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Abstract

We give characterizations of IND$-CPA security for a large, natural class of encryption
schemes. Specifically, we consider encryption algorithms that invoke a block cipher and otherwise
perform linear operations (e.g., XOR and multiplication by fixed field elements) on intermediate
values. This class of algorithms corresponds to the Linicrypt model of Carmer & Rosulek (Crypto
2016). Our characterization for this class of encryption schemes is sound but not complete.

We then focus on a smaller subclass of block cipher modes, which iterate over the blocks
of the plaintext, repeatedly applying the same Linicrypt program. For these Linicrypt block
cipher modes, we are able to give a sound and complete characterization of IND$-CPA security.
Our characterization is linear-algebraic in nature and is easy to check for a candidate mode.
Interestingly, we prove that a Linicrypt block cipher mode is secure if and only if it is secure
against adversaries who choose all-zeroes plaintexts.

1 Introduction

Security against chosen-plaintext attacks (CPA) for symmetric-key encryption is one of the most
fundamental security properties in cryptography. CPA security is a requirement about the behavior
of an encryption scheme, in the presence of adversarially chosen inputs. As such, it is non-trivial
in the general case to check whether a candidate scheme satisfies this property. In this work we
examine alternative characterizations of CPA security that are more easily amenable to automated
reasoning and even program synthesis (i.e., transforming a specification into a program that meets
the specification, in a programmatic way).

We cannot hope to apply automated analysis to completely arbitrary algorithms. Instead, we
restrict our attention to a special class of algorithms. In this work we focus on block cipher modes.
Most common block cipher modes in practice are built using a small set of simple operations: calls
to the block cipher, XOR, and in some cases finite field multiplications. These simple operations fit
well into the Linicrypt class of algorithms, introduced by Carmer and Rosulek [CR16]. A Linicrypt
algorithm is one where all intermediate values are field elements and the only allowed operations
are fixed linear combinations and calls to a random oracle. In our application of Linicrypt, we
can replace the random oracle with a block cipher FK(·) keyed with the encryption key. Linicrypt
algorithms can be converted into an algebraic representation, and many security properties of the
algorithm can be recast as linear-algebraic properties of this representation.
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†Oregon State University, {rosulekm,royl}@oregonstate.edu.
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1.1 Related Work

Prior Work on Characterizing Block Cipher Modes A series of works by Gagné et al [GLLS09,
GLLS11, GLLS16] also consider automated methods for proving security of block cipher modes that
consist of calls to the PRP, XOR, and increment operations. They develop an extensive Hoare logic
for expressing CPA security of these modes. Their approach is sound but they do not claim that
it is complete (i.e., some modes may be secure for reasons other than those expressed in the Hoare
logic).

Malozemoff, Katz, and Green [MKG14] proposed an automated way to synthesize secure block
cipher modes. In our work we point out some flaws with their approach, which we summarize
directly below in Section 1.2 and present fully in Section 7.

Both their work and ours consider block cipher modes that consist of XORs and calls to the
PRP. Their work further considers increment operations (as in CTR mode), whereas ours supports
multiplication in GF (2n) by a fixed field element.1 In this work we point out problems with the
soundness of their characterization.

In a followup work, Hoang, Katz, and Malozemoff [HKM15] extend this analysis to authenticated
encryption modes constructed from a tweakable block cipher. In our work we focus only on CPA
security, but to our knowledge the flaws in [MKG14] are not inherited by [HKM15]. Their approach
is also deeply tied to the use of tweakable block ciphers as the underlying primitive, and it is not
clear how to directly translate their approach to CPA-secure encryption from (plain) block ciphers.

Another closely related series of works et al. [Mea17, Mea20, LLM+21] develop a symbolic
characterization of IND$-CPA for encryption schemes using a formal term algebra. In some re-
spects, this model is more flexible than ours — it models encryption as a highly interactive process,
with the adversary providing inputs and receiving outputs from a stateful encryption program at
different times. In other respects, their model is weaker than ours, since it considers only XOR
operations and not field multiplication by a constant. I.e., it would not be possible to model what
we call counter-like block cipher modes in their model. It is undecidable in general to determine
IND$-CPA security of an encryption scheme in their model; however, some special cases are decid-
able. One important distinction is that we relate the security of the encryption scheme as a whole
(i.e., an encryption algorithm which can support plaintexts of any length) to specific properties of
the main round function (i.e., an algorithm with inputs/outputs of fixed size). Due in part to the
fact that we restrict to encryption schemes composed of a regular repeated loop, our main security
characterization is decidable in polynomial time.

Prior Work on Security Properties for Linicrypt Programs Linicrypt was introduced in
[CR16]. That work showed an algebraic characterization of indistinguishability in the random oracle
model. That is, given two Linicrypt programs (making calls to a random oracle that takes field
elements as input/output), it is possible in polynomial time to determine whether the programs
induce indistinguishable output distributions. Only input-less programs were considered in that
work.

Followup work of McQuoid, Swope & Rosulek [MSR19] considered collision resistance and
second-preimage resistance for Linicrypt programs. They show an algebraic condition for whether
a given deterministic Linicrypt program satisfies collision/second-preimage resistance.

One main difference between prior work and ours is that Linicrypt programs call a random
function, and prior work considers attackers who also have access to that function (as a random
oracle). In the context of CPA-security and our result, the random function is the keyed block

1If a field element has high multiplicative order, then repeated multiplication by that element is very similar to
an increment (addition mod 2n).
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cipher FK(·), to which the attacker does not have direct access. In that sense, our scenario is
simpler (although we do consider both encryption and decryption algorithm having access to FK(·)
for the purpose of determining whether an encryption scheme satisfies correctness). However, in our
work the major challenges (not present in prior work on Linicrypt) are dealing with adversarially
and adaptively chosen inputs and Linicrypt programs with input-dependent loops, as in a block
cipher mode that loops over plaintext blocks.

1.2 Our Results

IND$-CPA for monolithic (fixed-input-length) Linicrypt programs We first consider
randomized encryption algorithms of the form EncK(m) = LFK(·)(m) where L is a Linicrypt pro-
gram and F is a PRP/PRF. We make no assumptions about L besides the fact that it is Linicrypt
— e.g., it may behave wildly differently for each plaintext block. Since a standard Linicrypt pro-
gram has a fixed input size, this class of encryption algorithms supports only plaintexts of a fixed
length (though potentially many blocks).

We give a linear-algebraic characterization of IND$-CPA security2 for such encryption algo-
rithms. The characterization is sound but not complete; however, it is complete for the special case
of single-block plaintexts (a fact that we exploit below). The characterization can be checked in
polynomial time in the size of the Linicrypt program’s description.

This is the first work to consider indistinguishability of Linicrypt programs under adversarially-
chosen inputs; prior work in [CR16] considered randomized Linicrypt programs that take no inputs.

IND$-CPA for Linicrypt block cipher modes We define a Linicrypt block cipher mode to be
an encryption algorithm that loops over the plaintext blocks, with a loop body that is a Linicrypt
program. This main-loop-body takes as input the next plaintext block and a single chaining value,
and it has oracle access to the keyed PRP FK(·). See Section 4 for a precise definition.

We give a sound and complete characterization of IND$-CPA security for such modes. In
other words, given the description of the (Linicrypt) main-loop-body, we can decide whether that
main-loop-body induces a secure encryption scheme supporting variable-length plaintexts.

This is the first work to consider any kind of looping construct for Linicrypt programs (standard
Linicrypt programs are straight-line programs). Our characterization says (very roughly) that a
Linicrypt mode is secure if and only if it is secure for a single block, and the chaining value has
a non-repeating property. Both of these conditions can be expressed algebraically, and checked
in polynomial time. Note that the first condition reduces to security of single-block Linicrypt
encryption, which is both sound and complete.

Finally, we apply this characterization to exhaustively catalog all secure Linicrypt block cipher
modes in which the main-loop-body makes just a single call to the block cipher.

Issues with prior work Prior work by Malozemoff, Katz, and Green [MKG14] studies IND$-
CPA security of block cipher modes. They consider modes whose round function consists of calls to
a block cipher (PRP or PRF), XOR, and increment (as in CTR mode), which are then expressed
as a circuit (directed graph). They show a rule for labeling the edges of the graph, such that a
mode is IND$-CPA if the graph of its round function has a valid labeling.

Unfortunately, we show that their labeling rules are unsound. We show a concrete block cipher
mode which is profoundly insecure but whose circuit graph nevertheless admits a valid labeling.

2In this work we exclusively consider randomized encryption, rather than nonce-based encryption.
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Essentially, their labeling rules do not correctly account for all possible correlations among inter-
mediate values (induced by combinations of XORs and invocations of the PRP/PRF). Such linear
correlations are fundamental to the Linicrypt model, however, and our characterization can easily
show the insecurity of this counterexample.

The authors of [MKG14] do not claim that their labeling rules are complete, although they
provide no explicit counterexample. In Appendix C, we show such a counterexample that is IND$-
CPA secure, but that has no valid labeling under their rules.

2 Preliminaries

2.1 Block Ciphers

In this work we consider encryption algorithms built from block ciphers. We exclusively consider
block ciphers whose block size is the security parameter. In that case, it is well known by the
PRF-PRP switching lemma that a secure block cipher (PRP) is also a secure PRF. This is the only
property of the underlying block ciphers that we use.

Definition 1. F : {0, 1}κ×{0, 1}κ → {0, 1}κ is a pseudorandom function if for all polynomial-time
adversaries A: ∣∣∣∣PrK [AFK(·)(1κ) = 1]− Pr

R
[AR(·)(1κ) = 1]

∣∣∣∣ is negligible

where R is chosen uniformly from the set of functions R : {0, 1}κ → {0, 1}κ.

2.2 IND$-CPA security

We exclusively consider security in the presence of chosen-plaintext attacks. Specifically, we consider
the indistinguishability from random (IND$-CPA) goal.

Definition 2. An encryption scheme Enc has correctness if there is an algorithm Dec so that
DecK(EncK(m)) = m with probability 1, for all m and all K.

Definition 3. An encryption scheme Enc is IND$-CPA secure if for all polynomial-time adver-
saries A: ∣∣∣∣PrK [AEncK(·)(1κ) = 1]− Pr[A$(·)(1κ) = 1]

∣∣∣∣ is negligible

where $(·) is a randomized function that on ℓ-block input returns an independent, uniformly chosen
(ℓ+ 1)-block output.

2.3 Linicrypt

The Linicrypt model was introduced in [CR16]. We now present a slight simplification of the
Linicrypt model, which suffices for our purposes.

A Linicrypt program is a straight-line oracle program. All variables in the program take on
values from some finite field F. In this work we assume that the characteristic of F is polynomial
in the security parameter, and we indicate the places where this assumption affects the result. The
only valid instructions in a Linicrypt program are:

• Sample a value uniformly from F.

• Call the oracleH on a previously-computed value. In this work, H always has typeH : F→ F.
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• Compute a linear combination of previously computed values, whose coefficients are fixed as
part of the program.

Finally, a Linicrypt program outputs a list containing some of its intermediate values.
An example is given below, written in a more conventional way and in a more explicit way that

names each intermediate value:

LH(r,m):

c := H(H(r) + r) +m
s := H(H(r))
return (c, s)

⇝

LH(v1, v2):

v3 := H(v1)
v4 := v3 + v1
v5 := H(v4)
v6 := H(v3)
v7 := v5 + v2
return (v6, v7)

Algebraic representation A Linicrypt program L can be represented in an algebraic way.
First, we call an intermediate variable a base variable if it is either an input, the result of uniform
sampling in F, or the result of a call to H. Note that every intermediate value in the program
is a linear combination of the base variables. In the example from above, the base variables are
(v1, v2, v3, v5, v6), and all variables in the program are a linear combination of these base variables:

v1
v2
v3
v4
v5
v6
v7


=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 1 0


×


v1
v2
v3
v5
v6


Let vbase denote the vector of base variables. For each variable (base or otherwise) vi, we can
associate a vector row(i) such that vi = row(i) · vbase. For each base variable vj , we write vj to
mean the vector of base variables where vj is one and every other base variable is zero. In this
notation we can find what coefficient a particular derived variable vi has on a base variable vj :
row(i) · vj .

The input matrix of a program is simply the matrix containing a row row(i) for each input
base variable vi. The output matrix of a program is simply the matrix containing a row row(i)
for each output variable vi.

To capture the relationships among the variables and the random oracle, we define a set of
oracle constraints as follows. For an oracle query vi = H(vj), the corresponding oracle constraint
is written as “row(j) 7→ row(i)”. Note that if two oracle constraints have the same “left-hand side”
(row(j) in the preceding example), this indicates that the two calls to H are always made on
identical values.3 In short, if vi = H(· · · ) and vk = H(· · · ) lead to oracle constraints with identical
left-hand-sides, then the second oracle query can be removed and all references to vk can be replaced
with a corresponding reference to vi.

3If two left-hand-sides are different, then it is possible (but only with negligible probability for input-less programs)
that they can correspond to calling H on the same values. This is explored further in [CR16].
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The running example L has the following input matrix M(L), output matrix C(L) and set O(L)
of oracle constraints:

M(L) =

[
1 0 0 0 0 “v1”
0 1 0 0 0 “v2”

]
C(L) =

[
0 0 0 0 1 “v6”
0 1 0 1 0 “v7 (= v2 + v5)”

]

O(L) =


[1 0 0 0 0] 7→ [0 0 1 0 0], “v3 := H(v1)”
[1 0 1 0 0] 7→ [0 0 0 1 0], “v5 := H(v4)”
[0 0 1 0 0] 7→ [0 0 0 0 1] “v6 := H(v3)”


Together, the input matrix M(L) (often synonymous with the plaintext/“message”), the output

matrix C(L) (often “ciphertext”) and oracle constraints O(L) completely characterize the Linicrypt
program.

One of the main techniques [CR16] used to prove theorems about Linicrypt programs is canonical
simulation: one can think of the execution of an input-less Linicrypt program as first choosing
uniform base variables vbase, and then producing output C(L)vbase. If later the oracle H is called
on q · vbase and q 7→ a is an oracle constraint in O(L), then the output of H must be a · vbase.

Difference with [CR16] The original Linicrypt model of [CR16] allows extra “nonce” values
and any number of field elements to be given to H, but in our work H is a keyed block cipher with
only one input and no additional nonce.

3 Secure Linicrypt Encryption

In this section we provide a characterization for IND$-CPA security of encryption algorithms de-
scribed by Linicrypt programs. Linicrypt programs have no native looping construct, so this section
considers encryption schemes that support plaintexts of only a single, fixed length. Later we build
on the results in this section to characterize variable-length encryption schemes built from Linicrypt
“round functions.”

3.1 New Algebraic Properties

Prior characterizations in Linicrypt do not consider indistinguishability in the presence of adver-
sarially chosen inputs. The main challenge of such a setting is that an adversary may cause two
nominally unrelated oracle queries in a Linicrypt program to “collapse.” As a concrete example,
consider the Linicrypt program (x, y) 7→ H(x) ⊕H(H(y)). In general, this program may make 3
distinct calls to H. However, an adversary may choose inputs such that x = H(y), which causes
some of the queries to H to be on repeated inputs, As a result, the adversary can force the output
of this program to be zero.

In general, it is NP-hard to understand the collapsing potential of a Linicrypt program (Ap-
pendix A). In this section, we develop a new algebraic language for reasoning about these collapsing
behaviors. Roughly speaking:

• The zeroable subspace Z(L) of a Linicrypt program L represents the internal values of the
program that the adversary can force to zero, by either setting inputs to zero, or by causing
two ostensibly distinct calls to H to be made on the same value. There may be other ways
to force some internal values to zero, but we do not consider them as part of this definition.
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• The repeatable subspace R(L) represents internal values that the adversary could cause
to repeat between multiple calls to L. For example, if a program outputs H(v), but v is in
the zeroable space, then the adversary could force the program to output the same H(0) on
multiple invocations.

• For repeatable (in the above sense) internal values, we want to understand which of the
program’s inputs are vital in inducing repeats. This part of our definitions is the most subtle.
Intuitively, an internal value q is repeatable dependent on an input variable vi if q would
cease to be repeatable if the adversary had no control over vi (i.e., if it was always sampled
uniformly). That is, q is computed by combining repeatable things with either vi or the
results of oracle queries whose repeatability depends on vi.

• We consider two different ways that an adversary can cause two oracle queries/constraints
to “collapse” (and we call the pair of queries/constraints collidable): One way is to cause
the difference between the oracle inputs to be zeroable (i.e., cause the oracle inputs to be
equal, using the rules of the zeroable space). Another way is to learn some “repeatable” (in
the above sense) internal value from one call to the program, and then adaptively choose
another input to “cancel out” that repeatable information to make oracle queries collapse.
This situation is important, since we want to consider an adversary who makes repeated
queries to the Linicrypt program.

Our definition of “collidable” is cautious: If some pair of queries is marked collidable, it is
not guaranteed that an adversary can indeed consistently force these queries to collide (e.g., in
some cases an adversary can collapse one pair of queries or another pair of queries, but not both
simultaneously). However, if an adversary can force two queries to collide, then that pair of queries
must indeed be collidable.

These concepts are defined in terms of each other in a delicate way, but this apparent circularity
is resolved by defining the subspaces Z(L) and R(L) to be the smallest subspaces satisfying the
corresponding rules. Given a Linicrypt program L, these properties can be computed by applying
the rules in the definition, iteratively, until a fixed point is reached. This process terminates in
polynomial time (in the description of L) since in each iteration it considers only a polynomial
number of pairs of oracle constraints.

Definition 4. Given a Linicrypt program L, define its zeroable subspace Z(L) to be the smallest
linear subspace satisfying the following:

1. Z(L) contains all rows of M(L) (representing the input variables of L)

2. a− a′ ∈ Z(L) for all pairs of collidable oracle queries q 7→ a, q′ 7→ a′ ∈ O(L).

Definition 5. Given a Linicrypt program L, define its repeatable subspace R(L) to be the small-
est linear subspace of the row vectors on the base variables satisfying the following rules.

(i) Z(L) is a subspace of R(L).

(ii) If q 7→ a ∈ O(L) and q is in R(L), then a is also in R(L).

Let U(L) be a matrix whose rows form a basis for the repeatable subspace.

Definition 6. Let vi be an input variable. We say that a row vector u is repeatable dependent
on vi if for some j we can write u = cvj + u′, where:
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(i) c ̸= 0, and

(ii) u′ ∈ R(L), and

(iii) u′ · vj = 0, i.e., the coefficient of vj in u′ is zero, and

(iv) either i = j or there is an oracle query q 7→ vj ∈ O(L) such that q is repeatable dependent
on vi.

Definition 7. The collidable oracle queries are defined to be the smallest equivalence relation
containing all pairs of queries q 7→ a, q′ 7→ a′ ∈ O(L) satisfying one of the following two conditions.

(i) q − q′ ∈ Z(L), or

(ii) There exist distinct input variable vi ̸= vj such that q− q′ is repeatable dependent on vi, and
(q − q′) · vj ̸= 0 (i.e., q − q′ contains a nonzero coefficient for vj).

If L has only a single input variable then case (ii) of Definition 7 is never used, as there are
no two distinct input variables. In this case Z(L) completely captures what happens when the
adversary provides the all-zero input to L. The only things in Z(L) are input variables and the
differences in outputs of identical queries, and all of these values go to zero in this case.

Lemma 8. If q 7→ a, q′ 7→ a′ ∈ O(L) are collidable, then q − q′ ∈ R(L).

Proof. In case (i) of Definition 7, q−q′ ∈ Z(L) ⊆ R(L). In case (ii), q−q′ is repeatable dependent
on some vi, which implies that it is repeatable. Finally, R(L) is a linear space so this still holds
when taking the transitive closure (as collidability is defined as taking the transitive closure of pairs
that satisfy (i) and (ii)).

Lemma 9. If q 7→ a, q′ 7→ a′ ∈ O(L) are collidable, then a ∈ R(L) ⇐⇒ a′ ∈ R(L).

Proof. By Lemma 8, q − q′ ∈ R(L) for a colliding pair. Since R(L) is a vector subspace, q ∈
R(L) ⇐⇒ q′ ∈ R(L). By the definition of repeatability, a ∈ R(L) if and only if q ∈ R(L).

3.2 Characterization

Our main result in this section is a sufficient condition for a collection of Linicrypt programs to be
jointly indistinguishable from random.

Theorem 10. If L1, L2, . . . , Ln is a collection of Linicrypt programs, and for each i the rows of[
C(Li)
U(Li)

]
are linearly independent, then L1, . . . , Ln are jointly IND$-CPA secure when instantiated

with the same PRP F and key K.

In other words, if ker

[
C(Li)
U(Li)

]⊺
= {0} then, for all A, the following advantage is negligible:

∣∣∣∣PrK [AL
FK
1 (·),...,LFK

n (·)(1κ) = 1]− Pr[A$(·),...,$(·)(1κ) = 1]

∣∣∣∣
Proof. As initial step, we use the standard switching lemma to replace the PRP with a PRF, and
then we can replace the PRF with a random function since the key is randomly generated and only
used for the PRF. We now have each Li connected to the same random oracle, and in this case the
adversary does not have direct access to the random oracle.
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For each Li we construct a corresponding program Hi which does the following. On a given
input, it first runs Li on the same input and records the base variables vbase that were used. It then
randomly samples a new set of base variables v′

base subject to the constraint that U(Li)v
′
base =

U(Li)vbase, and then outputs C(Li)v
′
base.

We first claim that H1, . . . ,Hn give truly uniform random output. The rows of

[
C(Li)
U(Li)

]
are lin-

early independent by assumption, so for every

[
c
u

]
, there is some vbase so that

[
c
u

]
=

[
C(Li)
U(Li)

]
vbase.

Furthermore, the number of solutions in vbase is the same for any particular c,u. This implies that
for any u, the distribution over c (which is the output of Hi) is uniform. This also implies that c
tells the adversary nothing about u.

Next, we use the h-coefficient technique to prove that the Linicrypt programs are indistinguish-
able from these Hi hybrids. In the standard method of h-coefficient technique, we classify a set
of transcripts as bad and bound the probability of the hybrids generating a bad transcript. We
then show that any good transcript has equal probability of being produced by the actual Linicrypt
programs or by the hybrids. We define the transcript to consist of a list of pairs (i,vbase), specifying
that the ith Linicrypt program Li or hybrid Hi was invoked by the adversary, and resulted in vbase

as its choice of base variables. Note that both the choice of input/plaintext and output/ciphertext
can be computed from such a transcript, as M(Li)vbase and C(Li)vbase, respectively.

There are two ways that a transcript can be bad.

1. The term (i,vbase) in the transcript reflects an unexpected collision inside Li: there are two
non-collidable oracle queries q 7→ a, q′ 7→ a′ ∈ O(Li) such that qvbase = q′vbase.

2. The term (i,vbase) was preceded sometime earlier by (j,v′
base) in the transcript, and they

reflect an unexpected collision between Li and Lj : there exist queries q 7→ a ∈ O(Li) and
q′ 7→ a′ ∈ O(Lj) with qvbase = q′v′

base, but a is not in its repeatable subspace R(Li).

In the next Lemmas, we show that these two bad events happen with negligible probability.
From this point forward, we consider only “good” transcripts and argue that such transcripts are
assigned equal probability in both situations. In a good transcript, if the Linicrypt program Li

queries its oracle on a repeated value (within a single execution of Li), those queries must correspond
to q 7→ a, q′ 7→ a′ ∈ O(Li) where a−a′ ∈ Z(Li) ⊆ R(Li). If separate invocations of Li and Lj both
query their oracle on a common value (with Lj coming first), then the queries must correspond
to q 7→ a ∈ O(Li) and q′ 7→ a′ ∈ O(Lj), where a ∈ R(Lj). In both cases when executing Li

the repeated query is equivalent to fixing U(Li)vbase (since U(Li) is a basis for R(Li)) to take a
particular value, and everything else is sampled randomly. That is, in a good transcript, running
Li is equivalent to generating a uniformly random vbase subject to some constraint on U(Li)vbase.
Both Li and Hi generate U(Li)vbase in the same way, and they both produce a uniformly random
output subject to that constraint, so they each have equal probabilities of picking a particular vbase.
Applying this reasoning to every message, we find that when there is no bad event the transcript
has equal probability of being generated by either L1, . . . , Ln or H1, . . . ,Hn.

Lemma 11. The first bad event (defined above) is negligibly likely, when responses are generated
according to Hi.

Proof. The bad event is that Li queries the PRP/oracle on the same input multiple times within a
single call. Assume without loss of generality that this is the first bad event. Because the two oracle

queries are not collidable, q−q′ is not in Z(Li). If q−q′ is not in R(Li) either,

[
q − q′

U(Li)

]
is linearly
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independent so there are equally many possible values of vbase for each value of (q − q′)vbase,
even if U(Li)vbase is fixed. Then every value is equally likely, so there is probability |F|−1 of
(q − q′)vbase = 0.

Otherwise q − q′ ∈ R(Li), so (q − q′)vbase might not be freshly random. For case (ii) of
Definition 7 to not have triggered, there must not be distinct input variables vi, vj such that q−q′

is repeatable dependent on vi and q − q′ has a nonzero coefficient for vj .
Assume that q − q′ has coefficient zero for all input variables vi. In other words, it is a non-

zeroable linear combination of oracle query results, with no adversarial input added, so without
past unexpected collisions (q − q′)vbase is uniformly random (though not necessarily fresh), and
has probability |F|−1 of being 0.

Otherwise c = (q − q′) · vi ̸= 0 for some input variable vi, so it is repeatable dependent on
vi. However, it cannot be repeatable dependent on any other input vj , or else case (ii) would have
triggered. It being repeatable dependent on only vj shows that it can be computed using only vj .
That is, if at any point in the computation of (q − q′)vbase, after all oracle queries on matching
inputs have been merged, an input variable vi was used, then that would show that oracle query is
repeatable dependent on vi. The query that used that one would be as well, and so on all the way
back to q − q′ being repeatable dependent on vj .

To cause the bad event, the adversary must set vi to be uvbase where u = 1
c (q − q′) − vi. If

uvbase can be computed without using vj , and so does not depend on any inputs at all, it would be
in R(Lj) for any past Linicrypt invocation to Lj , and from before we know that the hybrid leaks
no information about the repeatable subspace, so the adversary cannot predict this value better
than random.

Finally, if u is only repeatable dependent on vi, then causing the bad event requires satisfying
a circular chain of oracle constraints. That is, the value of vj must be uvbase, and u has a nonzero
coefficient for the output of some oracle query q0 7→ a0 that is repeatable dependent on vj , and
q0 has a nonzero coefficient for another query, etc., until qn has a nonzero coefficient for vj . It
is impossible to satisfy such a circular constraint, even with oracle access to H. On each hash
execution H(x) (representing qi 7→ ai), and each past hash H(y) (representing qi−1 7→ ai−1 for
i > 0, or otherwise qn 7→ an) that completes a possible cycle, the result H(x) has exactly one
possible value (out of |F|) that will make y take the correct value to complete the cycle.

Lemma 12. The second bad event (defined above) is negligibly likely when responses are generated
according to Hi.

Proof. Since q /∈ R(Li), when the hybrid regenerates its base variables every possible value of
qvbase is equally likely, and at this point the invocation Lj had already happened so q′v′

base was
already fixed. Therefore, the probability of this bad event is |F|−1.

3.3 A Useful Special Case

The previous theorem gives a sufficient but not necessary condition for IND$-CPA security. How-
ever, in a special case the condition is both necessary and sufficient:

Theorem 13. If L is a single-input Linicrypt program that does not satisfy the condition of The-
orem 10, then there is an attack against its CPA security that works with non-negligible probability.
That is, there is a polynomial time adversary A such that∣∣∣∣PrK [ALFK (1κ) = 1]− Pr[A$(·)(1κ) = 1]

∣∣∣∣ ≥ 1− |F|−1.
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Proof. Make A ask for the encryption of the zero plaintext twice on L, and find the difference
between the two outputs c − c′ = C(L)(vbase − v′

base). Abort if c − c′ = 0. Note that if the
probability of aborting is nonnegligible, then the scheme already fails to be CPA security, since the
probability of this event is negligible in the case that c and c′ are uniform. As we observed before,
the zero plaintext will cause everything in Z(L) to be zeroed, and so by construction U(L)vbase will

take on the same values in both instances; i.e., U(L)(vbase−v′
base) will be zero. Since

[
C(L)
U(L)

]
does

not have linearly independent rows, there exists a nonzero row vector t such that t

[
C(L)
U(L)

]
= 0.

Vector t must have a nonzero entry on at least one ciphertext value as U(L) taken by itself has
linearly independent rows (its rows are a basis for some subspace). Therefore, the adversary can

check if t

[
c− c′

0

]
= 0, which happens with probability 1 for the Linicrypt encryption scheme but

only probability |F|−1 for uniformly random ciphertext.

Remark 14. Although these theorems shows that determining IND$-CPA security for a single
input Linicrypt program can be determined efficiently (in the description size of the program),
our characterization is not complete for multiple input Linicrypt programs. In fact, we show in
Appendix A that determining the security of multiple input Linicrypt programs is NP-hard.

4 Class of Block Cipher Modes

A block cipher mode promotes a simple block cipher (pseudorandom permutation) to a CPA-secure
encryption scheme. In this work we consider a class of block cipher modes defined as follows:

• We assume that plaintexts are divided into whole blocks of length κ, where κ is also the
input/output length of the PRP and the security parameter.4 It is without loss of generality
that we consider plaintexts whose length is an exact multiple of κ, because one can add
support for arbitrary-length plaintexts in the usual way using any padding scheme. We do
not consider more exotic approaches like ciphertext stealing in this work.

• The encryption mode is characterized by a round function Rd, where each invocation of Rd
processes a single plaintext block and produces a single ciphertext block.

• The entire encryption/decryption process uses the underlying PRP5 without re-keying, giving
Rd access only to the permutation induced by the PRP key. We only consider Rd functions
that use the PRP in the forward direction (decryption may involve the reverse direction of
the PRP).

• Data is passed between invocations of Rd in the form of a chaining value. We consider ran-
domized encryption, where the initial chaining value (IV) is chosen uniformly and is included
as part of the ciphertext. We exclusively consider schemes where the chaining value consists
of a single block.

• Rd must be deterministic. Since the output of the round function has the same length as its
input a nondeterministic round function cannot be decrypted.

4In other words, we do not consider small-block PRPs.
5Although we only consider modes that use a single PRP, generalization to multiple PRPs and PRFs with multiple

inputs is straightforward.
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Formally, the round function has syntax:

(c, s) := RdΠ(r,m)

where r is the incoming chaining value, m is a plaintext block, c is a ciphertext block, s is the
outgoing chaining value, and Π is a permutation on blocks. In the algebraic representation, pick the
matrices M(Rd), C(Rd), and S(Rd) so that m = M(Rd)vbase, c = C(Rd)vbase, and s = S(Rd)vbase.

Given such a round function Rd and compatible PRP F , we define the corresponding randomized
encryption algorithm EncRd,Fℓ for messages of size ℓ as follows:

EncRd,Fℓ (m1∥ · · · ∥mℓ):

r0 ← {0, 1}κ
for i = 1 to ℓ:

(ci, ri) := RdFK(·)(ri−1,mi)
return r0∥c1∥ · · · ∥cℓ

EncRd,Fℓ

Rd

m1

c1

Rd

m2

c2

Rd

mℓ

cℓ

· · ·

· · ·

· · ·

$

r0

r1 r2 rℓ−1

We will consider the class of such block cipher modes where Rd is a Linicrypt algorithm (see
Section 2.3). However, we make no restrictions on adversaries and therefore target the standard
notion of CPA (IND$-CPA) security for randomized encryption.

5 Characterization of Linicrypt Modes

5.1 Security

Although our main focus is to consider (variable-length) encryption algorithms, it is helpful to
conceptually restrict the encryption algorithm to ℓ blocks to form a single (plain) Linicrypt program
which we denote EncRdℓ . We can apply the results of the previous section to the collection of all
{EncRdℓ }ℓ Linicrypt programs. The goal of this section is to express the security of this collection of
Linicrypt programs in terms of Rd only. When analyzing the properties of Rd using the definitions
in Section 3, we will treat the input chaining value as a fresh, uniformly random value, rather than
an input.

Note that combining Linicrypt programs together isn’t as straightforward as concatenating their
input matrix, output matrix, and base variables together. Each output chaining value must be sub-
stituted in for the following block’s input chaining value. Also, some oracle queries from different
blocks may end up being syntactically the same, necessitating a merger of base variables. Conse-
quently, after merging ℓ instances of Rd together in EncRdℓ , we must iteratively find syntactically
equal queries q 7→ a, q 7→ a′ ∈ O(EncRdℓ ), pick a to be the representative of the two and substitute
it for a′ whenever it appears, and finally remove q 7→ a′ from O(EncRdℓ ).

Also note that queries from distinct blocks might be collidable. However, any pair of colliding
queries in Rd will be collidable in EncRdℓ , and any repeatable query in Rd will be repeatable in
EncRdℓ .

Definition 15. Consider an equivalence class {vi}i of base variables under the “collidable” equiv-
alence relation. A row vector q directly depends with factor c on {vi}i if c =

∑
i q · vi ̸= 0 (i.e.,

c is q’s total coefficient for base variables in the class).

Definition 16. A row vector u depends on a collidability-equivalence class of base variables {vi}i
if it directly depends on the class, or there is some other oracle constraint q 7→ a such that q directly
depends on {vi}i and u depends on a’s equivalence class.

12



We divide the security of Linicrypt modes into two properties. The first is

Definition 17. A round function Rd is secure if EncRd1 is IND$-CPA, i.e. the mode is IND$-CPA
for single block messages.

This condition can be determined by applying Theorem 10 to the (plain) Linicrypt program
EncRd1 . By Theorem 13, the condition is a sound and complete characterization for CPA security
of single-block encryptions.

Definition 18. Rd is counter-like if S(Rd) does not depend on the output of any oracle query
q 7→ a ∈ O(Rd) where q depends on the chaining value r.

Definition 19. Rd is non-repeating if Rd is either not counter-like or S(Rd) depends directly
with factor g on the chaining value r and g’s order in F∗ is superpolynomial.

We will show later that if Rd is repeating then the adversary can cause the chaining value to
repeat. Of course, if the chaining value repeats, then an encryption of all-zero blocks will have
repeated ciphertext blocks.

A counter-like round function is meant to model modes like CTR where the chaining value
is incremented by a fixed value each round. In our setting, the field has small characteristic, so
incrementing with the chaining value via field addition would lead to repeated chaining values.
Instead, the reader should think of small-characteristic-counter-mode that updates the chaining
value as r′ = r · g where g has high order.6

To show that each block of the ciphertext is uniformly random, we need to show that each
ciphertext block incorporates randomness that is independent of all other blocks. I.e., we must
assign to each ciphertext block a unique, “fresh” oracle query to be the reason that ciphertext
block is pseudorandom. The difficult case is when the mode is not counter-like. The chaining value
in these round functions depends on new oracle queries within that round. Hence, the chaining
values “accumulate” more oracle queries with every block. So if an oracle query q made in round i
collapses with one q′ made in a later round j > i, then q′ represents a function of its chaining value
that uses fewer oracle calls than the corresponding function for q. We can use this kind of reasoning
to relate collapses between rounds with the ordering of oracle queries within a single round.

Definition 20. Consider the set of oracle queries Od(Rd) ⊆ O(Rd) that depend on the input
chaining value. Let q 7→ a, q′ 7→ a′ be oracle queries in Od(Rd). Define q′ ≺ q to hold if for some
i < j, when encrypting a message of length j, the query corresponding to q in block i is collidable
with the query corresponding to q′ in block j in EncRdj .

To show that the ≺ relation among oracle queries is acyclic, we need the following lemmas.

Lemma 21. If the round function is non-repeating, then no chaining value is in R(EncRdℓ ). In fact,
no query in O(EncRdℓ ) that corresponds to a query in Od(Rd) is repeatable.

Proof. The first half of this statement is clear in the counter-like case, as every chaining value
depends directly on the first, which is freshly random. The same holds for the first block when Rd
is not counter-like.

6Interestingly, a high characteristic field would require us to change the definition of non-repeating. A round
function that updates the chaining value via r′ = r + H(0) is counter-like, depending directly on r with factor 1,
which has low multiplicative order — yet, the adversary cannot force chaining values to repeat if the field has high
characteristic.
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The rest of the proof proceeds by induction. Any query in Od(Rd) must either depend directly
on the input chaining value, which is non-repeatable, or on another query in Od(Rd), which is
non-repeatable by the induction hypotheses. Therefore it must be non-repeatable as well.

Finally, when Rd is not counter-like we need to go from one block to the next. Assume all of
the queries corresponding to Od(Rd) in block i are non-repeatable. Then since the output chaining
value depends directly on at least one of them, it is also non-repeatable.

Lemma 22. If the round function is non-repeating, the difference of two chaining value from
distinct blocks is not in R(EncRdℓ ).

Proof. First, consider the counter-like case, where the output chaining value must be s = gr + h
for some expression h ∈ R(Rd). Substitute this equation into the encryption function to get an
equation for non-adjacent chaining values.

rj = gj−iri +

j∑
k=i+1

gj−khk

If rj − ri ∈ R(Rd) then we get

(gj−i − 1)ri −
j∑

k=i+1

gj−khk ∈ R(Rd).

As gj−i ̸= 1 if g’s order is greater than the message length, we would have ri ∈ R(EncRdℓ ), contra-
dicting Lemma 21.

In the other case, Rd is not counter-like. Let Ochain be the set of oracle queries q 7→ a in
O(Rd) where q depends on the input chaining value and the output chaining value depends on the
collidable equivalence class of a. Rd not being counter-like implies that Ochain is not empty. Let
i ≤ j be blocks, and q 7→ a, q′ 7→ a′ ∈ Ochain be oracle queries, with either the blocks distinct, or
the queries distinct with q′ depending on a We prove by induction that the query corresponding
to q in block i cannot collide with the query corresponding to q′ in block j.

Assume the opposite, that there are colliding oracle queries q1, q2 ∈ O(EncRdj ) with q1 corre-
sponding to q in block i and q2 corresponding to q′ in block j. Then by Lemma 8, q2 − q1 ∈
R(EncRdj ). However, their inputs in Ochain are non-repeatable by Lemma 21. q′ depends directly
either on the input chaining value, or on a′′ for another query q′′ 7→ a′′ ∈ Ochain, where q

′′ depends
on (or is) q if i = j. In the latter case, then by induction the query q3 corresponding to q′′ in
block j cannot cannot collide with anything in block i that q depends on, so q2 − q1 cannot be
repeatable. In the former case, then use the output chaining value of the previous block instead of
a′′, which must depend directly on a query q′′ in Ochain, and a similar argument shows that this
case as impossible as well.

Our result then follows from this induction. There must be at least one query in Ochain that
the output chaining value depends on directly. The corresponding query in block i cannot is not
repeatable by Lemma 21 and cannot collide with the corresponding query in block j. Collision is
the only way for the difference of two non-repeatable oracle queries outputs to be repeatable.

Theorem 23. If the round function is non-repeating, ≺ defines a strict partial order on Od(Rd)

Proof. First, we establish that ≺ is transitive. If q′ ≺ q and q′′ ≺ q′ then by considering a suitably
long plaintext we can have a situation where q in round i, q′ in round j, and q′′ in round k are
all collidable, and i < j < k. Although this requires increasing the plaintext size, it only requires
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expansion by a factor linear in the length of the Linicrypt program to handle the longest chain
required for the transitive closure of all ≺ relations.

To establish irreflexivity, first assume that irreflexivity holds for all queries in Od(Rd) that come
before q 7→ a in program order, but (for the sake of contradiction) q ≺ q. Then there must be
oracle queries q1, q2 ∈ O(EncRdj ) where q1 is the query corresponding to q in block i and q2 is the
corresponding query in block j, and q1 is collidable with q2.

Let O′ be the subset of Od(Rd) consisting of those queries q′ 7→ a′ where q directly depends
on the collidable equivalence class of a′. Then O′ forms a strict partial order, so either it is empty
or there exists some maximal query qmax 7→ amax ∈ O′ that is not less than any query. If it is
empty, q is a linear combination of the chaining value and something in R(EncRdj ). By Lemma 8,

q2 − q1 ∈ R(EncRdj ), and as all other terms in q are repeatable this implies that the difference of
the two chaining values is repeatble, contradicting Lemma 22.

Otherwise, maximality implies that qmax from block j cannot collide with any query in O′ from
any earlier block i, and so cannot collide with any query that q1 depends directly on. Then q2−q1
cannot be repeatable as it depends directly on amax, which is not repeatable since it is in Od(Rd)
by Lemma 21. This contradicts Lemma 8.

Finally, we can prove our result using this order on Od(Rd).

Theorem 24. A Linicrypt block cipher mode is IND$-CPA secure if and only if its round function
is both secure and non-repeating.

Proof. We first prove the if direction. Let Oout be the subset of Od(Rd) consisting of those queries
q′ 7→ a′ where C(Rd) directly depends on the collidable equivalence class of a′. There must be
at least one query in Oout for the round function to be secure, as otherwise the adversary could
subtract out the term containing the input chaining value afterwards, since the initial chaining
value (the IV) is public, leaving a repeatable value. Doing this to two consecutive zero messages
will produce the same result, which distinguishes the ciphertexts from uniform random while only
using single block messages. Therefore, since ≺ defines a strict partial order, there must exist some
maximal query qm 7→ am that is not less than any other query in Oout.

We want to show that EncRdℓ satisfies the condition of Theorem 10 to prove that the block cipher

mode is IND$-CPA. To show that the rows of

[
U(EncRdℓ )

C(EncRdℓ )

]
are linearly independent, we find a pivot

base variable in each row of C(EncRdℓ ), where each pivot is required to be linearly independent

from every previous row of

[
U(EncRdℓ )

C(EncRdℓ )

]
. The first pivot is the initial chaining value. For the ith

subsequent row, the pivot is am in round i. It is not repeatable because it is in Od(Rd). Because qm
is maximal, neither it nor any other query in its collidable (in Rd) class can collide (in EncRdℓ ) with
any query with a nonzero entry in C(EncRdℓ ) in any previous round, so am is linearly independent
from all previous rows.

Next we show the converse. If the round function is not secure then there is an attack against
the encryption mode that involves only single-block plaintexts.

If the round function fails to be non-repeating, then it must be counter-like with g zero or
having polynomial order n. The adversary can then send the all-zeros message of length cn, where
c = char(F) is the characteristic of the field. As with Lemma 22, s = gr + h for h ∈ R(Rd), and so

rcn = gcnr0 +

cn∑
k=1

gcn−khk = r0 +

n∑
k=1

cg−kh = r0,
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as h will be the same in each block since it is repeatable and the all zeroes message was sent each
time, and because each block has only a single input so the all zeroes message causes all collidable
queries within the block to collide. Similarly, if g = 0 then the second and third blocks of the
message will have colliding input chaining values. The repeated chaining value then leads to a
repeated ciphertext block, as the plaintext blocks were all the same, which distinguishes the output
from random.

Remark 25. A often useful strategy when attacking the CPA security of an encryption scheme is
to request an encryption of the all-zeroes plaintext and see what happens. Teachers of introductory
cryptography classes may recall giving this advice to their students on many occasions. Notice that
the adversaries constructed to show completeness in Theorem 24 always use the all-zeroes plaintext,
which shows that this technique is enough for all Linicrypt block cipher modes.

5.2 Correctness

Security considers what happens from the perspective of an adversary who does not have access to
the oracle/PRP. In order to reason about correctness, we must now consider whether the plaintexts
can be recovered by the decryption algorithm, which does have access to the oracle/PRP (and its
inverse!). First, we reduce the problem to the single ciphertext case.

Theorem 26. A Linicrypt block cipher mode satisfies correctness if EncRd1 does, i.e. if it does for
one block plaintexts.

Proof. We can decrypt a long ciphertext (c0, c1, . . .) inductively, as follows. The invariant is that
we can compute not only the plaintext mi for every i, but also the ith chaining value ri. Note that
the initial chaining value is contained in the ciphertext as c0. Now, given ri, we can decrypt the
ciphertext (ri, ci+1) using the single-block decryption procedure, to obtain mi+1. Then we can run
Rd in the forward direction on ri and mi+1. Since Rd is deterministic, this will result in both ci+1

and the output chaining value ri+1.

Next, we need a way of efficiently deciding correctness for EncRd1 . To do this, we use the notion
of reachability from [CR16], adapting it slightly to handle decryption operations to invert the oracle
queries.

Definition 27. The reachable values of a Linicrypt program L are the smallest linear subspace
R(L) such that

(i) every row of C(L) is in R(L), and

(ii) if q 7→ a is an oracle query and either a or q is in R(L), then the other is as well.

Theorem 28. A Linicrypt block cipher mode satisfies correctness if and only if the plaintext
M(EncRd1 ) is reachable in the Linicrypt program EncRd1 .

Proof. To construct a decryption algorithm, we show how to determine u · vbase for every u ∈
R(EncRd1 ), including the plaintext. First, for every u ∈ R(EncRd1 ) that owes its membership to case
(a), we already have u · vbase as one of the components of the output ciphertext C(EncRd1 )vbase. If
for some oracle query q 7→ a we have q in R(EncRd1 ) then qvbase is a linear combination of known
values and so we can calculate it. Evaluating the block cipher on that value then gives us the
corresponding avbase. Similarly, we can use the block cipher in reverse to find q given a known a.
As R(EncRd1 ) is the smallest linear subspace generated by these operations every reachable value
can be obtained by a finite number of these operations.
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To show the converse we use the technique of canonical simulation. Canonical simulation
requires a input-less Linicrypt program, and we choose to modify EncRd1 to generate a uniformly
random plaintext to meet this requirement. A correct decryption algorithm would, a fortiori, work
on a random plaintext.

As part of the proof of Lemma 4 from [CR16], we have that an efficient decryption algorithm
given the output from a Linicrypt program and access to the oracle has negligible probability of
guessing any value that is not reachable. To summarize their argument, we may perform a change
of basis so that the reachable subspace R(EncRd1 ) is {0}d×Fbase−d, where base−d is the dimension of
the reachable subspace. Look at the first oracle query or inverse query to be made by the decryption
algorithm that matches a query q → a made by the Linicrypt program, where q and a are not
reachable. So far all information given to the decryption algorithm has been reachable as the IV
and ciphertext are, and every previous oracle query either produced a random value as it didn’t
match one in the Linicrypt program or it matched a reachable one. Therefore, it is syntactically
independent of the first d base variables, and the decryption algorithm will produce the same input
to the oracle no matter what values these variables take. The query is not reachable so there must
be at least one nonzero value in the first d entries of q and a, and the decryption algorithm then
has negligible probability of guessing either of them.

6 A Tour of the Secure Single-Query Modes

In the preceding sections, we established criteria for IND$-CPA security and correctness of Linicrypt
block cipher modes. In this section we focus our attention on single-query modes, where the Rd
function makes only a single call to the PRP. These are the most natural block cipher modes in
practice. We apply the findings of the previous sections to this special class of Linicrypt modes to
find all secure+correct modes.

In more detail, the objects we study are those Linicrypt Rd programs with

• two inputs: an input chaining value r and a message block m,

• two outputs: a ciphertext block c and an output chaining value s, and

• a single oracle query, y := Π(x).

A generic template encompassing all candidate round functions is shown below, where a, b, d, e, f, g, h,
and i are fixed coefficients from F.

RdΠ(r,m):

x := ar + bm
y := Π(x)
c := dr + em+ fy
s := gr + hm+ iy
return c, s

We now use the criteria for security and correctness developed in the preceding sections to
determine all choices for these coefficients that produce secure, correct block cipher modes.

6.1 Security constraints

Application of Theorem 24 to this class of Linicrypt Rd functions yields the following result.
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Lemma 29. A single-query Linicrypt block cipher mode is IND$-CPA secure if and only if its Rd
function satisfies:

(i) a ̸= 0,

(ii) f ̸= 0, and

(iii) i ̸= 0, or ord(g) in F× is superpolynomial in κ.

Proof. Recall that the block cipher mode is secure if and only if its round function is secure and
non-repeating. First we consider the “security” property which involves the mode’s restriction to
single-block messages. Let L = EncRd1 . L receives m as input, generates r uniformly, and outputs
c0 = r and c1 = RdΠ(r,m). The algebraic representation for EncRd1 is shown below.

M(L) =
r m y
[ ]0 1 0 ; O(L) =

{
[a b 0] 7→ [0 0 1]

}
;

C(L) =

r m y[ ]
c0 1 0 0
c1 d e f

.

The zeroable subspace Z(L) is defined based on pairs of oracle queries. Since there is only one
oracle query in this case, the zeroable subspace Z(L) is simply Z(L) = rowspace(M(L)).

The repeatable subspace R(L) is the subspace of vectors reachable from Z(L) with access to
Π, and U(L) is defined to be a basis for R(L). By Theorem 10 and Theorem 13, L is IND$-CPA

secure if and only if the rows of

[
C(L)
U(L)

]
are linearly independent.

There are two cases to consider. First, consider a = 0. Then the oracle query input ([a b 0]) is
in Z(L), and so the oracle query output [0 0 1] is included in the space R(L). In this case, the the

basis U(L) for R(L) is U(L) =

[
0 1 0
0 0 1

]
and

[
C(L)
U(L)

]
=


1 0 0
d e f
0 1 0
0 0 1


The rows of this matrix cannot be linearly independent, because there are more rows than columns,
so the Rd function is not secure in this case. This result should make sense intuitively, as it describes
a round function where the input to the block cipher is completely under the adversary’s control
(it doesn’t depend on chaining value r).

For the other case, consider a ̸= 0. Then we can see that the oracle query input ([a b 0]) is not
reachable from Z(L), so we get R(L) = Z(L) and therefore its basis is U(L) =

[
0 1 0

]
and

[
C(L)
U(L)

]
=

1 0 0
d e f
0 1 0


The rows of this matrix are linearly dependent if and only if f ̸= 0 (the ciphertext must depend on
the output of the block cipher).
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Thus, the induced single-block encryption scheme L is secure on a single-block message if and
only if a ̸= 0 and f ̸= 0.

Next, we impose constraints necessary and sufficient for Rd to be non-repeating. Definition 19
says that there are two cases to consider based on whether or not Rd is counter-like.

The generic single-query Rd function we are considering is not counter-like, that is, s depends
on the output of an oracle query that depends on r, if and only if a ̸= 0 (so that y depends on r)
and i ̸= 0 (so that s depends on y).

If, on the other hand, a = 0 or i = 0, then Rd is counter-like, and the only source of randomness
for all chaining values is the IV, s0. In this case, for the chaining value sj in some block j,

sj = gjs0 + ϕj(m1, ...,mj),

where ϕj : Fj → F is a linear map if i = 0, but otherwise depends on Π. Therefore, if a = 0 or
i = 0, Rd is non-repeating if and only if g ̸= 0 and has order superpolynomial in κ. For instance,
we can choose g to be a primitive field element, i.e., ⟨g⟩ = F×, so ord(g) = |F| − 1.

Thus, Rd is non-repeating if and only if a ̸= 0 and i ̸= 0, or g ̸= 0 and ord(g) in F× is
superpolynomial in κ.

Combining the constraints for single-block security and non-repeating chaining values yields
those stated in the lemma.

6.2 Correctness constraints

Theorem 26 says that correctness of single-block encryption is sufficient for correctness of a Linicrypt
block cipher mode, and Theorem 28 says that the single-block encryption program is correct if and
only if the message is reachable from the ciphertext, i.e. if and only if m ∈ R(EncRd1 ).

The ciphertext matrix and oracle constraints for EncRd1 are shown below.

C(EncRd1 ) =

r m y[ ]
c0 1 0 0
c1 d e f

O(EncRd1 ) =
{

[a b 0] 7→ [0 0 1]
}

Proposition 30. A single-query Linicrypt block cipher round function is correct if and only if
(e ̸= 0)⊕ ((b ̸= 0) ∧ (f ̸= 0)).

Proof. Assume that m is reachable from the ciphertext output.
Case 1: Suppose e = 0. Then m is not a simple linear combination of c0 and c1, so reachability

of m must use some oracle query.
Case 1a: y = [0 0 1] is a linear combination of c0 and c1, so that x is reachable as Π−1(y)→ x.

This is true if and only if f ̸= 0. Then m is a linear combination of c0, c1, x. With e = 0 and f ̸= 0
we must have m be a linear combination of c0 and x alone, meaning that b ̸= 0.

Case 1b: x = [a b 0] is a linear combination of c0 and c1, so that x is reachable as Π(x) → y.
This is true if and only if f = 0. But with e = f = 0 we must now have b = 0 and so m is not a
linear combination of c0, c1, y. So m cannot be reachable in this case.

Case 2: Suppose e ̸= 0.
Case 2a: If f = 0 then m is a simple linear combination of c0 and c1, and hence reachable

(although the scheme is insecure in this case).
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Case 2b: Otherwise f ̸= 0. With e ̸= 0, y will not be a linear combination of c0, c1, i.e.,
decryption cannot make the Π−1(y)→ x query. Instead, x = [a b 0] must be a linear combination
of c0 and c1, making y reachable as Π(x) → y. With e, f ̸= 0 this is possible if and only if
b = 0. Subsequently, m must be a linear combination of c0, c1, y, but this is always the case for the
constraints established so far.

Finally, we combine Theorem 29 and Theorem 30 to characterize all valid single-query Linicrypt
block cipher modes.

Theorem 31. A single-query Linicrypt Rd function is a correct, IND$-CPA secure block cipher
mode if and only if

(i) a ̸= 0,

(ii) (b ̸= 0)⊕ (e ̸= 0),

(iii) f ̸= 0, and

(iv) i ̸= 0, or ord(g) in F× is superpolynomial in κ.

6.3 Graphical Summary of IND$-CPA Secure Single-Query Modes

We now summarize the results of Theorem 31 graphically. Recall that a single-query Rd function is
parameterized by 8 coefficients. We partition the space of these coefficients into two main categories
and four total subcategories. If we consider only whether the different coefficients are zero or non-
zero, there are 24 different secure block cipher modes.

6.3.1 XOR-only Modes (i ̸= 0)

When i ̸= 0, the coefficients d, g, h are unrestricted, and we further have a choice of which of b, e is
zero and which is nonzero.

In this category, there is no restriction on g, which means it is possible (though not mandatory)
to choose all coefficients from {0, 1}. When a Linicrypt program over GF (2λ) has all coefficients
from {0, 1}, it corresponds to a program that consists only of XOR operations and calls to the
oracle/PRP. Hence, we call this category of modes “XOR-only”. When restricting coefficients to
{0, 1}, we see that the condition leads to a total of 24 = 16 possible XOR-only modes.

Figure 1 shows all IND$-CPA secure Linicrypt modes in this category. The meaning of the lines
in the figure is as follows:

• A solid line indicates multiplication by any nonzero coefficient.

• A dashed line indicates multiplication by any (even possibly zero) coefficient.

Of course, the absence of a line indicates the lack of any dependence between values.
The subfigure on the left corresponds to the case of b ̸= 0, e = 0. If we set as many coefficients

to zero as possible, and set the rest to one (i.e., remove all dashed lines), we obtain CBC mode.
The subfigure on the right corresponds to the case of b = 0, e ̸= 0. These modes do not require

Π to be invertible, and consequently work with PRFs as well as PRPs. If we set as many coefficients
to zero as possible, and set the rest to one (i.e., remove all dashed lines), we obtain OFB mode.
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Figure 1: All decryptable, IND$-CPA secure single-query XOR-only Linicrypt modes (i ̸= 0).
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Figure 2: All decryptable, IND$-CPA secure single-query counter-like Linicrypt modes (i = 0).

6.3.2 Counter-like Modes (i = 0)

When i = 0, we see that g must have high order, exactly one of b, e must be zero, while d, h are
unrestricted.

We call this category of modes “counter-like” because, like CTR mode, the output chaining value
does not depend on any calls to the PRP. Linicrypt does not allow incrementing as in standard
CTR mode, but we can achieve an analogous effect by multiplying the previous chaining value by
a (fixed) primitive field element g. One can think of this as incrementing the chaining value “in
the exponent” of g.

Figure 2 summarizes IND$-CPA secure Linicrypt modes in this category. The subfigure on the
left corresponds to the case b ̸= 0, e = 0, in which the plaintext is incorporated into the PRP’s
input.

The subfigure on the right corresponds to the case b = 0, e ̸= 0, in which the plaintext is
combined with the PRP’s output. These modes do not require Π to be invertible, and consequently
work with PRFs instead of PRPs. Setting as many coefficients to zero as possible, choosing g to be
a primitive element of F×, and all other coefficients to be 1 leads to a multiplicative GF (2λ)-analog
of CTR mode. The jth ciphertext block has the form cj = F (k, r · gj−1) ⊕ mj where r is the
initialization vector.

7 Problems with MKG14 Characterization

Now that we have presented our own characterization of secure Linicrypt block cipher modes, we
briefly review the characterization of secure block cipher modes introduced by Malozemoff et al.
in [MKG14], which covers a similar class of programs. We show that their characterization is not
sound.
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7.1 Review of MKG14 Characterization

In [MKG14], a block cipher mode consists of a probabilistic Init algorithm and a deterministic Block
algorithm, both expecting oracle access to a keyed block cipher Fk:

(c0, s0) := InitFk(1n) (c, s) := BlockFk(r,m)

Init is a generalization of IV generation, where the initial chaining value s0 ∈ {0, 1}n and first
ciphertext block c0 ∈ {0, 1}n need not be the same. Block is the round function. Each algorithm
consists of a sequence of instructions that perform operations on inputs and intermediate values.
Their basic instruction set includes taking the XOR of two values (the XOR instruction) and
querying the block cipher Fk on a value (the PRF or PRP instruction). Additionally, random
values can be generated in the Init algorithm (with the GENRAND instruction). A block cipher
mode (Init,Block) is considered secure if the induced encryption scheme is IND$-CPA secure when
F is a secure PRP.

The basic instruction set is a subset of the Linicrypt instruction set, so every MKG14 algorithm
can be translated to an equivalent Linicrypt program. In the appendix of [MKG14], they augment
their characterization to include the increment (INC) instruction, which encompasses additional
modes such as CTR mode. Increment is not a linear operation and, as such, is not allowed in
Linicrypt (although similar functionality can be obtained by the linear operation x 7→ gx where
ord(g) is superpolynomially large). We focus on their basic instruction set, where direct comparisons
with our characterization are possible.

The Init and Block algorithms are modeled by directed acyclic graphs whose nodes correspond
to instructions and whose edges hold intermediate values. Since each edge is incident to exactly
two nodes, values must be duplicated explicitly via a DUP instruction in order to be used more
than once.

Let G be the union of the Init and Block graphs. The authors define an edge labeling scheme and
claim that if G has a valid labeling under this scheme, then (Init,Block) is a secure block
cipher mode. Note that this is not a biconditional statement. They do not claim completeness.
We introduce relevant aspects of the labeling scheme as needed. Please see [MKG14] for the full
details.

7.2 Design Limitations of MKG14

The treatment of the repeatable subspace in Theorem 10 shows that it is not necessary for security
that all oracle query inputs be unique and unpredictable. However, the MKG14 model lacks a
global transcript of block cipher queries. There is no equivalent to a Linicrypt program’s oracle
constraints. All node validity decisions are made locally based only on the labels of incident edges
and the node instruction. Consequently, there is no mechanism to identify repeated queries and
enforce relationships between their outputs. Due to these design limitations, they have no choice
but to require all query inputs to be unique and assert that all query outputs are uniform and
independent.

7.3 MKG14 Labeling Rules

The general strategy they employ to ensure block cipher inputs are unique is to allow each source of
randomness (whether it be the input chaining value, a randomly generated value, or a block cipher
output) to contribute randomness to at most one block cipher query, and necessitate that every
block cipher query receive randomness from at least one source. A source of randomness can be
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algebraically involved in additional block cipher inputs as long as all of them past the first receive
randomness from another source. We will show that this strategy is neither necessary nor sufficient
to determine whether block cipher inputs are unique.

An edge label is defined as a tuple (fam, type, flags), where

• fam ⊆ {1, ..., |E|} is the set of “families” an edge belongs to. Two edges are related if their
family sets intersect. Edge families are roughly equivalent to Linicrypt base variables. All
inputs, generated random values, and block cipher outputs are assigned a unique family value.

• type ∈ {R,⊥} specifies whether an edge is random (R) or adversarially controlled (⊥).

• flags ∈ {0, 1}2 is a bit vector where the second bit, flags.PRF , carries the “ability to
contribute randomness” to a block cipher input that was mentioned above. The first bit,
flags.OUT , indicates the similar capability to contribute randomness to a ciphertext output.
Freshly generated random values (from GENRAND or PRF/PRP nodes) always get flags =
11. Adversarial inputs always get flags = 00.

Edges into PRF/PRP and OUT nodes are required to have flags.PRF set and flags.OUT set,
respectively. These edges must also have type R, but this requirement is redundant, because there
is no way to have any set flags bits without also having type R.

When a value is duplicated via the DUP instruction, the flags bits must be conserved, meaning
the number of set flags.PRF and flags.OUT bits must be the same before and after processing
the node. In particular,

flagsout,1 | flagsout,2 = flagsin

flagsout,1 & flagsout,2 = 00.

This rule ensures that value duplication does not also duplicate the ability to contribute randomness.
The two XOR inputs must be unrelated, and at least one must have type R. The output has

type R, and its family set and flags vector are the set union and bitwise OR, respectively, of the
inputs. The first rule prevents a random value from being XORed into an adversarially controlled
value, giving it type R and flags bits, and subsequently being XORed back out again. The second
rule ensures that the output has the ability to contribute randomness if and only if this ability was
possessed by at least one of two inputs, which are consumed by the instruction.

Formally, the goal of the labeling scheme is to maintain three invariants throughout execution
of the encryption scheme. The authors call an edge active if it has been assigned a value but its
children have not. They define PRFa to be the active edges with flags.PRF set, OUTa to be the
active edges with flags.OUT set, and OUT to be the edges that have been output as ciphertext
for the current plaintext block. They assert that a valid labeling guarantees the following three
invariants hold with all but negligible probability at the end of each processing step:

Invariant 1: For any S ⊆ PRFa, the random variables val(S) are jointly uniform, even
conditioned on the values on all active edges unrelated to edges in S and the values of all
edges previously used as input to a PRF instruction.

Invariant 2: For any S ⊆ OUTa, the random variables val(S) are jointly uniform, even
conditioned on the values of all previous ciphertext blocks (including those in OUT ) and the
values on all active edges unrelated to edges in S.

Invariant 3: The random variables val(OUT ) are jointly uniform, even conditioned on the
values of all previous ciphertexts.
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Figure 3: A valid subgraph that, given two unrelated edges both with flags.PRF = 1, breaks
Invariant 1. The ⋆ value in flags.OUT on certain edges indicates “don’t care” values. If both e0
and e1 have flags.OUT = 1, then Invariant 2 is also broken.

At the end of encryption, Invariant 3 gives IND$-CPA security. Invariant 2 upholds Invariant
3 by ensuring that the values we output will be uniform. Invariant 1 says that the inputs to
PRF/PRP nodes are uniform and thus likely distinct, which ensures that the outputs are uniform
and independent, upholding Invariant 2.

7.4 Counterexample to Soundness

The MKG14 scheme, through the flags.PRF bit, allows each family to contribute its randomness
to at most one block cipher query. However, if two families can “exchange” their flags.PRF bits,
the scheme allows two identical edges to both be block cipher inputs.

Conceptually, suppose family 1 contributes randomness to PRP 1 and family 2 contributes
randomness to PRP 2. PRP 1 has received randomness from another family, so family 2 can be
algebraically involved in the input to PRP 1, despite already contributing its randomness to another
block cipher input. By symmetric reasoning, family 1 can be algebraically involved in the input to
PRP 2. Thus, both PRP inputs are linear combinations of the same two families. Since MKG14
algorithms only allow XOR, this means the two PRP inputs are equal.

Proposition 32. If, at any time during execution, there are two unrelated active edges, both with
flags.PRF = 1, Invariant 1 can be broken within a valid algorithm under the MKG14 labeling
scheme.

Proof. Proof by valid subgraph construction, shown in Figure 3. The labels for e0 and e1 are
valid by hypothesis. The edge triples (e0, e2, e4) and (e1, e3, e5) both satisfy the “conservation of
flags” rule for DUP nodes. Both edge pairs (e2, e3) and (e4, e5) are unrelated and have at least
one edge of type R, so the XOR nodes are valid. At the end of executing this subgraph, we have
PRFa = {e6, e7} and val(e6) = x ⊕ y = val(e7). Therefore, the edges in PRFa are not jointly
uniform, so Invariant 1 is broken.

The x values for flags.OUT on certain edges are “don’t cares,” indicating that the proposition
holds either way. If both e0 and e1 have flags.OUT = 1, then this subgraph also breaks Invariant
2. However, this is not a critical point, because Invariant 2 can be broken, regardless, by sending
both e6 and e7 through PRPs.

Theorem 32 alone is not enough to break soundness. We must first meet the precondition of
two unrelated edges, both with flags.PRF bits set, that are active simultaneously.

Block algorithms are required to be deterministic, so the active edges at the beginning of execu-
tion are only the input chaining value and the plaintext block. The plaintext block is adversarially
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Figure 4: An insecure Init algorithm (that always chooses c0 = s0 = 0) with a valid labeling under
the MKG14 scheme.

chosen, so flags = 00. Then, the only potential source of flags.PRF bits is the input state. The
labeling rules ensure that |PRFa| is conserved by DUP nodes and can only be decreased (if not
preserved) by XOR nodes. PRF/PRP nodes can increase the number of active flags.OUT bits set
by one, but have no effect on the number of active flags.PRF bits. Therefore, |PRFa| ≤ 1 at all
times during execution of a Block algorithm under the basic instruction set. However, there is no
scarcity of flags bits in Init algorithms, where we can simply add GENRAND nodes. Thus, the
precondition for Theorem 32 is achievable in a valid Init graph, so the soundness of the scheme can
be broken.

One such Init algorithm, which contains Figure 3 as a subgraph, is shown in Figure 4. It has a
valid labeling, but always outputs c0 = s0 = 0. The edges output by the two GENRAND nodes
satisfy the condition for Theorem 32. With Invariant 1 broken, the two equal-valued edges, e6 and
e7, are sent through PRP nodes to erase their family relationship, which enables a valid XOR node
to combine the seemingly unrelated edges together, always producing zero.

When translated to a Linicrypt program, as shown below, there is only a single oracle constraint
because the two query inputs coincide. It is obvious that the two PRP outputs are equal and thus
cancel out when we XOR them together. When paired with any Block algorithm, the induced
encryption scheme outputs zero as the first ciphertext block. Thus, the rows of C(EncInit,Blockℓ ) are
not linearly independent (without even considering the repeatable subspace), so no block cipher
mode using this Init algorithm is IND$-CPA secure by Theorem 13.

Init(1n):

r1 ← {0, 1}n
r2 ← {0, 1}n
x := Π(r1 ⊕ r2)
y := Π(r1 ⊕ r2)
c := x⊕ y
return (c, c)

⇝

Init(1n):

r1 ← {0, 1}n
r2 ← {0, 1}n
x := r1 ⊕ r2
y := Π(x)
c := y ⊕ y
return (c, c)

⇝
Init(1n):

return (0n, 0n)
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C(Init) =

[
0 0 0
0 0 0

]
O(Init) =

{
[1 1 0] 7→ [0 0 1]

}
When and why did the MKG14 invariants fail? Consider the point in execution of the Init graph

when we have duplicated both random values and processed one of the two XOR nodes. The active
edges are, without loss of generality:

e4 = ({1}, R, 01), e5 = ({2}, R, 10), e6 = ({1, 2}, R, 11)

Before processing the second XOR node in our Init graph, PRFa = {e4, e6}. There is no choice of
S ⊆ PRFa that allows consideration of all three active edges under Invariant 1, because e5 /∈ PRFa

and e6 is related to all other active edges. Thus, the linear dependence of val(e6) = val(e4)⊕val(e5)
goes under the radar and does not violate Invariant 1. By a similar argument, Invariant 2 also
holds.

However, once the XOR node is processed, all components of the dependency are present in
P̂RFa = {e6, e7}, with val(e6) = val(e7), so Invariant 1 (and similarly, Invariant 2) is violated.

In their proof, the authors let PRFa denote the set before the instruction, and P̂RFa denote
the (possibly modified) set following the instruction. They then give the following argument for
why Invariant 1 holds over XOR instructions, and claim that the argument is identical for Invariant
2:

Let e0 and e′0, labeled (fam0, type0, f lags0) and (fam′
0, type

′
0, f lags

′
0), respectively, be

the two ingoing edges, and let e1, labeled (fam1, type1, f lags1), be the outgoing edge.
Note that e0 and e′0 must be unrelated and at least one of the two must have type R.
Also fam1 = fam0 ∪ fam′

0, so anything related to e0 or e′0 is also related to e1.

If e1 /∈ P̂RFa, then e0, e
′
0 /∈ PRFa. Thus P̂RFa = PRFa, so the invariant continues

to hold. Otherwise, e1 ∈ P̂RFa and at least one of e0 or e′0 (say e0) is in PRFa.
By Invariant 1 we have that val(e0) is uniform even conditioned on val(e′0). Thus,
val(e0)⊕ val(e′0) is uniform and the invariant continues to hold.

The last sentence does not follow. In particular, Invariant 1 only guarantees that subsets of PRFa

are jointly uniform conditioned on unrelated active edges. Their argument ignores the possibility
that there is another edge in PRFa, not incident to this XOR node, that is related to both e0 and
e′0.

In fairness to the authors, their program synthesis implementation only considered the trivial
Init algorithm (which contains a single GENRAND node) and instead focused on synthesizing secure
Block algorithms. This prioritization may have contributed to their oversight, because restricting
the Init algorithm to a single GENRAND node restores soundness for the basic instruction set.

That being said, the soundness of the INC-extended labeling scheme, which was included in
their synthesis results, can also be broken in the Block algorithm. To achieve their aim of modeling
CTR mode, the INC instruction must set flags.PRF on its output. Unfortunately, this allows,
for instance, both r and r + 1 to be sent through a PRF, producing two unrelated edges with
flags.PRF = 1 that are active simultaneously, which satisfies the condition for Theorem 32. In
Appendix B we present an INC-extended Block algorithm with a valid labeling that always outputs
the plaintext as ciphertext. It should be mentioned that this Block algorithm contains more than
the 10 node limit used in program synthesis, so the synthesis results published in [MKG14] may
not be affected by insecure modes of this nature.
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7.5 Counterexample to Completeness

Although the authors of [MKG14] do not claim that their characterization is complete, they do not
provide any counterexample to its completeness. In Appendix Cwe give a concrete example of a
secure block cipher mode which has no valid labeling under the MKG14 rules.
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A NP-Hardness of Linicrypt Encryption Schemes

Theorem 33. Determining IND$-CPA security of Linicrypt encryption schemes is NP-hard.

Proof. We use reduction from one-in-three satisfiability [Sch78], the problem of determining if there
are assignment of the boolean variables x1, x2, . . . , xn such that for every triplet (i, j, k) in the set
S of clauses, exactly one of xi, xj , xk is true. We create a Linicrypt program L that outputs one of
its plaintext blocks if its input represents a satisfying assignment, but is uniformly otherwise. We
design L to match the signature of the block cipher modes considered in this paper closely, though
this increases its complexity. Specifically, there is only a single IV block sampled at the start, and
the messages are all decryptable. The only difference is that the encryption is not structured as a
function Rd that gets repeated for each block in the message.

We build a Linicrypt program L that encrypts n+2 block messages. For the first n+1 blocks,
it is the multiplicative analog of CTR mode (see Section 6.3).7 The last message block is instead
encrypted using Gadget, which we design to be random unless the adversary satisfies the clause.

L(m1,m2, . . . ,mn+2):

r ← $
for i = 1 to n+ 1:

ci := Π(gi−1r) +mi

cn+2 := mn+2

for the ith clause (x, y, z) ∈ S
cn+2 += Gadget(Π(gi+nr),Π(mn+1),mx,my,mz)

return r, c1, . . . , cn+2

Each clause i is given its own freshly random value ri = Π(gi+nr). We use this random value
to avoid overlaps between clauses, or between different calls to L. For each independently random
ri and each integer j, the subroutine Hj(r, ·) defined below is an independent random function.

Hj(r, x):

return Π(gjr + x)

First, we build a NAND gadget, enforcing that either x = 0 or y = 0. Otherwise, it will produce
a uniformly random value.

7For a construction that avoids using multiplication-by-a-constant, replace Π(gir) with Π(x) + x, where x is the
OFB chaining value Π(i)(r).
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NANDj(r, x, y):

a := Hj(r, x)−Hj(r, 0)
b := Hj+1(r, y)−Hj+1(r, 0)
return Hj+2(r, a) +Hj+2(r, b)

−Hj+2(r, a+ b)−Hj+2(r, 0)

If x = 0 then a = 0, so Hj(r, a) collides with Hj(r, 0) and Hj(r, a + b) collides with Hj(r, b), so
NAND outputs zero. Similarly, if y = 0 then b = 0, and so Hj(r, b) collides with Hj(r, 0) and
Hj(r, a+ b) collides with Hj(r, a), also making the output be zero.

In the other direction, for NAND each Hj+2 must collide with another hash. This can happen
in three ways. Two have already been covered in the a = 0 and b = 0 hypotheticals above, and in
fact these collisions do imply that a = 0 or b = 0. In turn, that implies that x = 0 or y = 0, because
if a = 0 then the two Hj hashes must collide. The final possible set of collisions is if char(F) = 2
and a = b, which would also cause the output to be zero. But a = b implies that a = b = 0,
because otherwise there would need to be a collision between a Hj query and a Hj+1 query, which
has negligible probability.

Finally, we can construct the full gadget. First, we use NAND to enforce that at most one of
x, y, z can be non-zero. Then, we require the remaining variable to be p = Π(mn+1) by checking if
the sum of the hashes is correct.

Gadget(r, p, x, y, z):

a :=NAND0(r, x, y)+NAND3(r, y, z)+NAND6(r, z, x)
b :=H9(x) +H9(y) +H9(z)
c :=H9(p) +H9(0) +H9(0)
return a+ b− c

To stop Gadget from returning a fresh random value, the adversary needs to force a = 0 and
b = c. The former holds if only if it most one of x, y, z is nonzero, so assume without loss of
generality that y = z = 0. Then b = c holds if and only if H9(x) = H9(p), or equivalently x = p.
Therefore, can win only if, for each clause, one of the three variables is p (representing true) and
the other two are 0 (representing false).

To find p, the adversary needs a pair mn+1, p = Π(mn+1). It can get them by encrypting the
all-zeros plaintext, to get a uniformly random r, and c1 = Π(r). It can then use r as the mn+1

of its next message, and use p = c1 to encode a satisfying assignment. Notice that if all clauses
are satisfied then cn+2 will be mn+2, breaking IND$-CPA security. Otherwise, if any clauses is not
satisfied then cn+2 will be fresh randomness.

For decryptability, given c0, . . . , cn+2, first use counter-like mode decryption to findm1, . . . ,mn+1.
They can then be used to compute all calls to Gadget, and finally to subtract all of their results
from cn+2 to get mn+2.

B Counterexample to INC-extended MKG14 Soundness

B.1 INC-extended Labeling Scheme

Please see the appendix of [MKG14] for the complete details of the INC-extended instruction set
and labeling scheme.

With the addition of the INC instruction, the authors added two additional flag bits and an
additional type. The new type, U for “unique”, indicates that the value of the edge is not random
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but is likely unique (e.g. the result of an INC instruction on a random value). The third flag bit,
flags.INC, when set, indicates the “ability to be incremented”. The fourth and final flag bit,
flags.INCd, indicates whether this or any related edge has ever been or had the ability to be
incremented.

For uniform x and y, Pr[x ⊕ y = (x + 1) ⊕ (y + 1)] > 0.25. To avoid this and similar issues,
XOR instructions now additionally require both inputs to have flags.INCd = 0. The flags.INC
bit may be set arbitrarily on the output of GENRAND and PRF/PRP instructions. The outputs
of GENRAND and (in theory) PRF/PRP instructions are initially uniform and independent of all
other edges, so flags.INCd must take the same value as flags.INC to be semantically correct.
Thus, we must choose whether a GENRAND or PRF/PRP output family is destined to go through
an XOR node or an INC node, never both.

The flags.INC bit must be conserved across DUP nodes, just like flags.PRF and flags.OUT ,
but flags.INCd functions more like a type, so (like the type) it is copied from DUP input to both
outputs.

The INC instruction requires the input to have type U or R, and flags.INC = 1. The output
edge gets type U and flags = 0111. Note that this provides a new way to set flags.PRF .
PRF/PRP nodes now also accept type U inputs as well as type R. The idea behind this is to
allow the instruction pattern used in CTR mode. In each block of CTR mode, the chaining
value is duplicated. One copy is sent through a PRF and one is incremented. The PRF copy
requires flags.PRF to be set, so by the conservation of flags rule, the incremented copy must
have flags.PRF = 0. But CTR mode requires the incremented value to be sent through a PRF
itself in the next block, so PRF nodes must also accept incremented inputs (with type U) and the
INC instruction must set flags.PRF on its output.

B.2 Impact on Soundness

Notice that, if INC instructions are avoided, and GENRAND and PRF/PRP outputs are always
given flags.INC = flags.INCd = 0, the INC-extended labeling scheme is functionally equivalent
to the basic labeling scheme (with two zero bits appended to the flags vector in every label). Thus,
the soundness-breaking Init algorithm shown in Figure 4 remains valid in the INC-extended scheme.

The INC node, and its potential to increase the number of active flags.PRF bits, presents a
new avenue to break soundness that is possible in Block algorithms as well as Init algorithms.

Figure 5 shows a Block algorithm with a valid labeling under the INC-extended labeling scheme
that always outputs the message as ciphertext. The input chaining value r is incremented, and the
block cipher is queried on both r and r+1, erasing their shared family. No more INC instructions
are needed, so we can choose flags.INC = flags.INCd = 0 for both PRP outputs, and employ
the Theorem 32 subgraph to produce two identical PRP inputs.

The final PRP node just before the NEXTIV node is required to set flagsNEXTIV to ensure
that assumptions about flagsSTART are valid for multiple-block messages.

This algorithm contains the INC instruction, so there is no direct translation to Linicrypt. We
leave the proof that this algorithm is insecure as an exercise for the reader.

C A Counterexample to the Completeness of MKG14

The MKG14 scheme allows each family to contribute its randomness to at most one block cipher
query. We saw in the previous section that this restriction is insufficient to ensure the uniqueness of
block cipher inputs, because two families can exchange flags.PRF bits under certain conditions.
We now show that this restriction is also not necessary by presenting a secure Block algorithm
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START

DUP INC

PRP PRP

DUP DUP

XOR XOR

PRP PRP

XOR

DUP

M XOR

OUT

PRP

NEXTIV

({1}, R, 1111)

({1}, R, 1011)
({1}, R, 0101) ({1}, U, 0111)

({3}, R, 1100) ({4}, R, 1100)

({3}, R, 1000)

({3}, R, 0100)({4}, R, 0100)

({4}, R, 1000)

({3, 4}, R, 1100) ({3, 4}, R, 1100)

({5}, R, 1100) ({6}, R, 1100)

({5, 6}, R, 1100)

({5, 6}, R, 1000)

({2},⊥, 0000)
({2, 5, 6}, R, 1000)

({5, 6}, R, 0100)

({7}, R, 1111)

Figure 5: An insecure Block algorithm (that always outputs the message) with a valid labeling
under the INC-extended MKG14 scheme.

31



START

DUP1

PRP

DUP2

XOR1

PRP

M XOR

OUT

PRP

NEXTIV

({1}, R, 11)

({1}, R, 10)

({1}, R, 01)

({3}, R, 11)

({3}, R, 01)
({3}, R, 10)

({1, 3}, R, 11)

({4}, R, 11)
({2},⊥, 00)

({2, 4}, R, 11)

({5}, R, 11)

Figure 6: A secure (when paired with the trivial Init algorithm) Block algorithm that has no valid
labeling under the MKG14 scheme.

that makes three oracle queries involving only two random base variables. Its Linicrypt program
is shown below (it is also isomorphic to the running example in Section 2.3):

BlockΠ(r,m):

x := Π(r)
y := Π(r ⊕ x)
s := Π(x)
c := y ⊕m
return (c, s)

The MKG14 graph of this Block algorithm is shown in Figure 6. The output of the START
node contains the input chaining value. Conceptually, this graph cannot be labeled because two
flags.PRF bits must be split between three block cipher queries. The edge labels were assigned
to remain valid for as long as possible. At DUP1, we must send the flags.PRF bit to the right
child because it is a PRP node. This means that the left child (XOR1), whose own child is a PRP
node and thus requires flags.PRF to be set, must receive a flags.PRF bit from its other parent,
DUP2. However, the other child of DUP2 is also a PRP node, so both children of DUP2 require
flags.PRF to be set. This is impossible because DUP nodes must conserve flags bits. Therefore,
no valid labeling exists for this graph, and the MKG14 characterization rejects all block cipher
modes using this Block algorithm.

We now consider the Linicrypt block cipher mode that uses this Block algorithm as its round
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function. By Theorem 24, the encryption scheme induced by this mode, EncBlockℓ , is IND$-CPA
secure if and only if it is secure for single-block plaintexts and Block is non-repeating.

Let L = EncBlock1 , the Linicrypt program that encrypts a single-block plaintext with Block as
the round function. The algebraic representation of L is as follows.

M(L) =
r m x y s
[ ]0 1 0 0 0

C(L) =

r m x y s[ ]
c0 1 0 0 0 0
c1 0 1 0 1 0

O(L) =


[1 0 0 0 0] 7→ [0 0 1 0 0],
[1 0 1 0 0] 7→ [0 0 0 1 0],
[0 0 1 0 0] 7→ [0 0 0 0 1]


Since, none of the oracle constraints involve m, the repeatable subspace R(L) = rowspace(M(L)).

Thus, U(L) =
[
0 1 0 0 0

]
. Clearly, the rows of

[
C(L)
U(L)

]
are linearly independent, so single-

block encryption is IND$-CPA secure by Theorem 10.
Block is not counter-like because s depends on r (via x), so Block is a non-repeating round

function by Definition 19. Thus, both conditions of Theorem 24 are satisfied, so the block cipher
mode is secure.
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