b ∗ B = p′/b ∗ B. Since the computations p/b and p′/b
are over Zq, the uniqueness follows. Therefore, in order to get a consistent simulation, this
assignment must be computed by the simulator upon the first invocation of the random oracle
that specifies P . In which case, the random oracle is programmed with the output y that a
correctly proven VRF evaluation would result in.
This is possible except when (1) (v,m) has never been queried before and v belongs to an honest
party (as in this case, the simulator cannot obtain the random value y from the functionality),
(2) the point x has been programmed already with a value y′ that is inconsistent with what
the FX ,`VRF

VRF outputs (which happens when the simulator could not associate P to a pair (v,m)
upon the first invocation of the form H(... ||P || ...).), and (3) if the value y has already been
rejected as the function value associated with P during a verification request. In any other
case, the output is made consistent with (v,m) , i.e., any valid proof (assuming FV F3 does
not occur) will assert the function value y as the output associated to (v,m). The conditions
(1)-(3) are precisely captured by FROF2, FROF3, and FROF4.

Corruptions of honest parties: When a party is corrupted, its secret key material is leaked,
which here is the basic seed s from which all other values are derived. We observe that all
values derived from s are explainable as long as we can program the random oracle on the
respective domains, which is precisely possible unless any of FCorr1 or FCorr2 occur.

Bounding the probabilities of bad events. It now remains to bound the probability of a
failure due to a bad event being triggered, where, in view of [BR06], a failure can formally be
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Sim. Check Corresp. Bad Event Event occurs when...

KGENFAIL FKG Z provides input (KeyGen, sid) to honest party Ui and the resulting
(real or simulated) public key v collides with any previously queried
(v′, ·), v ∈ G, to He2c.

EVALFAIL1 FEvl1 Z provides input (EvalProve, sid,m) to honest party Ui and the resulting
(real or simulated) EC points (v,H,Γ, U, V ) collide with a previous
tuple A1, . . . , A5 for which H(suite_s || DS2 ||A1 || . . . ||A5 || DS0) has
been evaluated.

EVALFAIL2 FEvl2 Z provides input (EvalProve, sid,m) to honest party Ui and the resulting
(real or simulated) proof string π collides with some proof string π′ for
which (Verified, sid, v′,m′, y′, π′, 1) has been output previously.

VERFAIL1 FV F1 Z issues (Verify, sid,m, y, π, v′) where π is a valid proof w.r.t. (v′,m)
but has the wrong format or ord(v′) < q.

VERFAIL2 FV F2 Z issues (Verify, sid,m, y, π, v′) where π is an invalid proof string
(w.r.t. (v′,m)) for which previously either (Evaluated, sid,m, y, π)
has been output to honest party associated with public key v′, or
(Verified, sid, v′,m, y, π, 1) has been output by some honest party.

VERFAIL3 FV F3 Z issues (Verify, sid,m, y, π, v′) where π = Γ || . . . is a valid proof
(w.r.t. (v′,m)) but it holds that (v′,Γ) 6∈ LRe

B,H
for any e | cf.

VERFAIL4 FV F4 Z issues (Verify, sid,m, y, π, v′) for a valid proof π = Γ || . . .
(w.r.t. (v′,m)) s.t. (v′,Γ) ∈ LRcf

B,H
and ord(v′) ≥ q andH = He2c(v′,m),

but there has been a previous call H(suite_s || DS3 || cf ∗ Γ || DS0) that
happened before (v,m) was queried the first time to He2c(.).

VERFAIL5 FV F5 Z issues (Verify, sid,m, y, π, v′) for a valid proof π = Γ || . . .
(w.r.t. (v′,m)) for which the equation H(. . . || cf ∗ Γ || . . . ) = y is de-
fined and fulfilled, but which collides with some proof string π′ for
which (Verified, sid, v′′,m′′, y′′, π′′, 1) has been output previously for ei-
ther v′′ 6= v′ or m′′ 6= m. (In the notation here and below, we suppress
RO domain separation for the case DS3 and just write “. . . ” instead.)

- Fpred The random oracle is evaluated on a point P for the first time, i.e., y′ ←
H(. . . ||P || . . . ), but there has been a prior input (Verify, sid,m, y′, π, v′)
specifying y′ and including a valid proof π = Γ || . . . (w.r.t. (v′,m))
with P = cf ∗ Γ.

ROCOL Fcol Z provides an input (v,m) to He2c that returns a base point H that
equals to a previously generated one on input (v′,m′) for either v 6= v′

or m 6= m′.
ROIDENT Fid Z provides an input (v,m) to He2c that returns 0, the identity element.
ROFAIL1 FROF1 Z makes a call H(... ||P || ...), P ∈ G, such that there exist distinct

values H1 6= H2 and possibly distinct values v1, v2, Γ1, Γ2 such that
(v1,Γ1) ∈ LRcf

B,H1
and (v2,Γ2) ∈ LRcf

B,H2
with cf ∗Γ1 = P = cf ∗Γ2 and

each Hi has been obtained previously by a query to He2c(vi,mi) for
some mi.

ROFAIL2 FROF2 Z makes a call H(... ||P || ...), P ∈ G, for which there is a public key v ∈
G associated to an honest party Ui and a messagem s.t. He2c(v,m) = H,
such that (v, cf−1∗P ) ∈ LRB,H (i.e., v = x∗B∧cf ∗x∗H = P ) but there
has never been any output (Evaluated, sid,m, ·, ·) toward Ui. (Here, cf−1

refers to the multiplicative inverse of cf modulo prime q.)
ROFAIL3 FROF3 Z makes a call H(... ||P || ...), P ∈ G, such that there is an EC point v′

that satisfies for some Γ′, cf ∗ Γ = P , (v′,Γ′) ∈ LRcf
B,H

, and ord(v′) ≥ q
and (v′, ·) has been queried to He2c to obtain H, but there has been
a previous call H(... ||P || ...) with the same EC point P , but no such
value v′ existed at the time of the previous call.

ROFAIL4 FROF4 Z makes a call H(... ||P || ...), P ∈ G, for a new input point P which
hashes to a value y′ for which (Verified, sid, v,m, y′, π, 0) has been output
previously, where π = Γ || ... is a valid proof string and cf ∗ Γ = P .

CORRFAIL1 FCorr1 Z makes a call H(s) and s equals the secret key (real or simulated) of
an honest party.

CORRFAIL2 FCorr2 Z makes a call H(s ||x) for some x, and where s equals the (real or
simulated) seed for the nonce generation function.

Figure 9: Definition of events that imply a consistent simulation.
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modeled as a “failure flag” which is set when the first bad event specified in Figure 9 is triggered in
the execution. As argued above both worlds are indistinguishable until the point of a failure (note
that by definition, in any execution, at most one of the defined events can occur as the first bad
event triggering the failure). Therefore, we now bound this probability by bounding for each event
Fx the probability that Fx occurs as a consequence of an input by the environment issued at some
point in the execution where the flag has not been set yet (that is, none of the conditions of any
bad event have been fulfilled yet, which we denote by Fx′). Note that by the above analysis, the
probability of this is identical in the real and the ideal experiments.

Event FKG: If n denotes the upper bound on the number of public keys in the system, the
probability of a collision is upper bounded by n/22κ−c, where c is the loss induced by function
Compute_scalar(.). The number of public keys can be upper bounded by the sum of key
generation requests made by Z and the number of random-oracle queries made by Z to He2c.

Event FEvl1: A fresh proof string contains at least the entropy of the nonce, where for example U
is a random point in G. If nh denotes the upper bound on the RO queries, the probability of
a collision is at most nh/q per honest VRF evaluation (where nh is a polynomial quantity and
q is an exponential quantity in the security parameter).

Event FEvl2: A proof string π = Γ ||U ||V || s for (v,m) is valid if (s∗B, s∗H) = (U+c∗v, V +c∗Γ),
where H is by assumption the unique point associated with (v,m). Since we deal with an
honestly generated proof, the string s is uniformly distributed, and since the RO has not been
programmed before, the challenge c is a random challenge.
Assume that there was any other tuple I = (v′,m′, y′, .) with (v′,m′) 6= (v,m), for which π
would satisfy the verification equations. We can assume the base associated to (v′,m′) to be
H ′ 6= H. To pass the associated verification equation, and assuming for simplicity that c′ is
fixed, we would at least need that V = s ∗H ′ − c′ ∗ Γ which equals s ∗H − c ∗ Γ. Now, let
H = h ∗B and H ′ = h′ ∗B for h 6= h′ by assumption. Therefore, (s · h) ∗B − (c · h · x) ∗B =
(s · h′) ∗ B − (c′ · h · x) ∗ B = V . Since V is a point in G, we thus see that the relation
s · (h′ − h) + (c− c′) · (h · x) = 0 must hold over Zq, which, based on the above, is an equation
S · a1 +C · a2 = 0 for two independent random variables S and C (where the support of C is a
subset of the support of S) chosen by the honest verifier conditioned on the other bad events
not happening, and fixed a1, a2 6= 0. The probability to obtain, in an honest evaluation, a
valid proof string for a particular other instance is thus at most 1/q. The number of instances
is upper bounded by the upper bound ne2c on the number of calls to He2c (which is polynomial
in the security parameter). In an execution, the probability of event FEvl2 can thus be upper
bounded by m · (ne2c/q) where m is an upper bound on the number of honest VRF evaluations
(which is polynomial in the security parameter).

Event FV F1: In the real world, the verification algorithm rejects a verification request if the order
of the public key is not at least q. Furthermore, the proof string is parsed as a 4 tuple and
rejected if not correct. The simulator on the other hand will never evaluate FX ,`VRF

VRF on any
pair (v,m), since those are never added to the set Texp and consequently never added to Tz.
Hence, such requests are rejected in both worlds and the probability of this event is 0.

Event FV F2: In both worlds, (v,m) maps to a unique base point H. In the ideal world, tuples
(v,m, ., π) are never accepted where π fulfills the conditions as stated above for event FEvl2.
Second, all proof strings generated on honest evaluations are correct. In summary, if (v,m, ., π)
does not fulfill the verification equations, then this tuple will never be successfully verified since
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verification is deterministic. This holds for both the real and ideal worlds. The probability of
failure conditioned on the other bad events not occurring is therefore 0.

Event FV F3: By definition of the event, we have a pair (v,m), the two bases B and H, and an
accepting proof string π = Γ ||U ||V || s but (v,Γ) is not in the language of the NIZK. This
is bounded by the soundness of the proof scheme: By Section 9.1.1, we can consider every
verification request as a proof run between a potentially malicious prover and an honest
verifier. Each such run is uniquely identified by the auxiliary information (v,Γ, H,B) and
the first message is the pair (U, V ). The mapping to the non-interactive version, where the
honest verifier is implemented by a random oracle, is generically achieved by evaluating it
on the tuple (v,Γ, H,B,U, V ) and since by Corollary 9.2, an invalid instance passes the run
with probability at most 1/|C|, the same holds for the non-interactive version. Since the base
point B (and hence the group G) is fixed by the protocol (identified by an explicit cipher
suite), the tuple (v,H,Γ, U, V ) suffices to preserve the reasoning from above.9 By the domain
separation of this invocation, we observe that obtaining challenges does not interfere with
evaluations of the random oracle for other purposes (such as evaluating the VRF). In summary,
the probability of this bad event (conditioned on the other bad events not occurring) is upper
bounded by nv/|C|, where nv denotes an upper bound on the number of verification requests.

Event FV F4: For this event to happen before any other bad event happens, we assume a fixed
point cf ∗ Γ for which the random oracle has been evaluated but there was no pair (v,m) and
associated point H, such that v is was detected to satisfy (v,Γ) ∈ LRcf

B,H
. We are now given a

tuple (v′,m′, ., π) and can assume for this case that since π = Γ || ... is a valid proof, it holds
that (v′,Γ) ∈ LRcf

B,H
.

To bound the probability of this event, we bound the probability that for a fixed P = cf ∗ Γ =
p ∗B for some p ∈ Zq, a random oracle call He2c(v′,m′) for a pair that has not been queried
before, yields a valid instance for (v′,Γ) and relation Rcf

B,H , where all values are fixed and
H = h ∗B is sampled at random during the RO evaluation. Furthermore, since no other bad
event has happened, the random oracle call did not produce the identity element or a collision.
Since P is fixed before calling the random oracle, and similarly, cf ∗ v = φcf(v′) = x ∗ B
for some x is fixed before evaluating the random oracle, we would need that h satisfies the
equation (x ·h) ∗B = x ∗H = p ∗B in group G, i.e., h = p/x computed over Zq where we need
x 6= 0 or, equivalently, v′ 6∈ ker(φcf), which holds since we condition on FV F1 that excludes
low-order points. Therefore, the event h = p/x happens with probability at most 1/q. If nh
denotes the upper bound on random-oracle queries to H and ne2c denotes an upper bound on
the number of random-oracle queries to He2c, we obtain that provoking the event FV F4 (while
the above bad events have not occurred) happens with probability at most ne2c · (nh/q).

Event FV F5: Here we bound the probability that a proof string π = (Γ ||U ||V || s) is valid
for (v,m, y) but we have already previously successfully evaluated tuple (v′,m′, y, π) where
H(... || cf∗Γ|...) = y (and where the pair (v′,m′) is different from (v,m)). Since the proof is valid
and none of the other bad events are assumed to have occurred, we have (v,Γ), (v′,Γ) ∈ LRcf

B,H
.

Let cf ∗ Γ = p ∗B for some p.
By definition of event FV F5 H(... || cf ∗ Γ || ...) has been evaluated and since we can assume
that FV F4 did not occur, the above RO evaluation happened for the first time at a point in

9Recall that E2Cs equals the public key. In this case, the public key v in the challenge computation is not needed
for the above argument. The reason is that we can condition on the fact that each pair (v,m) is uniquely mapped to
its base point H.
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the execution at which H ′ = He2c(v′,m′) as well as H = He2c(v,m) were already evaluated.
Therefore, we directly reach a contradiction to FROF1. Therefore, the probability of this event
conditioned on none of the previous events happening, is 0.

Event Fpred: The chances that a given y′ equals H(... ||P || ...) for some P that has never been
queried to the random oracle, is 2−4κ. Let m denote the number of verification queries, where
each query can be seen as identifying the query Pi and the corresponding guess y′i. m can be
partitioned as the sum m = m1 + · · ·+mj where j = |{P1, . . . , Pm}|, where mk is the number
of verification requests identifying point Pk. The probability of predicting at least one value
correctly is thus upper bounded by

∑j
k=1mk · 2−4κ = m · 2−4κ.

Event Fcol: This is a standard collision probability on outputs of the random oracle He2c on inputs
(v,m) where v is an EC point of order at least q. Conditioned on the event that none of
the results are the identity element, if ne2c denotes an upper bound on these queries, the
probability of this event can be bounded by n2

e2c/(q − 1).

Event Fid: The probability that any of ne2c queries as above result in the sampling of the identity
element of G is bounded by ne2c/q.

Event FROF1: Recall that any two distinct queries He2c(vi,mi) and He2c(vj ,mj) result in random
base points Hi resp. Hj . In this case, we condition in particular on Fcol and Fid, which
means that if we have ne2c distinct queries to the random oracle, this induces a sequence
(h1, . . . , hne2c) drawn from the set Zq \ {0} without repetition. We now bound the probability
that any two positions in this sequence fulfill the relation to provoke the event.
We know that cf ∗ vi = xi ∗ B, cf ∗ vj = xj ∗ B, for some exponents xi and xj . The critical
relation is whether the sampled points Hi, Hj , written as hi ∗ B and hj ∗ B, respectively,
satisfy, for certain Γi and Γj , the equations (xi ·hi)∗B = φcf(Γi) = P = φcf(Γj) = (xj ·hj)∗B.
This implies that xi · hi = xj · hj over Zq, or equivalently hi/hj = xj/xi, where xj , xi are fixed
before sampling hi and hj .
Given a fixed coefficient aij ∈ Zq, the probability that the two values hi, hj satisfy hi = aij ·hj
is at most 1/(q − 2). By the union bound, the probability of provoking FROF1 conditioned on
none of the bad events happening is at most n2

e2c/(q − 2).

Event FROF2: Assume we have an environment Z that provokes event FROF2 and no other bad
event and denote the probability of this event by ε. This means that there is an honest party
Ũ with public key v = x ∗B, and a message m s.t. H = He2c(v,m), but the party has never
evaluated the VRF on input (v,m). In particular, it has never computed the point Γ = x ∗H.
Assume Z provides a point P in such an execution such that cf ∗ x ∗H = P holds w.r.t. a key
of an honest party Ũ . Then, we can construct an algorithm A that solves the computational
Diffie-Hellman problem in group G with probability at least ε′(nh, ne2c, |P|, c), where nh is an
upper bound on the number of random-oracle queries to H, ne2c is an upper bound on the
number of random-oracle queries to He2c, P is the set of registered parties, and c is the loss
induced by function Compute_scalar(.), i.e., the constant such that the size of the support of
honestly generated public keys is 22κ−c.
A(P1, P2) works as follows: it maintains a |P| × ne2c matrix M , where the ith row stores all
returned queries He2c(vi, ·) for the public key associated with party Ui. Furthermore, it stores
for all points P ∈ G provided in an invocation H(... ||P || ...), the point P ′ ∈ G s.t. cf ∗P ′ = P
in an array N of size 1× nh. A now first picks a random location (i, j) in M , defines vi = P1,
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and M(i, j) = P2. It then emulates the ideal world execution towards Z, injecting P1 as
public key and P2 as random base point P2 = He2c(P1,mj), where the tuple (P1,mj , P2, B, ?)
is added to Texp since the exponent is not known. Any consistency check done by the simulator
that would involve the exponent of P2 w.r.t. base point B, is set to be satisfied. A stops
the execution when either one of the following stopping conditions occur: (1) Z corrupts Ui;
(2) Z requests Ui to evaluate the VRF on m; (3) Z terminates. In any case, the output is
determined by picking a random position k in array N and returning N [k].
We observe that conditioned on none of the other bad events occurring during the emulation,
the emulation provides, until the point when it stops, an identical view to Z as the ideal
execution as long as no EC point P is provided as input to the random oracle for which
(P1, P2, cf−1 ∗ P ) is a Diffie-Hellman triple: Conditioned on none of the other bad events
happening, the computation of the set S defined in step 1(c) of the simulation of the random-
oracle query H(... ||P || ...) is correct except until the point when the emulation fails to detect
the relation tH ∗ cf ∗ v = P , where tH is the exponent of He2c(v,m′) to the base B. Clearly,
the emulation only fails to detect the relation w.r.t. P2 if for some x we have x · cf · P1 = P
and P2 = x ∗B. That is the associated point P ′ = (x · y) ∗B for P2 = x ∗B and P1 = y ∗B
that we are looking for.
Since by definition of the event, there must be at least one entry (i, j) in matrix M such that
(vi,m) was not evaluated and party Ui is not corrupted, we obtain that the success probability
of A is at least ε′ = ε/(nh · ne2c · |P| · 2c), where ε is the probability of event FROF2 happening
conditioned on none of the other bad events occurring, and where the (small and constant)
factor 2−c is due to the probability that a random point P1 is a valid public key in the correct
domain of Gen(1κ).

Event FROF3: The condition of this event is that a given RO evaluation H(... ||P || ...) a subsequent
call to He2c(v′,m′) for some v′ results in a base point H ′ from which a valid proof instance
(v′,Γ′) with cf ∗ Γ′ = P can be deduced. By definition of the event, P is fixed before any
such instance (v′,Γ′) is known. Therefore, there must have been a fresh call He2c(v′,m′) for
some m′, which resulted in random base point H ′. Since v′ is fixed before, the exponent x,
such that cf ∗ v′ = x ∗B, is fixed before the point H ′ is sampled. In order to deduce a valid
instance Γ′, the relation x ∗H ′ = P must hold. Since H and P are elements of G, we write
H ′ = h′ ∗ B and P = p ∗ B and see that the relation (x · h′) ∗ B = p ∗ B implies that the
relation h′ = p/x must hold over Zq. Given an upper bound nh on the RO queries to H and
an upper bound ne2c on the number of RO queries to He2c, there can be at most ne2c queries
to He2c that could result in any of the relations to hold with any of the at most P points
queried before. An upper bound on the probability of the event FROF3 conditioned on no
other bad event happening can be obtained by a union bound which yields nh · ne2c/(q − 1).

Event FROF4: Conditioned on Fpred, the probability of FROF4 is 0. The reason is that if
(Verified, sid, v,m, y′, π, 0) (where π = Γ || ...) has been output to a party, then the input
(Verify, sid,m, y′, π, v) must have been given as input which correctly predicted H(... || cf∗Γ || ...)
before it was called.

Event FCorr1: This event only occurs if the environment correctly guesses the secret seed of an
honest party. There are at most |P| honest parties, and if nh is an upper bound on the number
of RO evaluations to H, the probability of this event is no more than nh · |P| · 2−2κ.

Event FCorr2: This event only occurs if the environment correctly guesses the bitstring s1 of an
honest party. Conditioned on FCorr1, the probability of this event is no more than nh · |P|·2−2κ.
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Functionality GBB

The function maintains a (dynamically updatable) list Ls (initially empty). The functionality manages
the set P of registered machines (identified by extended identities), i.e., a machine is added to P when
receiving input register (and removes a machine from P when receiving de-register. The requests
give activation back to the calling machine).

• Upon receiving (add, sid, x) from P ∈ P or from the adversary, set L ← L ||x output
(Updated, sid, L) to the adversary.

• Upon receiving (retrieve, sid, i, j) from P ∈ P or from the adversary, do the following: if L[j] is un-
defined, return (i, j, ∅) to the caller. Otherwise, return the result (Retrieved, sid, i, j, L[i] || . . . ||L[j])
to the caller.

Figure 10: The global bulletin board.

It is easy to see that all these failure probabilities are negligible in the security parameter. The
theorem follows.

Remark. Note that the simulator is responsive. This shows that the VRF functionality can be used
in responsive environments, i.e., where the queries to the (dummy) adversary are expected to be
answered immediately.10 This is a useful modeling property and we refer to [CEK+16, BGK+18]
for the relevant details, as they are outside the scope of this paper.

9.2 Security Analysis of ECVRFbc with Batch Verifications

We first describe the setting and the ideal world that idealizes the security requirements for batch
verifications.

9.2.1 The Setting

We want to capture a general setting where the protocol is asked to verify a bunch of claimed VRF
proofs originating from any source outside the system, including maliciously generated ones by the
adversary. We model this setting using a global bulletin-board functionality GBB and describe it
in Figure 10. This abstraction fits not only the public blockchain setting (which can be seen as a
bulletin board), but any application that makes use of batch verifications where new proofs appear
in the system over time, potentially visible and updatable by anyone including an adversary. Each
instance of this functionality maintains a list of values. The list is append-only, but there is no
other restriction on what is appended and thus the only guarantee it offers is that if we refer to an
interval [i . . . j] in the list associated to session sid then, once defined, the returned list of values is
always the same. The functionality is a global setup [BCH+20] for full generality of the statement.
In particular, once proven for this setting, simpler settings (such as defining a protocol interface
taking a batch of proofs directly from a caller) follow in a straightforward manner.

9.2.2 The Ideal World

In the ideal world, we introduce a new simple command to the VRF functionality described
in Figure 11. Upon input (BatchVerify, sid, i, j), the functionality retrieves the corresponding list
from GBB and if the list is non-empty, it verifies whether all claimed combinations are known

10That is, without activating any other machine for any other purpose than providing the answer back to FVRF.
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Ideal Functionality FX ,`VRF
VRF+

The functionality interacts with parties denoted by P = {U1, . . . , U|P|} and the adversary/simulator S.
It maintains tables T [·, ·] that are initially empty (denoted by symbol ⊥). The tables are initialized
on-the-fly. The functionality maintains a set Spk to keep track of registered keys, and Seval to keep track
of all known VRF evaluations. The functionality registers to the instance of GBB with the same session
identifier sid.

• Key Generation. As in in Figure 1.

• Malicious Key Generation. As in Figure 1.

• VRF Evaluation and Proof. As in Figure 1.

• Malicious VRF Evaluation. As in Figure 1.

• Verification. As in Figure 1.

• Batch Verification. Upon receiving a message (BatchVerify, sid, i, j) from any party, send
(retrieve, sid, i, j) to GBB to receive the list (i, j, Li:j). Then output (BatchVerify, sid, i, j) to the
adversary. Upon receiving (BatchVerified, sid, i, j, b) do the following:

1. If Li:j = ∅ holds then return (BatchVerified, sid, i, j, 0) to the caller.
1* If Li:j = ∅ holds then return (BatchVerified, sid, i, j, 0) to the caller. If there

is a tuple (BatchVerified, sid, i, j, c) stored from a previous request, then return
(BatchVerified, sid, i, j, c).

2. Parse each entry of Li:j as tuple (mk, yk, πk, vk) for k = 1 . . . |Li:j |.
3. Evaluate the condition f ← ∀k ∈ [|Li:j |] : (·, vk) ∈ Spk ∧ T (vk,mk) = (yk, S) ∧ πk ∈ S. If

f = 1, return (BatchVerified, sid, i, j, 1) to the caller.
4. Evaluate the condition f ′ ← ∀k ∈ [|Li:j |] : (·, vk) ∈ Spk ∧T (vk,mk) = (yk, ·). If f ′ = 1 return

(BatchVerified, sid, i, j, b) and store this tuple internally for future reference.
5. Return (BatchVerified, sid, i, j, 0) and store this tuple internally for future reference.

• Adversarial Leakage. As in Figure 1.

Figure 11: The VRF functionality with Batch Verifications. Replacing step 1 by the enhanced version
1* yields a formally stronger functionality that additionally captures the consistency requirement
achieved by schemes with deterministic verification.

are stored as valid combinations. In this case the functionality returns 1. If this is not the case,
but all pairs (vi,mi, yi) specify the correct input-output-pairs as stored by the functionality, i.e.,
T (vi,mi) = yi, then the functionality lets the adversary decide on the output value. This case
captures the fact that although the proofs strings might not be stored in the functionality (or will
never be), batch verification will never assert a wrong input-output mapping. In any other case,
the output is defined to be 0. One can further consider an enhanced version of the functionality
that includes a consistency requirement, achieved for example by protocols (like the one in the next
section) with deterministic verification. Such a functionality is formally obtained by replacing step 1
of batch verification by its enhanced version 1* in Figure 11.
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9.2.3 The UC Protocol

Recall from Section 3 that any VRF can be formulated as a UC protocol. We now show how to
formulate (deterministic) batch verification as an extended protocol π+

ECVRF that is identical to
πECVRF but additionally implements the following procedure outlined in Section 8.2. To simplify
notation, we continue to write H and He2c for general hash-function invocations and understand
that this corresponds to evaluating the random oracles FYRO and FG

RO, respectively.

• On input (BatchVerify, sid, i, j), send (retrieve, sid, i, j) to GBB and receive the answer
(Retrieved, sid, i, j, Li:j). If Li:j = ∅ then return (BatchVerified, sid, i, j, 0). Otherwise, do the
following:

1. Parse every item in the list as tuple, i.e., for each k ∈ [|Li:j |] obtain Tk = (mk, yk, πk, vk).
If the tuple has wrong format, return (BatchVerified, sid, i, j, 0).

2. For each Tk perform first the steps 1. to 3. and then step 3.5 of ECVRF.Vfy, that is:
– Verify that vk ∈ E and then that cf ∗ vk 6= O.
– Parse and verify πk as tuple (Γk, Uk, Vk, sk) ∈ E3 × Zq.
– Compute Hk ← He2c(vk,mk).
– Compute ck ← H(suite_s || DS2 ||Hk ||Γk ||Uk ||Vk || DS0)[..κ].

3. If any check fails then return (BatchVerified, sid, i, j, 0).
4. Perform the batch verification:

– Set π′k ← Hk ||πk for all k ∈ [|Li:j |].
– Let ST ← π′1 || . . . ||π′|Li:j |.
– ∀k ∈ [|Li:j |] : hk ← H(suite_s || DS4 ||ST || k || DS0).
– ∀k ∈ [|Li:j |] : lk ← hk[..κ].
– ∀k ∈ [|Li:j |] : rk ← hk[κ..2 · κ].
– Evaluate

b1 ←
(
O =

∑
k∈[|Li:j |]

(
rk ∗ (sk ∗B − ck ∗ vk − Uk)+

lk ∗ (sk ∗Hk − ck ∗ Γk − Vk)
))
. (4)

5. Evaluate b2 ← (∀k ∈ [|Li:j |] : yk = Compute(πk)).
6. Define b← b1 ∧ b2 and return (BatchVerified, sid, i, j, b) to the caller.

9.2.4 The UC Construction Statement

Theorem 9.4. Under the same assumptions as Theorem 9.3, the protocol π+
ECVRF UC-realizes

FX ,`VRF
VRF+ (where GBB is a global setup), for X = {0, 1}∗ and `VRF(κ) = 4κ.

Proof. Consider the simulator in the proof of Theorem 9.3 and denote it SECVRF. We build our new
simulator S+ on top of SECVRF as follows: we simulate identically to SECVRF and ensure that at any
point in time all combinations stored in GBB are verified with the functionality to prepare for batch
verifications. We thus get the following simulator S+:
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• On receiving (KeyGen, sid, Ui) from FX ,`VRF
VRF+ invoke SECVRF on the same input and return to

FX ,`VRF
VRF+ whatever SECVRF outputs (and abort if SECVRF aborts).

• On receiving (EvalProve, sid, Ui,m) from FX ,`VRF
VRF+ , invoke SECVRF on the same input and return

to FX ,`VRF
VRF+ whatever SECVRF outputs (and abort if SECVRF aborts).

• On receiving (Verify, sid,m, y′, π, v′, Seval) from FX ,`VRF
VRF+ invoke SECVRF on the same input and

return to FX ,`VRF
VRF+ whatever SECVRF outputs (and abort if SECVRF aborts).

• On receiving (BatchVerify, sid, i, j) from FX ,`VRF
VRF+ , retrieve the list Li:j from GBB and perform

the batch verification steps like the protocol (i.e., emulate the steps from Item 1 to Item 6
of the batch verification) to derive the return value b and return (BatchVerified, sid, i, j, b)
to FX ,`VRF

VRF+ . Define SIMFAIL+ if b = 1 but there exists a tuple (m′, y′, π′ = Γ′ || . . . , v′)) but
Compute(π′) 6= y′. Abort if SIMFAIL+ occurs.

• On receiving (Updated, sid, L) from GBB, S+ determines all new added tuples Ti of the correct
form (mi, yi, πi, vk) and calls FX ,`VRF

VRF+ with input (Verify, sid,mi, y, π, v
′), (which in turn triggers

the simulation SECVRF on input (Verify, sid,mi, yi, πi, vi, Seval) as above). Finally, S+ outputs
(Updated, sid, L) to the environment.

• Invocation of He2c on input s ∈ {0, 1}∗: Perform the same actions as SECVRF (abort if
SECVRF aborts).

• Invocation of H on input s ∈ {0, 1}∗: First, perform a case distinction on the separated
domain s = (suite_s || DS4 ||X || DS0) which is simulated as follows: If Th[s] 6= ⊥, return
Th[s]. Otherwise, pick a random challenge pair c = c1||c2 (each ci represented by κ bits) and
an additional random string r $← {0, 1}2κ and assign Th[s] ← c || r. For any other domain,
perform the respective actions of SECVRF (abort if SECVRF aborts).

• Upon corruption of party Ui: Perform the same actions as SECVRF (abort if SECVRF aborts).

Analysis of the simulation. We first consider the same set of bad events defined in Figure 9,
but we formally extend the events FV Fi to not only includes queries (Verify, sid,m, y, π, v′), made
by Z, but also that a tuple of the form T = (m, y, π, v′) is added as part of a query (add, sid, T )
to GBB.

We first observe that any environment Z which does not make any invocation of the form
(BatchVerify, sid, i, j) to any honest party and which has non-negligible advantage in distinguishing
the real and ideal executions, contradicts Theorem 9.3. Since the only difference between the two
executions is the availability of the bulletin board GBB, we can design an environment Z ′ which
internally runs Z and emulates GBB towards it, and whenever new updates are pushed on GBB, Z ′
lets the challenge protocol verify these updates. For all other queries, it invokes the main parties of
its challenge session. If at any point, the execution is aborted (in which case Z ′ must be connected to
an ideal execution), the distinguisher outputs 0, and in any other case outputs whatever Z outputs.
Since no other entity ever writes or reads from GBB except Z in the real world, if Z ′ interacts
with πECVRF then the view emulated towards Z is exactly the view it has when interacting with
π+

ECVRF. And if Z ′ interacts with FX ,`VRF
VRF (and simulator SECVRF) then the view emulated towards

Z is exactly the view it has when interacting with FX ,`VRF
VRF+ (and simulator S+) until the point where
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a failure event is provoked as defined in Figure 9. Therefore, the distinguishing advantage of Z ′ is
at least the advantage of Z.

It thus suffices to analyze the real and ideal executions’ behavior on inputs (BatchVerify, sid, i, j).
By definition of S+, whenever a tuple Tk = (mk, yk, πk, vk) is added to GBB, this is equivalent to have
FX ,`VRF

VRF+ verify the tuple (m, y, π, v′) (and the verification is identical to the verification of FX ,`VRF
VRF ).

Therefore, in the ideal execution with FX ,`VRF
VRF+ and S+, the output of any query (BatchVerify, sid, i, j)

is 1 if all tuples Ti, . . . , Tj have been successfully verified.
For the remaining cases, we see that the simulator can decide on the value, with the restriction

that the output can only be decided to be 1, if all input-output pairs ((vi,mi), yi) are consistent
with function table of the FX ,`VRF

VRF+ .
That is consider the case that we have b = 1 upon batch verification and none of the bad events

defined in Figure 9 occur. The simulator has made, for each tuple Tk = (mk, yk, πk = Γk || ·, vk) a call
He2c(vk,mk) (to obtain Hk) and a call H(... || cf ∗Γk || ...) = (to obtain yk). The latter call associates
the point cf ∗Γk with at most one pair (v′,m′) that satisfies the relation t′ ∗ (cf ∗ v′) = cf ∗Γk (where
t′ is such that t′ ∗B = H ′), i.e., for which (v′,Γk) ∈ Rcf

B,H′ .11. If such a match is found (and no bad
event occurs), the simulation has consistently programmed the random oracle H(... || cf ∗ Γk || ...) to
match the output of the functionality on a query for (v′,m′).

Therefore, the computed batch verification value b = 1 by the simulator must be accepted by
the functionality if for each Γk specified in tuple Tk the pair (v′,m′) that is associated to each Γk
specified in tuple Tk is exactly the pair (vk,mk) listed in tuple Tk. Stated differently, and in view
of equation (3), assuming that no tuple breaks the NIZK soundness individually (condition on V F3
and since the simulator verifies every proof string added to GBB), the simulator could only fail to
simulate if the entire batch verifies, but for a tuple Tk, with φcf(vk) = xk ∗ B for some xk 6= 012,
we have that φcf(Γk) 6= xk ∗Hk, where Hk (conditioned on Fcol and Fid) is the unique generator
associated to (vk,mk). This motivates the following new bad event FBatch that rules out this case
and which implies that the simulator never aborts. Based on the above considerations as long as
none of the bad events (including FBatch) occur, Z’s views in the real and ideal executions must be
indistinguishable.

New event FBatch. This is the event that Z provides input (BatchVerify, sid, i, j), which refers
to tuples Ti, . . . , Tj , upon which the computed result is (BatchVerified, sid, i, j, 1), but at least one
of the tuples, say Tk, i ≤ k ≤ j, encodes correctly formatted values (mk, yk, πk, vk), πk = Γk || . . . ,
such that yk = Compute(πk), but (vk,Γk) 6∈ Rcf

B,Hk
for Hk = He2c(vk,mk).

Bounding the probability of the new bad event. We now bound the probability of event FBatch
to happen conditioned on none of the other bad events occurring. Due to the condition in partic-
ular on FV Fi, event FBatch can only be triggered on input (BatchVerify, sid, i, j), where all tuples
Li:j = Ti, . . . , Tj in GBB are defined and well-formed. Furthermore, we can assume that for each
Tk = (mk, yk, πk, vk), πk = Γk ||Uk ||Vk || sk, it holds that Compute(πk) = H(... || cf ∗ Γk || ....) = yk,
as otherwise, the batch verification output is fixed to 0. Likewise, all relations under Item 2 of the
batch verification step must hold. Furthermore, since all proof strings to GBB are assumed to be
implicitly verified, by V F4, no tuple added to GBB constitutes a soundness breach of the NIZK.

Thus, we investigate the probability that equation (4) is satisfied despite of the existence of
a tuple Tk̃ = (mk̃, yk̃, πk̃, vk̃) with πk̃ = (Γk̃, Uk̃, Vk̃, sk̃), where (vk̃,Γk̃) 6∈ Rcf

B,Hk̃
, for which by

11And note that at most one point P ∈ G can be associated to (v′,m′) as argued in the proof of Theorem 9.3 based
on no bad events being triggered so far.

12This follows by FV F1.
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assumption the equations

Uk̃ = sk̃ ∗B − ck̃ ∗ vk̃,
Vk̃ = sk̃ ∗Hk̃ − ck̃ ∗ Γk̃

are not simultaneously satisfied, where Hk̃ is the unique base associated to (vk̃,mk̃) and ck̃ is the
challenge associated to this proof string for this proof instance. We therefore have

rk̃ ∗ (sk̃ ∗B − ck̃ ∗ vk̃ − Uk̃) + lk̃ ∗ (sk̃ ∗Hk̃ − ck̃ ∗ Γk̃ − Vk̃)
=

∑
k∈[|Li:j |]\{k̃}

−(rk ∗ (sk ∗B − ck ∗ vk − Uk)+lk ∗ (sk ∗Hk − ck ∗ Γk − Vk))

as an equation over the elliptic curve group E. Towards the argument, define

Q :=
∑

k∈[|Li:j |]\{k̃}

−(rk ∗ (sk ∗B − ck ∗ vk − Uk) + lk ∗ (sk ∗Hk − ck ∗ Γk − Vk))

Q
(r)
1 := sk̃ ∗B; Q

(r)
2 := ck̃ ∗ vk̃; Q

(r)
3 := Uk̃;

Q
(l)
1 := sk̃ ∗Hk̃; Q

(l)
2 := ck̃ ∗ Γk̃; Q

(l)
3 := Vk̃

which allows us to rewrite the equation as

lk̃ ∗ (Q(l)
1 −Q

(l)
2 −Q

(l)
3 ) + rk̃ ∗ (Q(r)

1 −Q
(r)
2 −Q

(r)
3 ) = Q. (5)

Similar to the Fiat-Shamir transform, we can consider the verification as the non-interactive
version of an interactive proof, where the prover presents a list Li:j of tuples and the verifier
samples the coefficients rk and lk at random from a large space C, and the probability of a
soundness failure is bounded by the probability that equation (5) happens to be satisfied as
described above. In the random-oracle model, the honest verifier can be replaced by the random
oracle as described in Section 9.1.1, if there is a one-to-one mapping between protocol runs
and invocations to the random oracle. We observe that given our assumptions of none other
bad event happening, for each list of tuples presented by a potentially malicious prover, the
sampling lk ← H(suite_s || DS4 ||ST || k || DS0)[..κ] and rk ← H(suite_s || DS4 ||ST || k || DS0)[κ..2κ]
is performed using different inputs to the random oracle and taking different portions from the
random output for the respective coefficients for this particular set ST , which establishes the mapping.
In particular, ST is the ordered list specifying for each k, Hk ||Γk ||Uk ||Vk || sk which, assuming no
collision among the random base points Hk assigned to (vk,mk), is the representation for the tuple
(mk, yk, πk, vk) and yk = Compute(πk) must hold. Therefore, different lists obtained from GBB result
in different values for ST , and by domain separation and taking independent random bits from the
RO output, independent random coefficients are derived.

Returning to equation (5) it is easy to see that if eitherQ(l)
1 −Q

(2)
2 −Q

(l)
3 ∈ G or Q(r)

1 −Q
(r)
2 −Q

(r)
3 ∈

G, and recall that by assumption at least one sum does not equal the identity, the equation is
fulfilled with probability at most 1/|C| over the random choice of the coefficients.

For the general case, where Q(z)
1 −Q

(z)
2 −Q

(z)
3 6= O for at least one z ∈ {l, r}, denote Q1 := Q

(z)
1

and P := −(Q(z)
2 + Q

(z)
3 ). We thus have Q1 + P 6= O, where Q1 ∈ G and P ∈ E and P 6∈ G

by assumption. We observe that any lk̃ for which lk̃ ∗ (Q1 + P ) = Q, we obtain a solution for
lk̃ ∗ φcf(Q1 + P ) = φcf(Q), where the right-hand sides are independent of the random coefficient
and the points Q1 + P and Q are defined before sampling the random coefficient. Thus, as long
as Q1 + P 6∈ ker(φcf), the probability to satisfy the condition is at most 1/|C|. Therefore, the
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probability of passing the check is at most 1/|C| provided that at least one of Q(r)
1 −Q

(r)
2 −Q

(r)
3

and Q(l)
1 −Q

(l)
2 −Q

(l)
3 is not in the kernel of φcf .

The remaining case is simple based on our considerations in Section 9.1.2: a tuple Tk̃ fixes the
entire instance of a particular proof, i.e., B,Hk̃, vk̃,Γk̃, and encodes a particular run of the associated
Σ-protocol where the challenge is computed correctly based on the random oracle using the Fiat-
Shamir transform (otherwise, the entire sequence of tuples is rejected). In view of equation (3), we
see that the employed Σ-protocol is sound w.r.t. relation Rcf

B,Hk
even for the relaxed verification

Q
(r)
1 −Q

(r)
2 −Q

(r)
3 ∈ ker(φcf)∧Q(l)

1 −Q
(l)
2 −Q

(l)
3 ∈ ker(φcf). Thus, the probability that the instance

and proof run encoded in Tk̃ satisfies this check but (vk̃,Γk̃) 6∈ Rcf
B,Hk

is at most 1/|C|. The theorem
follows by taking the union bound over all batch verifications instructed by the environment.

10 Putting Everything Together
We analyzed the range-extension construction in Section 5 without batch verification in a modular
way based on any VRF that UC-realizes FX ,`VRF

VRF . Nevertheless, it is easy to see that batch verification
and range extension can be done in a single step in the protocol above. All we have to do is to modify
the algorithm Compute in π+

ECVRF which changes the format of the tuples T = (m, y, π, v) only in
one place, i.e., y ∈ {0, 1}c·`VRF , where c is the fixed constant in the range-extension construction. We
denote the new protocol with the new output computation Compute′ below by π̃+

ECVRF:

• Compute′(π), where string π = Γ || ... with Γ ∈ E:

1. Compute Y ← H(suite_s || DS3 || (cf ∗ Γ) || DS0).
2. Output

(H(suite_s || DS5 || 1 ||Y || DS0), . . . ,H(suite_s || DS5 || c ||Y || DS0)).

Corollary 10.1. Under the same assumptions as Theorem 9.4, protocol π̃+
ECVRF UC-realizes FX ,c·`VRF

VRF+ ,
for X = {0, 1}∗ and `VRF(κ) = 4κ.

Proof Sketch. The only difference in the simulation compared to the proof of Theorem 9.4 is that the
output of the VRF functionality y = (y1, . . . , yc) w.r.t. (v,m) must additionally be made consistent
with the value of the random oracle in the domain-separated positions (suite_s || DS4 || i ||Y || DS0)
for i = 1, . . . , c, where Y is obtained by evaluating H(suite_s || DS3 ||P || DS0) and P is derived from
a valid proof string π = Γ || . . . as P = cf ∗ Γ.

We recall from the proofs of Theorem 9.3 and Theorem 9.4 that as long as the bad events defined
in Figure 9 do not occur, that if a point P (from the set of points queried ot the random oracle
as above) is associated with a key-message pair (v,m) , then this is a valid association13 and that
the assignment is unique. Also the converse is proven, i.e., at most one of the points P queried to
the random oracle can be associated with (v,m) as long as none of the bad events occur. Since
the simulation is consistent, the assignment of points P to pairs (v,m) can be done upon the first
invocation of the form H(... ||P || ...).

Finally, correctly predicting the random-oracle output Y derived from point P (that is associated
to (v,m)) is a negligible probability event. Therefore, all the pairs (i, Y ), i = 1, . . . , c, queried to
the RO are to be programmed just at the moment when Y $← {0, 1}`VRF is defined for the first time
in the simulation and associated to the pair (v,m) via point P . Similar to the proof of Theorem 5.1,

13In the sense that valid proof strings can exist that prove the statement (v,Γ) ∈ LRcf
B,H

, where cf ∗ Γ = P and H is
derived from (v,m).
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a consistent simulation is only possible if none of these positions (i, Y ) for i = 1, . . . , c has been
programmed before, which is an event that can be bounded by the (negligible) collision probability
of bitstrings drawn uniformly at random from {0, 1}`VRF . Therefore, if neither such collisions nor any
of the above defined bad events occur we obtain a simulator for which the real and ideal executions
are indistinguishable. The claim follows.
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