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Abstract

Many online applications, such as online file backup services, support the sharing of indexed
data between a set of devices. These systems may offer client-side encryption of the data, so that
the stored data is inaccessible to the online host. A potentially desirable goal in this setting would
be to protect not just the contents of the backed-up files, but also their identifiers. However,
as these identifiers are typically used for indexing, a deterministic consistent mapping across
devices is necessary. Additionally, in a multi-device setting, it may be desirable to maintain an
ability to revoke a device’s access—e.g. through rotating encryption keys for new data.

We present a new primitive, called the Oblivious Revocable Function (ORF), which operates
in the above setting and allows identifiers to be obliviously mapped to a consistent value across
multiple devices, while enabling the server to permanently remove an individual device’s ability
to map values. This permits a stronger threat model against metadata, in which metadata
cannot be derived from identifiers by a revoked device colluding with the service provider, so
long as the service provider was honest at the instant of revocation. We describe a simple Diffie-
Hellman-based construction that achieves ORFs and provide a proof of security under the UC
framework.

1 Introduction

In a traditional encrypted cloud storage service, a centralized service provider manages a server
that holds encrypted files which can be accessed and decrypted only by a set of devices associated
with a user. Here, the encryption provides confidentiality for the user’s data—since only the user’s
devices own the decryption keys needed to access the data, the server is unable to recover the files
in plaintext.

However, this confidentiality is limited to the file’s contents, since the server still has access to
all metadata needed in order to properly retrieve these encrypted files for the user. In particular,
the filenames associated with the user’s files need to be used as an index for the server to find the
user’s files, and are hence leaked to the server. In this work, we consider solutions that address this
problem, which we call encrypted indexing, by allowing the client to keep human-readable filenames
while ensuring that these same filenames are not leaked to the service provider.

In the single-device setting, there is a rather straightforward solution to encrypted indexing: a
client can simply prescramble the filenames by selecting a pseudorandom identifier for each file to
use as a label for the server, in place of its actual filename. These pseudorandom identifiers could
be derived as outputs of a keyed pseudorandom function (PRF) F , where the key K is kept on the
device, and the input to the PRF is the filename. As long as the server does not have access to K,
confidentiality of the filenames is preserved.

1



Supporting multiple devices. While the above approach may be sufficient when the user has
only one device, it is less secure when the user controls multiple devices, each of which must
hold the PRF key. In particular, if any of the devices are compromised and the key leaked, then
confidentiality from the server no longer holds.

As a concrete example, consider the scenario in which a user wishes to access the encrypted
cloud storage service from a web browser on a public computer. An adversary that compromised
the public computer could collude with the service provider in an attempt to break confidentiality.

Enabling revocation. Note that in the multi-device setting, devices can be registered to a user,
as well as be revoked. A device revocation allows a user to delete their device’s copy of the PRF key.
However, this relies on the user to proactively trigger the revocation before being compromised by
an adversary. In practical settings, this can often be an unrealistic assumption—akin to expecting
that a user will remember to “log out” of their account on a web browser on a public computer.
And in the case where a user loses a device that falls into the hands of an adversary, preemptive
device revocation would no longer be possible.

Instead of client revocation, another option for maintaining security is server revocation for a
device, which can be triggered without the device having to take any action. This could happen
either through the user using another device to connect to the server and indicate that one of its
other devices should be revoked access, or it could be handled automatically by the server (say,
through the expiration of a 90-day session for the registered device). Now, if the user loses a device,
triggering a server revocation would make the lost device’s secrets obsolete to an adversary. Of
course, if the adversary has fully compromised the server, then it cannot be trusted to perform the
server-side revocation. However, in practical settings, it is often the case that a service provider is
acting honestly in the present, but may be susceptible to a compromise in the future. Providing a
meaningful notion of security in this setting is significantly more complicated.

1.1 Oblivious Revocable Functions (ORFs)

In this work, we focus on the use of server revocation as a means for providing security for multi-
device encrypted indexing. In Section 2, we introduce an ideal functionality FORF for this setting
which captures the scenario in which a user can adaptively register its devices to a server, to jointly
compute an encrypted index without revealing the plaintext to the server. The ideal functionality
produces server outputs which emulate the outputs of a truly random function on the user’s inputs,
without needing to expose these inputs to the server. For the same input, the functionality’s
evaluation outputs are deterministically fixed for each user, and are independent of the device
that initiated the function evaluation. Practically speaking, this ensures that the filename index
mapping established by one of the user’s devices will remain consistent across all of the other user’s
devices, without requiring the devices to communicate beyond the initial registration of the devices
to the server.

The random outputs produced by the function evaluation allows for the private client inputs to
take on low-entropy values (e.g. filenames), without adversely affecting the security of the indexing.
Furthermore, the function evaluation must be initialized by a client device and completed by the
server. This ensures that the server cannot preprocess the function evaluation outputs without
interaction with a client device. Similarly, a client device cannot compute the function evaluation
by itself without involving the server. As a result, an adversary is unable to predict future outputs
of the function evaluation without accessing the device secrets and the server to which it has
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registered.

Client input privacy. A natural notion of privacy for the client’s evaluated inputs would ensure
that nothing about the inputs are leaked to the adversary (in the ideal world, the simulator would
not receive any information about the inputs from the ideal functionality). In our formalism, we
slightly relax this notion to allow for the functionality to leak a minimal amount of information to
the simulator: specifically, whether or not the input has been evaluated by the client before. As a
result, this formalism may not be suitable for applications where same-input evaluations need to
appear indistinguishable from different-input evaluations. Note however that this information will
inevitably be leaked to the server if it is able to complete a server-side evaluation and learn the
final function output, since this function output is already deterministic in the client’s input.

Modeling device and server compromises. In general, properly capturing the nuances of the
adversary’s interactions with the clients and server is a non-trivial task. We allow for an adversary
interacting with a protocol that realizes the ideal functionality to trigger compromises for each
party that leaks all party secrets to the adversary. For instance, in the case where secure channels
are used, this also implies that the secrets used to access the secure channel must be leaked—we
model this by ensuring that the adversary also has access to any messages that the compromised
party has ever received.

When a revocation is triggered for a target device by an honest server, the server-side secrets
associated with that device are removed, and the corresponding device’s secrets are no longer of
value to an adversary. In order to capture this, we restrict the class of adversaries that we consider
as distinguishers between a real execution of a protocol and the ideal functionality to be the set
of adversaries that do not trigger an “active dual compromise” event; when a compromise for an
actively-registered device occurs, along with a compromise for the server it registered to, before it
has been revoked. Intuitively, when an adversary successfully triggers an active dual compromise for
a device-server pair, all secrets used to perform function evaluation are revealed to the adversary,
which hinders the ability to use any cryptographic primitives in order to continue indistinguishably
simulating the ideal functionality. In Section 2.2, we elaborate on these restrictions, along with a
more detailed explanation of these compromise events.

1.2 Realizing ORFs

We discuss several candidate constructions for FORF with various tradeoffs. We conclude with a
high-level description of the main construction that we present in Section 3.

Threshold OPRFs. Perhaps the most natural realization of an FORF is through the use of a 2-out-
of-2 threshold oblivious PRF [8, 9] (OPRF). In a t-out-of-n threshold OPRF, a client with a private
input can jointly compute a PRF output among n servers, of which only t have to participate. If
any t − 1 servers collude, they cannot reconstruct the final PRF output. The following function,
often called DH-OPRF, can be thresholdized:

F (k, x) = H(x,H(x)k)

This function can be obliviously evaluated by having the client pick a blinding scalar r and sending
a ← H(x)r to the server, which then returns b ← ak to the client, who then computes H(x, b1/r)
to recover the PRF output. By performing a secret sharing of the key k across the n servers, this
can also be made to support a t-out-of-n scheme.
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To map the threshold OPRF primitive into the ORF setting, the ORF client simultaneously
plays the role of an OPRF client (holding the private input) and also as one of the two threshold
OPRF servers, holding a keyshare. The ORF server is then the remaining threshold OPRF servers,
and the function evaluation proceeds correspondingly. Device initialization is handled by each
party picking one half of the key independently, and new device registration is handled by each
party rerandomizing their keyshares and using secure channels to communicate the rerandomization
factor in order to ensure consistency across devices.

However, the main issue with the above-described threshold OPRF construction of an ORF is
that the client learns the output F (k, x), whereas for ORFs, the output must be unpredictable to
the client, even after a successful round of interaction for evaluating the function between the client
and server.

Building off of this approach, an alternative construction which resolves the above issue works
as follows. Let k1 be the key held by a registered device, and k2 the key held by the server it was
registered to. Consider the following function:

F (k, x) = H(H(x)k1k2)

The client begins the evaluation by picking a blinding scalar r1 and sending a ← H(x)k1r1 to the
server. The server picks another blinding scalar r2 responds with b← ak2r2 to the client. The client
then sends c← b1/r1 to the server, who then computes H(c1/r2) as the final function output.

This construction ensures that the function output is unpredictable to the client as required
by FORF, and also has the extra property (similar to the threshold OPRF construction) that the
messages exchanged between client and server fully hide the input. In most practical scenarios,
this construction should be a sufficient solution to the multi-device encrypted indexing problem.
However, our definition of an ORF allows for a weaker notion of hiding for the plaintexts, in that
a deterministic handle can be leaked which allows for equality comparisons of the corresponding
evaluated inputs.

Single-message construction. In the construction that we analyze in Section 3, we present a
simpler evaluation of the above function which does allow for equality comparisons to be leaked for
evaluated inputs, but with the benefit that the the evaluation only requires a single message to be
sent from the client to the server. To evaluate, the client sends a← H(x)k1 to the server, who then
computes the function output as H(ak2). In Section 3.1, we provide a proof that this construction
UC-realizes FORF in the random oracle model under the Decision Diffie Hellman assumption.

1.3 Related Work

As mentioned above, a closely-related primitive to ORF is the notion of an oblivious PRF [6, 7]. In
both primitives, a client holds a private input which it wishes to evaluate to produce a pseudorandom
output with a server who holds a key. However, in the revocable setting, the user may control
multiple devices, each with their own keys, and we want for the server to be able to revoke access
for a client device while still allowing it to compute PRF evaluations for the remaining client devices.
As a result, the overall setting (from a security perspective) is quite different.

Another related primitive is the Pythia PRF service [5], which also allows for clients to compute
PRF outputs with a server while maintaining message privacy and using unique secret keys for
distinct clients. Pythia relies on constructions of a partially-oblivious PRF, and consequently offers
a more advanced suite of security considerations when compared to ORF.
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Parties: A set of devices (each denoted by D) owned by a single user U and a server S.

Initialization:

• Client Initialize: On input (ClientInitialize, uid, did, rid) from Ddid, if the record
〈ClientInitialized, uid, did, rid〉 has already been stored, then abort. Otherwise, store the
record 〈ClientInitialized, uid, did, rid〉, and send (ClientInitialize, uid, did, rid) to A.

• Server Initialize: On input (ServerInitialize, uid, did, rid) from Srid, if the record
〈Registered, uid, did, rid〉 has already been stored, then abort. Otherwise, store the record
〈Registered, uid, did, rid〉, and send (ServerInitialize, uid, did, rid) to A.

Registration:

• Client Start Registration: On input (ClientStartRegistration, uid, did1, did2, rid) from
Ddid1 , if the record 〈ClientInitialized, uid, did1, rid〉 has not been stored, then abort.
Otherwise, store the record 〈ClientRegistrationStarted, uid, did1, did2, rid〉, and send
(ClientStartRegistration, uid, did1, did2, rid) to A.

• Client Finish Registration: On input (ClientFinishRegistration, uid, did1, did2, rid)
from Ddid2 , if the record 〈ClientInitialized, uid, did2, rid〉 has already been stored, then
abort. If the record 〈ClientRegistrationStarted, uid, did1, did2, rid〉 has not been
stored, then abort. Otherwise, store the record 〈ClientInitialized, uid, did2, rid〉 and send
(ClientFinishRegistration, uid, did1, did2, rid) to A.

• Server Accept Registration: On input (ServerAcceptRegistration, uid, did1, did2, rid)
from Srid, if the record 〈Registered, uid, did2, rid〉 has already been stored, then
abort. If the record 〈ClientRegistrationStarted, uid, did1, did2, rid〉 or the record
〈Registered, uid, did1, rid〉 has not been stored, then abort. Otherwise, store the record
〈Registered, uid, did2, rid〉, and send (ServerAcceptRegistration, uid, did1, did2, rid) to A.

Revocation:

• Server Revoke: On input (Revoke, uid, did, rid) from Srid, delete the record
〈Registered, uid, did, rid〉 (aborting if it cannot be found), and send (Revoke, uid, did, rid)
to A.

Figure 1: The ORF ideal functionality FORF.

2 The ORF Ideal Functionality

We formulate our definition of the ORF ideal functionality under the universal composability
(UC) framework [3], which consists of an environment that attempts to distinguish between the
“real world” and an “ideal world”. Additionally, we frame our security notions within the (pro-
grammable) random oracle model. The ideal functionality is presented in Figures 1 and 2. In the
following, we establish the notation and conventions we use in our formalism, and then provide an
intuitive description of the interfaces supported by this functionality.

Conventions. We use A to represent an adversary, U to represent a user controlling a set of
devices D1, . . . ,Dn, and S for a server. We use angle brackets 〈· · · 〉 to denote records that are kept
as state in between operations. Records can be stored or deleted. The first parameter of a record
is a label that denotes the type of the record. We use ? to denote a wildcard for use in conditional
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Evaluation:

• Client Evaluate: On (ClientEvaluate, sid, uid, did, rid, x) from Ddid, if the record
〈Registered, uid, did, rid〉 has not been stored, then abort. Otherwise, pick a unique
deterministic handle µ ∈ {0, 1}? based on the tuple (uid, rid, x), store the record
〈ClientEvaluation, sid, uid, did, rid, x〉, and send (ClientEvaluate, sid, uid, did, rid, µ) to A.

• Server Evaluate: On (ServerEvaluate, sid, uid, did, rid) from Srid, if the
record 〈Registered, uid, did, rid〉 does not exist, or if a record of the form
〈ClientEvaluation, sid, uid, did, rid, ?〉 does not exist, then abort. Otherwise, set x
as the last parameter for the ClientEvaluation record. If there is a record of the
form 〈EvaluationInput, uid, rid, x, ?〉, then set z as the last parameter of that record.
Otherwise, sample z ←R O (uniformly at random from the output space) and store
the record 〈EvaluationInput, uid, rid, x, z〉. Output z to the environment, and send
(ServerEvaluate, sid, uid, did, rid) to A.

Compromise:

• Server Compromise: On (CompromiseServer, rid) from A, let V be the set of all tuples
(uid, z) for which there exists a stored record of the form 〈EvaluationInput, uid, rid, ?, z〉.
Send (CompromiseServer, rid, V ) to A.

Figure 2: The ORF ideal functionality FORF (continued).

statements over stored records. Following the convention of Canetti [3], we assume without loss of
generality that A is a dummy adversary that merely passes all of its messages and computations
to the environment E . Therefore, we formulate the real world and ideal world in the context of an
environment which triggers all parties and receives all inputs and computations.

Handling concurrent and duplicate invocations. Each of the interfaces of FORF read from
(and some modify) a shared storage of records. In our presentation, we assume that each of these
interfaces are invoked sequentially, so as to avoid issues arising from race conditions that can occur
from concurrent reads from the shared state of records. This assumption can be lifted by simply
instantiating read-write locks that ensure proper synchronization of the shared records. However,
in the interest of an ease of presentation, we omit mentioning these locks in Figure 1. In a similar
vein, we also assume that each of these interfaces can only be called at most once on any given set
of arguments, so as to avoid double-setting internal state. This assumption can also be lifted by
keeping track of and rejecting duplicate invocations of the functions on an identical set of arguments,
which we again omit for ease of presentation.

Identifiers. There are four types of identifiers that we use in our model: device identifiers (did),
user identifiers (uid), server identifiers (rid), and session identifiers (sid). A device identifier did is a
label that uniquely identifies each of a user’s devices. These devices may be adaptively registered
to and revoked from the user’s device list, and maintain the property that the evaluations between
any two devices on the same user’s device list with a server remain consistent. A user identifier uid
identifies a user with the set of devices registered to it. A server identifier rid identifies the server
that is associated with a set of registered devices and users. All evaluations for an input x across
this user’s devices produce the same output for the same server.

A session identifier sid is a label that uniquely identifies an invocation of ClientEvaluate
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and ServerEvaluate. Executions of the protocol across different session identifiers are completely
independent of one another. As a result, our UC formulation of the security of ORF is inherently
parameterized by the session identifier, which guarantees that concurrent instantiations of these
user-server sessions do not interfere with one another with respect to security. In the common
setting in which there only exists a single server, the session identifier is equivalent to a “user
identifier”.

2.1 Intuition for the Ideal Functionality

The ideal functionality FORF consists of users controlling a set of devices that interact with
servers. A user can perform the following operations: initialize a device with a server (through
ClientInitialize), register a new device to a server from an already-registered device (through
ClientStartRegistration and ClientFinishRegistration), or initiate an evaluation between a
device and a server by calling ClientEvaluate on an input x. A server can perform the following
operations: accept a device initialization (through ServerInitialize), accept a device registration
(through ServerAcceptRegistration), revoke a previously-registered device by calling Revoke, or
participate in an evaluation with a device by calling ServerEvaluate.

Initialization and registration. Initialization begins with a client and ends with the server
accepting the initialization by storing a Registered record for the device Ddid, associating it with
the user uid and server rid. Registration is used for when a client wishes to register a new device
after an initial device has already been registered. This involves a three-way handshake between
a client’s old device, a client’s new device, and the server (which accepts the registration request).
After a successful registration, the server stores a Registered record for the new device, similarly
to the end of a successful initialization of the first device. These functions keep track of records
to ensure that for both the initialization and registration functions, the adversary A receives the
same input that was used to invoke these functions.

Revocation. For server revocation, the ideal functionality deletes the corresponding registration
record as indicated by the requesting server. An indication of the revocation is also forwarded to
the adversary.

Evaluation. For client evaluation, the functionality first checks that the requesting device has
been registered to a user and server. If so, it associates a unique handle µ for the tuple (uid, rid, x),
meaning that on subsequent calls to ClientEvaluate, if the same uid, rid, and x are supplied, then
the same handle µ is picked. A ClientEvaluation record holding x is stored, and this handle is
sent in place of the input x to the adversary. The intention here is to convey that the adversary
does not get access to x, but instead only receives a handle for x, which allows it to compare against
other received handles to test for equality of the corresponding inputs x (evaluated from the same
uid and rid). For server evaluation, the functionality checks for the appropriate registration record,
and also ensures that a ClientEvaluation record exists. Then, it takes the input x supplied
to ClientEvaluate and evaluates a consistent random function, using z as the output to the
environment. Note that z is not sent to the adversary in this step.

Server compromise. Finally, when responding to server compromises triggered from the adver-
sary, the ideal functionality gathers all z outputs produced through ServerEvaluate that corre-
sponding with the requested rid, and sends them to the adversary.
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2.2 Handling Compromises

In the real world, the adversary is allowed to (adaptively) compromise a subset of the parties
participating in the protocol. A “compromise” is a weaker form of the more general notion of party
corruption, in which the adversary obtains access to all long-term secrets stored and messages
received by the compromised party, but is not able to maliciously control the party’s operations.
Here, we can think of the real-world representation of a compromise as the scenario in which an
attacker has passively gained access to a snapshot of party’s secrets and message storage at a
certain point in time. Since a compromise represents the leakage of a snapshot of a party’s secrets,
note that a party can be compromised multiple times by an adversary, with the leakage potentially
being different across compromises, based on the party’s interactions with other parties in between
compromises.

There are two types of compromise events which we model: device compromise and server
compromise. We also define the notion of “active” device and server compromises.

Device compromise. When an adversary chooses to compromise a device, all long-term values
that must be persisted on the device in order to complete an execution of client evaluation with a
server are revealed to the adversary. Additionally, any values that were transmitted to the device
from another party must also be leaked to the adversary. In the ideal world, device compromise
events are not captured in the ideal functionality, which means that any long-term secret values and
messages sent through channels must be produced by a simulator without any additional leakage
from FORF.

Definition 2.1 (Active Device Compromise). A (did, rid)-active device compromise describes the
situation in which an adversary A triggers a device compromise for device did at any point af-
ter either (ClientInitialize, ?, did, rid) or (ClientFinishRegistration, ?, ?, did, rid) have been
invoked by the environment.

Server compromise. When the adversary chooses to compromise a server, all long-term values
that must be persisted on the server in order to complete an execution of server evaluation with a
device are revealed to the adversary. Additionally, any values that were transmitted to the server
from another party must also be leaked to the adversary. In the ideal world, the adversary invokes
CompromiseServer during a server compromise event for a given rid, and the ideal functionality
reveals all evaluation inputs associated with rid that were computed and recorded through previous
calls to ServerEvaluate.

Definition 2.2 (Active Server Compromise). A (did, rid)-active server compromise describes the
situation in which an adversaryA triggers a server compromise for server rid at any point after either
(ServerInitialize, ?, did, rid) or (ServerAcceptRegistration, ?, ?, did, rid) have been invoked by
the environment, but before (Revoke, ?, did, rid) has been invoked by the environment.

Restricting active dual compromises. In this work, we specifically restrict our consideration
to a class of adversaries that do not execute “active dual compromises”—that is, adversaries that
do not simultaneously compromise a device and a server when the device has an active registration
(not revoked) with the server.

Definition 2.3 (Active Dual Compromise). We say that an adversary A has triggered a (did, rid)-
active dual compromise if A triggers both a (did, rid)-active device compromise and a (did, rid)-active
server compromise.
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Definition 2.4 (FORF-Admissibility). We say that an adversary is FORF-admissible if it never
triggers a dual compromise for any device and server pair. That is, there is no such pair of (did, rid)
for which the adversary has triggered a (did, rid)-active dual compromise.

Notably, an FORF-admissible adversary excludes the following cases:

• Adversaries which compromise a device and server after the device has been registered to the
server, but then subsequently revoked by the server, do not constitute as having performed
an active dual compromise (since the device compromise is not considered to be an “active”
compromise).

• Similarly, adversaries which compromise a device after it has been registered and before it has
been revoked, but compromise the server before the device was registered to it, also do not
constitute as having performed an active dual compromise (since the device is not considered
to be “active” when the server was compromised).

Note that there is a distinction to be made between how the ideal functionality responds during
a device and server compromise, compared with the information that the adversary receives when
triggering a device and server compromise in the real protocol. The ideal functionality does not
deal with device compromises in any way, and only leaks the evaluation outputs during the server
compromise step. However, in the real world, all device secrets are sent to the adversary for device
compromises, and all server secrets are sent to the adversary for server compromises.

3 Construction

We present a construction ΠDH which describes a single-message protocol for client and server
evaluation (one message sent from the client to the server). The security of ΠDH is based on the
Decisional Diffie-Hellman (DDH) assumption [1] in a prime-order group, along with the instantia-
tion of a random oracle. The protocol ΠDH is described in Figures 3 and 4.

In this construction, each party (device or server) communicates with another party through
the use of a pre-established secure channel, which provides confidentiality and authentication for
its messages. When an adversary compromises a party (device or server), it gains access to the
plaintexts of all messages that the party has received so far, along with any internal state (the
secret values needed to perform client and server evaluation) kept by the party.

Building blocks. In this construction, we make use of the following three building blocks: secure
channels (FSC), a global programmable random oracle (GpRO), and a group G for which the DDH
assumption holds.

• We use the notion of a strong UC-secure channel defined in [4]. We use the notation FSC as
the ideal functionality for a secure channel, with interfaces FSC.EstablishSession, FSC.Send,
FSC.Receive, and FSC.ExpireSession (see Section 5 and Figure 11 of [4]).

• We prove security in the (global) programmable random oracle model [2]. We borrow their
notation, GpRO, which describes the ideal functionality of a global programmable random
oracle with interfaces GpRO.HashQuery and GpRO.ProgramRO (see Section 4 of [2]).
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• We make use of a group G of prime order p, where the Decision Diffie-Hellman problem
is assumed to be intractable. That is, given a generator g ∈ G, the tuple (g, ga, gb, gab) is
indistinguishable to a computationally bounded adversary from (g, ga, gb, gc), for uniformly
sampled scalars a, b, c←R [p].

Construction intuition. In ΠDH, a registered client device always has a some key kD, and a
server has a key kS corresponding to each device that has been registered with it. We maintain the
invariant (through the definitions of the initialization and registration) that for any user uid, the
corresponding keys kD and kS are such that kD · kS is the same across all devices owned by that
user. This is due to the fact that during registration, an old device picks a random scalar r, and
sends the new device the key kD ·r−1, so that the invariant still holds for the new device-server pair.
All message exchanges occur through secure channels so that they are not leaked to the adversary.

Then, when executing client and server evaluations, the client device on an input x computes
p← H(x)kD and sends p to the server through a secure channel. The server, upon receiving this p
value, computes H(pkS) and uses this as the function output sent to the environment. Note that,
by the above-mentioned invariant, this value is consistent across all devices owned by the user that
were registered to the same server.

3.1 Proof of Security

We provide a proof of the following theorem:

Theorem 1. The construction ΠDH GUC-realizes FORF, under the assumption that DDH holds
for G, and in the (FSC,GpRO)-hybrid model.

We describe a simulator Sim in Figure 5 that interacts with the ideal functionality FORF. We
define the following series of games which involve Sim attempting to simulate the environment’s
interactions with the honest parties.

• Game 0: Game0 is identical to the environment’s interactions with the real world execution
of ΠDH.

• Game 1: Game1 differs from Game0 in that, instead of computing the abort conditions
for each function by checking the existence of entries in StD, StS, and whether or not a
message was received by FSC, Game1 instead keeps track of records ClientInitialized,
ClientRegistrationStarted, Registered, and ClientEvaluation to compute the cor-
responding abort conditions, identically to how they are computed in FORF.

• Game 2: Game2 differs from Game1 in that, instead of using the secure channel functionality
FSC to send messages to parties in ClientStartRegistration and ClientEvaluate (with
their receiving counterparts in ClientFinishRegistration, ServerAcceptRegistration,
and ServerEvaluate), the simulator simulates the transmission of these messages and outputs
the length ` = dlog2(q)e to A, storing the plaintexts in StN, StR, and StP correspondingly.
Also, instead of returning the plaintexts of all messages received through secure channels in
CompromiseDevice and CompromiseServer, Sim additionally outputs to A the values:

– StN[?, did, ?] for CompromiseDevice, and

– StR[?, ?, rid] and StP[?, uid, did, rid] for CompromiseServer.
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Parameters: For the security parameter λ, a prime-order group G with |G| = q, and a hash function
H : {0, 1}? → G, the protocol proceeds as follows.

Initialization:

• Client Initialize: On input (ClientInitialize, uid, did, rid), device Ddid checks if there is an
existing entry for StD[uid, did, rid], aborting if so. Otherwise, it samples and stores a scalar
StD[uid, did, rid]←R [q].

• Server Initialize: On input (ServerInitialize, uid, did, rid), server Srid checks if there is an
existing entry for StS[uid, did, rid], aborting if so. Otherwise, it samples and stores a scalar
StS[uid, did, rid]←R [q].

Registration:

• Client Start Registration: On input (ClientStartRegistration, uid, did1, did2, rid),
device Ddid1 retrieves k ← StD[uid, did1, rid] (aborting if this entry cannot be
found), and samples a scalar r ←R [q], computes k′ ← k · r. Then, it in-
vokes FSC.EstablishSession(ssid1,Ddid2 , initiator) and FSC.Send(ssid1, k

′), along with
FSC.EstablishSession(ssid2,Srid, initiator) and FSC.Send(ssid2, r).

• Client Finish Registration: On input (ClientFinishRegistration, uid, did1, did2, rid), de-
vice Ddid2 checks if there is an existing entry for StD[uid, did2, rid] (aborting if so). Then,
it invokes FSC.EstablishSession(ssid1,Ddid1 , responder), waits to receive (Receive, ssid1, k

′)
from FSC (aborting if never received), and invokes FSC.ExpireSession(ssid1). Finally, it stores
StD[uid, did2, rid]← k′.

• Server Accept Registration: On input (ServerAcceptRegistration, uid, did1, did2, rid),
server Srid checks if there is an existing entry for StS[uid, did2, rid] (aborting if so), and re-
trieves k ← StS[uid, did1, rid] (aborting if this entry cannot be found). Then, it invokes
FSC.EstablishSession(ssid2,Ddid1 , responder), waits to receive (Receive, ssid2, r) from FSC

(aborting if never received), and invokes FSC.ExpireSession(ssid2). Finally, it sets k′ ← k ·r−1,
and stores StS[uid, did2, rid]← k′.

Revocation:

• Server Revoke: On input (Revoke, uid, did, rid), Srid deletes the entry StS[uid, did, rid] (aborting
if it cannot be found), executes FSC.ExpireSession(ssid2) and FSC.ExpireSession(ssid3), and
deletes the plaintexts for any messages sent to Srid.

Evaluation:

• Client Evaluate: On input (ClientEvaluate, sid, uid, did, rid, x), Ddid retrieves the scalar k ←
StD[uid, did, rid] (aborting if it cannot be found), sets h ← GpRO.HashQuery(“client” || x ||
uid || rid), and sets p← hk. Then, it invokes FSC.EstablishSession(ssid3,Srid, initiator) and
FSC.Send(ssid3, p).

• Server Evaluate: On input (ServerEvaluate, sid, uid, did, rid), Srid first retrieves the
scalar k ← StS[uid, did, rid] (aborting if this entry cannot be found). Then, it invokes
FSC.EstablishSession(ssid3,Ddid, responder), waits to receive (Receive, ssid3, p) (aborting
if never received), and invokes FSC.ExpireSession(ssid3). Finally, it computes z ←
GpRO.HashQuery(“server” || pk || uid || rid), and outputs z to the environment.

Figure 3: The protocol ΠDH.
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Compromise:

• Device Compromise: On (CompromiseDevice, uid, did) from A, return to A all entries of the
form StD[uid, did, ?] and the plaintexts of all messages received through secure channels with
Ddid as the recipient.

• Server Compromise: On (CompromiseServer, rid) from A, return to A all entries of the form
StS[?, ?, rid] and the plaintexts of all messages received through secure channels with Srid as the
recipient.

Figure 4: The protocol ΠDH (continued).

• Game 3: Game3 differs from Game2 only in ClientEvaluate: instead of computing h ←
GpRO.HashQuery(“client” || x || uid || rid) and p ← hk, it checks if there is a pµ value
previously associated with the received µ. If so, it retrieves the did′ associated with µ (when
it was first encountered), sets k? ← StN[uid, ?, did, rid], retrieves k′ ← StD[uid, did′, rid], and
sets r? ← k?/k′, and sets p?µ ← pµ ·r?. If not, it samples a p?µ ←R G and stores the association
between µ and p?µ.

• Game 4: Game3 differs from Game3 in ServerEvaluate and CompromiseServer:

– In ServerEvaluate, instead of computing z ← GpRO.HashQuery(“server” || pk || uid ||
rid), it relies on the ideal functionality FORF to check for an existing record of the
form 〈ClientEvaluation, sid, did, uid, rid, ?〉, aborting if it does not exist, and setting
x as the last argument if it does exist. Then, it checks for an existing record of the
form 〈EvaluationInput, uid, rid, x, ?〉, setting z as the last parameter if it exists, and
uniformly sampling z ←R O otherwise, storing 〈EvaluationInput, uid, rid, x, z〉. Then,
z is output to the environment, and Prog[uid || rid]← pk is set.

– In CompromiseServer, it first computes the set of all tuples (uid, z) for which there exists
a stored record of the form 〈EvaluationInput, uid, rid, ?, z〉, sets y ← Prog[uid, rid], and
executes GpRO.ProgramRO(“server” || y || uid || rid, z), aborting if unsuccessful.

Note that Game4 is identical to the interactions between the environment triggering the simulator
and the ideal functionality in the ideal world.

In the following series of lemmas, let E be the environment, and let Gamei(E) for i ∈ [0, 4] to
represent the environment interacting with Gamei, producing a bit output after its interactions are
complete. We write Pr[Gamei(E) = 1] to represent the probability that the environment outputs 1
after interacting with Gamei.

Lemma 1. The quantity |Pr[Game0(E) = 1]− Pr[Game1(E) = 1]| is 0.

Proof. Since the only difference between Game0 and Game1 is in how the abort conditions for each of
the functions are computed, we enumerate them below and show (by inspection) that the triggering
of each condition remains the same in between these games:

• For (ClientInitialize, uid, did, rid), the abort condition in Game0 is based on if there exists
an entry for StD[uid, did, rid], whereas the abort condition in Game1 is based on if the record
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Parameters: For the security parameter λ, a prime-order group G with |G| = q, the simulator Sim
proceeds as follows.

Initialization:

• Client Initialize: On input (ClientInitialize, uid, did, rid), Sim samples and stores a scalar
StD[uid, did, rid]←R [q].

• Server Initialize: On input (ServerInitialize, uid, did, rid), Sim samples and stores a scalar
StS[uid, did, rid]←R [q].

Registration:

• Client Start Registration: On input (ClientStartRegistration, uid, did1, did2, rid), Sim
retrieves k ← StD[uid, did1, rid], samples a scalar r ←R [q], computes k′ ← k · r, and stores
StN[uid, did1, did2, rid]← k′ and StR[uid, did1, did2, rid]← r. For ` = dlog2(q)e, Sim simulates the
transmission of a message of length ` for FSC while outputting (ssid1,Ddid1 , `) to A, along with
the transmission of another message of length ` for FSC while outputting (ssid2,Srid, `) to A.

• Client Finish Registration: On input (ClientFinishRegistration, uid, did1, did2, rid), Sim
retrieves k′ ← StN[uid, did1, did2, rid], and sets StD[uid, did2, rid]← k′.

• Server Accept Registration: On input (ServerAcceptRegistration, uid, did1, did2, rid),
Sim retrieves k ← StS[uid, did1, rid], retrieves r ← StR[uid, did1, did2, rid], and stores
StS[uid, did2, rid]← k · r−1.

Revocation:

• Server Revoke: On input (Revoke, uid, did, rid), Sim deletes the entry StS[uid, did, rid], all
entries of the form StR[uid, ?, did, rid], and all entries of the form StP[?, uid, did, rid].

Evaluation:

• Client Evaluate: On input (ClientEvaluate, sid, uid, did, rid, µ), Sim checks if there is a pµ
value previously associated with the received µ. If so, it retrieves the did′ associated with µ
(when it was first encountered), sets k? ← StN[uid, ?, did, rid], retrieves k′ ← StD[uid, did′, rid],
and sets r? ← k?/k′, and sets p?µ ← pµ · r?. If not, it samples a p?µ ←R G and stores the
association between µ and p?µ. Then, it also stores StP[sid, uid, did, rid]← p?µ. For ` = dlog2(q)e,
Sim simulates the transmission of a message of length ` for FSC and outputs (ssid3,Ddid, `) to A.

• Server Evaluate: On input (ServerEvaluate, sid, uid, did, rid), Sim retrieves k ←
StS[uid, did, rid] and p← StP[sid, uid, did, rid], and stores Prog[uid || rid]← pk.

Compromise:

• Device Compromise: On input (CompromiseDevice, uid, did) from A, return all entries of the
form StD[uid, did, ?] and StN[uid, ?, did, ?] to A.

• Server Compromise: On input (CompromiseServer, rid, V ) from A, do the following: For
each tuple (uid, z) of V , let y ← Prog[uid, rid], and execute GpRO.ProgramRO(“server” || y ||
uid || rid, z), aborting if unsuccessful. Then, return all entries of the form StS[uid, ?, rid],
StR[uid, ?, ?, rid], and StP[?, uid, did, rid] to A.

Figure 5: The simulator Sim for ΠDH.
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〈ClientInitialized, uid, did, rid〉 exists. This record is only stored in ClientInitialize and
ClientFinishRegistration for Game1, which exactly matches the storage pattern for StD
in Game0 on the same input parameters.

• For (ServerInitialize, uid, did, rid), the abort condition in Game0 is based on if there ex-
ists an entry for StS[uid, did, rid], whereas the abort condition in Game1 is based on if the
record 〈Registered, uid, did, rid〉 exists. This record is stored in ServerInitialize and
ServerAcceptRegistration, and deleted in Revoke, which exactly matches the storage (and
deletion) pattern for StS in Game0 in the same input parameters.

• For (ClientStartRegistration, uid, did1, did2, rid), the abort condition in Game0 is based
on if there exists an entry for StD[uid, did1, rid], whereas the abort condition in Game1 is
based on if the record 〈ClientInitialized, uid, did1, rid〉 exists. As covered in the case for
ClientInitialize, the storage patterns for StD and ClientInitialize match each other
across the games.

• For (ClientFinishRegistration, uid, did1, did2, rid), the abort conditions in Game0 are based
on if there exists an entry for StD[uid, did2, rid] and if a message was received from FSC, invoked
by Ddid1 through ClientStartRegistration, whereas the abort conditions in Game1 are
based on if the record 〈ClientInitialized, uid, did2, rid〉 and 〈ClientRegistrationStarted,
uid, did1, did2, rid〉 exists. The former is covered as in the case for ClientInitialize. For the
latter, note that the creation of the ClientRegistrationStarted record in Game1 occurs
precisely when Ddid1 sends a message through ClientStartRegistration in Game0.

• For (ServerAcceptRegistration, uid, did1, did2, rid), the abort conditions in Game0 are based
on if there exists an entry for StS[uid, did2, rid], StS[uid, did1, rid], and if a message was received
from FSC, sent by Ddid1 through ClientStartRegistration, whereas the abort conditions in
Game1 are based on if the records 〈Registered, uid, did2, rid〉, 〈Registered, uid, did1, rid〉,
and the record 〈ClientRegistrationStarted, uid, did1, did2, rid〉 exist. The first two are
covered as in the case for ServerInitialize, and the last is covered as in the case for
ClientFinishRegistration.

• For (Revoke, uid, did, rid), the abort condition in Game0 is based on if there exists an en-
try for StS[uid, did, rid], whereas the abort condition in Game1 is based on if the record
〈Registered, uid, did, rid〉 exists. This is covered as in the case for ServerInitialize.

• For (ClientEvaluate, sid, uid, did, rid, x), the abort condition in Game0 is based on if there ex-
ists an entry for StD[uid, did, rid], whereas the abort condition in Game1 is based on if the record
〈ClientInitialized, uid, did, rid〉 exists. This is covered as in the case for ClientInitialize.

• For (ServerEvaluate, sid, uid, did, rid), the abort conditions in Game0 are based on if there
exists an entry for StS[uid, did, rid] and if a message was received from FSC, sent by Ddid

through ClientEvaluate, whereas the abort conditions in Game1 are based on if the records
〈Registered, uid, did, rid〉 and 〈ClientEvaluation, sid, uid, did, rid, ?〉 exist. The former is
covered as in the case for ServerInitialize. For the latter, note that the creation of the
ClientEvaluation record in Game1 occurs precisely when Ddid sends a message through
ClientEvaluate in Game0.

14



This covers all cases of abort conditions that are triggered based on the existence of entries in StD,
StS, or messages being sent through FSC in Game0, being replaced by those same abort conditions
triggered instead of the existence of records, which concludes the proof.

Lemma 2. The quantity |Pr[Game1(E) = 1]− Pr[Game2(E) = 1]| is negligible in the FSC-hybrid
model.

Proof. Observe that there exists a simulator for each instantiation of a secure channel that interacts
with the ideal FSC functionality and simply outputs the length ` = dlog2(q)e to the adversary A.
Note that all messages are sent across secure channels in Game1 are of length `, which matches
the leakage to the adversary in Game2. Hence, we can invoke the UC-security of secure channels
to conclude that Game1 and Game2 behave indistinguishably for the functions in both games that
deal with secure channels.

Note, by inspection, that the changes to CompromiseDevice and CompromiseServer across the
two games are purely syntactic. Indeed, the state variable StN[uid, did, rid] in Game2 keeps track of
the messages received by device Ddid in a call to ClientFinishRegistration in Game1. Similarly,
the state variable StR[uid, did, rid] in Game2 keeps track of the messages received by server Srid in
a call to ServerAcceptRegistration in Game1. And finally, the state variable StP[sid, uid, did, rid]
keeps track of the messages received by server Srid in a call to ServerEvaluate in Game1.

Lemma 3. The quantity |Pr[Game2(E) = 1]− Pr[Game3(E) = 1]| is negligible for all FORF-admissible
adversaries in the GpRO-hybrid model, under the DDH assumption in G.

Proof. Let Q be the total number of user-server registered pairs made throughout Game2. We
consider a series of hybrid games, Game2,i for each i ∈ [Q + 1], where in Game2,i, if for invocation
of (ClientEvaluate, sid, uid, rid) it is the case that uid is one of the first i− 1 user-server registered
pairs, then it uniformly samples p ←R G under the conditions of Game3; otherwise, it compute
h ← GpRO.HashQuery(“client” || x || uid || rid) and p ← hk. Note that Game2,1 = Game2 and
Game2,Q+1 = Game3. Hence, it suffices to show that Game2,i and Game2,i+1 are indistinguishable.

Let (uid, ridi) represent the ith pair of user-server registered pairs made throughout Game2.
Given that the adversary A is FORF-admissible, it either never triggers an active server compromise
of the form (CompromiseServer, ridi), or it never triggers an active device compromise of the form
(CompromiseDevice, uidi, ?).

In the former case, if A never triggers an active server compromise on server Sridi , then the only
information the adversary can receive are the entries of StD and the plaintexts of messages sent to
devices. In particular, the p values computed in ClientEvaluate involving ridi are never revealed
to the adversary, and the k value used in ServerEvaluate involving ridi is also kept hidden from
the adversary. Furthermore, in ServerEvaluate of Game2,i, the z values output to the environment
are sampled uniformly from the output space O, and while there is a dependence between z and pk

established by the invocation of GpRO.HashQuery in Game2,i, the fact that k is hidden means that
pk (and by extension, z) is independent of p. Since the adversary’s view is completely independent
of p in this case, it follows that Game2,i and Game2,i+1 are indistinguishable to A, unconditionally.

In the latter case, if A never triggers an active device compromise on device Ddid associated with
uid, then we show that Game2,i and Game2,i+1 are indistinguishable based on the DDH assumption
in G. Let (g, α, β, γ) be the DDH tuple provided by the DDH challenger for the group G, where g
is a generator for G. We present a simulator B that interacts with a DDH challenger as follows:
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• For each unique invocation of GpRO.HashQuery on an input x (triggered either directly by
A or indirectly through ClientEvaluate or ServerEvaluate), B will associate a uniformly
random scalar rx ←R [p] for input x, and invoke GpRO.ProgramRO(x, βrx).

• For each invocation of (ClientEvaluate, sid, uid, did, rid, x), if uid = uidi and rid = ridi, it sets
p← γrx ; otherwise, it computes p as dictated by Game2,i.

Observe that if the DDH challenger issued a “real” tuple, with (g, α = ga, β = gb, γ = gab) for
uniformly random scalars a, b ∈ [p], then the random oracle outputs on input x are distributed as
a uniformly random group element hx ∈ G, and the respective ClientEvaluate output (on the
same input x, and for user uidi and server ridi) is γrx = (hx)a, which exactly matches the behavior
of Game2,i. On the other hand, if the DDH challenger issued a “random” tuple, then γrx would
be distributed uniformly at random and independent across different inputs x, which thus matches
the behavior of Game2,i+1.

We conclude that an adversary which can distinguish between Game2,i and Game2,i+1 can be
used to construct an adversary that distinguishes between the real or random tuple from the DDH
challenger. Taking a union bound over the Q device-server registered pairs across all games Game2,i,
the claim follows.

Lemma 4. The quantity |Pr[Game3(E) = 1]− Pr[Game4(E) = 1]| is negligible for all FORF-admissible
adversaries in the GpRO-hybrid model.

Proof. In Game4 of ServerEvaluate, the z value sent to the environment is the output of calling
GpRO.HashQuery(“server” || pkS || uid || rid), where kS ← StS[uid, did, rid], and where p ← hkD ,
where h is a uniformly random group element consistently tied to the tuple (uid, rid, x), and
kD ← StD[uid, did, rid]. Putting this together, this means that pkS = hkS·kD . Based on the con-
struction of the registration steps, note that kS · kD is a consistent value for any user, regardless of
the device that initiated the corresponding ClientEvaluate call. Furthermore, since A is FORF-
admissible, it cannot perform an active device compromise (which would reveal kS) and an active
server compromise (which would reveal kD) for a registered device. In other words, observe that the
value kS ·kD is independent of the adversary’s view, despite the individual compromises it performs.
As a result, the random oracle preimage for z in Game4 is also independent of the adversary’s view,
and so the output z is also independent of the adversary’s view. Similarly, in Game4, when the
output z is truly uniformly randomly sampled from the output space O. Therefore, the distribution
of z as output to the environment between Game2 and Game3 are indistinguishable.

Next, we consider the differences between Game2 and Game3 for CompromiseServer. The
only difference to the adversary here is that there is a chance that in Game3, when executing
GpRO.ProgramRO, the operation can fail. It suffices to bound the probability of this failure for the
remainder of the proof.

The random oracle operation will fail if GpRO has already assigned a value to pk ← Prog[uid, rid]
before this invocation was made. Note that the p values from StP are only exposed upon a call to
CompromiseServer, and k is only exposed upon a call to CompromiseDevice from StD. Using the
fact that A must be FORF-admissible, the value pk is independent of the adversary’s view. If A
makes a total of Q queries to the random oracle, the probability of triggering the failure event is
Q/p (where p is the size of the group G), which is negligible in the security parameter.
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