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Abstract. Impossible differential (ID) cryptanalysis is one of the most
important attacks on block ciphers. The Mixed Integer Linear Program-
ming (MILP) model is a popular method to determine whether a specific
difference pair is an ID. Unfortunately, due to the huge search space (ap-
proximately 22n for a cipher with a block size n bits), we cannot leverage
this technique to exhaust all difference pairs, which is a well-known long-
standing problem.
In this paper, we propose a systematic method to find all IDs for SPN
block ciphers. The idea is to partition the whole difference pair space into
lots of small disjoint sets, each of which has a representative difference
pair. All difference pairs in one small set are possible if its representa-
tive pair is possible, and this can be conveniently checked by the MILP
model. In this way, the overall search space is drastically reduced to a
practical size by excluding the sets containing no IDs. We then examine
the remaining difference pairs to identify all IDs (if some IDs exist). If
our method cannot find any ID, the target cipher is proved free of ID
distinguishers.
Our method works especially well for SPN ciphers with block size 64.
We apply our method to SKINNY-64 and successfully find all 432 and
12 truncated IDs (we find all IDs but all of them can be assembled into
certain truncated IDs) for 11 and 12 rounds, respectively. We also prove,
for the first time, that 13-round SKINNY-64 is free of ID distinguishers
even when considering the differential transitions through the Difference
Distribution Table (DDT). Similarly, we find all 12 truncated IDs (all
IDs are assembled into 12 truncated IDs) for 13-round CRAFT and prove
there is no ID for 14 rounds. For SbPN cipher GIFT-64, we prove that
there is no ID for 8 rounds.
For SPN ciphers with larger block sizes, we show that our idea is also use-
ful to strengthen the current search methods. For example, if we consider
the Sbox to be ideal and only consider the branch number information
of the diffusion matrix, we can find all 6,750 truncated IDs for 6-round
Rijndael-192 in 1 second and prove that there is no truncated ID for 7
rounds. Previously, we need to solve approximately 248 MILP models to



achieve the same goal. For GIFT-128, we exhausted all difference pat-
terns that have an active superbox in the plaintext and ciphertext and
proved there is no ID of such patterns for 8 rounds.
Although we have searched for a larger or even full space for IDs, no
longer ID distinguishers have been found. This implies the reasonable-
ness of the intuition that a small number (usually one or two) of active
bits/words at the beginning and end of an ID will be the longest.

Keywords: Impossible Differential, MILP, SKINNY, CRAFT, GIFT, Rijndael-
192

1 Introduction

The impossible differential (ID) attack [16,5] is one of the most important attacks
for block ciphers. This attack exploits a pair of input and output differences
(∆i,∆o) of a (round-reduced) cipher EK that cannot be connected for any K.
Namely, two plaintexts p, p′ satisfying p⊕p′ = ∆i never satisfy EK(p)⊕EK(p′) =
∆o. Such difference pair (∆i,∆o) is then called an ID. The ID attack has been
one of the most powerful cryptographic attacks nowadays. For example, it is
the first attack that could break 7 rounds of AES-128 [17] and remains the best
attack on reduced SKINNY-64 under the single-tweakey setting [13].

In the early days, an ID (∆i,∆o) was detected by the miss-in-the-middle
approach manually [6] and the details of the Sboxes are usually ignored. The
first automated search attempt appeared in [5] with so-called shrink technique.
It shrinks the word size to 3 bits and find impossible differentials of the global
structure of the cipher by exhaustively testing all possible differences and values.
This method is only applicable to those ciphers consisting of a small number of
words with a big word size, so it doesn’t work for many modern-day ciphers
such as SKINNY [3], CRAFT [4] or GIFT [1], etc. In [15], Kim et al. presented
a new automated tool called U-method. To detect if (∆i,∆o) is impossible, one
first propagates ∆i forwards by r1 rounds and checks the status of the difference
of each output word (known active, active, inactive, or unknown). Then he/she
propagates ∆o backward by r2 rounds and checks the status again. Finally, if
any contradiction occurs, (∆i,∆o) is an (r1+r2)-round ID. Several extensions of
the U-method have been done such as the UID-method by Luo et al. [18] and the
method proposed by Wu and Wang [26]. Recently, a constraint-programming-
aided version of the U-method called U⋆-method has been developed by Sun et
al. [22], which allows exhausting all possible plaintext and ciphertext difference
patterns automatically. All these methods above focus on truncated IDs, i.e.,
the contradictions inside the Differential Distribution Tables (DDT) of corre-
sponding Sboxes are not considered. Consequently, we have no way of knowing
if we would have gotten more if the information of the DDTs is taken into con-
sideration.

Several attempts focus on the upper bound on the rounds of IDs. At EURO-
CRYPT 2016, Sun et al. [21] used the primitive index of the characteristic matrix
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of the linear layer to give upper bounds on the length of IDs for some special
Substitution-Permutation-Networks (SPN) block ciphers with the detail of the
Sbox omitted. They proved that under some special conditions, the existence of
IDs relies on the existence of low-weight IDs [21, Theorem 1]. In [25], by using
linear algebra the authors gave a practical method that could give upper bounds
on the length of IDs for any SPN block cipher when omitting the differential
property of the Sboxes. Currently, all systematical methods for bounding the
length of IDs are all without considering the Sbox details.

Another line of detecting IDs starts independently from [20,10]. The MILP
model for searching for differential characteristics is simply modified by adding
additional specific constraints on the plaintext and ciphertext differences. If the
model is infeasible, the corresponding plaintext and ciphertext difference pair is
an ID. Compared to the previous methods, this method can detect all kinds of
contradictions (with the assumption that the round keys are uniformly random,
which is a default assumption of this paper). However, since the constraints on
the plaintext/ciphertext differences are fixed, the number of models we need to
solve is equivalent to the number of difference pairs we want to check. Exhaus-
tively checking all plaintext and ciphertext difference pairs is clearly computa-
tionally infeasible. Actually, for a cipher with block size n, the search space is
as large as 22n. Based on the intuition that the longest IDs are usually caused
by difference pairs with a small number of active bits or words in both plaintext
and ciphertext ends, users of this model prefer to test only a small proportion
of the difference pairs with one or two active bits or words for plaintext and
ciphertext differences. Nowadays, the model has been very popular in measuring
the security strength of newly designed ciphers against ID attacks. For exam-
ple, the designers of GIFT [1] took it to prove that there does not exist any ID
with one-active nibble against 7 rounds of GIFT-64. The designers of CRAFT
searched for IDs with plaintext and ciphertext differences having at most two
active nibbles and they found twelve 13-round IDs [4].

Apart from these works, it is worth mentioning that in [24] Wang and Jin
proved that there is no ID for 5-round AES even with the information of the DDT
based on some careful mathematical analyses. But unfortunately, this method
is specifically designed for AES only. Generally speaking, the MILP method
is much more convenient than other methods, since it only needs some slight
modifications from the MILP models for searching for differential characteristics.
However, as we mentioned, all current MILP models can check a small number of
the difference pairs. How to tackle the huge search space has been a long-standing
problem.

Contributions. In this paper, we propose a systematic method based on the
MILP model to find all IDs in the whole search space. As mentioned above,
to exhaust all input and output difference pairs requires a complexity of 22n

which is infeasible. Our method delicately partitions the whole search space and
efficiently excludes those containing no IDs. The search space is then reduced
to a reasonable size. Finally, the remaining IDs (if they exist) can be detected
with the plain MILP models. If our method finds no IDs for the r-round cipher,
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we know that there exists no ID for this r-round cipher. The provable security
is thus achieved.

Our method is efficient for SPN ciphers with a block size equal to 64. For
SKINNY-64, we find all IDs for 11 and 12 rounds in 4 and 1.5 hours, respectively.
Interestingly, all these IDs can be assembled into 432 and 12 truncated IDs for
11 and 12 rounds. We also prove, for the first time, that the 13-round SKINNY-
64 is free of ID distinguishers with considering the DDT information. Similarly,
we find all 2,700 IDs for 13-round CRAFT which is equivalent to 12 truncated
IDs and prove there is no ID for 14 rounds. For Substitution Bit-Permutation
Network (SbPN) cipher GIFT-64, we prove that there is no ID for 8 rounds.

Our method is also useful to improve the current search strategies for ci-
phers with large blocks. We show its usage in applications to Rijndael-192 and
GIFT-128 as examples. For Rijndael-192, we search for IDs under the arbitrary
Sbox/MC mode, i.e., only the activeness of an Sbox and the branch number of
the MixColumn operation would be considered (which is inspired by the arbi-
trary Sbox model [20]). In this scenario, we show that all 6,750 truncated IDs of
6-round Rijndael-192 can be identified in 1 second, and prove there is no trun-
cated ID for 7 rounds. In previous methods, we need to solve approximately 248

plain MILP models to achieve this. For GIFT-128, we search for IDs that have
one active superbox in both plaintext and ciphertext differences. In previous
methods, we need to solve 238 plain MILP models, now with our new tool, we
only need to handle 4,608 MILP models. We prove that there is no ID with one
active superbox in both ends for 8-round GIFT-128. We list all our application
results in Table 1 for readers’ quick reference.
Implications of Finding All IDs. On the one hand, if our new model finds
no ID for a (round-reduced) cipher, we achieve a more thorough security proof
for the cipher against ID distinguishers compared to [20]. On the other hand,
it is also useful to list all IDs for a (round-reduced) cipher. Firstly, different
IDs would affect the concrete attacking phase as well as the data and time
complexity. In terms of the ID distinguishers, more active bits in the output
mean less data/time complexities. In terms of the key recovery attacks, IDs with
good input and output difference patterns may have a better performance, e.g.,
the ID attacks on AES were improved with alternative IDs [17]. Secondly, finding
all IDs (with or without considering the DDT) is a long-standing challenge in
cryptanalysis and cipher design. Finding out all IDs can help us understand
better the structure of target ciphers and the ID attack itself.

We highlight that all IDs we discuss in this paper are under the assumption
that the round keys are uniformly random. All source codes of this work are
provided in the git repository https://github.com/hukaisdu/SearchForID.
git to help readers understand our tool better.
Organization of the remaining paper. In Section 2, we introduce the no-
tations and some global settings used in this paper. In Section 3, we show how
to partition the whole search space and quickly exclude those containing no IDs
and identify all IDs in the remaining candidates. Applications to SKINNY-64,
CRYFT and GIFT-64 are presented in Section 4 and Section 5. In Section 6,
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Table 1: The application results of this paper. N in the #ID column means no
IDs. #Space is the size of the whole search space with plain MILP models.

Cipher #Space #Round #ID Time Remarks

SKINNY-64 2128

11 432 4h All IDs can be assembled
into 432 truncated IDs

12 12 1.5h All IDs can be assembled
into 12 truncated IDs

13 N 4h No IDs with the DDT
considered

CRAFT 2128

13 12 7d All IDs can be assembled
into 12 truncated IDs

14 N 7d No IDs with the DDT
considered

GIFT-64 2128 8 N 17h No IDs with the DDT
considered

Rijndael-192 248

6 6,750 1s Truncated IDs
in arbitrary Sbox/MC model†

7 N 1s No Truncated IDs
in arbitrary Sbox/MC model

GIFT-128 238 8 N 30h No IDs with one-active
superbox with the DDT considered

† Arbitrary Sbox/MC model: we only consider the activeness of the Sbox and branch
number of the MixColumn

we discuss how to apply our idea to enhance some traditional search strategies
based on MILP for large-size ciphers. In Section 7 we conclude our paper and
highlight two future works.

2 Preliminaries

2.1 Notations and Definitions

In this paper, we are only interested in the differences, so the differences are
directly represented by lowercase letters such as x rather than conventional ∆x.
Consider a (round-reduced) cipher E, if (x, y) is an ID over E, we write it as
x

E↛ y. Conversely, x E−→ y means x can propagate to y over E, i.e., (x, y) is
a possible pattern. We use uppercase letters to represent the sets of differences
such as X and Y . X E−→ Y means for all (x, y) ∈ X⊗Y we have x

E−→ y. x E−→ X

is equivalent to {x} E−→ X. Similarly, X E−→ y is equivalent to X
E−→ {y}. X ⊗ Y

(sometimes we use X
⊗

Y for a better looking of a complicated equation) is
defined as {(x, y) : x ∈ X, y ∈ Y }. If X ∩ Y = ∅, we would write X ∪ Y as
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x0/X0 E0 x1/X1 E1 x2/X2 E2 x3/X3

Fig. 1: The global settings of our theoretical model.

X + Y to highlight X ∩ Y = ∅. Generally, if
∩

i Xi = ∅, the union set of all Xi

is written as
∑

i Xi. X − Y is defined as {x ∈ X : x /∈ Y }.

Global Settings. A modern block cipher usually iterates a simple round func-
tion many times with different round keys. So we can always decompose a (round-
reduced) cipher into three parts, say E = E2 ◦ E1 ◦ E0. We denote the input
difference/set of E0, E1 and E2 by x0/X0, x1/X1 and x2/X2 respectively, and
output difference/set of E by x3/X3. See Figure 1 for details of the settings. In
the remaining paper, if we do not specify x0, x1, x2, x3 and X0, X1, X2, X3, they
denote the difference or sets as defined here.

2.2 Current MILP Model for Detecting IDs

In [20,10,9], the MILP models for detecting IDs are independently proposed.
This method is developed from the MILP models for searching for differential
characteristics [19,23] by adding some additional constraints on the plaintext
and ciphertext differences. To construct the MILP model for checking if a given
difference pair (∆i,∆o) for a cipher E is impossible, we first declare a sequence of
variables to represent input and output differences for all components of E such
as Sboxes and linear layers. Next, we use inequalities to force these variables to be
legal patterns that are compatible with the differential propagation rules of the
corresponding components. Thus, any solutions satisfying these constraints are
legal differential characteristics. Additionally, suppose the variables representing
the differences of plaintext and ciphertext are u0 and ur, we add two more
constraints as

u0 = ∆i, ur = ∆o.

If the overall MILP model is feasible, there is one differential characteristic propa-
gating from ∆i to ∆o, i.e., (∆i,∆o) is a possible differential. Otherwise, (∆i,∆o)
is an ID.

According to different methods in which we use inequalities to describe the
differential propagations over an Sbox or linear layer, the capabilities to detect
IDs of the corresponding MILP models are also different. For example, if details
of the DDT and linear layers are all described, then all kinds of contradictions
could be detected. This is the default mode we use in this paper. If only the
information that an Sbox is active or not and the branch number of a linear
layer is described in the MILP search model, truncated IDs could be detected.
We refer to such a model as the arbitrary Sbox/MC model. In this paper, the
application to Rijndael-192 is the only instance using this mode. We will assume
that the readers of this paper have been familiar with the plain MILP models
for detecting IDs. Or we refer the readers to [20,10] for more details of this topic.
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X0

connected

connected

E0 x1 E1 x2 E2 X3

(a) If x1
E1−−→ x2, then X0

E−→ X3

X0

?

#

E0 x1 E1 x2 E2 X3

(b) If x1
E1↛ x2, X0 ⊗X3 has the potential to contain IDs

Fig. 2: The illustration of Proposition 1 and the implication.

3 Finding All Impossible Differentials

Taking the MILP model in [20,10], we need to solve 22n models for a cipher with
block size n bits to check all input and output difference pairs. The search space
is obviously too large. So we partition the whole search space into many smaller
sets and then process each set one by one to exclude those containing no IDs.
For the remaining smaller sets that have the potential to contain IDs, we apply
several methods to identify all IDs contained by them.

Main Idea. To determine if (x0, x3) is possible or not, we try to find a pair of
(x1, x2) satisfying

x0
E0−−→ x1

E1−−→ x2
E2−−→ x3.

Obviously, if such (x1, x2) exists, (x0, x3) is possible. Further, if we have known
x1

E1−−→ x2, then all (x0, x3) satisfying (1) x0
E1−−→ x1 (2) x2

E1−−→ x3 are possible.
We have the following proposition (also illustrated by Figure 2a),

Proposition 1. Let E = E2◦E1◦E0, X0 ⊆ Fn
2 be a set of differences satisfying

X0
E0−−→ x1 and X3 ⊆ Fn

2 satisfying x2
E2−−→ X3. If x1

E1−−→ x2, then X0
E−→ X3.

The proof is obvious from above analyses, so we omit it here. If x1
E1↛ x2,

we cannot predict anything so we say X0 ⊗ X3 has the potential to contain
IDs, see Figure 2b. We conclude it into a corollary of Proposition 1 for better
understanding this fact.

Corollary 1. With the same notations as Proposition 1, if (x0, x3) ∈ X0 ⊗X3

is an ID, then all x1 and x2 satisfying X0
E0−−→ x1 and x2

E2−−→ X3 cannot be
connected, i.e., (x1, x2) must satisfy x1

E1↛ x2.
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To make our method more general, we assume we study a question how to
find all IDs in the sets X0 ⊗X3 over E, where X0 and X3 can be subsets of Fn

2 .
Thus, now we want to find all (x0, x3) ∈ X0 ⊗X3 satisfying x0

E↛ x3.
Our method consists of three steps:

(1) Partition the whole set X0⊗X3 into many non-overlapping smaller sets, i.e.,

X0 ⊗X3 =
∑
i

∑
j

Xi
0 ⊗Xj

3 , where X0 =
∑
i

Xi
0, X3 =

∑
j

Xj
3

For each pair i, j, we require that there always exist xi
1 and xj

2 satisfying
Xi

0
E0−−→ xi

1 and xj
2

E2−−→ Xj
3 , respectively;

(2) Exhaustively check all possible (xi
1, x

j
2) pairs to see if xi

1
E1−−→ xj

2 by MILP
models introduced in [20,10]. Xi

0 ⊗ Xj
3 contains no IDs if xi

1
E1−−→ xj

2, and
otherwise has a potential to contain some IDs;

(3) Process those Xi
0 ⊗Xj

3 that have the potential to contain IDs one by one to
identify all IDs with specific strategies that we will introduce later.

3.1 Partition: A Theoretical Viewpoint

In this paper, we always assume that E0 and E2 are non-linear functions, so
there exists an expansion property for the difference propagation over E0 and E2.
Consequently, it is possible for us to find two smaller sets X1 and X2 satisfying

(1) ∀x0 ∈ X0, ∃x1 ∈ X1 s.t. x0
E0−−→ x1,

(2) ∀x3 ∈ X3, ∃x2 ∈ X2 s.t. x2
E2−−→ x3.

We call X1 a representative set of X0 over E0 while X2 a representative set of X3

over E−1
2 . Suppose we have obtained one such representative set X1, we know

the following ∪
x1∈X1

{
x0 ∈ X0 : x0

E0−−→ x1

}
= X0.

By removing the overlapping elements among
{
x0 ∈ X0 : x0

E0−−→ x1

}
for all x1 ∈

X1, we get a partition of X0 which can be stored in a hash table with the elements
in X1 as keys and sets after partitioning as values (similar to X3 and X2). We call
such a hash table a partition (hash) table of X0 over E0. An intuitive algorithm
for determining one representative set as well as the corresponding partition table
for a non-linear function and its input difference set is given in Algorithm 1.

The basic idea of Algorithm 1 is to select representative for X one by one and
exclude corresponding elements from X until X is reduced to an empty set. The
complexity of Algorithm 1 is roughly limited by O(|X|) times of loops (line 3-10).
The operations in line 5 and 8 determine the real time of this algorithm, whose
complexity is at most 22 log |X| (the complexity of computing the whole DDT of
f). Thus the overall complexity of Algorithm 1 is bounded by O(23 log |X|). Note
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Algorithm 1: Determine a representative set and partition table of X over
f

Data: X ⊆ Fn
2 and f : Fn

2 → Fn
2

Result: A representative set S, a partition table H
1 Allocate S ← ∅
2 Allocate a hash table H ′ ← ∅
3 while X is not empty do
4 x

R←− X /* randomly select x from X */

5 compute Y s.t. x f−→ Y

6 y
R←− Y /* randomly select y from Y */

7 S ← S ∪ {y} /* y is chosen as a representative */

8 compute T s.t. T f−→ y /* T has been represented by y */
9 H ′[y]← T

10 X ← X − T /* Proceed with the remaining elements */

/* remove overlapping elements */
11 Allocate a hash table H
12 for s ∈ S do
13 for h ∈ H.keys do
14 H[s]← H ′[s]−H[h] /* elements in H[h] are recorded already */

15 return S,H

that the actual complexity should be much less than this upper bound for the
number of loops usually small. In applications of this paper, f will be at most a
16-bit-input function, so this algorithm is practical.

We first apply Algorithm 1 to X0 to obtain its representative set X1 and a
partition table H1 over E0, i.e.,

X0 =
∑

x1∈X1

H1[x1] (1)

Similarly we get the representative set X2 and partition table H2 of X3 over
E−1

2 , i.e.,
X3 =

∑
x2∈X2

H2[x2] (2)

Then the whole search space X0 ⊗ X3 has been partitioned into |X1| × |X2|
smaller sets through combining Equation (1) and (2), i.e.,

X0 ⊗X3 =
∑

x1∈X1

H1[x1]
⊗ ∑

x2∈X2

H2[x2] =
∑

x1∈X1

∑
x2∈X2

H1[x1]⊗H2[x2] (3)

Figure 3 demonstrates the partition of X0 ⊗X3. A partition of X0 ⊗X3 can be
uniquely determined by a quartet (X1,H1, X2,H2). For simplicity of description,
we define the partition of a (round-reduced) cipher.
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X0 E0 X1

x01

x11

...

xδ1

H1[x
0
1]

H1[x
1
1]

...

H1[x
δ
1]

x02

x12

...

xδ
′

2

H2[x
0
2]

H2[x
1
2]

...

H2[x
δ′
2 ]

E1 X2 E2 X3

MILP models

X0 =
∑

i=0,1,...,δ

H1[x
i
1] X3 =

∑
i=0,1,...,δ′

H2[x
i
2]x01 xδ

′

2 : x01
E19 xδ2

x11 x12: x
1
1
E1−→ x12

Fig. 3: The partitions of the input difference set X0 and X1. Since x0
1

E1↛ xδ′

2 ,
H1[x

0
1]⊗H2[x

δ
2] has potential to contain IDs. Since x1

1
E1−−→ x1

2, H1[x
1
1]⊗H2[x

1
2]

contains no IDs.

Definition 1 (Partition). For a (round-reduced) cipher E = E2 ◦ E1 ◦ E0, a
partition of its whole input and output difference spaces is a set of smaller sets
as follows,

P(X1,H1, X2,H2) = {H[x1]⊗H[x2] : x1 ∈ X1, x2 ∈ X2}

When there is no ambiguity, we just say P is a partition of E.

3.2 Partition: A Practical Viewpoint

If we apply directly Algorithm 1 to Fn
2 , the complexity is not affordable even for

a 64-bit block cipher. However, an important observation is that SPN ciphers
usually comprise several smaller parallel parts. The well-known examples include
the superboxes used in AES-like ciphers such as SKINNY [3] and CRAFT [4].
Two continuous rounds can be represented by 4 parallel superboxes. Another
example is GIFT [1] which follows a so-called Substitution bit-Permutation Net-
work (SbPN) paradigm. All Sboxes of the i-th round of GIFT, denoted by
Sbi0, Sb

i
1, . . . , Sb

i
s where s = n/4 and n is the block size, can be grouped in

two different ways – the Quotient and Remainder groups, Qx and Rx, defined
as

– Qx = {Sb4x, Sb4x+1, Sb4x+2, Sb4x+3},
– Rx = {Sbx, Sbx+q, Sbx+2q, Sbx+3q}, where q = s

4 , 0 ≤ x ≤ q − 1.

Taking GIFT-64 as an instance, the 16-bit output of Qxi = {Sbi4x, Sbi4x+1, Sb
i
4x+2, Sb

i
4x+3}

map to input bits of Rxi+1 = {Sbi+1
x , Sbi+1

x+4, Sb
i+1
x+8, Sb

i+1
x+12}. Then the interfac-

ing two rounds of GIFT-64 can be also represented by 4 parallel superboxes. An
illustration for GIFT-64 is shown in Figure 4.
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Fig. 4: The superbox representation of GIFT-64 based on the two groups (Quo-
tient and Remainder) of Sboxes.

In the remaining part of this paper, we focus on these SPN or SbPN ciphers
with superboxes. Suppose E0 and E2 comprise respectively of m parallel super-
boxes, denoted by E0 = E0,0||E0,1|| · · · ||E0,m−1 and E2 = E2,0||E2,1|| · · · ||E2,m−1,
where the size of input and output of Ei,j , i ∈ {0, 2}, j ∈ {0, 1, . . . ,m− 1} is n/4
bits. Then we apply Algorithm 1 to each Ei,j , which is a function with 16-bit
block size.

For i ∈ {0, 1, . . . ,m−1}, let X1,i and H1,i be representative sets and partition
tables for E0,i of its input difference set X0,i while X2,i and H2,i the represen-
tative sets and partition tables for E−1

2,i of X3,i. The Equation (1) and (2) can
be re-written as

X0 =
⊗

0≤j<m

X0,j =
⊗

0≤j<m

 ∑
x1,j∈X1,j

H1,j [x1,j ]


=

∑
x1,0∈X1,0

· · ·
∑

x1,m−1∈X1,m−1

H1,0[x1,0]⊗ · · · ⊗H1,m−1[x1,m−1].

(4)

Similarly,

X3 =
⊗

0≤j<m

X3,j =
⊗

0≤j<m

 ∑
x2,j∈X2,j

H2,j [x2,j ]


=

∑
x2,0∈X2,0

· · ·
∑

x2,m−1∈X2,m−1

H2,0[x2,0]⊗ · · · ⊗H2,m−1[x2,m−1].

(5)

See Figure 5 for a better understanding to Equation (4).
Then we can accordingly rewrite Equation (3) as

X0 ⊗X3 =
⊗
i=1,2

 ∑
xi,0∈Xi,0

· · ·
∑

xi,m−1∈Xi,m−1

Hi,0[xi,0]⊗ · · · ⊗Hi,m−1[xi,m−1]


=

∑
x1,0∈X1,0

· · ·
∑

x2,m−1∈X2,m−1

H1,0[x1,0]⊗ · · · ⊗H2,m−1[x2,m−1]

(6)
That is to say, considering the superbox effects, we can partition the whole
difference space into

∏
i=1,2;j=0,1,...,m−1 |Xi,j | smaller sets. A partition of E is
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X0,0 =
∑

i=0,...,δ

H1,0[x
i
1,0]

E0,0

X0,0

X1,0

H1,0[x
0
1,0]H1,0[x

1
1,0] · · · H1,0[x

δ
1,0]

x01,0 x11,0 · · · xδ1,0

X0,1 =
∑

i=0,...,δ′
H1,1[x

i
1,1]

E0,1

X0,1

X1,1

H1,1[x
0
1,1]H1,1[x

1
1,1] · · · H1,1[x

δ′
1,1]

x01,1 x11,1 · · · xδ
′

1,1

X0 = X0,0 ⊗X0,1 =
∑

i=0,...,δ

H1,0[x
i
1,0]

⊗ ∑
i=0,...,δ′

H1,1[x
i
1,1] =

∑
i=0,...,δ

∑
j=0,...,δ′

H1,0[x
i
1,0]⊗H1,1[x

j
1,1]

Fig. 5: The partition of the input difference set X0 (the case i = 0 in Equa-
tion (4)) based on 2 superboxes (m = 2).

consequently updated to

P(X1,0,H1,0, . . . , X2,m−1,H2,m−1)

= {H[x1,0]⊗ · · · ⊗H[x2,m−1] : xi,j ∈ Xi,j for i = 1, 2; 0 ≤ j < m}

which is related to a tuple with 4 ·m elements.

3.3 Solving MILP Models for E1

Once we get a partition P(X1,0,H1,0, . . . , X2,m−1,H2,m−1) of E, we construct∏
i=0,1;j=0,...,m−1 |Xi,j | MILPs for each elements (x1,0, . . . , x2,m−1) ∈ X1,0⊗· · ·⊗

X2,m−1 to see whether (x1,0, . . . , x1,m−1)
E1−−→ (x2,0, . . . , x2,m−1). If the MILP

model for (x1,0, . . . , x2,m−1) is feasible, we do not need to consider H1,0[x1,0]⊗
· · ·⊗H2,m−1[x2,m−1] any more. Otherwise, H1,0[x1,0]⊗· · ·⊗H2,m−1[x2,m−1] has
the potential to contain some IDs, we have to proceed with it in the next step.

3.4 Identify All IDs in Remaining H1,0[x1,0] ⊗ · · · ⊗ H2,m−1[x2,m−1]

The final step is to handle the remaining H1,0[x1,0]⊗ · · · ⊗H2,m−1[x2,m−1] ∈ P
that survive the second step one by one. We mainly introduce two methods to
find all IDs in each H1,0[x1,0]⊗ · · · ⊗H2,m−1[x2,m−1] in this subsection.

Direct Search. Considering the case when the size of H1,0[x1,0]⊗· · ·⊗H2,m−1[x2,m−1]
is small. Let σ =

∏
i=1,2;0≤j<m |Hi,j |, for example, we say the size is small when

σ ≤ 228, we can just directly test every pattern with a MILP model as [20,10].
All IDs contained in H1,0[x1,0]⊗ · · · ⊗H2,m−1[x2,m−1] can be found naturally.

To enhance the efficiency of this step, we introduce the fast reducing tech-
nique. For a randomly chosen plaintext-ciphertext difference pair from H1,0[x1,0]⊗
· · · ⊗H2,m−1[x2,m−1], we construct the MILP model to see if this pair is an ID.
If this pair is truly an ID, we continue checking whether it belongs to a trun-
cated ID. If so, we will record this truncated ID and remove all related IDs that
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belong to this truncated ID from the search pool. If this ID doesn’t belong to
any truncated ID, we record it and proceed with another pair. If it is not an
ID, then a difference characteristic will be returned by the MILP solver. We
extract the values of x⋆

1 and x⋆
2 of this characteristic (this is easy with the inter-

face of MILP solvers), and calculate two sets X⋆
0 and X⋆

3 satisfying X⋆
0

E0−−→ x⋆
1

and x⋆
2

E1−−→ X⋆
3 . Thus all patterns in X⋆

0 ⊗X⋆
3 are all possible, we only need to

proceed with H1,0[x1,0] ⊗ · · · ⊗H2,m−1[x2,m−1]\X⋆
0 ⊗X⋆

3 until all patterns are
determined as possible or impossible.

Partition Further. If σ is larger (e.g., σ > 228), exhausting all patterns is
not a good idea. We can apply Algorithm 1 to sets in every Hi,j , i ∈ {1, 2}, j ∈
{0, 1, . . . ,m} and repeatedly partition H1,0[x1,0] ⊗ · · · ⊗ H2,m−1[x2,m−1] into
several smaller sets. We handle each smaller set according to its size recursively
until the size is below the threshold and can be handled by a direct search.

The whole procedure for identifying all IDs among X0⊗X3 over E is demon-
strated in Algorithm 2.

Algorithm 2: Find all IDs over a cipher E

Data: E0 = E0,1|| · · · ||E0,m−1, E2 = E2,1|| · · · ||E2,m−1, E1

Result: a set I containing all IDs
/* step 1: partition the whole set */

1 for each i ∈ {1, 2} do
2 for each j ∈ {0, 1, . . . ,m− 1} do
3 apply Algorithm 1 to Hi,j getting its representative set Xi,j and

partition table Hi,j

/* step 2: solve MILP Models for E1 */
4 Allocate J ← ∅
5 for each (x1,0, . . . , x2,m−1) ∈ X1,0 ⊗ · · · ⊗X2,m−1 do
6 construct a MILP model for E1 with the input/output difference with

(x1,0, . . . , x1,m−1) and (x2,0, . . . , x2,m−1), respectively
7 if model is infeasible then
8 J ← J ∪ {(x1,0, . . . , x2,m−1)}

/* step 3: identify all IDs */
9 Allocate I ← ∅

10 for each (x1,0, . . . , x2,m−1) ∈ J do
11 if

∏
i=1,2;j=0,1,...,m−1 |Hi,j | > 228 then

12 recursively recall Alg. 2 to H1,0 ⊗ · · · ⊗H2,m−1 and push all the IDs into
I

13 else
14 construct MILP models to test every patterns in H1,0 ⊗ · · · ⊗H2,m−1,

and push those impossible ones into I

15 return I
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4 Applications to AES-Like SPN Ciphers

One of the standard ways for designing a good round function from an Sbox and
an MDS mapping is the one followed by the AES [12] and is known as the wide
trail strategy [11]. Some newly proposed lightweight ciphers also follow the AES
structure by replacing the MDS matrix with simple ones such as SKINNY [3]
and CRAFT [4]. We say these ciphers are AES-like. In this section, we show how
to apply our methods to SKINNY-64, the application to CRAFT is provided in
Appendix A.

The experiments are conducted by Gurobi Solver (version 9.1.1) on a work-
station with 2×AMD EPYC 7302 16-core (32 siblings) Processor 3.3 GHz, (a
total 64 threads), 256G RAM, and Ubuntu 20.10.
Application to SKINNY-64. Our first application is to SKINNY-64. The
block cipher family SKINNY was presented at CRYPTO 2016 [3] designed un-
der the TWEAKEY framework [14], whose goal is to compete with the NSA
design SIMON [2] in terms of hardware/software performance. According to the
length of block and tweakey, the SKINNY family consists of 6 different mem-
bers represented as SKINNY-n-t, where n = 64, 128 and t = n, 2n, 3n, which
respectively represent the sizes of the block and tweakey. We are only interested
in the security of the 64-bit version of SKINNY in this paper, i.e., SKINNY-64,
under the single tweakey model. The round function of SKINNY-64 comprises
five operations as SubCells (SC), AddConstants (AC), AddRoundTweakey (ART),
ShiftRows (SR) and MixColumns (MC). Since we only consider the single-tweakey
scenario, we can ignore the ART and AC operations and pay attention to the
remaining three ones. Therefore, a round of SKINNY can be written as

R = MC ◦ SR ◦ SC

When applying Algorithm 2 to r-round SKINNY-64, we rearrange the func-
tions in the r rounds as

Rr = SC ◦ MC ◦ SC︸ ︷︷ ︸
E2

◦SR ◦Rr−4 ◦ MC ◦ SR︸ ︷︷ ︸
E1

◦SC ◦ MC ◦ SC︸ ︷︷ ︸
E0

As can be seen, the SR in the first round and MC ◦ SR in the last round are
omitted for they do not affect our analysis. E0 and E2 consist of four parallel
superboxes E0,i and E2,i for i = 0, 1, 2, 3, respectively.

We apply Algorithm 1 to the four superboxes of E0 and the four inverse
superboxes of E−1

2 . The representative sets we calculated in the experiment are
listed in Table 2. Note that the four superboxes are identical as well as their
representative sets and partition tables.

As is seen, each representative set of the superbox of E0,i and E−1
2,i contains

only 7 values, so the sizes of X1 and X2 are both 74 − 1 = 2, 400 non-zero
values. Considering the rotational symmetry of SKINNY-64, we can remove the
rotationally-symmetric elements in X1. After this treatment, only 615 elements
remain in X1. Therefore, the total number of MILP models we need to solve
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Table 2: Representative sets of the superboxes E0,i and E−2
2,i for i = 0, 1, 2, 3, of

SKINNY-64
Representative set Values (hexadecimal)

X1,i, i = 0, 1, 2, 3 0, b0, b000, b080, de9d, e0e4, ee0e
X2,i, i = 0, 1, 2, 3 0, a, 606, eee, f00, 3330, eeef

is 615 × 2, 400 = 147, 600 ≈ 220.5. Since these MILP models are treated inde-
pendently, we can solve them by a parallel strategy based on multi-threading
programming.
11-Round. For 11-round SKINNY-64, We need to solve 220.5 MILP models for
11−4 = 7 rounds. These MILP models were solved in roughly 4 hours. There are
618 infeasible patterns (x1,0, . . . , x1,3, x2,0 . . . , x2,3) ∈ X1,0⊗X1,1⊗X2,0 · · ·⊗X2,3.
We then try to identify all the IDs from the corresponding sets related to these
618 patterns. Finally, since every ID belongs to one certain truncated ID, we
identified all 432 truncated IDs. All these IDs are provided in our git repository.
For a better impression to them, we visualize one ID in Figure 8.
12-Round. For 12-round SKINNY-64, we need to solve 220.5 MILP models for
8 rounds. Solving these MILP models cost about 1.5 hours in our cluster. Only
15 patterns out of them (x1,0, x1,1, x2,0 . . . , x2,3) ∈ X1,0 ⊗X1,1 ⊗X2,0 · · · ⊗X2,3

are infeasible. Among them, we extracted 2,700 IDs, which are assembled into 12
truncated IDs. These IDs are identical to those reported in previous works [3,22].
13-Round. We prove that there does not exist any ID for 13-round SKINNY-64
even with consideration of the details of Sboxes and linear layers.

5 Applications to SbPN Cipher GIFT-64

Substitution and bit-Permutation Network (SbPN) is a special SP network where
the permutation layer takes a bit shuffle rather than a word-oriented diffusion. It
was introduced by the first ultra-lightweight block cipher PRESENT at CHES
2007 [7], and recently refined by GIFT at CHES 2017 [1]. SbPN consists of a
layer of Sboxes (denoted by S), a bit shuffle (denoted by P), and a layer of
key/constant addition only, which can be very efficient, especially in hardware
implementation. In this section, we show how to apply our methods to GIFT-
64. This paper is only interested in the single-key scenario, we do not need to
consider the key/constant addition. So a round function of GIFT-64 is viewed
as R = P ◦ S. As is mentioned in Section 3.2 and also shown in Figure 6, two
interfacing rounds of GIFT-64 can be viewed as four parallel superboxes. Then
we have

S ◦ P ◦ S = P2 ◦ S ◦ P1 ◦ S,

where P1 consists of four identical small bit shuffles and P2 is a word-oriented
permutation. P1 and P2 in GIFT-64 are illustrated in Figure 6. Let P1 =
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Fig. 6: An equivalent representation of the GIFT-64 round functions.

P′
1||P

′
1||P

′
1||P

′
1, then P′

1 and P2 are as follows (inside each permutation, the 0-th
is the leftmost unit),

P′
1 = [12, 1, 6, 11, 8, 13, 2, 7, 4, 9, 14, 3, 0, 5, 10, 15],

P2 = [0, 4, 8, 12, 1, 5, 9, 13, 2, 5, 10, 14, 3, 6, 11, 15].

We thus rearrange the round functions of an r-round GIFT-64 cipher as

Rr = S ◦ P1 ◦ S︸ ︷︷ ︸
E2

◦Rr−4 ◦ P ◦ P2︸ ︷︷ ︸
E1

◦S ◦ P1 ◦ S︸ ︷︷ ︸
E0

Again, we apply Algorithm 1 to superboxes of E0,i and E−2
2,i and get the

representative sets as shown in Table 3. The number of elements in the repre-
sentative sets of superboxes for E0,i are 10, and for E−1

2,i is 9, so the number of
non-zero elements in X1 ⊗ X2 is (104 − 1) × (94 − 1) = 65, 593, 440 ≈ 226. We
then need to construct 226 MILP models with these patterns for E1.

In the specification, the designers showed that there do not exist any impossi-
ble differentials with 1-active nibble against 7 rounds of GIFT-64. We then check
the 7-round GIFT-64 first, unfortunately, after the first step of Algorithm 2 cost-
ing about 12 hours, there are too many (363,510) impossible patterns out of the
226 patterns. We find that processing these bad inner patterns costs a significant
amount of time, this may imply that 7 rounds is the borderline of whether IDs
exist or not. Considering that GIFT-64 is a 28-round cipher, 7 round IDs (even
if an ID exists) should not threaten its security, we do not pursue the exact
security proof for 7 rounds.

For 8-round GIFT-64, these 226 MILP models can be processed within 17
hours, where only 236 are impossible. With another 4 minutes, all the 236 pat-
terns can be processed and none of them imply IDs. In other words, 8-round
GIFT-64 is free of any IDs.

6 Towards Large-Size Ciphers

Our tool works very well on 64-bit SPN and SbPN ciphers. However, its effi-
ciency for ciphers with larger blocks is not high. Note that in the second step
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Table 3: The representative sets of superboxes E0,i and E−1
2,i for i = 0, 1, 2, 3, of

GIFT-64
Representative set Values (hexadecimal)

X1,i, i = 0, 1, 2, 3 0, 50b, f39, 5a97, a9d9, b35f, b3d0, b706, d0b3, d5f0
X2,i, i = 0, 1, 2, 3 0, ec, d90, e0f, 9b7b, cd7e, e00f, e7cf, fdd7

of Algorithm 2 (also introduced in Section 3.3), we still need to solve a set of
MILP models whose size can be larger than 220. For large-size ciphers, this step
would take a lot of time. However, with some compromises between accuracy
and efficiency, our method can be very useful to strengthen some existing search
strategies for large-size ciphers. In this section, we show how to use our idea
to enhance the search for the large-size cipher Rijndael-192. The application to
GIFT-128 is provided in Appendix B.
Application to Rijndael-192. In [20], Sasaki and Todo also encountered sim-
ilar problems with the efficiency when processing 8-bit Sbox ciphers, so they
took a degenerated version of the MILP model called the arbitrary Sbox mode to
boost the search efficiency. The arbitrary Sbox mode allows the model to ignore
the details of the Sbox while mainly reflecting the property of the linear layers,
thus the search time can be saved a lot. Despite this compromise, their MILP
model still cannot work to search for all plaintext and ciphertext difference pairs.
Let s be the number of Sboxes of a cipher, then the whole search space is 22s,
e.g., for Rijndael-192 that has 24 Sboxes, the search space is approximately 248

which is also very costly.
Inspired by their work, we can also boost our search efficiency by ignoring

the details of Sboxes and even the linear layers. Different from Sasaki and Todo’s
tool, ours can exhaust all truncated difference pairs very fast. As is well known,
Rijndael was designed by Daemen and Rijmen in 1998 and the 128 block size
version was selected as the AES [12]. In this section, we take Rijndael-192 as
an example and show how to identify all truncated IDs of 6-round Rijndael-192
within seconds. The state of Rijndael-192 is arranged as 4×6 matrix of bytes. Its
round function comprises four operations, AddRoundKey (AK), SubBytes (SB),
ShiftRows(SR) and MixColumns(MC). Without considering AK, r-round Rijndael-
192 can be written similar to SKINNY-64,

Rr = SB ◦ MC ◦ SB︸ ︷︷ ︸
E2

◦ SR ◦Rr−4 ◦ MC ◦ SR︸ ︷︷ ︸
E1

◦ SB ◦ MC ◦ SB︸ ︷︷ ︸
E0

,

Note that we also omit the SR of the first round and MC ◦ SR of the last
round. Thus E0 and E2 of Rijndael-192 can be seen as 6 parallel superboxes,
respectively.

In the arbitrary Sbox/MC mode, only being active or inactive for an Sbox
would be considered instead of its detailed input and output differences. Thus,
the difference of an Sbox can be labeled by one bit 0 or 1. Consequently, the
differences of plaintexts, ciphertexts, and intermediate states are labeled by a
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Table 4: The representative sets of superboxes E0,i and E−1
2,i for i = 0, 1, 2, 3, 4, 5,

of Rijndael-192
Representative set Values (hexadecimal)

X1,i, i = 0, 1, 2, 3, 4, 5 0, f
X2,i, i = 0, 1, 2, 3, 4, 5 0, f

binary vector x ∈ F24
2 . Consequently, to apply our new tool with the arbitrary

Sbox/MC mode, we adapt Algorithm 1 to compute the representative sets and
partition tables for all truncated differences into a superbox. In terms of Rijndael-
192, there are only 16 kinds of truncated IDs as input of a superbox (from 0b0000
to 0b1111). Since we only consider the branch number of MC, its representative
set contains only 2 elements as shown in Table 4.

We first call Algorithm 2 to test 6-round Rijndael-192 (note that the MILP
models here are in the arbitrary Sbox mode and only the branch number of
MC are considered.). Within 1 second, we can find out all 6,750 IDs, which are
provided with our codes in our git repository. An example of these IDs is shown
in Figure 9. Next, we test 7 rounds, no ID can be found. Therefore, we prove
that there is no truncated ID for 7-round Rijndael-192.

7 Conclusion and Future Work

In this paper, we proposed a new method to detect all IDs based on MILP models
with the DDT considered. The whole search space is partitioned into smaller
ones and some of them can be quickly determined to contain no IDs. Thus the
search space is significantly reduced, sometimes to a practical size. Then we
could handle the remaining candidates to check if there are any IDs. With this
novel strategy, we identified all IDs for 11-, and 12-round SKINNY-64 and prove
there exists no ID for 13-round SKINNY-64. Similarly, we identified all IDs for
13-round CRAFT and prove there is no ID for 14 rounds. We also proved there
is no ID for 8-round GIFT-64. The idea of our new method is also very useful
to enhance the current MILP models for ciphers with large blocks. For example,
we can partition the whole space of truncated differences for Rijndael-192 into
smaller ones under the arbitrary Sbox mode. We quickly identified all truncated
IDs for 6-round Rijndael-192 in 1 second and proved there is no truncated ID
for 7 rounds. For GIFT-128, we searched in a smaller space where all differences
have an active superbox in plaintext and ciphertext differences.

It is interesting to study if our method is also applicable to searching for
all zero-correlation linear hull distinguishers [8] due to the dual property of the
ID and zero-correlation linear hull. However, since the correlation of a linear
hull is equivalent to the summation of the correlation of all its trails, in theory
there might be a linear hull with the zero-correlation consisting some non-zero-
correlation linear trails. Thus, our method cannot be directly used for zero-
correlation linear hulls, or more assumptions might be necessary. This would
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be one of our future works. The representative sets and partition tables in our
work are generated based on an intuitive algorithm (Algorithm 1) that is not
very efficient. We guess there may be other methods to choose the representative
sets and partition tables that could consider the property of E1 simultaneously,
such that we could reduce the number of MILP models we need to solve in the
second step of Algorithm 2 and fewer impossible patterns for E1 remains after
it. This would be another interesting future work. Finally, our method currently
works only for ciphers whose round functions are based on superboxes, it is also
interesting to see how to generalize it to more types of ciphers.
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A Applications to CRAFT

CRAFT is a lightweight tweakable block cipher proposed at FSE 2019 [4], which
allows countermeasures against differential fault attacks to be integrated into
the cipher at the algorithmic level with ease. CRAFT employs a lightweight
and involutory Sbox and linear layer, such that the encryption function can be
turned into decryption at a low cost. CRAFT is a 32-round iterative tweakable
block cipher operating on 64-bit blocks of data with a 128-bit key, and 64-bit
tweak, whose round function consists of five operations including

1. MixColumn (MC): MC multiplies four nibbles of each state column with the
involutory binary matrix M . The details of M is listed below,

M =


1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1


2. AddConstants (AC) and AddTweakey (ATK): since our work focuses on the ID

attacks under the single tweakey model, we can ignore the two operations.
3. PermuteNibbles (PN): PN permutes the cells of the state by an involutory

permutation P such that the i-th cell of the new state is replaced by the
P [i]-th cell of the original state, where

P = [15, 12, 13, 14, 10, 9, 8, 11, 6, 5, 4, 7, 1, 2, 3, 0].

4. SubBox (SB): SB is the only non-linear layer of CRAFT, using a 4-bit Sbox
S as follows, note that this Sbox is involutory.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x]c a d 3 e b f 7 8 9 1 5 0 2 4 6

One round function then comprises of (without AC and ATK)

R = SB ◦ PN ◦ MC.

And functions of r-round CRAFT can be rearranged as

Rr = SB ◦ MC ◦ SB︸ ︷︷ ︸
E2

◦PN ◦ MC ◦Rr−4 ◦ PN︸ ︷︷ ︸
E1

◦ SB ◦ MC ◦ SB︸ ︷︷ ︸
E0

Note that we omit the PN◦MC operation of the first round and the PN operation
of the last round because they would not affect the impossible differential results.
What’s more, the order between SB and PN near the border of E0 and E1 are
swapped.
13-Round. Similar to SKINNY-64, we apply Algorithm 1 to superboxes of E0,i

and E−1
2,i and get their representative sets as shown in Table 5. As is seen, the

number of elements in the representative sets are 10, then the sizes of non-zero
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Table 5: The representative sets of superboxes E0,i and E−2
2,i for i = 0, 1, 2, 3, of

CRAFT
Representative set Values (hexadecimal)

X1,i, i = 0, 1, 2, 3 0, 600, 3303, 5fe3, 6000, 9c00, b0b0, b430, bd0c, ce3e
X2,i, i = 0, 1, 2, 3 0, c00, 30b0, 3b0b, 594f, 6000, 9100, 9363, b404, b9b0

elements in X1 and X2 are all 104−1 = 9, 999. Finally, we need to solve 9, 999×
9, 999 ≈ 224.6 MILP models. Such MILP models can be processed within 7 days,
where only 48 is impossible out of the 226.6. By checking the corresponding
partition table entry related to the 48 impossible patterns, 12 IDs are identified
with seconds. These IDs are identical to those found by designers in [4].
14-Round. We prove that there exists no ID for 14-round CRAFT with con-
sideration of the details of Sboxes and linear layers.

B Application to GIFT-128

GIFT-128 is the 128-bit member in the GIFT family [1]. It utilizes the same
Sbox with GIFT-64 but a large-size bit permutation. Similar to GIFT-64, the
32 Sboxes of GIFT-128 can also be arranged into the Quotient and Remainder
groups. So the superbox representation is applicable to GIFT-128 too which is
illustrated in Figure 7. The r-round GIFT-128 can be written as

Rr = S ◦ P1 ◦ S︸ ︷︷ ︸
E2

◦Rr−4 ◦ P ◦ P2︸ ︷︷ ︸
E1

◦S ◦ P1 ◦ S︸ ︷︷ ︸
E0

.

where each component of P1 is as the same as that used by GIFT-64, P2 is a
word shuffle as

P2 = [0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3, 11, 19, 27, 4,

12, 20, 28, 5, 13, 21, 29, 6, 14, 22, 30, 7, 15, 23, 31].

E0 and E2 consist of 8 parallel superboxes whose representative sets and par-
tition tables are identical to those of GIFT-64. Thus if we apply Algorithm 2
to r-round GIFT-128, we need to process approximately 108 × 98 ≈ 252 MILP
models which are not affordable.

Our results for SKINNY-64, CRAFT, and GIFT justify the intuition used in
previous works that the longest IDs for a cipher usually have few active bits or
words at both ends. Thus it is meaningful if we can improve the efficiency of this
search strategy. Leveraging our new method, instead of searching for IDs in the
whole space, we can target a smaller space. For example, for r-round GIFT-128,
we will only search the space that there is only one active superbox in both
plaintext and ciphertext ends.

With the traditional strategy, in order to exhaust all difference pairs in this
space, we need to construct approximately 216 × 216 × 8× 8 ≈ 238 MILP models
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(a) The superbox representation of GIFT-128 based on the two groups of Sboxes.
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(b) Rearrangement of the round function of GIFT-128 based on the superbox repre-
sentation.

Fig. 7: The illustration of Proposition 1 and some implications.

for r-round GIFT-128. While taking our strategy, we only need to handle 9×8×
8× 8 ≈ 4, 608 MILP models for r − 4 rounds of GIFT-128 to reduce the search
space, finally we use some additional time to process the remaining difference
pairs. We apply this improved search strategy to 8-round GIFT-128, and prove
there is no ID of the one-active-superbox pattern.

C ID Examples for 11-Round SKINNY and 6-Round
Rijndael-192
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Round 1

SR MC

Round 2

SR MC

Round 3

SR MC

Round 4

SR MC

Round 5
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Round 6

SR MC

✓✓✓✓

Contradition

Round 7

✓✓✓✓

SR MC

Round 8

SR MC

Round 9

SR MC

Round 10

SR MC

Round 11

Fig. 8: An example ID visualization of 11-round SKINNY.

Round 1

SR MC

Round 2
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Round 3
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Round 4
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Round 5
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Round 6

Fig. 9: An example ID visualization of 6-round Rijndael-192.
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