
On Non-uniform Security
for Black-box Non-Interactive CCA Commitments

Rachit Garg∗ Dakshita Khurana† George Lu∗ Brent Waters∗

August 9, 2022

Abstract

We obtain a black-box construction of non-interactive CCA commitments against non-uniform
adversaries. This makes black-box use of an appropriate base commitment scheme for small
tag spaces, variants of sub-exponential hinting PRG (Koppula and Waters, Crypto 2019) and
variants of keyless sub-exponentially collision-resistant hash function with security against
non-uniform adversaries (Bitansky, Kalai and Paneth, STOC 2018 and Bitansky and Lin, TCC
2018).

All prior works on non-interactive non-malleable or CCA commitments without setup first
construct a “base” scheme for a relatively small identity/tag space, and then build a tag am-
plification compiler to obtain commitments for an exponential-sized space of identities. Prior
black-box constructions either add multiple rounds of interaction (Goyal, Lee, Ostrovsky and
Visconti, FOCS 2012) or only achieve security against uniform adversaries (Garg, Khurana, Lu
and Waters, Eurocrypt 2021).

Our key technical contribution is a novel tag amplification compiler for CCA commitments
that replaces the non-interactive proof of consistency required in prior work. Our construction
satisfies the strongest known definition of non-malleability, i.e., CCA2 (chosen commitment
attack) security. In addition to only making black-box use of the base scheme, our construction
replaces sub-exponential NIWIs with sub-exponential hinting PRGs, which can be obtained
based on assumptions such as (sub-exponential) CDH or LWE.

1 Introduction

Non-malleable commitments [DDN91] and their stronger counterparts CCA commitments [CLP10]
are core cryptographic primitives that provide security in the presence of “man in the middle” at-
tacks. They ensure that a man-in-the-middle adversary, that simultaneously participates in two
or more protocol sessions, cannot use information obtained in one session to breach security in
another. They also enable secure multi-party computation, coin flipping and auctions.

This work builds non-interactive CCA commitments, which involve just a single commit mes-
sage from the committer. We focus on the (standard) notion of security against non-uniform
adversaries, which necessitates that these commitments be perfectly binding and computation-
ally hiding. For these commitments, the perfect binding requirement is that for any commitment
string c generated maliciously with potentially an arbitrary amount of preprocessing, there do not
∗UT Austin. Email:{rachg96, bwaters, gclu}@cs.utexas.edu
†UIUC. Email: dakshita@illinois.edu.

exist two openings to messages m and m′ such that m 6= m′. The (computational) hiding property
requires that for every pair of equal-length messages m and m′, the distributions of commitments
com(m) and com(m′) are computationally indistinguishable.

The notion of CCA security for commitments is defined analogously to encryption schemes,
except that the adversary is given access to a decommitment oracle. However, unlike the case of
encryption, non-interactive commitments without setup do not allow for efficient decommitment
given a trapdoor/secret key. In more detail, the hiding game is strengthened significantly to give
the adversary oracle access to an inefficient decommitment/value function CCA.Val where on input
a string c, CCA.Val(tag, c) will return m if CCA.Com(tag,m; r)→ c for some r. The adversary must
first specify a challenge tag tag∗, along with messages m∗0,m

∗
1. It is then allowed oracle access to

CCA.Val(tag, ·) for every tag 6= tag∗, and can make an arbitrary (polynomial) number of queries
before and after obtaining the challenge commitment. 1

This CCA-based definition is the strongest known definition of non-malleability. In the non-
interactive setting, the often-used definition of (concurrent) non-malleability with respect to com-
mitment is a special case of this definition where the adversay is only allowed to make parallel
oracle queries once it obtains the challenge commitment.

Prior Work on Non-Malleable Commitments. There have been several results [DDN91, Bar02,
PR05, PR08, LPV, PPV08, LP09, Wee10, PW10, LP, Goy11, GLOV12, GRRV14, GPR16, COSV16,
COSV17, Khu17, LPS17, KS17, GR19] that gradually reduced the round complexity and the crypto-
graphic assumptions required to achieve non-malleable commitments. In the non-interactive set-
ting, Pandey, Pass and Vaikuntanathan [PPV08] first obtained non-malleable commitments from a
strong non-falsifiable assumption. A lower bound due to Pass [Pas13] demonstrated the difficulty
of obtaining a non-interactive construction from standard assumptions.

Nevertheless, recent works of Lin, Pass and Soni [LPS17], Bitansky and Lin [BL18b], Kalai and
Khurana [KK19], Garg et al. [GKLW21] and Khurana [Khu21] made progress towards improving
these assumptions. These works proceed in two steps: the first step builds a “base” scheme sup-
porting a small (typically, constant-sized) tag space and the second step converts commitments
supporting a small tag space to commitments that support a much larger tag space.

Base Constructions. Three recent works [LPS17, BL18b, KK19] build non-interactive base schemes:
non-malleable commitments for a tag space of size c log log κ for a specific constant c > 0, based on
various hardness assumptions. Specifically, Lin, Pass and Soni [LPS17] assume a sub-exponential
variant of the hardness of time-lock puzzles, and Bitansky and Lin [BL18b] rely on sub-exponentially
hard injective one-way functions that admit hardness amplification beyond negligible. Finally,
Kalai and Khurana [KK19] assume classically sub-exponentially hard but quantum easy non-
interactive commitments (which can be based, e.g., on sub-exponential hardness of DDH), and
sub-exponentially quantum hard non-interactive commitments (which can be based, e.g., on sub-
exponential hardness of LWE).

Tag Amplification. The second step, as discussed above, builds a tag amplficiation compiler that
increases the tag space exponentially. Starting with non-malleable commitments for a tag space of

1The assumption that the commitment takes input a tag is without loss of generality when the tag space is expo-
nential. As is standard with non-malleable commitments, tags can be generically removed by setting the tag as the
verification key of a signature scheme, and signing the commitment string using the signing key.

2

size c log log κ for a specific constant c > 0 (or sometimes even smaller), multiple applications of
this compiler yield commitments for a tag space of size 2κ.

This step, which is also the focus of the current work, typically involves encoding a single tag
from a larger space into many tags from a smaller space, and then committing to a given message
several times, once w.r.t. each small tag. In addition, an implicit/explict proof of consistency of these
commitments is provided, and this proof is required to hide the committed message. Such a proof
becomes challenging to implement in the non-interactive setting without setup.

Nevertheless, tag amplification was obtained in [LPS17] against uniform man-in-the-middle
adversaries based on sub-exponential non-interactive witness indistinguishable (NIWI) proofs
and keyless collision resistant hash functions against uniform adversaries. It was also obtained
in [BL18b] against non-uniform man-in-the-middle adversaries based on sub-exponential non-
interactive witness indistinguishable (NIWI) proofs and keyless collision resistant hash functions
with a form of collision resistance even against non-uniform adversaries. Somewhat orthogo-
nally, [Khu21] obtained tag amplification from sub-exponential indistinguishability obfuscation
and sub-exponential one-way functions, while avoiding the need for keyless collision resistant
hashing.

Black-box Tag Amplification. Recently, [GKLW21] developed the first tag amplification tech-
nique that only made black-box use of the base commitment. That work additionally assumed (black-
box access to) hinting PRGs and keyless collision resistant hash functions against uniform ad-
versaries. Hinting PRGs themselves admit constructions from the CDH and LWE assumptions.
Besides being black-box , this was the first solution that did not rely on non-interactive witness
indistinguishable (NIWI) proofs, which so far are only known based on the hardness of the deci-
sional linear problem over bilinear maps [GOS12], or derandomization assumptions and trapdoor
permutations [BOV07], or indistinguishability obfuscation and one-way functions [BP15]. How-
ever, GKLW only obtain security against uniform adversaries.

But non-uniform security is often necessary when using non-malleable commitments within
a bigger protocol. For instance, round efficient secure multi-party computation protocols in the
plain model [BHP17, ACJ17, HHPV18, BL18a, BGJ+18, CCG+21] against malicious adversaries
usually include a step where participants commit to their inputs via a non-malleable/CCA com-
mitment, in addition to providing a proof that the CCA commitment is consistent with other
messages sent in the protocol. In low-interaction settings such as those of super-polynomial se-
cure MPC in two or three [BGJ+17] messages, these proofs of consistency are often simulated
non-uniformly, which ends up necessitating the use of non-malleable commitments with security
against non-uniform adversaries.

Our work addresses the following natural gap in our understanding of non-interactive non-
malleable/CCA commitments.

Is it possible to obtain black-box non-interactive CCA commitments against non-uniform adversaries?

Our Results. This work provides a black-box approach to achieving non-interactive CCA com-
mitments with security against non-uniform adversaries, by relying on keyless hash functions that
satisfy collision-resistance against non-uniform adversaries, and by overcoming seemingly funda-
mental limitations from the prior work of [GKLW21]. In addition, our tag amplification technique
achieves provable security without the need for NIWIs as in prior work [BL18b], and by instead

3

relying on a sub-exponentially secure variant of hinting PRGs, which can themselves be obtained
from (sub-exponential) CDH or LWE just like their counterparts in [KW19].

2 Overview of Techniques

We now give an overview of our amplification technique, where the goal is to amplify a scheme
for O(N) tags to a scheme for 2N tags, with computational cost that grows polynomially with N
and the security parameter κ. This process can be applied iteratively c + 1 times to a base NM
commitment scheme that handles tags of size lg lg · · · lg︸ ︷︷ ︸

c times

(κ) for some constant c and results in a

scheme that handles tags of size 2κ.

Templates for Tag Amplification. To perform tag amplification, we will build on a tag encoding
scheme that was first suggested by [DDN91]. They suggest a method of breaking a large tag
T j (say, in [2N]) into N small tags tj1, t

j
2, . . . t

j
N , each in 2N , such that for two different large tags

T 1 6= T 2, there exists at least one index i such that t2i 6∈ {t11, t12, . . . t1N}. This is achieved by setting
tji = i||T j [i], where T j [i] denotes the ith bit of T j .

Given this tag amplification technique, we start by describing a template for non-interactive
tag amplification suggested in [KS17, LPS17]. A CCA commitment scheme for tags in 2N will gen-
erate a commitment to a message m as CCA.Com(1κ, tag,m; r)→ com. The string com is generated
by first applying the DDN encoding to tag to obtainN tags t1, . . . tN . Next, these (smaller) tags are
used to generate commitments to m in the smaller tag scheme as ci = Small.Com(1κ, (ti),msg =
m; ri) for i ∈ [N]. The intuition for security is as follows: recall that the DDN encoding ensures that
for two different large tags T 1 6= T 2, there exists at least one index i such that t2i 6∈ {t11, t12, . . . t1N}.
This (roughly) implies that the commitment generated by an adversary w.r.t. tag t2i is independent
of the challenge commitment string, as we desire. However, the commitments w.r.t. other tags t2j
could potentially depend on the challenge commitment, which is undesirable. To get around this
issue, the templates in [KS17, LPS17]2 suggest that the committer attach a type of zero knowledge
(ZK) proof that all commitments are to the same message m using the random coins as a witness.
In the setting of non-interactive amplification, the ZK proof will need to be non-interactive. For
technical reasons, it is in fact required to be ZK against adversaries running in time T , where T is
the time required to brute-force break the underlying CCA scheme for small tags.

Since non-interactive ZK proofs do not exist without trusted setup, the techniques in [LPS17,
KS17, BL18b, KK19] rely on weaker variants of ZK such as NIWIs, and [LPS17, KS17, BL18b]
combine NIWIs with a trapdoor statement that an (inefficient) ZK simulator uses to simulate the
ZK proof. At the same time, for soundness, we require that an adversary cannot use the trapdoor
statement to cheat. This is challenging when the trapdoor statement is fixed independently of the
statement being proven, because a non-uniform adversary can always hardwire the trapdoor and
use this to provide convincing proofs of false statements.

Given this barrier, [LPS17] restricted themselves to achieving tag amplification against uni-
form adversaries, based on (sub-exponential) NIWIs and keyless collision-resistant hash functions
against uniform adversaries. Subsequently [BL18b] developed a technique to obtain tag ampli-
fication against non-uniform adversaries, based on NIWIs and assuming the existence of keyless

2These are the non-interactive versions of templates previously suggested in [DDN91, LP09, Wee10].

4

collision-resistant hash functions that satisfy some form of security against non-uniform adver-
saries. Very roughly, they assume that no adversary with non-uniform advice of size S can find
more than poly(S) collisions3.

More recently, [GKLW21] developed a method for performing non-interactive tag amplifica-
tion without NIWIs, and while only making black-box use of the underlying base commitment.
However, the resulting scheme is secure only against uniform adversaries. On the other hand, the
goal of this work is to achieve a black-box construction that avoids NIWIs and achieves security
against non-uniform adversaries, under a similar keyless assumption as [BL18b]. To highlight the
bottlenecks in the non-uniform setting, we give a brief overview of the technique of [GKLW21].

Black-box Tag Amplification. To begin, we note that the tag amplification technique sketched
above is not black-box in the base commitment due to the use of variants of ZK. Recall that ZK
is used to ensure consistency of adversarial commitments generated w.r.t. different small tags. In
the CCA setting, this allows using a CCA decommitment oracle that opens a commitment under
any one of the adversary’s small tags, without the adversary noticing which one was opened. In
other words, ZK is used to establish a system where the adversary cannot submit a commitment
such that its opening will be different under oracle functions that open different commitments,
which turns out to be crucial to achieving CCA security.

In [GKLW21], this system is established by means of a hinting PRG [KW19]. At a high level, the
construction in [GKLW21] sets things up so that the CCA oracle that opens a commitment under
one of the adversary’s small tags will recover a candidate PRG seed s. This seed deterministically
generates (a significant part of) the randomness used to create commitments with respect to all
the adversary’s small tags. The oracle uses this property to check for consistency by re-evaluating
the underlying small-tag commitments, and checking them against the original. These checks in-
tuitively serve as a substitute for ZK proofs, however they differ from ZK in that the checking al-
gorithm sometimes allows partially malformed commitments to be opened to valid values. While
creating such partially malformed commitments is actually easy for the adversary, the adversary
is still unable to distinguish between oracles that open different small tag commitments.

The work [GKLW21] converts CCA commitments with 4N tags to CCA commitments with 2N

tags, assuming hinting PRGs and statistically equivocal commitments without setup, that satisfy
binding against uniform adversaries. A hinting PRG satisfies the following property: for a uni-
formly random short seed s, expand PRG(s) = z0z1z2 . . . zn. Then compute matrix x by sampling
uniformly random v1v2 . . . vn, and setting for all i ∈ [n], Msi,i = zi and M1−si,i = vi. The require-
ment is that z0,M generated using a uniformly random seed must be indistinguishable from a
uniform random string.

Here, we actually note that prior works [KW19, GKLW21] can be made to work based on a
hinting PRG that actually satisfies a weaker property: namely, that z0,M obtained as described
above should be indistinguishable from u,M where u is generated uniformly at random and M is
generated as described above. Looking ahead, we will define a variant of a hinting PRG and will
rely on the fact that this weaker property can be used instead.

Hinting PRGs were built based on CDH, LWE [KW19], as well as more efficient versions based
on the φ-hiding and DBDHI assumptions [GVW20]. The required equivocal commitments can be

3Technically, they rely on a more general notion of incompressible problems, which is a collection of efficiently
recognizable and sufficiently dense sets, one for each security parameter, for which no adversary with non-uniform
description of polynomial size in S can find more than K(S) elements in the set.

5

obtained from keyless collision resistant hash functions against uniform adversaries, based on the
blueprint of [DPP93] and [HM96], and more recently [BKP18], in the keyless hash setting.

The [GKLW21] technique. We now provide a brief overview of the [GKLW21] technique, since
their construction will serve as a starting point for our work.

Let (Small.Com,Small.Val,Small.Recover) be a CCA commitment for 4N tags. Then [GKLW21]
assume tags take identities of the form (i, β, γ) ∈ [N] × {0, 1} × {0, 1} and that the Small.Com
algorithm requires randomness of length `(κ). Their transformation produces three algorithms,
(CCA.Com,CCA.Val,CCA.Recover). The CCA.Com algorithm on input a tag tag from the large tag
space, an input message, and uniform randomness, first samples a seed s of size n for a hinting
PRG. It uses the first co-ordinate z0 (of the output of the hinting PRG on input s), as a one-time
pad to mask the message m, resulting in string c. Next, it generates n equivocal commitments
{σi}i∈[n], one to each bit of s. We will let yi denote the opening of the ith equivocal commitment
(this includes the ith bit si of s). Finally, it ‘signals’ each of the bits of s by generating commitments
{cx,i,b}x∈[N],i∈[n],b∈{0,1} using the small tag scheme. For every i ∈ [n], the commitments {cx,i,0}x∈[N]

and {cx,i,1}x∈[N] are generated as follows:

1. If si = 0

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

2. If si = 1

(a) cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)

(b) cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

where all the r̃x,i values are uniformly random, whereas rx,i values correspond to the output of
the hinting PRG on seed s. The output of CCA.Com is tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1}.

On an oracle query of the form CCA.Val(tag, com), we must return the message committed in
the string com, if one exists. To do this, we parse com = tag, c, {σi}i∈[n], {cx,i,b}x∈[N],i∈[n],b∈{0,1},
and then recover the values committed under small tags (1, tag1, 0) and (1, tag1, 1), which also
helps recover the seed s of the hinting PRG. Next, we check that for every i ∈ [n], the recovered
values correspond to openings of the respective σi. We also compute hinting PRG(s), and use the
resulting randomness to check that for all x ∈ [N], the commitments that were supposed to use
the outcome of the PRG were correctly constructed. If any of these checks fail, we know that the
commitment string com cannot be a well-formed commitment to any message. Therefore, if any of
the checks fail, the oracle outputs ⊥. These checks are inspired by [KW19], and intuitively, ensure
that it is computationally infeasible for an adversary to query the oracle on commitment strings
that lead to different outcomes depending on which small tag was used. If all these checks pass,
the CCA.Val algorithm uses c to recover and output m.

To prove that the resulting scheme is CCA secure against uniform adversaries, note that the set
{(x, tagx)}x∈[N] is nothing but the DDN encoding of the tag tag. This means that for our particular
method of generating the commitments cx,i,b described above, for each of the adversary’s oracle
queries, there will be an index x′ ∈ [N] such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to
generate {cx′,i,b}i∈[n],b∈{0,1} in that query will differ from all small tags used to generate the challenge
commitment.

6

The first step towards proving security of the resulting commitment will be to define an alter-
native CCA.ValAlt algorithm, that instead of recovering the values committed under tags (1, tag1, 0)
and (1, tag1, 1), recovers values committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). The goal is to en-
sure that it is computationally infeasible for an adversary to query the oracle on commitment
strings for which CCA.Val and CCA.ValAlt lead to different outcomes. In more detail, because of
the checks performed by the valuation algorithms, it is possible to argue that any adversary that
distinguishes CCA.Val from CCA.ValAlt must query the oracle with a commitment string that has
following property: For some i ∈ [n], x ∈ [N], cx,i,0 and cx,i,1 are small tag commitments to open-
ings of the equivocal commitment to some bit b and 1 − b respectively. One can then brute-force
extract these openings from cx,i,0 and cx,i,1 to contradict the binding property of the commitment
against uniform sub-exponential adversaries.

This first step already becomes a bottleneck in the non-uniform setting: in general, an adver-
sary with bounded polynomial advice can always sample an equivocal (non-interactive) commit-
ment string together with an opening to 0 and another opening to 1.

The problem in the non-uniform case. As discussed above, the proof/construction in [GKLW21]
falls apart in the very first step when considering a non-uniform adversary. In fact, such an ad-
versary can attack the [GKLW21] scheme by non-uniformly sampling equivocal commitments
{σ̃i}i∈[n] together with randomness {ỹ0,i}i∈[n] and {ỹ1,i}i∈[n] that can be used to open these com-
mitments to both 0 and 1 respectively. Next, it can set the components {c̃x,i,b}x∈[N],i∈[n],b∈{0,1} as
small-tag commitments to both types of openings. This allows the attacker to explicitly break
CCA2 security, as we describe next.

Let x′ ∈ [N] be an index such that the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) used to generate
{cx′,i,b}i∈[n],b∈{0,1} in that query differ from all small tags used to generate the challenge commitment.
On one hand, CCA2 security of the small-tag scheme will ensure that seed recovered from small-
tag commitments (x′, t̃agx′ , 0) and (x′, t̃agx′ , 1) are independent of the seed in the challenge com-
mitment. On the other hand, the actual committed value, which is defined via the seed recovered
from (1, t̃ag1, 0), (1, t̃ag1, 1) will exactly match the value in the challenge commitment, allowing
this adversary to break CCA2 security. The equivocation described above would allow the adver-
sary to ensure that all the hinting PRG checks pass, despite the use of different types of seeds in
small tags (1, t̃ag1, 0), (1, t̃ag1, 1) versus (x′, t̃agx′ , 0), (x′, t̃agx′ , 1).

Towards a Solution. Now, one could hope to rely on some form of non-uniform security of key-
less hash functions [BKP18, BL18b]. Prior works [BKP18, BL18b] have formulated and used the
assumption that there exist keyless hash functions where any adversary with non-uniform advice
of size S can only find poly(S) collisions. Inspired by a technique in [BL18b], we could hope to de-
fine a “bad” CCA2 query as one that contains openings to both a zero and a one for the equivocal
commitment. Next, we could hope to limit the number of “bad” CCA2 queries that a non-uniform
adversary will make to its decommitment oracle. As long as this set of “bad” queries is bounded
and is just a function of the adversary’s non-uniform advice, our challenger could also hope to
non-uniformly obtain answers to such queries and use these instead of running the CCA.Val or
CCA.ValAlt function.

Unfortunately, in the [GKLW21] protocol, even given just bounded (polynomial) non-uniform
advice, an adversary will be able to equivocate all of its commitments and generate an unbounded
number of bad queries. Moreover, because the hinting PRG is not injective, each bad query could

7

have multiple possible openings to different seeds. This indicates that the [GKLW21] protocol
needs to be fundamentally modified to enable security against non-uniform attacks.

Our Approach. We begin by understanding how the [GKLW21] protocol can possibly be modi-
fied to disallow the attack described above.

• As described above, we want to force the adversary to “use up” bits of non-uniform advice
for each new bad query that it makes. This will hopefully help limit the number of unique
bad queries, and our reduction could then non-uniformly obtain answers to each of these
queries.

• To allow the reduction to non-uniformly answer bad queries, we will aim to pair every
possible bad query with a unique seed value that can be used to answer this bad query in
place of running the CCA.Val or CCA.ValAlt function.

Limiting bad seeds instead of bad queries. The first bullet aims to limit the number of bad queries.
While we will not be able to achieve this, we will achieve a slightly weaker property that will
nevertheless suffice for our proof idea to go through. In more detail, we will tie every CCA2 query,
and in particular the equivocal commitment part of every CCA2 query to an auxiliary input parameter.
That is, in addition to message and randomness, each equivocal commitment will obtain as input
an auxiliary parameter. There will be no hiding requirement on the auxiliary parameter; it will
only serve to strengthen the binding property of the equivocal commitment. We will require that
there exists a fixed polynomial K(·) such that any adversary with non-uniform advice of size S
is unable to output K(S) different pairs of auxiliary parameters and commitment strings, with
valid openings for each pair to both a zero and a one. We will rely on keyless collision-resistant
hash functions against non-uniform adversaries to build modified equivocal commitments with
this guarantee. While this does not limit the number of bad queries that an adversary can make, it
does limit the number of unique auxiliary input parameters that an adversary can use to generate
CCA2 queries where it is able to open the equivocal commitments to both a zero and a one.

The goal of the second bullet is to allow a reduction to answer all bad queries by pairing every
such query with a unique seed that can be used to non-uniformly answer this query in place of
running the CCA.Val or CCA.ValAlt function. To get this idea to work, we must assign a “right”
candidate seed to each bad query. As discussed above, in the [GKLW21] protocol, any adversary
that can find two openings for the equivocal commitments could submit a bad query where multi-
ple possible seed values match the output of the HPRG. To prevent this, we will explicitly force the
HPRG to be injective. In more detail, we add what we call an“injective extension” to the HPRG.
This is an additional algorithm ExtEval(s)→ rext that is an injective function on the HPRG seed s.
The HPRG security requirement is also slightly modified to ensure that an adversary will not be
able to distinguish the PRG output z from uniform given the hint matrixM (described above) and
additionally given rext.

Now the CCA2 commitment will additionally consist of the value rext = ExtEval(s), and
CCA.Val/CCA.ValAlt will reject if for a recovered candidate seed s′, ExtEval(s′) 6= rext. As a re-
sult, there will be at most a single seed s that will be “compatible” with any commitment string.

Going back to the construction of our CCA2 commitment, we will compute the modified
equivocal commitments with auxiliary parameter set to rext, where recall that rext = ExtEval(s). At
this point, we will be able to assign (at most) one unique ‘s’ to each auxiliary parameter. Moreover,

8

by the (strengthened) binding property of equivocal commitments, any non-uniform attacker will
be able to equivocate on at most a small number of auxiliary parameter values.

Analyzing Security. To prove CCA2 security of the resulting construction, we will proceed as
follows. In the first hybrid (Game 1), we will switch to a challenger that depending on the adver-
sary’s non-uniform advice, stores a “cheat-sheet” consisting of all ‘bad’ rext that the adversary can
query on (with more than a certain inverse-polynomial probability), together with their inverses s
under the injective algorithm ExtEval(·). Our challenger will (1) rely on the cheat-sheet to answer
any adversarial queries for which rext lies on the cheat-sheet, and (2) use CCA.Val to decrypt only
those queries for which rext lies outside the cheat-sheet.

In the second hybrid (Game 2), the challenger will behave similarly as the previous hybrid,
except using CCA.ValAlt to decrypt queries for which rext lies outside the cheat-sheet. By the strong
binding property of the equivocal commitment, the adversary is guaranteed to not equivocate
on these queries (except with low probability). Therefore by the argument outlined in the proof
of the [GKLW21] technique, the outputs of CCA.Val and CCA.ValAlt will be indistinguishable on
these queries. The rest of the proof will follow similarly to [GKLW21]. There is one major hurdle
in realizing this outline, as we discuss next.

Modifying the CCA.Val algorithm. The first hybrid (Game 1) described above will actually not
be indistinguishable from the output of the actual CCA2 game. This is because a non-uniform
adversary may generate equivocation queries for which rext lies on the cheat-sheet and has an
inverse (a hinting PRG seed), but the CCA.Val algorithm run by the CCA2 challenger may not be
able to find this seed. To deal with this issue, we will change the CCA.Val algorithm so that it
performs a brute-force search through all possible seeds to find the one (if any) that matches rext.

At first it appears that the rest of the proof should be easy once this is done. It should be pos-
sible to rely on security of the (1) auxiliary-input equivocal commitments and (2) hinting PRGs
with injective extension, to show that the (updated) CCA2 game is indistinguishable from the
first hybrid. However, while this is true, proving it turns out to be fairly tricky. To prove indis-
tinguishability, we must design an efficient reduction B that has oracle access to an adversary A
which distinguishes between the CCA2 game and the first hybrid. This reductionB should be able
to use such an adversary to break security of equivocal commitments, by generating many more
equivocal openings than its (non-uniform) advice would allow it to. The adversary A is a CCA2
adversary, which means it makes multiple (a-priori unbounded) calls to a CCA.Val oracle, and B
must find a way to answer these queries. But recall that the oracle needs to perform a brute-force
search through all possible seeds to find the one (if any) that matches rext – simulating this process
will make B inefficient. As such, B will need to maintain its own cheat-sheet to answer CCA.Val
queries. Even with such a cheat-sheet, the proof is not straightforward: the set of most common
equivocal queries in the CCA2 game may in general be different from the set of most common
queries when B answers from its cheat-sheet.

Intermediate Cheat-Sheets. To make the proof go through, we will rely on a sequence of care-
fully defined intermediate cheat-sheets (that we will call lists from this point on). These will be
defined inductively, and in the base case L(0) will be empty. LetQ = Q(κ) denote the total number
of oracle calls that the attacker makes. For j ∈ [1, Q], the jth intermediate list, denoted by L(j) will
contain the rext values and corresponding seeds for A’s most common equivocal queries in its first

9

j oracle calls. Note that this does not suffice to fully define L(j), since we also need to determine
how the first j−1 oracle calls of A will be answered: in the definition of L(j), the first j oracle calls
will be answered using the CCA.ValAlt algorithm with access to the list L(j−1). The final list L used
by CCA.ValAlt in Game 1 will correspond exactly to L = L(Q). We show the following inductively
for every j: when the first j − 1 CCA.Val queries are answered using list L(j−1), then it is possible
to add new common equivocal queries and update the list to L(j). This will eventually allow us to
switch to the first hybrid described above, which uses CCA.ValAlt (plus the final list L(Q)).

We point the reader to Section 6.2.1 for a more detailed overview of this part of the proof.
There we also discuss why for technical reasons, we require as building blocks for our equivocal
commitment, keyless hash functions with specific parameters. In more detail, we require that
an adversary with S(κ) bits of advice cannot produce more than S(κ) · p(κ) pairs of “distinct
collisions” for some a-priori fixed polynomial p(·), where “distinct collisions” means that no entry
in any pair of collisions matches an entry in another pair. The assumption is described formally
and analyzed in Section 4.1.

Completing the Analysis. After switching to CCA.ValAlt (plus the cheat-sheet), the next hybrid
will sample equivocal commitments {σi}i∈[n], for the challenge commitment, together with ran-
domness {y0,i}i∈[n] and {y1,i}i∈[n] that can be used to equivocally open these commitments to 0
and 1 respectively. Next, inspired by [KW19] the components {c∗x,i,b}x∈[N],i∈[n],b∈{0,1} are modi-
fied in the challenge commitment to “drown” out information about s via noise, while relying on
CCA2 security of the underlying small tag scheme to run the CCA.ValAlt function and recover val-
ues committed under (x′, tagx′ , 0) and (x′, tagx′ , 1). This step crucially makes use of the fact that
the tags (x′, tagx′ , 0) and (x′, tagx′ , 1) differ from all small tags used to generate the challenge commit-
ment. Finally, we rely on the security of the hinting PRG to switch to using uniform randomness
everywhere.

Hinting PRGs with Injective Extension. We now describe how to achieve hinting PRGs with
injective extension by modifying the constructions in [KW19]. Recall that we require hinting PRGs
with injective extensions that satisfy a different security property than prior work: namely, for a
uniformly random short seed s, expand PRG(s) = z0z1z2 . . . zn and compute the injective output
rext. Then compute matrix M by sampling uniformly random v1v2 . . . vn, and setting for all i ∈ [n],
Msi,i = zi and M1−si,i = vi. The requirement is that z0 generated using a uniformly random
seed must be indistinguishable from uniform, even given M and given the output rext of the injective
extension.

We build hinting PRGs with an injective extension by modularly combining the constructions
in [KW19] with any leakage-resilient injective one-way function (LRIOWF). To enable this, we note
that hinting PRG constructions in [KW19] from CDH and LWE have a “lossy” property, where
PRG parameters can be generated in lossy mode in such a way that the output of the hinting
PRG is simulatable given just a small amount of advice. We call the resulting abstraction a lossy
hinting function. To achieve injectivity, we rely on a leakage resilient injective one-way function
(LRIOWF) applied to the seed s of the lossy hinting function4. Finally, we generate the ‘mask’
z0 of the hinting PRG as the Goldreich-Levin hardcore bits of the LRIOWF. To prove that z0 is
pseudorandom even in the presence of rext and M , we will switch the lossy hinting function to

4For example, any sub-exponentially secure injective one-way function will suffice for our purposes.

10

lossy mode. In this mode the hinting function will only leak a few bits about the inverse s of the
LRIOWF. We will then invoke the Goldreich-Levin theorem to argue that distinguishing the mask
from uniform will require inverting the LRIOWF given just a few bits of leakage on s, which is
impossible by assumption on the LRIOWF. This completes an overview of our techniques.

Comparison with Prior Work. We conclude with a comparison of our techniques against prior
work that relies on keyless collision-resistant hash functions against non-uniform adversaries.
While [BKP18] relies on this assumption to obtain 3-message zero-knowledge via substantially
different techniques, [BL18b] applies this to a setting that is much closer to our work, that is, to
achieving non-interactive non-malleable commitments. In more detail, [BL18b] use keyless hash
functions against non-uniform adversaries to build a special type of 1-message zero-knowledge
for NP with a weak soundness guarantee against non-uniform provers. They achieve this by build-
ing on the usual template for 1-message ZK, where a prover proves (via a NIWI) that either x ∈ L
or that the prover knows a trapdoor. The trapdoor, roughly, corresponds to a collision in a keyless
hash function; and is derived as a function of the statement x. This ensures that a prover that can
(non-uniformly) find a fixed set of non-uniform collisions will only be able to provide convincing
proofs for a fixed set of statements. In their construction of non-malleable commitments, the use
of NIWIs to prove a statement of the form “x ∈ L or the prover knows a trapdoor” results in
non-black-box use of the underlying base scheme.

Unlike [BL18b], we do not construct any variant of non-interactive ZK (or rely on assumptions
like NIWI that imply non-interactive ZK). We develop a new template to directly achieve tag
amplification for non-malleable commitments against non-uniform adversaries, without reliance
on NIWIs. Our methodology to “tie” together the set of collisions an adversary can find with the
number of commitments that an adversary can cheat on is entirely different from that of [BL18b].

3 Background

3.1 Non-uniform Security

We say that a cryptographic game is T(·)-non-uniform secure if for any Turing Machine in poly(T(κ))
time with poly(κ) non-uniform advice only has only negligible advantage in said game. We will
refer to poly(·)-non-uniform secure schemes as achieving ‘plain’ non-uniform security.

In addition, we will say a cryptographic scheme is subexponentially secure against non-uniform
adversaries if there exists some constant c > 0 such that the scheme is 2n

c
-non-uniform secure.

When the constant c is explicitly required, we will say c-subexponentially secure.

3.2 CCA Commitments

We present our definition of CCA secure commitments [CLP10], which is derived from [GKLW21]
with modifications made for defining security against non-uniform attackers. Intuitively, these
are tagged commitments where a commitment to message m under tag tag and randomness r
is created as CCA.Com(tag,m; r) → com. The scheme will be statistically binding, i.e., for all
tag0, tag1, r0, r1 and m0 6= m1 we have that CCA.Com(tag0,m0; r0) 6= CCA.Com(tag1,m1; r1).

The hiding property is a strengthened CCA2-style definition where an attacker outputs a chal-
lenge tag tag∗ along with messagesm0,m1 and receives a challenge commitment com∗ to eitherm0

11

orm1. The attacker’s job is to guess the message that was committed to with oracle access to an (in-
efficient) value function CCA.Val where CCA.Val(com) will return m if CCA.Com(tag,m; r) → com
for some r. The attacker is allowed oracle access to CCA.Val(·) for any tag 6= tag∗. In the non-
interactive setting, the traditional notion of non-malleability (as seen in [BL18b, KK19], etc.) is
simply a restriction of the CCA game where the adversary is only allowed to simultaneously sub-
mit a single set of decommitment queries. The proof of this is immediate and can be found in
[BFMR18].

We mention two distinct features of our definition.First, we explicitly denote the running time
of the CCA.Val algorithm despite the fact that it is not polynomial time. Explicitly specifying the
runtime of the CCA.Val oracle will help us in complexity leveraging when performing tag amplifi-
cation. We will call the commitment scheme to be 2κ

v
-efficient, i.e. can run in time (polynomially

in) 2κ
v

where v ≥ 1 and the security of the scheme is considered for subexponential adversaries.
This additional specification was not required in [GKLW21].

Second, (as in [GKLW21]) we require a recover from randomness property, which allows one
to open the commitment given all the randomness used to generate said commitment. This can
be achieved generically with no additional assumptions.

Remark 3.1. We note that by considering non-uniform attackers our definition actually becomes
simpler than that of [GKLW21] where they considered security against a stronger than uniform ad-
versary, which they labeled as e-computationally enabled security. Such an adversary can run any
Turing Program that runs in time poly(2κ

e
) and obtain it’s output as a non-uniform advice. This

notion helped them perform complexity leveraging and obtain a uniformly secure non-malleable
commitment scheme. Since we consider security against non-uniform adversaries, which are al-
lowed to obtain non-uniform advice that may take an arbitrary amount of time to compute, our
presentation is simpler.

3.2.1 Definition

A CCA secure commitment is parameterized by a tag space of size N = N(κ) where tags are in
[1, N] for message space M = {0, 1}w(κ) where w(·) is a polynomial function (for simplicity in
notation we often skip the dependence on κ). It consists of three algorithms:

CCA.Com(1κ, tag,m; r)→ com is a randomized PPT algorithm that takes as input the security pa-
rameter κ, a tag tag ∈ [N], a message m ∈ {0, 1}w and outputs a commitment com, including
the tag com.tag. We denote the random coins explicitly as r.

CCA.Val(com) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in a commitment com
and outputs either a message m ∈ {0, 1}w or a reject symbol ⊥.

CCA.Recover(com, r) → m is a deterministic algorithm which takes a commitment com and the
randomness r used to generate com and outputs the underlying message m.

We now define the correctness, efficiency properties, as well as the security properties of per-
fect binding and message hiding.

Correctness

12

Definition 3.1. We say that our CCA secure commitment scheme is perfectly correct if the follow-
ing holds. ∀m ∈ {0, 1}w, tag ∈ [N] and r we have that

CCA.Val(CCA.Com(1κ, tag,m; r)) = m.

Efficiency

Definition 3.2. We say that our CCA secure commitment scheme is T(·)-efficient, if CCA.Com,CCA.Recover
run in time poly(|m|, κ), while CCA.Val runs in time poly(|m|,T(κ))).5

Security

Binding.

Definition 3.3. We say that our CCA secure commitment is perfectly binding if ∀c,∀m0,m1 ∈
{0, 1}w s.t. m0 6= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not exist r such that

CCA.Recover(c, r) = m0

Moreover, for any c such that CCA.Val(c) = m1 6= ⊥, then there exists r such that CCA.Recover(c, r) =
m1.

Weak Binding.

Definition 3.4. We say that our CCA secure commitment is perfectly binding if ∀c,∀m0,m1 ∈
{0, 1}w s.t. m0 6= m1 and CCA.Val(c) ∈ {m1,⊥}, there does not exist r such that

CCA.Recover(c, r) = m0

CCA Hiding. We also define a CCA message hiding game between a challenger and an attacker.
The game is parameterized by a security parameter κ.

1. The attacker sends a “challenge tag” tag∗ ∈ [N].

2. The attacker makes a polynomial number of repeated commitment queries com. If com.tag =
tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

3. The attacker sends two messages m0,m1 ∈ {0, 1}w.

4. The challenger flips a coin b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r) for randomly
chosen r.

5In order for the scheme to be secure, the runtime of the CCA.Val oracle should be bigger than the runtime of the
subexponential adversary. We will imagine runtime of the CCA.Val oracle to be 2κ

v

where v > 1.

13

5. The attacker again makes a polynomial number of repeated queries of commitment com. If
com.tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

6. The attacker finally outputs a guess b′.

We define the attacker’s advantage in the game to be Pr[b′ = b] − 1
2 where the probability is over

all the attacker and challenger’s coins.

Definition 3.5. A CCA secure commitment scheme scheme given by algorithms (CCA.Com,CCA.Val,
CCA.Recover) is said to be T(·)-CCA secure if for any T(·)-non-uniform adversary A there exists a
negligible function negl(·) such that the attacker’s advantage in the game is negl(κ).

We also define another notion of security which we call “same tag" computation enabled secure
for a weaker class of adversaries who only submit challenge queries that all have the same tag.

Definition 3.6. A CCA secure commitment scheme scheme given by algorithms (CCA.Com,CCA.Val,
CCA.Recover) is said to be “same tag" T(·)-CCA secure if for any T(·)-non-uniform adversary A
which generates queries such that all commitment queries submitted by A are on the same tag,
there exists a negligible function negl(·) such that the attacker’s advantage in the game is negl(κ).

Recovery From Randomness

Definition 3.7. We say that our CCA secure commitment scheme can be recovered from random-
ness if the following holds. For all m ∈ {0, 1}w, tag ∈ [N], and r we have that

CCA.Recover(CCA.Com(1κ, tag,m; r), r) = m.

4 Setupless Equivocal Commitments against Non-Uniform Adversaries

Equivocal commitments are commitments introduced by DiCrescenzo et al [CIO98] that have two
computationally indistinguishable modes of setup. In the normal mode the setup outputs public
parameters such that the commitment is statistically binding. In the alternate mode, the setup
outputs public parameters and a trapdoor which can output commitments that open to both 0
and 1.

A setupless equivocal commitment sceme doesn’t have a trusted setup algorithm. Instead we
have an inefficient equivocation algorithm that can output commitments to both 0 and 1. The
security of the scheme is guaranteed for adversaries that run in less than the equivocation time. A
setupless equivocal commitment scheme, secure against uniform adversaries can be constructed
from any setupless statistical hiding, computationally binding commitment scheme [GKLW21].
These can be built using a strong extractor and a keyless collision resistant hash function ([DPP93,
HM96, BKP18]). But for non-uniform adversaries, it is easy to hardwire collisions for the setupless
collision resistant hash function and hence break binding security of the scheme.

In order to achieve non-uniform security, Bitansky et al [BKP18], suggested a multi-collision
resistance assumption that essentially claims that hardwiring collisions is the best that an adver-
sary can do. Informally, the K strong multi-collision resistant property states that any non-uniform

14

adversary with advice advice can not output more than K(|advice|) many collisions (assume that K
blows up the length). This assumption was used by Bitansky et al [BKP18] to create statistically
hiding commitments with a special binding against non-uniform adversaries.

We introduce a modified notion called “Setupless Equivocal Commitment with Auxiliary In-
put" that builds on these prior work, assumptions and takes in an auxiliary input aux ∈ {0, 1}∗
additionally and commits to a bit b and aux. The inefficient equivocation algorithm can take in
any aux and output a commitment that can be open to both 0 and 1. We hide b (aux can not be
hidden) while guaranteeing computational binding against non-uniform adversaries. We show
that a similar construction showed by [BKP18] using multi-collision resistant hash functions and
a strong extractor also gives this notion.

4.1 Distinct Strong Keyless Multi-Collision Resistance

The definition from [BKP18, BL18b] states that a non-uniform attacker with advice string advice
cannot output more than K(κ, |advice|) collisions (one can think of K as a polynomial that grows
the advice length, [BL18b] say this could, for instance, be a quadratic polynomial). We further
weaken the definition so that the adversary is required to output all distinct elements in its pairs
of collisions, i.e. letting X =

(
X

(0)
1 , X

(1)
1 , . . . , X

(0)
K , X

(1)
K

)
, we require that there do not exist any

i, j ∈ [K]2, b, c ∈ {0, 1}2 such that X(b)
i = X

(c)
j . We call this modified notion distinct strong

multi-collision resistance. Formally,

Definition 4.1 ((T,K)-Distinct Strong Multi-Collision Resistance). Let T = T(·) and K = K(·, ·)
be functions of the security parameter κ. A keyless hash function H : {0, 1}∗ → {0, 1}κ is (T,K)
distinct strong multi-collision resistant if there is a negligible function negl such that for every
polynomial size non-uniform adversary A that runs in time poly(T) and is given advice advice of
length poly(κ), for every security parameter κ, for T = T(κ) and K = K(κ, |advice|),

Pr

[(
X

(0)
1 , X

(1)
1 , . . . , X

(0)
K , X

(1)
K

)
← A(1κ) :

∀(i, b) 6= (j, c) ∈ [K]× {0, 1}, X(b)
i 6= X

(c)
j

∀i ∈ [K],H.Hash(1κ, X
(i)
0) = H.Hash(1κ, X

(i)
1)

]
≤ negl(κ).

While this is not part of our definition, for applications we will require that the number
of collisions remain linear in the size of advice, i.e., there is a fixed polynomial p(·) such that
K(κ, |advice|) ≤ p(κ)·|advice|. In Appendix B, we show that our assumption, namely (T,K)-distinct
strong multi-collision resistance holds in the auxiliary-input random oracle model [Unr07] with
p(κ) as small as 1, i.e. K(κ, |advice|) ≤ |advice|.

4.2 Setupless Equivocal Commitment with Auxillary Input

An auxiliary input equivocal commitment scheme AuxEquiv without setup consists of the algo-
rithms:

AuxEquiv.Com(1κ, aux, b) → (c, d) is a randomized PPT algorithm that takes in a bit b ∈ {0, 1},
some auxiliary information aux ∈ {0, 1}∗ and security parameter κ ∈ N and outputs a com-
mitment c, decommitment string d.

15

AuxEquiv.Decom(aux, c, d)→ {0, 1,⊥} is a deterministic polytime algorithm that takes in the com-
mitment c along with the auxiliary information aux and it’s opening d and reveals the bit that
it was committed to or ⊥ to indicate failure.

AuxEquiv.Equivocate(1κ, aux) → (c, d0, d1) is an (inefficient) randomized algorithm that takes in
the security parameter and some auxiliary information aux and outputs a commitment string
c and decommitment strings to both 0 and 1.

Definition 4.2. Correctness - We say an equivocal commitment scheme is perfectly correct if for
all b ∈ {0, 1}, aux ∈ {0, 1}∗,

Pr

(c, d)← AuxEquiv.Com(1κ, aux, b)
b′ ← AuxEquiv.Decom(aux, c, d)

b′ = b

 = 1

Definition 4.3. Efficiency - We say an equivocal commitment scheme is efficient if AuxEquiv.Com
and AuxEquiv.Decom run in poly(κ, |aux|) time, and AuxEquiv.Equivocate runs in time poly(2κ, |aux|).

We now define the binding and equivocal properties.

Definition 4.4. An equivocal commitment without setup scheme is said to be (T(·),K(·)) binding
secure if for any non-uniform adversary A running in time poly(T(κ)) for some polynomial and
given an advice advice(κ) (for simplicity, denoted as advice) of length poly(κ) and a setting of
K = K(|advice|, κ), there exists a negligible function negl(·) such that,

Pr

(

(aux(1), c(1), d
(1)
0 , d

(1)
1), . . . ,

(aux(K), c(K), d
(K)
0 , d

(K)
1)

)
← A(1κ)

:

∀i ∈ [K],

AuxEquiv.Decom(aux(i), c(i), d
(i)
0) = 0,

AuxEquiv.Decom(aux(i), c(i), d
(i)
1) = 1

∀i 6= j ∈ [K], aux(i) 6= aux(j)

 ≤ negl(κ).

Definition 4.5. We say that a scheme is equivocal if for all b ∈ {0, 1}, aux ∈ {0, 1}∗ the statistical
difference between the following two distributions is negligible in κ.

• D0 = (aux, c, d) where AuxEquiv.Com(1κ, aux, b)→ (c, d).

• D1 = (aux, c, db) where AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1).

4.3 Construction

We construct auxiliary-input equivocal commitments assuming a keyless hash function that is
distinct strong multi-collision resistant and a strong extractor. This is based on constructions in-
troduced and presented in [DPP93, HM96, BKP18]. Let the keyless hash function be H : {0, 1}∗ →
{0, 1}κ. A (κ, negl(κ) strong extractor SExt (Appendix A) that takes a seed of κ bits and an input
of 3κ bits and outputs a single bit, SExt : {0, 1}κ × {0, 1}3κ → {0, 1}.

AuxEquiv.Com(1κ, aux, b)→ (c, d).
Sample a seed g ← {0, 1}κ. Choose v ← {0, 1}3κ. Compute w = b ⊕ SExt(g, v). Compute
h = H.Hash(1κ, (aux, v)). Compute c = (g, w, h) and d = v.

16

AuxEquiv.Decom(aux, c, d)→ {0, 1,⊥}
Parse c as (g, w, h). Check if h = H.Hash(1κ, (aux, d)), output⊥ if fails. Output w⊕SExt(g, d).

AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1)

Sample a seed g ← {0, 1}κ for a SExt. Sample w ← {0, 1}. Sample t R←− {0, 1}3κ.
Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}. Partition Vt = V0

t ∪ V1
t where

V it = {v : v ∈ Vt ∧ SExt(g, v) = i}, output ⊥ if either V0
t or V1

t are ∅.
Sample v0

R←− Vwt , v1
R←− Vw⊕1

t . Output ⊥ if no such v0 or v1 exist. h ← H.Hash(1κ, (aux, t)).
Output ((g, w, h), v0, v1).

We defer the analysis of this construction and a proof of the following lemma to the appendix
(Appendix C).

Lemma 4.1. If H(·) is a (T(·),K(·, ·)) distinct strong multi-collision resistant keyless hash function
against non-uniform adversaries and SExt is a (k, ε) = (κ, negl(κ)) Strong Seeded extractor, then
the construction above is a correct and efficient equivocal commitment scheme (Definition 4.3),
and is (T(·),K(·, ·))-binding secure (Definition 4.4).

4.4 Amplification

Lemma 4.2. If there exists a (T(·),K(·, ·)))-binding equivocal commitment scheme, then for any
polynomial p(·), there exists a (T(·),K(·, ·))/p(κ))-binding equivocal commitment scheme.

Proof. Let Small.AuxEquiv.Com,Small.AuxEquiv.Decom,Small.AuxEquiv.Equivocate be a (T(·),K(·))-
binding equivocal commitment scheme. Consider a p(·)−parallel repetition of Small.AuxEquiv

AuxEquiv.Com(1κ, aux, b)→ (c, d).
For i ∈ [p(κ)], run (ci, di)← Small.AuxEquiv.Com(1κ, (aux, i), b). Output (c = {ci}, d = {di})

AuxEquiv.Decom(aux, c, d)→ {0, 1,⊥}
If ∃b ∈ {0, 1} : ∀iin[p(κ)], AuxEquiv.Decom((aux, i), ci, di) = b, output b. Otherwise output ⊥.

AuxEquiv.Equivocate(1κ, aux)→ (c, d0, d1)
For i ∈ [p(κ)], run (ci, d0,i, d1,i) ← Small.AuxEquiv.Equivocate(1κ, (aux, i)). Output (c =
{ci}, d0 = {d0,i}, d1 = {d1,i})

We defer the analysis of this construction to the appendix (Appendix C).

Corollary 4.1. Assume there exists a polynomial p = p(κ) such that there exists a (T(·), p(·)|advice|)
distinct strong collision resistant hash function satisfying Definition 4.1, then for every polynomial
poly(·), there exists a (T(·), |advice|poly(κ))-binding equivocal commitment scheme.

Proof. Fix the polynomial p(·) and the distinct strong collision resistant hash function that is guar-
anteed by the assumption. By lemma 4.1, there exists a correct and efficienct equivocal commit-
ment that is (T(·), p(·)|advice|)-binding. Fix any polynomial poly(·). Then by invoking lemma 4.2
on the polynomial poly(·)p(·), we have that there exists a (T(·), |advice|poly(κ))-binding equivocal commit-
ment scheme.

17

5 Hinting PRGs with injective extension

A hinting pseudorandom generator as introduced by Koppula and Waters[KW19] is a pseudoran-
dom generator with an enhanced security property. In this security game blocks that are output
from the PRG are interspersed with random blocks where the placement is according to the seed
of the PRG.

In this section we introduce a variant of Hinting PRGS that we call Hinting PRGs with injective
extension. Our variant follows along the lines of the original, but with two critical modifications.
The first is that we slightly relax the security game. On a seed s of length n bits, the hinting PRG
outputs length n+ 1 blocks each consisting of ` bits. Informally, our security guarantee is that the
adversary cannot distinguish between the following two distributions, each consisting of (2n+ 1)
blocks. In both distributions, all blocks but the first are generated identically: these output as a
2× n matrix where for all i ∈ [n] the (si, i)

th entry is set according to the (i+ 1)th block of the PRG
evaluation, while the (1 − si, i)th entry is a uniformly random string. In the first distribution, the
first `-bit block is set as the first block of the PRG evaluation, and in the second distribution, the
first `-bit block is set uniformly at random.

This relaxed security definition differs from the original security definition in which the second
distribution consists of all random blocks. It is fairly easy to observe that our relaxed notion also
suffices for performing the CCA transformation of [KW19] and will also suffice for our purposes.
The primary reason for relaxing the security definition, is that it makes it easier to realize our
second modification.

We additionally define an injective extension for the hinting PRG, where we require that the
Hinting PRG evaluation algorithm additionally outputs a separate block that is injective with
respect to the seed. To ensure injectivity we will define an algorithm that checks the Hinting PRG
public parameters and outputs 0 if the public parameters were sampled so that the extended block
might not be an injective function of the seed. That is there could be two seeds that output the
same extended block. If the check function outputs 1, the extended block will be an injective
function of the seed. The hinting PRG scheme consists of the following algorithms,

Setup(1κ, 1`): The setup algorithm takes as input the security parameter κ, and length parameter
`, and outputs public parameters pp and input length n = n(κ, `)

Eval (pp, s ∈ {0, 1}n, i ∈ [n] ∪ {0}): The evaluation algorithm takes as input the public parameters
pp, an n bit string s, an index i ∈ [n] ∪ {0} and outputs an ` bit string y.

ExtEval (pp, s ∈ {0, 1}n): The extended evaluation algorithm takes as input the public parameters
pp, an n bit string s and outputs a string of length m = m(κ, `).

CheckParams (pp, n): The algorithm takes as input the public parameters pp, the seed input length
n and checks them to see if the function sampled is injective or not. It outputs {0, 1} accord-
ingly.

Definition 5.1. A hinting PRG scheme is said to be non-uniform T (·)-secure if for any polynomial
`(·) and any adversary A running in time poly(T (κ)) and poly(κ) advice, there exists a negligible
function negl(·) such that the following holds:∣∣∣∣∣∣Pr

β ← A
(

pp,
(
rβ0 , rext, {ri,b}i∈[n],b∈{0,1}

))
:

(pp, n)← Setup(1κ, 1`(κ)), s← {0, 1}n, β ← {0, 1},
r00 = Eval(pp, s, 0), rext = ExtEval(pp, s), r10 ← {0, 1}`,

ri,si = Eval(pp, s, i), ri,si ← {0, 1}` ∀ i ∈ [n]

− 1

2

∣∣∣∣∣∣ ≤ negl(κ)

18

Definition 5.2. A hinting PRG scheme is said to be extended injectively if for any security param-
eter κ ∈ N, any polynomial `(·) and any pp ∈ {0, 1}∗ the following holds,

Pr

[
∃s1 6= s2 ∈ {0, 1}n,

ExtEval(pp, s1) = ExtEval(pp, s2)
:

n ∈ N
CheckParams(pp, n) = 1

]
= 0.

Definition 5.3. A hinting PRG scheme is setup such that it outputs injective parameters if for any
security parameter κ ∈ N, any polynomial `(·) the following holds,

Pr
[
CheckParams(pp, n) = 0 : (pp, n)← Setup(1κ, 1`(κ))

]
= 0.

Definition 5.4. A hinting PRG scheme is succinct if the length of the seed n, public parameters
and injective extension are independent of the block length parameter `.

5.1 Definitions

5.1.1 Lossy hinting functions

To construct our injectively extended hinting PRG’s, we define a new abstraction of lossy hinting
functions, which capture some seperate properties of many known hinting PRG constructions.
These can be constructed using both Diffie-Hellman and LWE assumptions (Sections D.2, D.3,
D.4).

LossyHint.Setup(1κ, 1`, 1n; rSetup): The setup is a randomized algorithm takes as input the security
parameter κ, and length parameter `, a seed length n, and outputs public parameters pp.

LossyHint.Eval (pp, s ∈ {0, 1}n, i ∈ [n]): The evaluation is a deterministic algorithm takes as input
the public parameters pp, an n bit string s, an index i ∈ [n] and outputs an ` bit string y.

LossyHint.Sim1(rSetup, pp, s): The simulator is a deterministic algorithm which takes the setup
randomness and seed and outputs a short binary string hint.

LossyHint.Sim2(rSetup, LossyHint.hint, pp, i ∈ [n], b ∈ {0, 1}): The second simulator is a determinis-
tic algorithm which takes in the short hint string from LossyHint.Sim1 to simulate and recreate
the output of LossyHint.Eval or a random string.

Definition 5.5. A lossy hinting function is non-uniform T (·)-secure if for all poly(T (κ)) time adver-
saries A with poly(κ) non-uniform advice, for all `, n ∈ poly(κ), there exists a negligible function
negl such that the following holds∣∣∣∣∣∣∣∣Pr

β ← A

(
pp,

(
s,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:

rSetup
R←− {0, 1}∗, s R←− {0, 1}n, β R←− {0, 1}

pp← Setup(1κ, 1`(κ), 1n; rSetup), hint← Sim1(rSetup, pp, s)
r0i,si = Eval(pp, s, i), r0i,si ← {0, 1}

` ∀ i ∈ [n]
r1i,b = Sim2(rSetup, hint, pp, i, b) ∀i ∈ [n]b ∈ {0, 1}

− 1

2

∣∣∣∣∣∣∣∣ ≤ negl(κ)

19

We observe here the security definition differs from the traditional hinting PRG definition in
a couple of ways. Perhaps most notably, the seed s itself is given to the adversary, but rather
than attempting to distinguish the whole distribution from random, the adversary is tasked with
distinguishing the traditional hinting PRG output (where function blocks are interleaved with
truly random blocks depending on the seed bit) with a simulation, which does not have access to
the seed but instead a much shorter ‘hint’ of it.

Definition 5.6. A lossy hinting function scheme is ρ(·)-retaining if ∀κ, ∀n, ` ∈ poly(κ) ρ(κ) ≥ |hint|.

5.1.2 Leakage Resilient One Way Functions

Definition 5.7. A function family (defined by a randomized algorithm)F(κ) = {f : {0, 1}κ → Rf}
is one way against a class of adversariesAκ if for allA ∈ Aκ, there exists a negligible function negl
such that

Pr

f ← GenF (1κ)

x
R←− {0, 1}κ

x′ ← A(1κ, f, f(x))
f(x′) = f(x)

 ≤ negl(κ)

Definition 5.8. A one way function family F(κ) = {f : {0, 1}κ → Rf} is `(·)-leakage resilient if
for all g : {0, 1}κ → {0, 1}`, the function family F ′ = {f ′(x) = f(x)||g(x)} is one way.

Lemma 5.1. LetF be an (injective) subexponentially secure one way function family secure against
time poly(2κ

c
) adversaries. Then F is also κc(·) leakage-resilient (injective) one way function fam-

ily secure against time poly(2κ
c
) adversaries.

Proof. Let A be an adversary against a κc(·) leakage-resilient one way function family F . Then
consider the following adversary

A′(f ∈ F , y ∈ R)

• For every string s ∈ {0, 1}κc(κ)

– Run x← A(f, y) with s as the output to the leakage function

– If f(x) = y, output x, otherwise, continue.

Since A runs in time poly(2κ
c
) time, we can see that A′ runs A a total of 2κ

c
times, so runs

in time 2n
c · poly(2κ

c
) ∈ poly(2κ

c
). Furthermore, since A′ runs A on all strings s, this includes s

which is equal to the output of the leakage function. Since we can easily verify the success of A
by evaluating f , this lower bounds the success probability of A′ with that of A.

5.1.3 Goldreich Levin Hardcore bits

Theorem 5.1. [GL89] There exists function b← hcb(x; r) such that for any one way function family

F , (f, f(x), r, hcb(x; r)) ≈c (f, f(x), r, b′), where b′ R←− {0, 1}, f ← GenF , x R←− {0, 1}n and r
R←−

{0, 1}n.

20

5.2 Construction

Using subexponentially secure lossy hinting functions and subexponentially secure leakage re-
silient injective one way functions, we can construct (subexponentially secure) hinting PRG’s with
injective extension. Since the lossy hinting function has most of the components of a hinting PRG,
we primarily need to construct the additional zeroth block of the hinting PRG and the injective
extension. We do this by taking the seed of the lossy hinting function and outputting the leak-
age resilient injective OWF applied to it as the injective extension. To get the zeroth block, we
simply output ` independently generated GL hardcore bits of the OWF. We leverage the leakage
resilience of the OWF in addition to the lossiness of the PRG to prove that the GL hardcore bits
appear pseudorandom even given the rest of the lossy hinting function as output.

HPRG.Setup(1κ, 1`)
Compute n = (ρ(κ)+`)1/δ. Let LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n). Let f ← GenF (1n).

Sample r1, . . . r`
R←− ({0, 1}n)`. Output HPRG.pp = (LossyHint.pp, f, r1, . . . r`) and n.

HPRG.Eval (HPRG.pp = (LossyHint.pp, n, f, r1, . . . r`), s ∈ {0, 1}n, i ∈ [n] ∪ {0})
If i = 0; for j ∈ [`] set bj ← hcb(s, rj). Output b1b2 . . . b`.
Else, output LossyHint.Eval(LossyHint.pp, s, i).

HPRG.ExtEval (pp, s ∈ {0, 1}n). Output f(s).

HPRG.CheckParams (HPRG.pp, n). Return true.

We present the security analysis in the appendix (Appendix D.1).

5.2.1 Achieving Succinctness

Taken as written above, the hinting PRG scheme does not necessarily satisfy Definition 5.4. How-
ever, we can generically transform any hinting PRG scheme into one which satisfies this property
by simply extending the output length with plain (non-hinting) PRGs

Lemma 5.2. Let HPRG be a 2κ
δ
-secure hinting PRG and let PRG(s, 1`) be a 2κ

ε
-secure PRG with

variable output length ` bits. Then the following is a succinct 2κ
δ
-secure hinting PRG.

S.HPRG.Setup(1κ, 1`)

Compute (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε), output ((pp, `), n).

S.HPRG.Eval ((pp, `), s, i)
Compute PRG(HPRG.Eval(pp, s, i), 1`)

S.HPRG.ExtEval ((pp, `), s ∈ {0, 1}n). Output HPRG.ExtEval(pp, s).

S.HPRG.CheckParams ((pp, `), n). Return HPRG.CheckParams(pp, n).

We defer the security analysis to the appendix (Appendix D.5).

21

6 Tag Amplification

We discuss how to amplify a non-uniform subexponentially secure CCA scheme forN ′ = 4N tags
to a scheme with 2N tags. We will perform the amplification using non uniform subexponentially
secure primitives AuxEquiv (Section 4), extended hinting PRG (Section 5). The amplification algo-
rithm runs in time polynomial in N and the runtime of the primitives involved, thus N should
always stay polynomial in the security parameter for the amplification to be an efficient algorithm.

Let the hinting PRG scheme (Setup,Eval,ExtEval,CheckParams) be a succinct T = 2κ
γ

secure
for some constant γ ∈ (0, 1). Let AuxEquiv be T = 2κ

δ
-binding secure and statistically hiding

where δ ∈ (0, 1). Let (Small.Com,Small.Val,Small.Recover) be a 2κ
c
-subexponentially secure, weak

binding, 2κ
v
-efficient CCA commitment scheme for N ′(κ) = N ′ = 4N tags where c < 1 and v ≥ 1

for message length u(κ)6. We will assume tags take identities of the form (i, β,Γ) ∈ [N]× {0, 1} ×
{0, 1} and that the Small.Com algorithm take in random coins of length `(κ).

Let m be the message input to the commitment algorithm and length be denoted by |m|. Let
n′ = n′(κ) be the length of the seed plus public parameters plus injective extension of the hinting
PRG scheme when invoked on security parameter κ′′ = κ

v
δγ . Since the scheme is succinct, n′ is

a function of only κ′′ (and hence κ) and not the block length, which we will specify later. By
Lemma 4.2, we will use a (2κ

δ
, |advice|2·n′)-binding secure commitment scheme AuxEquiv, and let |y|

refer to the length of the decommitment strings of said scheme. Finally, we run Small.Com on
messages of size |y|, and let ` be the size of randomness used by Small.Com on said input size. We
set the block size of our hinting PRG scheme to be the maximum of |m|, N · `. For ease of notation
we assume that HPRG.Eval(pp, s, 0) ∈ {0, 1}|m| and ∀i ∈ [n], HPRG.Eval(pp, s, i) ∈ {0, 1}`·N , i.e. we
ignore any extra bits output by the HPRG.Eval algorithm. Let Θ(κṽ) denote the length of the seed
n in relation to the security parameter.

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,CCA.Recover) which
we prove non-uniform 2κ

c
-subexponentially secure and 2κ

v′
-efficient where v′ = v·ṽ

δ·γ . The con-

struction will call AuxEquiv on security parameter κ′ = κ
v
δ , HPRG on security parameter κ′′ = κ

v
δ·γ

and Small on security parameter κ.
The different parameters will help us perform complexity leveraging. For simplicity, we as-

sume that the message space of Small, u(κ) is equal to the length of the decommitment string of the
equivocal commitment called on κ′. We will ensure this property is satisfied in Section 7 when we
recursively amplify the tags. The CCA.Val procedure in our transformation will be an inefficient
algorithm that brute forces through each hinting PRG seed and run in time 2n where n = Θ(κ′′ṽ).
Thus our transformation will increase the runtime of CCA.Val from Small.Val that runs in time 2κ

v

to 2κ
v′

.
Additionally, we will also present a fourth non-uniform algorithm CCA.ValAlt, which is only

used in the proof and depends on the non-uniform advice it gets. In our proof we will first change
how we answer an adversary’s decommitment queries by using CCA.ValAlt to answer instead
of CCA.Val. Since the queries made to the CCA.Val oracles differ in at least one position from
tag∗, CCA.ValAlt will crucially rely on the security of Small.Com at this position by making calls to
Small.Val to help in decommitment.

CCA.ValAlt(tag∗, com,L) → m ∪ ⊥ is a deterministic inefficient algorithm that takes in tag∗, a

6Recall from Definition 3.2 that a 2κ
v

-efficient scheme with v ≥ 1 implies that the runtime of Small.Val is polynomial
in 2κ

v

.

22

commitment com and a non-uniform advice list L and outputs either a message m ∈ {0, 1}w or
a reject symbol ⊥. It will be used solely as an instrument in proving the scheme secure and not
exported as part of the interface.

CCA.FindSeed(aux)

Inputs: String aux = (HPRG.pp, aux′)

Output: s̃ ∈ {0, 1}n ∪ ⊥

• Parse aux as (HPRG.pp, aux′)

• Iterate through all s̃ ∈ {0, 1}n

– If aux′ = HPRG.ExtEval(HPRG.pp, s̃), return s.

• Return ⊥

Figure 1: Routine CCA.FindSeed

CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

Output: {0, 1}

• For i ∈ [n]

1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)

2. For x ∈ [N]

(a) Let ỹi = Small.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0

(b) If cx,i,s̃i 6= Small.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= AuxEquiv.Decom(aux, σi, ỹi), output 0.

• Parse aux as (HPRG.pp, aux′).

• If HPRG.CheckParams(HPRG.pp, n) = 0, output 0.

• If aux′ 6= HPRG.ExtEval(HPRG.pp, s) output 0.

• If all the above checks have passed, output 1.

Figure 2: Routine CCA.Check

We now describe our transformation.

Transformation Amplify(Small = (Small.Com,Small.Val, Small.Recover),HPRG,AuxEquiv, w(κ), v′)→
NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag,m ∈ {0, 1}w(κ); r)→ com

23

CCA.FindAlt(x′, com,L)

Inputs: Index x′ ∈ [N]

Commitment com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

Polynomial Size Non-Uniform Advice List L
Output: s̃ ∈ {0, 1}n

• If for some s̃ ∈ {0, 1}n, (com.aux, s̃) ∈ L, where s̃ is the seed recorded from the advice. Output
s̃.

• Else if com.aux is not recorded in L,

– For each i ∈ [n]

1. Let ỹi = Small.Val(cx′,i,0)

2. Set z̃i = AuxEquiv.Decom(aux, σi, ỹi). If z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

– Output s̃ = s̃1, s̃2, . . . , s̃n.

Figure 3: Routine CCA.FindAlt

CCA.Equiv(com)

Inputs: Commitment com =
(

tag, aux = (HPRG.pp, aux′), c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

Output: Equivocation (aux, c, d0, d1) ∪ ⊥

• For all i ∈ [n], x ∈ [N], b ∈ {0, 1},

– If, AuxEquiv.Decom(Small.Val(com.cx,i,b)) = 0, and
AuxEquiv.Decom(Small.Val(com.cx,i,b)) = 1.
Return (aux, σi,Small.Val(com.cx,i,b),Small.Val(com.cx,i,b))

• Return ⊥

Figure 4: Routine CCA.Equiv

1. Compute κ′ = κ
v
δ . Compute κ′′ = κ

′ 1
γ .7

2. Sample (HPRG.pp, n)← HPRG.Setup(1κ
′′
, 1max(|m|,N ·`)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the extended hinting PRG.

4. Set aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp, s)).

5. For all i ∈ [n] run AuxEquiv.Com(1κ
′
, aux, si)→ (σi, yi).

6. Let for x ∈ [N], i ∈ [n], rx,i, r̃x,i ∈ {0, 1}` be defined as follows:

7. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

7The variables δ and γ are known from the security guarantees of AuxEquiv,HPRG respectively.

24

CCA.Exp(1κ,A, j,L∗; rA, rC)

Inputs: Security Parameter 1κ

Adversary Algorithm Awith advice adviceA

Query Count j
List of (aux, seed) pairs L∗

Adversary and Challenger Random coins rA, rC

Output: List of “equivocating” aux values E = {(aux, c, d0, d1)}

• Initialize Awith coins rA and C with coins rC .

• Initialize E = ∅

• If j = 0 abort and return E

• A sends a “challenge tag” tag∗.

• Pre Challenge Phase: Amakes a polynomial number of repeated commitment queries com.
If com.tag = tag∗, C responds with ⊥. For every query (with query number η ∈ [Q]) made by
A.

– If CCA.Equiv(com) 6= ⊥ and (com.aux, _, _, _) /∈ E , add CCA.Equiv(com) to Ea

– If η = j, abort and return E
– Respond with CCA.ValAlt(tag∗, com,L∗).

• A sends two messages m0,m1 ∈ {0, 1}w.

• C flips b ∈ {0, 1} and sends com∗ = CCA.Com(tag∗,mb; r) for randomly chosen r.

• Post Challenge Phase: Respond exactly as Pre Challenge Phase.

• Return E if experiment has not yet aborted.

aFor notational convenience and clarity, we leave elements of a tuple we do not later refer to as _ when
pattern matching.

Figure 5: Routine CCA.Exp, which returns a list of “equivocating” aux values

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

8. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)

9. For i ∈ [n], x ∈ [N]

(a) If si = 0

i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; rx,i)

ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; r̃x,i)

(b) If si = 1

i. cx,i,0 = Small.Com(1κ, (x, tagx, 0),msg = yi; r̃x,i)

ii. cx,i,1 = Small.Com(1κ, (x, tagx, 1),msg = yi; rx,i)

10. Output com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

as the commitment. All of the
randomness is used as the decommitment string.

25

CCA.AdviceList(1κ,A)

Inputs: Security Parameter 1κ,Adversary Algorithm Awith advice adviceA

Output: Polynomial Size Non-Uniform Advice Lists L(0),L(1), . . . ,L = L(Q)

• Let A make maximum Q = Q(κ) queries during the query phases to the challenger. We will
set L(0) = ∅.

• From construction in Section 6, let n denote the hinting PRG seed length and n′ − n denote
the length of aux (which means n′ is equal to the length of the public parameters plus the
length of the injective extension plus the length of seed).

• For j ∈ [Q], we iteratively define L(j) from L(j−1) as follows.

– Let rA, rC denote the random coins of A and C respectively.

– For every aux ∈ {0, 1}n′−n, let

pjaux = Pr
rA,rC

[
(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1); rA, rC)

]
– Sort all aux ∈ {0, 1}n′−n according to the descending order of pjaux (ties broken lexico-

graphically). Let K = |adviceA|
n′ .

– Set L(j) = {(auxi,CCA.FindSeed(auxi))}i∈[K] as the top K = |adviceA|
n′ values of aux for

which pjaux is the greatest (ties can be broken lexicographically).

• Denote L as L(Q). Output the computed lists L(0),L(1), . . . ,L = L(Q).

Figure 6: Routine CCA.AdviceList

CCA.Val(com)→ m ∪ ⊥

1. Set s̃ = CCA.FindSeed(com.aux).

2. If CCA.Check(s̃, com) = 0 output ⊥.

3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com,L)→ m ∪ ⊥

1. If com.tag = tag∗, output ⊥.

2. Let x∗ be the smallest index where the bits of tag∗, com.tag differ.

3. Set s̃ = CCA.FindAlt(x∗, com,L).

4. If CCA.Check(s̃, com) = 0 output ⊥.

5. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r)→ m ∪ ⊥

1. From r, parse the seed s of the Hinting PRG.

2. If CCA.Check(s, com) = 0, output ⊥.

26

3. From com, parse the commitment component c and the public parameter HPRG.pp.

4. Output c⊕ HPRG.Eval(HPRG.pp, s, 0).

Efficiency

Claim 6.1. If (Small.Com, Small.Val,Small.Recover) is 2κ
v
-efficient CCA commitment scheme as per

Definition 3.2 with tag spaceN(κ) ∈ poly(κ), (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate)
is an efficient equivocal commitment scheme as per Definition 4.3, v, v′ are constants where v ≥ 1,
then (CCA.Com,CCA.Val,CCA.Recover) is 2κ

v′
-efficient CCA commitment scheme. Moreover, there

exists a non-uniform algorithm CCA.ValAlt that runs in time poly(|m|, 2κv).

Proof.

• CCA.Com calls Small.Com 2 ·n ·N times on the output of Equiv.Com(1κ
′
, ·) in addition to some

other poly-time computation. By Definition 3.2, Small.Com is poly(|m|, κ). Since Equiv.Com
runs in time poly(κ′) by Definition 4.3, this bounds the message of Small.Com with poly(κ).
Along with the fact that n is bounded by the security parameter, and N is bounded by the
tag space which we assume is poly(κ), this is overall polynomial bounded in κ.

• CCA.Recover does a single⊕, in addition to invoking CCA.Check which computes Small.Recover,
Small.Com and AuxEquiv.Decom a total of n ·N times and some additional polynomial-time
computation. Since com, n,N and r are all bounded by poly(κ) by the runtime of CCA.Com,
CCA.Recover runs in poly(|m|, κ) as well.

• CCA.Val checks every possible seed in {0, 1}n, i.e. runs in time 2n where n is in poly(κ′′) =

Θ(κ′′ṽ) = Θ(κv
′
). Thus the oracle is 2κ

v′
-efficient from Definition 3.2.

• Additionally, CCA.ValAlt non-uniformly calls CCA.FindAlt that performs a check on a poly-
nomial size list L and calls Small.Val, n = poly(κ) times. As Small.Val runs in time 2κ

v
, thus

the runtime is poly(|m|, 2κv) where v ≥ 1.

Correctness

Claim 6.2. If (Small.Com,Small.Val,Small.Recover) is a correct CCA commitment scheme as per
Definition 3.1 and (AuxEquiv.Com,AuxEquiv.Decom) is a correct equivocal commitment scheme as
per Definition 4.2, hinting PRG satisfies the properties Definition 5.3, Definition 5.2 then (CCA.Com,
CCA.Decom, CCA.Val) is a correct CCA commitment scheme.

Proof. By the fact that the hinting PRG sets up parameters that are injective from Definition 5.3,
Definition 5.2 implies that the same seed is output by CCA.FindSeed as was constructed by CCA.Com.

Note that if base scheme is correct, then ∀i ∈ [n], x ∈ [N], b ∈ {0, 1},

Small.Val(Small.Com(1κ, (x, tagx, b), yi; r)) = yi.

Also from correctness of equivocal scheme, ∀i ∈ [n], and aux ∈ {0, 1}∗,

Equiv.Decom(aux,Equiv.Com(1κ
′
, aux, si)) = si.

27

On input s, ∀i ∈ [n], x ∈ [N], correctly sets the randomness along cx,i,si and c ⊕
HPRG.Eval(HPRG.pp, s, 0) = m. We can observe that the scheme is correct. Observe that our hint-
ing PRG block length needs to be long enough to use as Small.Com randomness, where Small.Com
is used to commit decommitment strings from AuxEquiv. However, somewhat circularly, we re-
quire AuxEquiv to be K(|advice|) = |advice|

2n′ binding, where n′ includes the seed and public parame-
ters of the hinting PRG. Thus, the succinctness property of our hinting PRG is critical in removing
this dependence of seed (and public parameter) length on block length.

Binding Note that CCA.Val checks all possible candidate seeds, and if for a seed s, CCA.Check
passes, it outputs c⊕HPRG.Eval(HPRG.pp, s, 0) otherwise outputs⊥. Similarly CCA.Recover(com, s)
given a candidate seeed s outputs c⊕HPRG.Eval(HPRG.pp, s, 0) if CCA.Check passes otherwise out-
puts ⊥. By perfect injectivity of the injective HPRG extension, there is at most one candidate seed
for which CCA.Check passes. This implies that if CCA.Check passes, there is a unique seed, and
therefore, ∀c,∀m0,m1 ∈ {0, 1}w s.t. m0 6= m1, there does not exist r such that

CCA.Recover(com, r) = m0,CCA.Val(com) ∈ {m1,⊥}

Moreover, if CCA.Val(com) = m1 6= ⊥, there must exist a candidate seed s for which CCA.Check
passes, and thus CCA.Recover(com, s) must equal m1.

Recovery from Randomness It is easy to see that the above scheme also satisfies the recovery
from randomness property by correctness of CCA.Check, and as

c⊕ HPRG.Eval(HPRG.pp, s, 0) = m⊕ HPRG.Eval(HPRG.pp, s, 0)⊕ HPRG.Eval(HPRG.pp, s, 0) = m.

6.1 Proof of Security

We now prove security by showing a sequence of games that prove that we can transform a 2κ
c
-

subexponentially CCA secure 2κ
v
-efficient scheme on a small tag space to a 2κ

c
-subexponentially

CCA secure 2κ
v′

-efficient scheme on a larger tag space.
The argument proceeds through a sequence of games where we first change how we answer

the decommitment queries to the adversary by using CCA.ValAlt instead of CCA.Val. We perform
the change such that we generate a list L of most frequently used non-uniform queries using the
procedure CCA.AdviceList. This list (dependent on the adversary’s algorithm and advice) is given
to CCA.ValAlt as advice. We argue that the adversary’s behavior cannot change depending on
this modification by invoking the non-uniform security of the equivocal commitment scheme. We
utilize two main lemmas that rely on the injectivity of HPRG.ExtEval and the security of AuxEquiv
to show that the probability an adversary equivocates on a query outside this list is negligible.
Our final lemma will show that it is not possible for the adversary to submit a query where it
doesn’t equivocate but can notice a change between the two oracles.

After we have switched to CCA.ValAlt, we can rely on the non-uniform security of the base
CCA secure scheme and add equivocations to hide the information about the hinting PRG seed.
Finally, we will leverage on the hinting PRG security to remove the message that is committed by
changing the evaluation HPRG.Eval(HPRG.pp∗, s∗, 0) at block 0 to random. Note that the reduction
in this step needs to run CCA.ValAlt that contains the Small.Val procedure and invoke the security

of the hinting PRG. The hinting PRG is 2κ
′′γ

= 2κ
v
δ -subexponentially secure while the Small.Val

28

procedure needs to run in time 2κ
v
. Since δ ∈ (0, 1), the reduction goes through here. If we didn’t

have complexity leveraging between Small.Val and CCA.Val (which is brute forcing through the
hinting PRG seeds), this reduction would not go through.

Theorem 6.1. Let (Small.Com, Small.Val, Small.Recover) be a 2κ
c
-subexponentially secure, 2κ

v
-efficient

CCA commitment scheme for N ′(κ) = N ′ = 4N ∈ poly(κ) tags and message space u(κ) ∈ poly(κ)
where c < 1 and v ≥ 1. Let (Setup,Eval,ExtEval,CheckParams) be a T = 2κ

γ
secure hinting

PRG with injective extension for some constant γ ∈ (0, 1) and (AuxEquiv.Com, AuxEquiv.Decom,
AuxEquiv.Equivocate) be T = 2κ

δ
-binding secure and statistically hiding setupless equivocal com-

mitment where δ ∈ (0, 1). Then the above commitment scheme (CCA.Com,CCA.Val) is a non-
uniform 2κ

c
-subexponentially CCA secure for 2N tags that is 2κ

v′
-efficient and commits to mes-

sages of length w(κ) ∈ poly(κ) where v′ = v·ṽ
δ·γ and Θ(κṽ) denote the length of the seed in relation

to the security parameter κ.

Proof. We first define our sequence of games. Then for each adjacent set of games we prove that
the advantage of any non-uniform attackerA that runs in time poly(2κ

c
) must be negligibly close.

Game 0. This is the original message hiding game between a challenger and a non-uniform
attacker for 2κ

c
-subexponentially secure adversaries. The game is parameterized by a security

parameter κ.

1. The attacker sends a “challenge tag” tag∗ ∈ {0, 1}N .

2. Pre Challenge Phase: The attacker makes repeated commitment queries

com =
(

tag, aux,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n]

)
.

If tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

3. Challenge Phase

(a) The attacker sends two messages m∗0,m
∗
1 ∈ {0, 1}w

(b) Part 1:
• Compute κ′ = κ

v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).
• For all i ∈ [n] run AuxEquiv.Com(1κ

′
, aux∗, s∗i)→ (σ∗i , y

∗
i).

• Let r∗x,i, r̃
∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

29

(c) Part 2:
• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N]

i. If s∗i = 0

A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i ; r
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i ; r̃
∗
x,i)

ii. If s∗i = 1

A. c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i ; r̃
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i ; r
∗
x,i)

• Finally, it sends com∗ =

(
tag∗, aux∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]

)i∈[n])

)
as the com-

mitment. All of the randomness is used as the decommitment string.

4. Post Challenge Phase: The attacker again makes commitment queries com. If tag = tag∗ the
challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

5. The attacker finally outputs a guess b′.

Game 1. This is same as Game 0, except that during the Pre Challenge Phase and Post Chal-
lenge Phase, challenger using CCA.ValAlt to answer queries. Let A be an adversary with non-
uniform advice that tries to guess the difference between the two games. The Challenger uses
CCA.ValAlt(tag∗, com,L) to return queries whereL is generated through the procedure CCA.AdviceList.

1. Non-uniform Computation: The challenger generates the list
L(0),L(1), . . . ,L ← CCA.AdviceList(1κ, (A, advice)) by interacting with the attacker A. It uses
L to answer adversaries queries.

2. The attacker sends a “challenge tag” tag∗ ∈ {0, 1}N .

3. Pre Challenge Phase: The attacker makes repeated queries commitments com. If com.tag =
tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.ValAlt(tag∗, com,L).

4. Challenge Phase

5. Post Challenge Phase: Same as Pre Challenge Phase.

6. The attacker finally outputs a guess b′.

30

Game 2. In this game in Part 1 the (σ∗i , y
∗
i) are now generated from the AuxEquiv.Equivocate

algorithm instead of the AuxEquiv.Com algorithm.

• Compute κ′ = κ
v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

1. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, aux∗)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

Game 3 In this game in Part 2 we move to c∗x,i,0 committing to y∗i,0 and c∗x,i,1 committing to y∗i,1
for all x ∈ [N], i ∈ [n] independently of the value of s∗i .

• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N]

1. If s∗i = 0

(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i,0; r∗x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i,1; r̃∗x,i)

2. If s∗i = 1

(a) c∗x,i,0 = Small.Com(1κ, (x, tag∗x, 0), y∗i,0; r̃∗x,i)

(b) c∗x,i,1 = Small.Com(1κ, (x, tag∗x, 1), y∗i,1; r∗x,i)

• Finally, it sends com∗ =

(
tag∗, aux∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]

)i∈[n])

)
as the commitment. All

of the randomness is used as the decommitment string.

Game 4. In this game c∗ is chosen uniformly at random (instead of choosing HPRG.Eval(HPRG.pp∗, s∗, 0)
⊕m∗b).

6.2 Analysis

Next, we show by a sequence of lemmas that no non-uniform adversary with runtime poly(2κ
c
)

where c ∈ (0, 1) can distinguish between any two adjacent games with non-negligible advantage.
In the last game, we show that the advantage of any such adversary is negligible. We will let advxA
denote the quantity Pr[b′ = b] − 1

2 in Game x when interacting with adversary A. Let A make
Q = Q(κ) queries in the Pre Challenge Phase and Post Challenge Phase.

The first and possibly most involved part of this analysis involves arguing that the adversary’s
distinguishing advantage between Games 0 and 1 is negligible. These games differ in the way the

31

oracle opens up the adversary’s commitment queries. In the following subsection, we develop
a set of useful lemmas that will help us argue that Games 0 and 1 are indistinguishable. In the
following subsection, we will use these lemmas and develop additional lemmas that allow us
to show that no non-uniform adversary with runtime poly(2κ

c
) where c ∈ (0, 1) can distinguish

between Games 0 and 3 with non-negligible advantage.

6.2.1 Valuation Mode Switching

Recall that in Game 0 decommitment queries on com are answered with CCA.Val(com). Whereas in
Game 1 they are answered by invoking the algorithm CCA.ValAlt(tag∗, com,L) where L is a list of
(aux, s) pairs that tell the alternative valuation algorithm which seed value to try for commitments
associated with aux values on the list.

The proof can be broken down into two main parts. First, we show that for any query to com
which is either (A) not equivocating or (B) has an aux value on the generated list L, the response
to evaluating com whether using CCA.Val or CCA.ValAlt is the same. The proof for this is provided
immediately below and culminates in Lemma 6.1, which follows from a combination of the logic
of [KW19] for (A) and properties in the injective extension of the Hinting PRG for (B).

The second part of the proof is more involved, and will show that it is only with negligible
probability that an attacker produces a problematic query not matching (A) or (B). Combining
these two parts helps us show that no attacker can distinguish between Game 0 and Game 1.

First Part of the Proof.

Definition 6.1. For an adversary A, let L(0),L(1), . . . ,L = L(Q) ← CCA.AdviceList(1κ,A). For all
j ∈ [Q], we denote by the setW(j) = {aux | ∃s ∈ {0, 1}n, (aux, s) ∈ L(j)} as the aux values that are
stored in L(j).

Observation 1. For all polynomials p(·) and any list L∗ with length at most p, for all algorithmsA
running in time poly(2κ

v
) and making a polynomial number p′(κ) queries, j ∈ p′(κ), CCA.Exp(1κ,A, j,L∗)

runs in time poly(2κ
v
).

Proof. Observe that CCA.Exp simply runs A, which runs in time poly(2κ
v
) time, and answers a

polynomial number of com queries. To run CCA.Equiv (then running CCA.ValAlt) requires O(n ·
N) ∈ poly(κ) calls to Small.Val, which by 2κ

v
-efficincy of Small, requires poly(2κ

v
) time. Hence, the

entire procedure can be run in poly(2κ
v
) time.

Claim 6.3. Let L∗ be any list of {(auxi,CCA.FindSeed(auxi))}i pairs. If (com.aux, _) ∈ L∗, then,
CCA.Val(com) = CCA.ValAlt(tag∗, com,L∗) - i.e. the oracle outputs are identical on such com.

Proof. Recall any (aux, s) pair in L is computed from aux,CCA.FindSeed(aux), so CCA.FindAlt(com)
will return CCA.FindSeed(aux), from which CCA.Val and CCA.ValAlt are computed identically.

Claim 6.4. Let L∗ be any list of {(auxi,CCA.FindSeed(auxi))}i pairs. For any commitment com such
that CCA.Equiv(com) = ⊥, CCA.Val(com) = CCA.ValAlt(tag∗, com,L∗).

Proof. We perform a case analysis. Let x∗ be the smallest index where the bits of tag∗, tag differ.
If CCA.FindSeed(com.aux) = CCA.FindAlt(tag∗, com,L), then we are done as both oracles behave
identically given the same candidate seed. Let the candidate seeds be different. Consider the
following cases.

32

• Case 1: CCA.FindSeed(com.aux) = s∗,CCA.FindAlt(x∗, com,L∗) = s 6= s∗ and s∗ 6= ⊥, s 6= ⊥.
Let i be the first index where s and s∗ differ and let si, s∗i be the bits at those respective posi-
tions. Since CCA.FindSeed returned s∗, we know that com.aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp,
s∗)). If HPRG.CheckParams(HPRG.pp, n) = 0, then check procedures in both CCA.Val and
CCA.ValAlt fail and they both output ⊥.

Else since HPRG.CheckParams(HPRG.pp, n) = 1, from Definition 5.2 and Claim 6.3, there
cannot exist another s 6= s∗ such that com.aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp, s)).
Thus the check after CCA.FindAlt must fail and it returns ⊥. If the check after CCA.FindSeed
fails then we are done as both procedures output ⊥. Thus assume that the check after
CCA.FindSeed does not fail.

– If s∗i = 1 and si = 0, we have from CCA.FindAlt that, AuxEquiv.Decom(com.aux, σi, Small.Val(
com.cx∗,i,0)) = 0. But from running CCA.Check after CCA.FindSeed and not failing we
have that, AuxEquiv.Decom(com.aux, σi, Small.Val(com.cx∗,i,1)) = 1 (the Small.Recover
and Small.Val procedure open similarly as the check does not fail). Thus CCA.Equiv(com) 6=
⊥, i.e. it is an equivocating query and this is not possible.

– If s∗i = 0 and si = 1, we have from CCA.FindAlt that, either
AuxEquiv.Decom(com.aux, σi,Small.Val(com.cx∗,i,0)) = 1 or
AuxEquiv.Decom(com.aux, σi,Small.Val(com.cx∗,i,0)) = ⊥. From check after CCA.FindSeed
we have that, AuxEquiv.Decom(com.aux, σi, Small.Val(com.cx∗,i,0)) = 0 (the Small.Recover
and Small.Val procedure open similarly as the check does not fail). As
AuxEquiv.Decom(com.aux, σi,Small.Val(com.cx∗,i,0)) are deterministic computations eval-
uating to different outputs, this is clearly not possible.

• Case 2: CCA.FindSeed(com.aux) = ⊥,CCA.FindAlt(x∗, com,L∗) = s.
Since CCA.FindSeed(com.aux) = ⊥, we know ∀s̃ ∈ {0, 1}n,
com.aux 6= (HPRG.pp,HPRG.ExtEval(HPRG.pp, s̃)). Clearly CCA.Val outputs ⊥.

Since this holds for all seeds, it also holds for seed s found by CCA.FindAlt, thus com.aux 6=
(HPRG.pp,HPRG.ExtEval(HPRG.pp, s)), so which means CCA.ValAlt will return ⊥when per-
forming CCA.Check.

• Case 3: CCA.FindSeed(com.aux) = s,CCA.FindAlt(x∗, com,L∗) = ⊥.
CCA.FindAlt cannot return ⊥, so this is impossible.

Lemma 6.1. LetL∗ be any list of {(auxi,CCA.FindSeed(auxi))}i pairs. For all com∗, tag∗, if CCA.Val(com∗) 6=
CCA.ValAlt(tag∗, com∗,L∗), then CCA.Equiv(com∗) 6= ⊥ and (com∗.aux, _) /∈ L∗

Proof. This follows directly from Claim 6.3 and Claim 6.4.

Second Part of the Proof: Avoiding Bad Queries. The alternative valuation algorithm uses a list
L to lookup the seeds associated with any aux value on the list, where this list L is defined as in
Figure 6. In this second part of the proof, we want to argue that only with negligible probability
will there be a query com that is both equivocating and that has an aux value not on this list.

33

In doing this, our goal is to use the binding security of the auxiliary input equivocal commit-
ment scheme. We will use this property to argue that any attacker with a polynomial bounded
amount of non-uniform advice will have a bounded number of aux values that it can make equiv-
ocating queries for where the number of such values is proportional to the amount of advice.
Completing this argument faces the following challenge. Any reduction algorithm to the auxiliary
input equivocal commitment scheme will not have sufficient running time to run CCA.Val(com)
and thus will need to use a list itself to answer decryption queries. The reduction algorithm R
thus will need to carry both this list as well as A’s advice as its own advice string. Thus, to have
a valid reduction, the size of the total advice of R dictates the number of equivocating responses
that must be produced to violate the binding game. It is for this reason we need an underlying
auxiliary input equivocal commitment scheme where the binding security is |advice|2n′ where n′ is the
length of aux plus length of the hinting PRG seed.

In addition, the most common equivocal queries when answering with CCA.Val(com) might
be different than the most common ones when answering from a list. Thus, we need to be careful
about how we define our list L. Notice from Figure 6 that this is done recursively. Namely, we
set L(0) to be empty, then define L(j) recursively for every j ∈ [1, Q] as a function of L(j−1), and
finally set L = L(Q) where recall that Q = Q(κ) is the total number of decommitment queries
that the adversary makes. The list L(j) is defined as the list of the most common equivocating aux
values made over the first j queries when the first j queries are answered by using the CCA.ValAlt
algorithm with list L(j−1).

Recall that our goal is to show that the probability of a query com that is equivocating, but has
an aux value not on L(Q), is negligible. We break this proof down into two parts.

First, for j ∈ [1, Q], letW(j) be the set of all aux values in the list L(j). In the upcoming lemma
(Lemma 6.2), we will show that for j ∈ [1, Q], the probability of an equivocating query in the first
j queries with an aux value not inW(j) is negligible when the first j queries are answered using
L(j−1). This is done by two reductions to auxiliary input equivocal binding security. The first
shows that the maximum probability that any particular aux /∈ W(j) appears in an equivocating
com is negligible. Then we use this fact along with a second reduction to show that the probability
that any aux /∈ W(j) appears in an equivocating com is negligible. In the latter case, a union bound
does not suffice due to there being an exponential number of such aux values, so we must use
another reduction.

Next, in Lemma 6.3 (and its Corollary 6.1) – which is the main result of this subsubsection,
we show that for j ∈ [1, q], the probability of an equivocating query in the first j queries with an
aux value not inW(j) is negligible when the first j queries are answered using L(j) (as opposed to
L(j−1), which was what appeared in the statement of Lemma 6.2). This is done by induction on j,
and via the use of Lemma 6.2.

Lemma 6.2. Suppose (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is (2κ
δ
, |advice|2n′) bind-

ing secure (Definition 4.4) auxiliary input equivocal commitment scheme. Then, for any non-
uniform adversary A running in time poly(2κ

v
) where v ≥ 1 and making Q = poly(κ) queries,

letting L(1), . . .L(Q) ← CCA.AdviceList(1κ,A), there exists a negligible function negl(κ) such that
for all κ ∈ N,

∀j ∈ [Q] Pr
rA,rC

[
∃aux ∈ {0, 1}n′−n\W(j) : (aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1); rA, rC)

]
≤ negl(κ)

Proof. First consider a weaker, restricted claim:

34

Claim 6.5. Suppose (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is (2κ
δ
, |advice|2n′) binding

secure auxiliary input equivocal commitment scheme. Then, for any non-uniform adversary A
running in time poly(2κ

v
), there exists a negligible function negl(κ) such that for all κ ∈ N,

max
aux∈{0,1}n′−n\W(j)

(
Pr
[
(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1))

])
≤ negl(κ)

Proof. Assume for sake of contradiction that there is an adversary A and function j = j(κ) such
that there exists a polynomial r(κ) for which the above event occurs with probability ≥ 1

r(κ) for

infinitely many κ. Then consider the following reduction (which takes non-uniform advice L(j−1)

produced from CCA.AdviceList(1κ,A) as well as the non-uniform advice of A):

ReductionRI,A,j(1κ
′
) :

• Non Uniform Computation: Receive list L(j−1) and the advice taken by algorithm A as
non-uniform advice. Assume it receives j(κ) as advice as well. 8

• For i ∈ [I]:

– Let Ei ← CCA.Exp(1κ,A, j,L(j−1)).

• Let ζ be a subset of (aux, c, d0, d1) entries from
⋃
i E,i, where only a single entry for each

unique aux value is kept.

• Output ζ.

Claim 6.6. For all I ∈ poly(κ), RI is a non-uniform algorithm with |adviceR| = 2 · |adviceA| bits of
advice and runs in time poly(2κ

′δ
) = poly(2κ

v
).

Proof. Observe that R takes in A which uses non-uniform advice adviceA, and L(j−1), which con-
tains adviceA

n′ entries of length n′, making the total non-uniform advice 2 · |adviceA|. Since it runs
CCA.Exp a polynomial number of times, and CCA.Exp runs in time poly(2κ

v
) by Observation 1, R

does as well.

To prove Claim 6.5, we will set I = κ · r(κ)

Fact 6.1. For I = κ · r(κ),RI outputs K entries {(aux(i), c(i), d
(i)
0 , d

(i)
1)}i∈[K] such that

∀i ∈ [K],

AuxEquiv.Decom(aux(i), c(i), d
(i)
0) = 0,

AuxEquiv.Decom(aux(i), c(i), d
(i)
1) = 1

∀i 6= ι ∈ [K], aux(i) 6= aux(ι)

for a K > |adviceR|
2n′ with non-negligible probability.

8We’re non-uniformly given some list L(j−1), but we don’t know the explicit j as a function of κ. To be super explicit
in our reduction, we include in the non uniform advice. Additionally, we ignore this accounting of storing poly(log(κ))
bits in our advice as this can be brute forced in polynomial time and isn’t required explicitly in the advice. For the sake
of intelligibility, we don’t list the brute forcing.

35

Proof. First, notice that since in our construction, we picked L(j) in CCA.AdviceList to maximize
appearance in CCA.Exp,

max
aux∈{0,1}n′−n\W(j)

(
Pr
[
(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1))

])
≥ 1

r(κ)

then
∀aux ∈ W(j) Pr

[
(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1))

]
≥ 1

r(κ)

Thus, since each Ej,i is generated independently, we can upper bound the probability an aux ∈
W(j) doesn’t appear in any such Ej,i as,

Pr

(aux, _, _, _) /∈
⋃
i∈[I]

Ej,i

 ≤ (1− 1

r(κ)

)r(κ)·κ
≤ e−κ

Since ξ contains all the unique aux values of
⋃
i Ej,i, by union bound, the probability that there

are at least |W(j)|+1 entries in the set ξ is≥ 1− |W
(j)|+1
eκ . Recall that since by constructionW(j) has

|adviceA|
n′ = adviceR

2n′ entries, which complete our proof. Since by assumption, A is successful with
probability ≥ 1

r(κ) infinitely often, our reduction is as well.

Since R breaks the security of the auxilary input equivocal commitment scheme from Defini-
tion 4.4, this completes our proof of Claim 6.5.

Now we return to proving our original lemma statement. Note that using Claim 6.5 and simply
union bounding over all aux /∈ W(j) is not strong enough to claim this statement, as there are
exponentially many such values.

Assume for sake of contradiction that for some j = j(κ) ∈ (κ : N → Q(κ)), there exists
polynomial t(κ) for which there exists some commitments such that B queries aux∗ 6∈ W(j) with
probability > 1

t(κ) for infinitely many κ.

Recall reduction RI(1κ
′
) from Claim 6.5. We will prove the full lemma using the same R for

I = t(κ) · κ · |adviceR|2n′ , which still runs in poly(2κ
v
) time by Claim 6.6.

Fact 6.2. I = t(κ) · κ · |adviceR|2n′ ,RI outputs K entries {(aux(i), c(i), d
(i)
0 , d

(i)
1)}i∈[K] such that

∀i ∈ [K],

AuxEquiv.Decom(aux(i), c(i), d
(i)
0) = 0,

AuxEquiv.Decom(aux(i), c(i), d
(i)
1) = 1

∀i 6= ι ∈ [K], aux(i) 6= aux(ι)

for a K ≥ |adviceR|2n′ with non-negligible probability.

Proof. Let K = |adviceR|
2n′ . We can partition the tuples output by R into K ‘groups’ of size t(κ) · κ,

where the first set of t(κ) · κ tuples are in the first group, the next set of t(κ) · κ tuples are in the
second group, and so on. Notice by the same analysis as before that the probability an element

36

not inW(j) is queried in each ‘group’ is 1−
(

1− 1
t(κ)

)t(κ)·κ
≥ 1− e−κ for infinitely many κ. From

a union bound, the probability that there exists a group where we fail to query an element not in
W(j) is K · e−κ.

From Claim 6.5, let any particular element /∈ W(j) occur with probability at most υ(κ) where
υ is some negligible function. For i ∈ [K], let aux(i) 6∈ W(j) be the aux value in the equivocating
query for Group i. For any i, ι ∈ [K], where i 6= ι, the probability that aux(i) = aux(ι) 6∈ W(j) is
≤ υ(κ). Because fixing aux(i) ∈ {0, 1}n′−n, the probability that any query in a different group is
equal to this value when aux(i) 6∈ W(j) is υ(κ).

Probability that there exists i, ι ∈ [K] where i 6= ι and aux(i) = aux(ι) and aux(i) 6∈ W(j) is
≤
(
K·(K−1)

2

)
υ(κ).

Thus, we output < K pairs with probability at most K ·e−κ+
(
K·(K−1)

2

)
υ(κ). Since the advice

is polynomial in κ, K = poly(κ) and υ is a negligible function, we have that we fail with negligible
probability.

Since R breaks the security of the auxilary input equivocal commitment scheme from Defini-
tion 4.4, we have that for every adversary A, j ∈ [Q], there exists a negligible function such that
the probability A queries something outside the listW(j) in experiment CCA.Exp(1κ,A, j,L(j−1))
is negligible.

To complete the lemma proof, we need to argue that for every adversaryA, there’s a negligible
function such that for all j ∈ [Q], the probability A queries something outside the list W(j) in
experiment CCA.Exp(1κ,A, j,L(j−1)) is negligible. Consider setting the function

j∗(κ) = argmaxj∈[Q(κ)]Pr
[
∃aux ∈ {0, 1}n′−n\W(j) : (aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j−1))

]
By the claim above, this is negligible, and upper bounds the probability ∀j ∈ [Q(κ)], completing
our proof of Lemma 6.2.

Induction Lemma 6.2 showed that it is difficult for an attacker to find equivocal queries in the
first j queries that were not on list L(j), when adversarial queries were answered using list L(j−1).
We now want to show that it is difficult for the attacker to find equivocal queries in the first j
queries that are not on list L(j), when adversarial queries are answered using list L(j) itself. We will use
induction to prove this, where we assume that it is difficult for the attacker to produce equivocal
queries in the first (j−1) queries that are not on list L(j−1), when adversarial queries are answered
using list L(j−1), and then use 6.2 to show that the same must hold for j.

We want to show that,

Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L = L(Q)) : aux /∈ W(Q)

]
= negl(κ).

We complete the proof by induction on the statement, for every j ∈ {0, . . . ,Q},

Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j)) : aux /∈ W(j)

]
= negl(κ).

For our base case, CCA.Exp(1κ,A, 0, ∅) will never answer a query and always output ∅, trivially
satisfying our claim. For our induction step, we show the following lemma.

37

Lemma 6.3. Assuming conditions for Lemma 6.2 hold; and the induction hypothesis, for j ∈
{0, . . . ,Q− 1}, if there exists a function µ(j) such that,

µ(j)(κ) = Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j)) : aux /∈ W(j)

]
,

then,
Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j+1)) : aux /∈ W(j+1)

]
≤ µ(j)(κ) + ν(κ).

Proof. Note that the above probabilities are over the random coins of A, and the challenger in
experiment CCA.Exp. Let rA denote the random coins forA and rC denote the random coins for C.

Let ν(κ) be the function from Lemma 6.2 such that,

Pr
rA,rC

[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j + 1,L(j); rA, rC) : aux 6∈ W(j+1)

]
= ν(κ).

Let aux� be the value stored in E when running CCA.Exp(1κ,A, j+ 1,L(j); rA, rC) onA’s, j+ 1-
th query. If no such query is made, let aux� = ⊥. Rewriting the above expression from Lemma 6.2
when split across the j + 1-th query, we have,

Pr
rA,rC

[(
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j); rA, rC) : aux 6∈ W(j+1)

)
∨(

aux� 6∈ W(j+1) ∧ aux� 6= ⊥
)]

= ν(κ).

From a union bound on the induction hypothesis and the above equation, we have that,

Pr
rA,rC

[(
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j); rA, rC) : aux 6∈

(
W(j+1) ∩W(j)

))
∨(

aux� 6∈ W(j+1) ∧ aux� 6= ⊥
)]
≤ µ(j)(κ) + ν(κ).

We define the following two sets Good where the above bad event of querying outsideW(j+1)∩
W(j) or aux� being outsideW(j+1) doesn’t happen.

Good� =
{

(rA, rC) :
(
∀(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j); rA, rC), aux ∈

(
W(j+1) ∩W(j)

))
∧(

aux� ∈ W(j+1) ∨ aux� = ⊥
)}

.

Let aux† be the value stored in E when running CCA.Exp(1κ,A, j + 1,L(j+1); rA, rC) on A’s,
j + 1-th query. If no such query is made, let aux† = ⊥.

Good† =
{

(rA, rC) :
(
∀(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j+1); rA, rC), aux ∈

(
W(j+1) ∩W(j)

))
∧(

aux† ∈ W(j+1) ∨ aux† = ⊥
)}

.

Note that for any (rA, rC) ∈ Good� instance, for all queries com, com.aux ∈
(
W(j+1) ∩W(j)

)
,

CCA.ValAlt(tag∗, com,L(j)) and CCA.ValAlt(tag∗, com,L(j+1)) behave identically and thus respond

38

identically. Both have a seed s̃ stored from the procedure CCA.FindSeed(com.aux). Additionally, for
this instance, aux� = aux† as the queries and responses on first j queries have been identical. aux�

and aux† would only be different if one of the previous queries was answered differently. Thus,
(rA, rC) must be in Good† as well. We have, Good� ⊆ Good†. By a similar argument, Good† ⊆
Good� and we have that the two sets are equal. Thus, |Good†| = |Good�|.

The bad instances are thus equal when answering using L(j+1) and we have,

Pr
rA,rC

[(
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j+1)) : aux 6∈

(
W(j+1) ∩W(j)

))
∨(

aux† 6∈ W(j+1) ∧ aux� 6= ⊥
)]
≤ µ(j)(κ) + ν(κ)

Pr
rA,rC

[(
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L(j+1)) : aux 6∈ W(j+1)

)
∨(

aux† 6∈ W(j+1) ∧ aux� 6= ⊥
)]
≤ µ(j)(κ) + ν(κ)

Pr
rA,rC

[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j + 1,L(j+1)) : aux 6∈ W(j+1)

]
≤ µ(j)(κ) + ν(κ)

Using induction, we have the following claim.

Corollary 6.1. Assuming the conditions in Lemma 6.3 hold,

Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L = L(Q)) : aux /∈ W(Q)

]
= negl(κ).

Proof. Combining the probabilities from the previous lemma statement, we get,

Pr
[
∃(aux, _, _, _) ∈ CCA.Exp(1κ,A, j,L = L(Q)) : aux /∈ W(Q)

]
≤ µ(0)(κ) + Q · ν(κ).

Since µ(0)(κ) = 0, ν(κ) is negligible and Q is polynomial in security parameter, we have the claim.

6.2.2 Analyzing sequence of Games

Lemma 6.4. Suppose (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is (2κ
δ
, |advice|2n′) bind-

ing secure Definition 4.4 auxilary input equivocal commitment scheme. HPRG be an injectively
extended hinting PRG and Small.Val is v-efficient. Then, for an non-uniform adversary A running
in time poly(2κ

c
) where c ∈ (0, 1) there exists a negligible function negl(·) such that for all κ ∈ N,

|adv0
A − adv1

A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κ
v
δ .

39

Proof. Suppose for sake of contradiction we have an adversary A which has noticeable differ-
ence ε in advantage between Games 0 and 1. Since Games 0 and 1 only differ in the Val oracle,
then with probability at least ε, A must query CCA.Val on some com for which CCA.Val(·) and
CCA.ValAlt(tag∗, ·,L) differ. From Lemma 6.1, we know that for this query, com.aux 6∈ W(Q) and
CCA.Equiv(com) 6= ⊥. This means A on running Game 1 must query a com such that com.aux 6∈
W(Q) and CCA.Equiv(com) 6= ⊥. Consider the experiment CCA.Exp(1κ,A,L = L(Q)), such a query
thus must be stored in E . From Corollary 6.1 for j = Q, we know that this happens with negl(κ)
probability. Thus ε must be negligible.

Lemma 6.5. Assuming that the equivocal commitment is statistically equivocal from Definition 4.5.
For any adversary A, there exists a negligible function negl(·) such that for all κ ∈ N, |adv1

A −
adv2
A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κ

v
δ .

Proof. From Definition 4.5, we know that the statistical distance between (aux∗, σ∗i , y
∗
i) in Games 1

and 2 is negligible. Since the rest of the inputs to the games are the same, this bounds the statistical
distance of the output by a negligible function negl(κ) as well.

Lemma 6.6. Assuming that the base commitment scheme is 2κ
c
-subexponentially CCA secure,

2κ
v
-efficient CCA commitment from Definition 3.5 and Definition 3.2. For any non-uniform ad-

versary A that runs in time poly(2κ
c
), there exists a negligible function negl(·) such that for all

κ ∈ N, |adv2
A − adv3

A| ≤ negl(κ).

Proof. Let A be an adversary given advice that has non-negligible advantage given by the polyno-
mial p(·) in distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv2
A − adv3

A| ≥
1

p(κ)
.

Define Game 20 as Game 2. For all j ∈ [N ·n], we define Game 2j same as Game 2j−1, with the
following additional changes:
We can write j = (i′ − 1) · N + (x′ − 1) where x′ ∈ [N], i′ ∈ [n] from Euclidean division, and we
change the way c∗

x′,i′,s̄∗i
is generated from

c∗x′,i′,s̄∗
i′

= Small.Com(1κ, (x′, tagx′ , s̄
∗
i′), y

∗
i′,s∗

i′
; r̃∗x′,i′)

to
c∗x′,i′,s̄∗

i′
= Small.Com(1κ, (x′, tagx′ , s̄

∗
i′), y

∗
i′,s̄∗

i′
; r̃∗x′,i′)

Observe that Game 2N ·n is exactly Game 3.
Thus ∃j = j(κ) ∈ [N · n], for infinitely many κ ∈ N,

|adv
2j−1

A − adv
2j
A | ≥

1

p(κ)(N · n)
.

We will show a reductionBj that achieves a non-negligible advantage to the security of Small.Com.
We present the non-uniform computation that the algorithm performs up front followed by the
steps of the algorithm where it tries to break the hiding of the commitment scheme.

40

Reduction Bj(1κ) :

Non-Uniform Computation:

• Run L ← CCA.AdviceList(1κ, (A, advice)) non-uniformly.

• Compute equivocations.

– Compute κ′ = κ
v
δ .

– Compute κ′′ = κ
′ 1
γ .

– Let (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

– Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.

– Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).

– For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, aux∗)→ (σ∗i , y

∗
i,0, y

∗
i,1).

– Let L be (s∗, aux∗, {(σ∗i , y∗i,0, y∗i,1)}i∈n).

1. A sends a challenge tag∗ ∈ {0, 1}N to Bj .
2. Let c∗

x′,i′,s̄∗
i′

be the commitment changed in Game 2j as described above.

3. Send challenge tag (x′, tag∗x′ , s̄
∗
i′) to challenger.

4. Pre Challenge Phase:

• For every com query,

com =
(

tag, aux,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

to Bj .
• Bj answers by running CCA.ValAlt(tag∗, com,L). This can be done efficiently using
Bj ’s own Pre Challenge oracle access to Small.Val, L generated non-uniformly and runs
CCA.FindAlt manually. Since CCA.FindAlt is only run on an index x∗ such that tag∗x∗ 6=
tagx∗ , it will never call Small.Val on (x′, tag∗x′ , s̄

∗
i′).

5. Challenge Phase:

• A sends two messages m0,m1 ∈ {0, 1}w.

• Select a random bit β.

6. Part 1:

• Recall κ′ = κ
v
δ , κ′′ = κ

′ 1
γ .

• Now usingL, we retreive the non-uniform equivocations, i.e. parseL as (s∗, aux∗, {σ∗i , y∗i,0, y∗i,1}i∈n).

• Parse aux∗ as (HPRG.pp∗, aux′).

• Let rx,i, r̃x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

41

(a) Submit m∗0 = y∗i′,s∗
i′
,m∗1 = y∗i′,s̄∗

i′
to challenger

(b) Receive com∗ = Small.Com((x′, tag∗x′ , s̄
∗
i′),m

∗
b ; r) from challenger

(c) Set c∗
x′,i′,s̄∗

i′
= com∗

(d) Run Part 2 of Challenge Phase using the message mβ and with the exception that
c∗
x′,i′,s̄∗

i′
is computed as noted above and submit output to A.

7. Post Challenge Phase: Proceeds exactly as Pre Challenge Phase.
8. Receive bit guess β′ from A.
9. If β = β′, output 0. Otherwise, output 1.

Claim 6.7. Bj is a non-uniform algorithm that gets polynomial size advice and runs in time
poly(2κ

c
).

Proof. Since the procedure CCA.AdviceList outputs a polynomial size list L and since n and out-
put of AuxEquiv.Equivocate is polynomial in κ, L is polynomial in κ and Bj gets polynomial size
advice. The runtime of Bj includes running the algorithm A that runs in time poly(2κ

c
) and other

algorithms that run in poly(κ). Note that it doesn’t need to run Small.Val as it uses the oracle from
the security of the small commitment scheme and it gets equivocations non-uniformly.

Claim 6.8. The advantage of Bj in winning the message hiding game for the base commitment
scheme Small.Com from Definition 3.5 is ≥ 1

2p(κ)(N ·n) for infinitely many κ ∈ N.

Proof. First note observe that if β = 0, then

c∗x′,i′,s̄∗
i′

= Small.Com((x′, tag∗x′ , s̄
∗
i′), y

∗
i′,s∗

i′
; r)

which is exactly what it is in Game 2j−1, and similarly, if β = 1

c∗x′,i′,s̄∗
i′

= Small.Com((x′, tag∗x′ , s̄
∗
i′), y

∗
i′,s̄∗

i′
; r)

which is what it is in Game 2j .
Let q be the probability A wins Game 2j and A wins Game 2j−1 with probability q ± 1

p(κ)·N ·n .
Bj wins if β = β′ and b = 0 - i.e. A wins Game 2j−1 or if β 6= β′ and b = 1 - i.e. A loses Game 2j .
Thus for infinitely many κ ∈ N, the probability of Bj winning is given by,

1

2

(
q ± 1

p(κ) ·N · n

)
+

1

2
(1− q) =

1

2
± 1

2 · p(κ) ·N · n
.

As Small.Com is a secure scheme, the proof of the lemma follows immediately by contradiction
from the above claims.

Lemma 6.7. Assuming that the hinting PRG is subexponentially secure with T = 2κ
γ

where γ ∈
(0, 1) from Definition 5.1. For any non-uniform 2κ

c
-subexponentially secure adversary A, there

exists a negligible function negl(·) such that for all κ ∈ N, |adv3
A − adv4

A| ≤ negl(κ) where hinting
PRG is run on security parameter κ′′ = κ

′ 1
γ = κ

v
δ·γ .

42

Proof. Let A be a non-uniform adversary given advice that has non-negligible advantage given by
the polynomial p(·) in distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv3
A − adv4

A| ≥
1

p(κ)
.

We will construct a poly(2κ
c
) time non-uniform adversary Bwhich has advantage 1

2p(κ) in the hint-
ing PRG Game as per Definition 5.1 where inputs were called on security parameter κ′′.

Reduction B
(

HPRG.pp,

(
rβ0 , r

β
ext,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:

Non-Uniform Computation:

• Run L ← CCA.AdviceList(1κ, (A, advice)) non-uniformly.

1. Choose a random bit a ∈ {0, 1}.

2. Run A

(a) Pre Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com,L).

(b) A sends two messages m0,m1 ∈ {0, 1}w.

(c) Challenge Phase:

• Compute κ′ = κ
v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Let rx,i,b ∈ {0, 1}` be defined as follows:
• For i ∈ [n], b ∈ {0, 1}

i. Split up (r1,i,b, r2,i,b, . . . , rN,i,b) = rβi,b

• For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, rβext)→ (σ∗i , y

∗
i,0, y

∗
i,1).

(d) Part 2:

• Set c∗ = rβ0 ⊕m∗a.
• For i ∈ [n], x ∈ [N], b ∈ {0, 1}

i. c∗x,i,b = Small.Com(1κ, (x, tagx, b), y
∗
i,b; rx,i,b)

• Finally, it sends com∗ =

(
tag∗, rβext,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]

)i∈[n])

)
as

the commitment. All of the randomness is used as the decommitment string.

(e) Post Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com,L).

(f) Receive a′ from A.

3. If a′ = a, then output β′ = 1. Otherwise output β′ = 0.

Claim 6.9. B is a non-uniform algorithm that outputs polynomial size advice and runs in time

poly(2κ
′′γ

) = poly(2κ
′
) = poly(2κ

v
δ).

43

Proof. B runs CCA.ValAlt that runs in time poly(|m|, 2κv) from Claim 6.1. Additionally, it runs
AuxEquiv.Equivocate n times that runs in time poly(2κ

′
). Since message lengths are polynomial in

κ and N, ` are polynomial in κ implying n is poly(κ). The whole algorithm runs in time poly(2κ
′′γ

).

Claim 6.10. If A has advantage |adv3
A − adv4

A| ≥ 1
p(κ) , B has advantage in the HPRG game in

Definition 5.1 ≥ 1
2p(κ)

Proof. We observe that when β = 1 in the HPRG Game - when B receives(
r1

0 = HPRG.Eval(HPRG.pp, s, 0), r1
ext = HPRG.ExtEval(HPRG.pp, s),{

r1
i,si = HPRG.Eval(HPRG.pp, s, i), r1

i,s̄i

R←− {0, 1}`
}
i∈[n]

)
A is run on exactly Game 3, and when β = 0 - i.e. when B receives(

r0
0

R←− {0, 1}`, r0
ext = HPRG.ExtEval(HPRG.pp, s),{

r0
i,si = HPRG.Eval(HPRG.pp, s, i), r0

i,s̄i

R←− {0, 1}`
}
i∈[n]

)
A is run is identical to Game 4 (barring the fact that we are replacing c∗ with m∗β ⊕ r0

0 rather

than just c∗ R←− {0, 1}`, but these are identically distributed). So suppose A has probability p of
winning Game 4. Then we can see that B wins the HPRG (β′ = β) game either when A is run on
Game 3 and wins, or when A is run on Game 4 and loses. These events happen with probabilities

1

2

(
p± 1

p(κ)

)
+

1

2
(1− p) =

1

2
± 1

2 · p(κ)

for infinitely many κ ∈ N.

Since B’s advantage must be negligible by Definition 5.1, a contradiction, which concludes our
proof.

Lemma 6.8. For any adversary A, adv4
A = 0.

Proof. The challenge commitment is independent of the message. Thus the probability of any
adversary guessing an independent random bit is 1

2 .

From the above lemmas we can conclude that adv0
A = negl(κ). This completes the proof of the

theorem.

7 Compilation of Transformations

We show how to combine our transformations Amplify and OneToMany to prove that if we start
with a base scheme that is secure against non-uniform “same tag" adversaries (see Definition 3.6)
for 32 · ilog(q, κ) tags where the notation ilog(q, κ) denotes lg lg · · · lg︸ ︷︷ ︸

q times

(κ) 9 and q is some constant,

9The notation ilog(0, κ) is defined as κ.

44

then using our described transformations, we can construct a scheme that is secure against non-
uniform adversaries (see Definition 3.5) for 16 · 2κ tags.

Our sequence of transformations is very similar to [GKLW21], where we start with a base
scheme BaseCCA that satisfies property Definition 3.7. We then remove the same tag restriction
on the adversary by using the transformation OneToMany in Section E and then amplify the tag
space by using the transformation Amplify in Section 6 q + 1 times. The two main deviations from
the formal treatment of [GKLW21] is due to our proof technique, i.e. we need to keep track of the
message and efficiency of the val oracle when we perform the sequence of transformations.

We remind the reader that the order of the sequence of transformations is important as to
perform Amplify and OneToMany we need the commitment scheme to be recoverable from ran-
domness. Additionally, OneToMany does computation that is polynomial in the number of tags
for the input scheme. Thus, we must remove the “same tag" restriction from our adversary before
amplifying our tags with Amplify. Based on the sequence of transformations we have discussed,
our tag space will amplify as follows. At the end of OneToMany, we will end up with 16 · ilog(q, κ)
sized tag space. And after q+1 applications of Amplify, we will end up with 16 ·2κ sized tag space.
One application of Amplify converts a 4N tag space scheme to a 2N tag space scheme. Thus on
input a 4 · 4 · ilog(q, κ) tag space, one gets a 24·ilog(q,κ) = 16 · ilog(q − 1, κ) tag space.

Additionally, when using the schemes in a sequence of transformations we need to keep track
of the message spaces we chose in our output scheme. For instance, to perform the transfor-
mation Amplify and OneToMany, the constructions output committment σ to each seed bit of the
hinting PRG. The base scheme here takes in the decommitment string of σ as input. Thus the
length of the base scheme being transformed should be able to support messages of this length
for the transformation to be correct. Let the length of the decommitment string be denoted by
a polynomial function DecomLen(·) that takes as input the security parameter κ 10. Thus for the
transformations Amplify and OneToMany, u (input message length of the base scheme) should be
equal to DecomLen(κ′) where κ′ is the security parameter input to the equivocal commitment. In
our transformations κ′ is set as κ

v
δ where there exists a constant δ such that the setupless equivocal

commitment scheme is 2κ
δ
-hiding secure and the base scheme is 2κ

v
-efficient11.

Our formal transformation is below. We start with a base commitment scheme BaseCCA and
output the scheme (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val). We list a few assumptions on our
transformation -

• Let there exist variables δ, γ, ṽ such that δ ∈ (0, 1) and the setupless equivocal commitment
scheme is 2κ

δ
-hiding secure, γ ∈ (0, 1) and the hinting PRG with injective extension is 2κ

γ
-

secure and the dependence of seed on the security parameter be such that seed length n =
Θ(κṽ).

• We start with a base scheme that is 2κ-efficient and secure against non-uniform “same tag"
2κ

c
-subexponentially secure adversaries for tag space 32ilog(q, κ) tags for any constant q.

If the base scheme runs in time some constant poly(2κ
a
) where a ∈ (0, 1) then the scheme is

2κ-efficient. Otherwise, on input security parameter κ, we can run the scheme with parame-

10The length of the decommitment string can depend on aux, but since aux is also called with a polynomial function
in κ based on the hinting PRG construction, we simplify the notation. In our specific construction for AuxEquiv in
Section 4, the decommitment string length doesn’t depend on aux.

11Recall from Definition 3.2 that a 2κ
v

-efficient scheme with v ≥ 1 implies that the runtime of Small.Val is polynomial
in 2κ

v

.

45

ters κ
1
a to get a 2κ-efficent scheme that is still 2κ

c
sub-exponentially secure with c ∈ (0, 1) for

some constant c. Thus we can wlog claim that we start with a 2κ-efficient scheme. This will
help simplify notation.

• Let the base scheme support messages of length u = AuxEquiv.DecomLen(κ
1
δ) and the final

scheme support messages of length w.

Recall that the transformations OneToMany (Section E) and Amplify (Section 6) take in the fol-
lowing parameters - a scheme to be transformed, hinting PRG with injective extension HPRG,
setupless equivocal commitment scheme AuxEquiv, the length of the messages supported by the
output scheme and an efficiency parameter v such that the output scheme is 2κ

v
-efficient.

CompiledAmplify(BaseCCA = (BaseCCA.Com,BaseCCA.Val, u),HPRG,AuxEquiv, w)

1. AmplifiedCCA0 ← OneToMany(BaseCCA,HPRG,AuxEquiv,AuxEquiv.DecomLen(κ
v0
δ), v0)

where v0 = ṽ
δ·γ .

2. For i ∈ [q],

(a) AmplifiedCCAi ← Amplify(AmplifiedCCAi−1,HPRG,AuxEquiv,AuxEquiv.DecomLen(κ
vi
δ), vi)

where vi =
(

ṽ
δ·γ

)i+1
.

3. AmplifiedCCAq+1 ← Amplify(AmplifiedCCAq,HPRG,AuxEquiv, w, vq+1) where vq+1 =
(

ṽ
δ·γ

)q+2
.

4. Output (AmplifiedCCAq+1.Com,AmplifiedCCAq+1.Val)

Below we analyze CompiledAmplify by stating theorems on correctness, efficiency and security.

Theorem 7.1. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA = (BaseCCA.Com,
BaseCCA.Val, u) be a perfectly correct CCA commitment scheme for message space {0, 1}u by
Definition 3.1 with tag space 32 · ilog(q, κ). Let AuxEquiv = (AuxEquiv.Com, AuxEquiv.Decom,
AuxEquiv.Equivocate) be a perfectly correct equivocal commitment scheme by Definition 4.2. Let
there exist a constant δ such that u = AuxEquiv.DecomLen(κ

1
δ).

Then, we have that the scheme CompiledAmplify(BaseCCA, HPRG, AuxEquiv, w) is a perfectly
correct CCA commitment scheme for 16 · 2κ tags.

Proof. By the assumption that BaseCCA is a correct CCA commitment scheme, for 32 · ilog(q, κ)
tags and correctness of AuxEquiv, we can apply Claim E.2 to conclude AmplifiedCCA0 is a correct
CCA commitment scheme for 16 · ilog(q, κ) tags. Note that RandomBaseCCA is secure for messages
in space {0, 1}u where u = AuxEquiv.DecomLen(κ

1
δ) and OneToMany calls Same.Com on a decom-

mitment string called on security parameter κ
1
δ (Recall that the setupless equivocal commitment

scheme is 2κ
δ
-hiding secure). Thus the correctness holds.

Similarly, using again the correctness of AuxEquiv with correctness of Claim 6.2, we can con-
clude inductively that AmplifiedCCAi is a perfectly correct CCA commitment scheme for 16·ilog(q−
i, κ) tags, where i ∈ [q]. Observe that during the transformation AuxEquiv is called on security pa-
rameter κ′ = κ

vi−1
δ , which was the length set as the output of AmplifiedCCAi−1.

And finaly the final scheme AmplifiedCCAq+1 is a perfectly correct CCA commitment scheme
for 16 · 2κ tags and any message space w via correctness of AmplifiedCCAq and AuxEquiv and the
message length of the base scheme being set to
AuxEquiv.DecomLen(κ

vq
δ).

46

Theorem 7.2. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA = (BaseCCA.Com,
BaseCCA.Val, u) be an 2κ-efficient CCA commitment scheme by Definition 3.2 with tag space
32 · ilog(q, κ). Let AuxEquiv = (Equiv.Com, Equiv.Decom,Equiv.Equivocate) be an efficient equiv-
ocal commitment scheme by Definition 4.3. Let there exist constants δ, γ, ṽ such that setupless
equivocal commitment scheme is 2κ

δ
-hiding secure and u = AuxEquiv.DecomLen(κ

1
δ); γ ∈ (0, 1)

and the hinting PRG with injective extension is 2κ
γ
-secure; the dependence of seed on the security

parameter be such that n = Θ(κṽ).
Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is an 2κ

v
q+1-efficient CCA commitment

scheme for 16 · 2κ tags where vq+1 =
(

ṽ
δ·γ

)q+2
.

Proof. By the assumption that BaseCCA is a 2κ-efficient CCA commitment scheme, and using
Claim E.1, we can conclude that AmplifiedCCA0 is a 2κ

v0 -efficient scheme where v0 = ṽ
δ·γ . The

claim needs the condition that the number of tags are polynomial in κ.
Now we inductively apply Claim 6.1 i ∈ [q + 1] to state that AmplifiedCCAi is a 2κ

v
i -efficient

scheme where vi =
(

ṽ
δ·γ

)i+1
. From the hypothesis, AmplifiedCCAi−1 is 2κ

v
i−1-efficient. Using

Claim 6.1 with the fact that the equivocal commitment scheme is efficient by Definition 4.3, we
have that AmplifiedCCAi is 2κ

v
i -efficient. Note that again the number of tags stay polynomial in κ

for i ∈ [q]. Also observe that it is crucial that we only apply the inductive step a constant num-
ber of times, as each transformation expands the output of the committed string by a polynomial
factor.

Theorem 7.3. For every κ ∈ N, any constant q, any polynomial w, let BaseCCA = (BaseCCA.Com,
BaseCCA.Val, u) be a CCA commitment scheme that is hiding against non-uniform “same tag"
2κ

c
-subexponential adversaries according to Definition 3.6 for tag space 32 · ilog(q, κ). HPRG =

(HPRG.Setup,HPRG.Eval) be a hinting PRG scheme with injective extension that is T = 2κ
γ

secure
by Definition 5.1 for γ ∈ (0, 1). AuxEquiv = (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate)

be an equivocal commitment without setup scheme that is T = 2κ
δ

binding secure Definition 4.4
and statistically hiding for some constant δ ∈ (0, 1). Let u be equal to AuxEquiv.DecomLen(κ

1
δ).

Then, CompiledAmplify(BaseCCA,HPRG,AuxEquiv, w) is a CCA commitment scheme that is
hiding against non-uniform 2κ

c
-subexponential adversaries according to Definition 3.5 for tag

space 16 · 2κ.

Proof.

Claim 7.1. AmplifiedCCA0 is a CCA commitment scheme secure against non-uniform 2κ
c
-subexponential

adversaries with the recover from randomness property on tag space 16 · ilog(q, κ).

Proof. By assumption in Theorem 7.3, HPRG is a 2κ
γ

secure hinting PRG scheme with injective ex-
tension, AuxEquiv is a 2κ

δ
secure equivocal commitment without setup scheme. BaseCCA is a CCA

commitment scheme that is hiding against non-uniform 2κ
c
-subexponential “same tag" adver-

saries with the recover from randomness property on tag space 32 · ilog(q, κ). Apply Theorem E.1
with N = 16 · ilog(q, κ) to get the result.

Claim 7.2. For all i ∈ [q], AmplifiedCCAi is a CCA commitment scheme secure against non-uniform
2κ

c
-subexponential adversaries with the recover from randomness property on tag space 16 ·

ilog(q − i, κ). AmplifiedCCAq+1 is a CCA commitment scheme secure against non-uniform 2κ
c
-

subexponential adversaries with the recover from randomness property on tag space 16 · 2κ.

47

Proof. We will proceed with induction on i ∈ [q + 1]. The base case is true by Claim 7.1. By as-
sumption in Theorem 7.3, HPRG is a 2κ

γ
secure hinting PRG scheme with injective extension and

AuxEquiv is a 2κ
δ

secure equivocal commitment without setup scheme. By our induction hypothe-
sis, AmplifiedCCAi−1 a CCA commitment scheme secure against non-uniform 2κ

c
-subexponential

adversaries with the recover from randomness property on tag space 16 · ilog(q − i + 1, κ). We
apply Theorem 6.1 with N = 4 · ilog(q+ 1− i, κ). Since i ≤ q+ 1, we know N ≤ κ ∈ poly(κ), so the
theorem applies, giving us that AmplifiedCCAi is a CCA commitment scheme secure against non-
uniform 2κ

c
-subexponential adversaries with the recover from randomness property on tag space

24·ilog(q−i+1,κ) = 16 · ilog(q− i, κ). Thus at the end of the induction, we end up with AmplifiedCCAq,
a CCA commitment scheme secure against non-uniform 2κ

c
-subexponential adversaries with the

recover from randomness property on tag space 16 · κ.
We finally apply Theorem 6.1 withN = 4·κ on AmplifiedCCAq to get AmplifiedCCAq+1 as a CCA

commitment scheme secure against non-uniform 2κ
c
-subexponential adversaries with the recover

from randomness property on tag space 16 · 2κ.

By applying Claim 7.2, we conclude AmplifiedCCAq+1 is a non-uniform 2κ
c
-subexponentially

secure CCA commitment with tag space 16 · 2κ.

We import the following theorems about instantiating base schemes, from prior work.

Theorem 7.4. [KK19] For every constant c > 0, there exist correct, polynomially efficient, bind-
ing (3.3), same-tag CCA secure commitments with randomness recovery satisfying Definition 3.6
against non-uniform adversaries, with tag space (c lg lg lg κ), message space u = poly(κ) that make
black-box use of subexponential quantum hard non-interactive commitments and subexponential
classically hard non-interactive commitments in BQP, both with randomness recovery.

Theorem 7.5. [LPS17] For every constant c > 0, there exist correct, polynomially efficient, weak
binding (3.4), same-tag CCA secure commitments with randomness recovery satisfying same-
tag CCA security according to Definition 3.6 against non-uniform adversaries, with tag space
(c lg lg lg κ), that make black-box use of subexponential time-lock puzzles [LPS17].

We remark that while [LPS17, KK19] prove that their constructions satisfy non-malleability
with respect to commitment, their proof techniques also extend to exhibit same-tag CCA secu-
rity against non-uniform adversaries. In a nutshell, both these works rely on two simultaneous
axes of hardness to build their base schemes. As a consequence of this in the same-tag setting,
for any pair of tags (tag, t̃ag) corresponding to the challenge query and CCA oracle queries of
the adversary respectively, there is an oracle that inverts all commitments generated under ˜tag
but where commitments under tag remain secure in the presence of this oracle. In both these
works [LPS17, KK19], we note that while the specific oracle is only used to invert parallel queries
of the adversary (thereby obtaining many-many non-malleability), the oracle is actually capable of
inverting (unbounded) polynomially many adaptive queries, thereby also achieving same-tag CCA
security. In [LPS17], this oracle over-extracts, therefore achieving the weaker property of same-tag
CCA security with weak binding. The [KK19] scheme does not suffer from over-extraction and
achieves the stronger notion of (standard) binding. The [KK19] scheme can be observed to sat-
isfy randomness recovery by relying on the recovery algorithm of the underlying commitments.
The [LPS17] scheme outputs a commitment to a bit b as

f(s; r), r′, 〈s, r′〉 ⊕ b

48

which satisfies randomness recovery given all the randomness used to commit.
Combining this theorem with Theorem 7.3, we obtain the following corollaries.

Corollary 7.1. There exists a perfectly correct, polynomially efficient, binding (Definition 3.3)
and CCA secure commitment satisfying Definition 3.5 against non-uniform adversaries, with tag
space 2κ for security parameter κ, that makes black-box use of subexponential quantum hard one-
way functions, subexponential classically hard one-way functions in BQP, subexponential hinting
PRGs and subexponential keyless collision-resistant hash functions.

Corollary 7.2. There exists a perfectly correct, polynomially efficient, binding (Definition 3.3) and
CCA secure commitment satisfying Definition 3.5 against non-uniform adversaries, with tag space
2κ for security parameter κ, that makes black-box use of subexponential time-lock puzzles as
used in [LPS17], subexponential hinting PRGs and subexponential keyless collision-resistant hash
functions.

Finally, we point out that while all our formal theorems discuss CCA security, our transfor-
mations also apply as is to the case of amplifying parallel CCA security (equivalently, concurrent
non-malleability w.r.t. commitment). That is, given a base scheme that is only same-tag paral-
lel CCA secure (or non-malleable w.r.t. commitment) for small tags, our transformations yield a
scheme for all tags that is parallel CCA secure (or concurrent non-malleable w.r.t. commitment)
for tags in 2κ, without the same tag restriction.

8 Acknowledgments

We thank Daniel Wichs for a useful discussion about the construction of our new Hinting PRGs,
anonymous reviewers for helpful feedback on a preliminary version of this work, and Nir Bitan-
sky and Rachel Lin for answering our questions about keyless collision-resistant hash functions.

References

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Advances in Cryptology - CRYPTO
2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part I, pages 468–499, 2017.

[Bar02] Boaz Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing the
Shared Random String Model. In FOCS 2002, pages 345–355, 2002.

[BFMR18] Brandon Broadnax, Valerie Fetzer, Jörn Müller-Quade, and Andy Rupp. Non-
malleability vs. cca-security: The case of commitments. In Michel Abdalla and Ricardo
Dahab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29,
2018, Proceedings, Part II, volume 10770 of Lecture Notes in Computer Science, pages 312–
337. Springer, 2018.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent MPC via strong simulation. In Theory of Cryptography

49

- 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part I, pages 743–775, 2017.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round
optimal MPC. In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II,
pages 459–487, 2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure com-
putation without setup. In Theory of Cryptography - 15th International Conference, TCC
2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I, pages 645–677,
2017.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 671–684. ACM,
2018.

[BL18a] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, pages
500–532, 2018.

[BL18b] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable com-
mitments. In Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography
- 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceed-
ings, Part I, volume 11239 of Lecture Notes in Computer Science, pages 209–234. Springer,
2018.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography.
SIAM J. Comput., 37(2):380–400, 2007.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability
from indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-
itors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture Notes in Computer
Science, pages 401–427. Springer, 2015.

[CCG+21] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostro-
vsky. Oblivious transfer from trapdoor permutations in minimal rounds. In Kobbi
Nissim and Brent Waters, editors, Theory of Cryptography - 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II, volume 13043 of
Lecture Notes in Computer Science, pages 518–549. Springer, 2021.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-
malleable commitment. In Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual

50

ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages
141–150. ACM, 1998.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive Hardness and Composable Secu-
rity in the Plain Model from Standard Assumptions. In Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’10, pages 541–550, 2010.

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concurrent
non-malleable commitments (and more) in 3 rounds. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III, volume 9816 of Lecture Notes in Computer Science, pages 270–299. Springer,
2016.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Four-round
concurrent non-malleable commitments from one-way functions. In Annual Interna-
tional Cryptology Conference, pages 127–157. Springer, 2017.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptography (Ex-
tended Abstract). In STOC 1991, 1991.

[DPP93] Ivan B Damgård, Torben P Pedersen, and Birgit Pfitzmann. On the existence of statisti-
cally hiding bit commitment schemes and fail-stop signatures. In Annual International
Cryptology Conference, pages 250–265. Springer, 1993.

[GKLW21] Rachit Garg, Dakshita Khurana, George Lu, and Brent Waters. Black-box non-
interactive non-malleable commitments. In Anne Canteaut and François-Xavier Stan-
daert, editors, Advances in Cryptology - EUROCRYPT 2021 - 40th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, Oc-
tober 17-21, 2021, Proceedings, Part III, volume 12698 of Lecture Notes in Computer Science,
pages 159–185. Springer, 2021.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, page 25âĂŞ32, New York, NY, USA, 1989. Association for Computing Machinery.

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In FOCS, 2012.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[Goy11] Vipul Goyal. Constant Round Non-malleable Protocols Using One-way Functions. In
STOC 2011, pages 695–704. ACM, 2011.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In STOC, pages 1128–1141, New York, NY, USA, 2016. ACM.

51

[GR19] Vipul Goyal and Silas Richelson. Non-malleable commitments using goldreich-levin
list decoding. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages
686–699. IEEE Computer Society, 2019.

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In FOCS 2014, pages 41–50, 2014.

[GVW20] Rishab Goyal, Satyanarayana Vusirikala, and Brent Waters. New constructions of hint-
ing prgs, owfs with encryption, and more. In Daniele Micciancio and Thomas Risten-
part, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptol-
ogy Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part I, volume 12170 of Lecture Notes in Computer Science, pages 527–558. Springer, 2020.

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Round-optimal secure multi-party computation. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, pages 488–520, 2018.

[HM96] Shai Halevi and Silvio Micali. Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 201–215. Springer-Verlag,
1996.

[Khu17] Dakshita Khurana. Round optimal concurrent non-malleability from polynomial
hardness. In Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography - 15th Inter-
national Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings,
Part II, volume 10678 of Lecture Notes in Computer Science, pages 139–171. Springer,
2017.

[Khu21] Dakshita Khurana. Non-interactive distributional indistinguishability and non-
malleable commitments. In Advances in Cryptology - EUROCRYPT 2021, 2021.

[KK19] Yael Tauman Kalai and Dakshita Khurana. Non-interactive non-malleability from
quantum supremacy. In Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part III, pages 552–582, 2019.

[KS17] Dakshita Khurana and Amit Sahai. How to achieve non-malleability in one or two
rounds. In Umans [Uma17], pages 564–575.

[KW19] Venkata Koppula and Brent Waters. Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 671–700. Springer,
2019.

[LP] Huijia Lin and Rafael Pass. Constant-round Non-malleable Commitments from Any
One-way Function. In STOC 2011, pages 705–714.

52

[LP09] Huijia Lin and Rafael Pass. Non-malleability Amplification. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC ’09, pages 189–198, 2009.

[LPS17] Huijia Lin, Rafael Pass, and Pratik Soni. Two-round and non-interactive concurrent
non-malleable commitments from time-lock puzzles. In Umans [Uma17], pages 576–
587.

[LPV] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
Non-malleable Commitments from Any One-Way Function. In TCC 2008, pages 571–
588.

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In TCC, pages 334–354, 2013.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive One-Way Func-
tions and Applications. In Advances in Cryptology — CRYPTO ’08, pages 57–74, 2008.

[PR05] Rafael Pass and Alon Rosen. Concurrent Non-Malleable Commitments. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of ComputerScience, FOCS ’05, pages
563–572, 2005.

[PR08] Rafael Pass and Alon Rosen. New and Improved Constructions of Nonmalleable
Cryptographic Protocols. SIAM J. Comput., 38(2):702–752, 2008.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In EUROCRYPT 2010, pages 638–655, 2010.

[Uma17] Chris Umans, editor. 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. IEEE Computer Society, 2017.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor,
Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume 4622 of Lecture Notes
in Computer Science, pages 205–223. Springer, 2007.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In FOCS 2010, pages 531–540, 2010.

A Preliminaries

A.1 (k, ε) Strong Extractors

Definition A.1. A distribution χ has min-entropy k if maxx Pr[x = x′
R←− χ] = 2−k

Definition A.2. A function SExt : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) extractor if for all
distributions χ with domain {0, 1}n and min-entropy k, the following distribution

x
R←− χ, s R←− {0, 1}d, (s||SExt(x, s))

has statistical distance at most ε from the uniform distribution on d+m bits.

53

A.2 Diffie Hellman Assumptions

Let {Gκ}κ be a collection of groups. We say the Decisional Diffie Hellman assumption holds for
{Gκ}κ if for any PPT adversary A,∣∣∣∣∣∣∣Pr

 g
R←− Gκ

a, b
R←− [|Gκ|]

A(g, ga, gb, gab) = 1

− Pr

 g, h
R←− Gκ

a, b
R←− [|Gκ|]

A(g, ga, gb, h) = 1

∣∣∣∣∣∣∣ < negl(κ)

where g is a generator of Gκ.
Similarly, we say the Computational Diffie Hellman assumption holds for {Gκ}κ if for any PPT

adversary A,

Pr

 g
R←− Gκ

a, b
R←− [|Gκ|]

gab = A(g, ga, gb)

 < negl(κ)

A.3 Learning With Errors Assumptions

Let n and q be > 0 and χ be a noise distribution over Zq. We say LWEn,q,χ holds if for any PPT
adversary A and polynomial N ,

∣∣∣∣∣∣∣∣∣∣
Pr

ai

R←− Znq ∀i ∈ [N]

a, s
R←− Znq

e, ei
R←− χ ∀i ∈ [N]

A({ai, aT
i · s+ ei}i, (a, aT · s+ e)) = 1

− Pr

ai

R←− Znq ∀i ∈ [N]

a, s
R←− Znq , r

R←− Zq
ei

R←− χ ∀i ∈ [N]
A({ai, aT

i · s+ ei}i, (a, r)) = 1

∣∣∣∣∣∣∣∣∣∣
< negl(κ)

B Distinct Strong Collision Resistance in the Auxiliary-Input Random
Oracle Model

We show that distinct strong-collision-resistant hashing exists in the model of random oracles with
auxiliary inputs of Unruh [Unr07].

In this model, the adversary A consists of two parts (A1,A2). First A1(R), who is completely
unbounded, obtains a full description of a (shrinking) random oracle R and outputs some (short)
auxiliary information z about the random oracle. Then at the second stage AR2 (z) obtains this
auxiliary input, as well as oracle access to R, and attempts to output K collisions in R with all
distinct entries.

We show that A cannot output pairwise collisions with everywhere-distinct inputs that are
significantly larger than the size of the auxiliary input. First, we prove the following theorem.

Theorem B.1. For ` > κ, letR denote a random function from the set of functions {0, 1}` → {0, 1}κ.
Let A = (A1,A(·)

2), where A1 is an unbounded algorithm that outputs z ∈ {0, 1}ζ , and A(·)
2 is an

unbounded algorithm that makes T oracle queries and outputs

X :=
(

(X0
1 , X

1
1), (X0

2 , X
1
2), . . . , (X0

K , X
1
K)
)
∈ {0, 1}`×2K .

54

Then,

Pr
R,A

[
∀(i, b) 6= (j, c), Xb

i 6= Xc
j ,

∀i,R(X0
i) = R(X1

i)

∣∣∣∣∣ z ← A1(R)(
(X0

1 , X
1
1), (X0

2 , X
1
2), . . . , (X0

K , X
1
K)
)
← AR2 (z)

]
≤ 2−K(κ−2logT logK)+ζ

Proof. We assume w.l.o.g thatA is deterministic and that the oracle queries made byA2 are always
distinct. Let S be the set of oracles R for which A successfully finds a distinct strong K-collision.
We show that

|S| ≤ 2κ·2
`−K(κ−2logT logK)+ζ ,

which suffices since the total number of oraclesR is 2κ·2
`
.

Fix any such R ∈ S , and consider a corresponding execution of A. Let z be the resulting
auxiliary input, let X =

(
(X0

1 , X
1
1), (X0

2 , X
1
2), . . . , (X0

K , X
1
K)
)

be the resulting distinct strong K-

collision, and let Q = {Q1, . . . , QT } be the set of oracle queries that AR2 (z) makes. We representR
as follows:

• z,

• LQ∩X = {(i, j) ∈ [T]× [k] | ∃b such that Qi = Xb
j},

• R(X0
1),R(X0

2), . . . ,R(X0
k).

• LQ\X := {R(Qi) | Qi 6∈ X},

• LQ∪X := {R(Y) | Y 6∈ X ∪Q}.

Note that the auxiliary input size is ζ, the set LQ∩X can be represented by at most |X|·logT ·logK =
2K · logT · logK, the valuesR(X0

1),R(X0
2), . . . ,R(X0

k) by Kκ bits, and the last two sets LQ\X and
LQ∪X by κ · (2` − |X|) = κ · (2` − 2K) bits (together). In sum, this representation costs

κ · 2` − 2K(κ− log T log K) + ζ +Kκ

which equals
κ · 2` −K(κ− 2log T log K) + ζ

as required. To see that this representation is unique, note that it allows to reconstructR as follows.
First emulate AR2 (z). When it makes its ith query Qi, if there exists j such that (i, j) ∈ LQ∩X ,
answer with R(X0

j). Otherwise answer from LQ\X , and keep track of the current location in the
list. Finally, obtain all of X. At this point, we have all the pairs (Y,R(Y)) such that Y ∈ Q ∪ X ,
and we can complete LQ∪X to a full description of the functionR.

Corollary B.1. For ` > κ, let R denote a random function from the set of functions {0, 1}` →
{0, 1}κ. LetA = (A1,A(·)

2), whereA1 is an unbounded algorithm that outputs z ∈ {0, 1}ζ , andA(·)
2

is an unbounded algorithm that makes T = poly(κ) oracle queries and outputs

X :=
(

(X0
1 , X

1
1), (X0

2 , X
1
2), . . . , (X0

K , X
1
K)
)
∈ {0, 1}`×2K .

55

Then for K = ζ = poly(κ),

Pr
R,A

[
∀(i, b) 6= (j, c), Xb

i 6= Xc
j ,

∀i,R(X0
i) = R(X1

i)

∣∣∣∣∣ z ← A1(R)(
(X0

1 , X
1
1), (X0

2 , X
1
2), . . . , (X0

K , X
1
K)
)
← AR2 (z)

]
≤ 2−κ/2

Proof. Since 2 log T logK < κ
2 , we have that 2−K(κ−2logT logK)+ζ < 2−K(κ/2)+ζ . Thus, the theorem

above implies thatA on advice of length ζ outputs more thanK = ζ distinct strong collisions with
probability at most 2−κ/2.

C Analysis of Section 4

C.1 Analysis of Construction

Please refer to the construction in Section 4.

Lemma C.1. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is a correct equivocal commit-
ment scheme as per Definition 4.2.

Proof. We can see that

AuxEquiv.Decom(aux, c, d) = AuxEquiv.Decom(aux, (g,SExt(g, v)⊕ b,H.Hash(1κ, (aux, v))), v).

Since H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, v)), we output SExt(g, v)⊕ (SExt(g, v)⊕ b) = b, which
is correct.

Lemma C.2. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is an efficient equivocal com-
mitment scheme as per Definition 4.3.

Proof. We can see both AuxEquiv.Com and AuxEquiv.Decom simply sample a polynomial number
of random bits and evaluate the strong extractor and keyless collision resistant hash function on
some aux length, both of which are efficient in poly(κ, |aux|). For AuxEquiv.Equivocate, we note that
it does some efficient computation (including evaluating the hash), for each of 23κ items in the
domain of the seeded extractor, giving it runtime poly(κ, |aux|) · 23κ ∈ poly(2κ, |aux|).

Lemma C.3. If H(·) is a (T,K) distinct strong multi-collision resistant keyless hash function against
non-uniform adversaries, then the above is a (T,K) binding secure commitment scheme as per
Definition 4.4.

Proof. We will show that if there exists an algorithm A given non-uniform polynomial advice(κ)
running in time poly(T(κ)) such that for K = K(|advice|)A has non-negligible advantage given by
the polynomial p(·) for infinitely many κ ∈ N,

Pr

(

(aux(1), c(1), d
(1)
0 , d

(1)
1), . . . ,

(aux(K), c(K), d
(K)
0 , d

(K)
1)

)
← A(1κ)

:

∀i ∈ [K],

AuxEquiv.Decom(aux(i), c(i), d
(i)
0) = 0,

AuxEquiv.Decom(aux(i), c(i), d
(i)
1) = 1

∀i 6= j ∈ [K], aux(i) 6= aux(j)

 ≥ 1

p(κ)
.

56

Then there exists an algorithmB given non-uniform polynomial advice(κ) running in time poly(T(κ))
such that for K = K(|advice|) and for infinitely many κ ∈ N,

Pr

[(
X

(0)
1 , X

(1)
1 , . . . , X

(0)
K , X

(1)
K

)
← B(1κ) :

∀(i, b) 6= (j, c) ∈ [K]× {0, 1}, X(b)
i 6= X

(c)
j

∀i ∈ [K],H.Hash(1κ, X
(0)
i) = H.Hash(1κ, X

(1)
i)

]
≥ 1

p(κ)
.

Consider the B which simply runs A with advice to output ∀i ∈ [K], (aux(i), c(i), d
(i)
0 , d

(i)
1) ←

A(1κ) and outputsX(0)
i = (aux(i), d

(i)
0), X

(1)
i = (aux(i), d

(i)
1). Assume without loss of generality that

AuxEquiv.Decom(c(i), d
(i)
0) = 0 ∧ AuxEquiv.Decom(c(i), d

(i)
1) = 1. Let c(i) = g, w, h, so by our defini-

tion of AuxEquiv.Decom, we know that for every i ∈ [K], H.Hash(1κ, X
(0)
i) = h′ = H.Hash(1κ, X

(1)
i).

Since SExt(g(i), d
(i)
0)⊕ w(i) = 0 6= 1 = w(i) ⊕ SExt(g(i), d

(i)
1), we can conclude that d(i)

0 6= d
(i)
1 . In

addition, for i 6= j, aux(i) 6= aux(j). Thus, we have that X(b)
i 6= X

(c)
j for any b, c. From the securify

definition (Definition 4.1), we have a contradiction.

Lemma C.4. If SExt is a (k, ε) = (κ, negl(κ)) Strong Seeded extractor, then the above is an equivocal
commitment scheme as per Definition 4.5.

Proof. The proof will proceed through a series of hybrids, where we consider the distribution of
(aux, c, d) = (aux, (g, w, h), v). We will show that the output of each hybrid is statistically close to
the previous.

D0 : This is the distribution initial distribution (c, d) generated by AuxEquiv.Com(1κ, aux, b)

• g R←− {0, 1}κ

• v R←− {0, 1}3κ

• h← H.Hash(1κ, (aux, v))

• w ← SExt(g, v)⊕ b

D1 :Here, we select v from Vt

• g R←− {0, 1}κ

• Sample t R←− {0, 1}3κ

• Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}
• h← H.Hash(1κ, (aux, t))

• v R←− Vt
• w ← SExt(g, v)⊕ b

D2 :We check that the t we picked can be equivocated

• g R←− {0, 1}κ

• Sample t R←− {0, 1}3κ

• Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}

57

• Partition Vt = V0
t ∪ V1

t where V it = {v : v ∈ Vt ∧ SExt(g, v) = i}, output bots if either V0
t or V1

t

are ∅.
• h← H.Hash(1κ, (aux, t))

• v R←− Vt
• w ← SExt(g, v)⊕ b

D3 :Here, we switch to picking w randomly.

• g R←− {0, 1}κ

• Sample t R←− {0, 1}3κ

• w R←− {0, 1}
• Define Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}
• Partition Vt = V0

t ∪ V1
t where V it = {v : v ∈ Vt ∧ SExt(g, v) = i}, output bots if either V0

t

or V1
t are ∅.

• h← H.Hash(1κ, (aux, t))

• v R←− Vb⊕wt

D4 :This is the final distribution (c, db) generated by AuxEquiv.Equivocate(1κ, aux)

• g R←− {0, 1}κ

• Sample t R←− {0, 1}3κ

• w R←− {0, 1}
• Compute Vt = {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, t))}
• Partition Vt = V0

t ∪ V1
t where V it = {v : v ∈ Vt ∧ SExt(g, v) = i}, output bots if either V0

t

or V1
t are ∅.

• Sample v0
R←− Vwt , v1

R←− Vw⊕1
t . Output bots if no such v0 or v1 exist.

• h← H.Hash(1κ, (aux, t))

• v ← vb

Before proving statistical indistinguishability of these distributions, we prove the following
simple claims to help our arguments.

Claim C.1. For any aux ∈ {0, 1}∗, let Vt denote the distribution of v′ sampled uniformly at random
conditioned on H.Hash(1κ, (aux, t)) = H.Hash(1κ, (aux, v′)). With probability at least 1 − 2−κ over
the randomness of sampling t← {0, 1}3κ,

H∞(Vt) > κ.

Proof. We will prove this claim by a counting argument. Towards a contradiction, assume that
with probability greater than 2−κ over the randomness of sampling t← {0, 1}3κ,

H∞(Vt) ≤ κ

This implies that there exists a set S consisting of elements in {0, 1}3κ such that:

58

• |S| > 2−κ · 23κ = 22κ and,

• For every t ∈ S,
H∞(Vt) ≤ κ

This implies that S can be partitioned into at least N = |S|/2κ > 2κ sets S1, . . .SN such that
∃(h1, . . . hN) satisfying the following constraints:

1. For all i ∈ [N], y ∈ Si, H.Hash(1κ, (aux, y)) = hi,

2. For every i, j ∈ [N] such that i 6= j, hi 6= hj .

Note that for all i ∈ [N], hi ∈ {0, 1}κ (since hi is the output of the hash function). This, together
with the fact that N > 2κ contradicts point 2 above, which completes our proof.

Claim C.2. For any t ∈ {0, 1}3κ, for at least 1− 2−κ fraction of t ∈ {0, 1}3κ,

∆
(

(Uκ, t,SExt(Uκ,Vt)), (Uκ, t, U1)
)
≤ ε(κ)

where Ux denotes the uniform distribution over {0, 1}x and where Vt denotes the distribution of ν
sampled uniformly at random conditioned on H.Hash(1κ, (aux, t)) = H.Hash(1κ, (aux, ν)) and SExt
is a (κ, ε(κ)) Strong Extractor.

Proof. To prove this, we first reiterate that by Claim C.1, with probability at least 1− 2−κ over the
randomness of sampling t← {0, 1}3κ,

H∞(Vt) > κ (1)

where Vt denotes the distribution of ν sampled uniformly at random conditioned on H.Hash(1κ, t) =
H.Hash(1κ, ν).

By definition of the (κ, ε(κ)) strong seeded extractor, for any distribution V such that H∞(V) =
κ,

∆
(

(Uκ, SExt(Uκ,V)), (Uκ, U1)
)
≤ ε(κ) (2)

where ∆ denotes statistical distance and Ux denotes the uniform distribution over {0, 1}x. Com-
bining Equation 1 and Equation 2, with probability 1 − 2−κ over the randomness of sampling
t← {0, 1}3κ,

∆
(

(Uκ, t,SExt(Uκ,Vt)), (Uκ, t, U1)
)
≤ ε(κ) (3)

This completes the proof.

Claim C.3. The distributions D0 and D1 are identical.

Proof. Notice the distribution only changes the way v is selected, so it suffices to show that for any
fixed v′, v = v′ is selected with equal probability in D0 and D1. In D0, this probability is clearly
2−3κ. In D1, let us consider V ′ be the set of {v : H.Hash(1κ, (aux, v)) = H.Hash(1κ, (aux, v′))}. The
probability that the t chosen is ∈ V ′ is equal to |V ′| · 2−3κ, and the probability that the v chosen is
v′ conditioned on t chosen ∈ V ′ is then 1

|V ′| , making the total probability

|V ′| · 2−3κ · 1

|V ′|
= 2−3κ

as well (Note if t /∈ V ′, then the probability of selecting v′ is 0).

59

Claim C.4. The distributions D1 and D2 are statistically close - i.e. ∆ (D1,D2) = negl(κ).

Proof. The only difference in the two distributions is that we output bots when either V0
t or V1

t

are ∅. From Claim C.1, we know that the set Vt has enough entropy to apply the strong extractor
guarantee. From Claim C.2, we know that for at least 1− 2−κ fraction of t ∈ {0, 1}3κ,

∆
(

(Uκ, t,SExt(Uκ,Vt)), (Uκ, t, U1)
)
≤ ε(κ).

Note that if we output bot, then the statistical difference when g, t were chosen is exactly half, i.e.

∆
(

(g, t, SExt(g,Vt)), (g, t, U1)
)

=
1

2

because the extractor is always outputting either 0 or 1. Let us define the bad set as following,

BADκ =
{

(g, t) such that t ∈ {0, 1}3κ, g ∈ {0, 1}κ,∆
(

(g, t, SExt(g,Vt)), (g, t, U1)
)
>
√
ε(κ)

}
.

By an averaging argument, for at least 1− 2−κ fraction of t ∈ {0, 1}3κ it is the case that for at least
1−

√
ε(κ) fraction of g ∈ {0, 1}κ,

∆
(

(g, t, SExt(g,Vt)), (g, t, U1)
)
≤
√
ε(κ) (4)

Equation 4 implies that

Pr
g←{0,1}κ,t←{0,1}3κ

[(g, t) ∈ BADκ] ≤ 2−κ ·
√
ε(κ) (5)

Furthermore, since
√
ε(κ) < 1

2 for a negligible function ε, for every (g, t) 6∈ BADκ we have that bot
will not be output.

This implies that
∆(D1,D2) ≤ 2−κ ·

√
ε(κ)

which completes the proof of the claim.

Claim C.5. The distributions D2 and D3 are statistically close - i.e. ∆ (D2,D3) = negl(κ).

Proof. D2 and D3 differ in the way v, w are sampled. In D2, v is sampled randomly from the set Vt
and w is set to SExt(g, v)⊕ b. In D3, w is a randomly sampled bit and v is sampled randomly from
the set Vb⊕wt . We wish to show the following for all b ∈ {0, 1},

∆
(

(aux, g,H.Hash(1κ, (aux, t)),SExt(g,Vt)⊕b,Vt), (aux, g,H.Hash(1κ, (aux, t)), U1,Vb⊕U1
t)

)
= negl(κ).

Note that the choice of g, v, b deterministically fixes w = SExt(g, v)⊕ b and h = H.Hash(1κ, (aux, t))
in both distributions and independently of all other variables in both games, so it suffices to show

for t R←− {0, 1}3κ,
∆
(

(g,Vt), (g,Vb⊕U1
t)

)
= negl(κ).

First observe that the distributions

(g,Vt)
d
= (g,VSExt(g,Vt)t)

60

as we can see the probability of any fixed v′ being picked is

Pr[v = v′] = Pr[v = v′|SExt(g, v) = SExt(g, v′)] · Pr[SExt(g, v) = SExt(g, v′)]

As a direct consequence of Claim C.2 we know that with all but 2−κ probability over the choice of
t,

∆
(

(g,SExt(g,Vt)), (g, U1)
)

= negl(κ)

Since b⊕ U1 is still the uniform distribution for any b ∈ {0, 1}, we can conclude,

∆
(

(g,SExt(g,Vt)), (g, b⊕ U1)
)

= negl(κ)

. Thus,
∆
(

(g,VSExt(g,Vt)t), (g,Vb⊕U1
t)

)
= negl(κ) + 2−κ

which proves our above claim.

Claim C.6. The distributions D3 and D4 are identical.

Proof. The two distributions are exactly same. In distributionD4, we sample both v0, v1 and output
vb. In distribution D3, we only sample vb and output the same.

From the above claims, we can conclude that the construction is statistically equivocal accord-
ing to Definition 4.5.

C.2 Analysis of Amplification

Claim C.7. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is an efficient setupless equiv-
ocal commitment scheme.

Proof. Recall AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate simply run the respective
Small.AuxEquiv.Com, Small.AuxEquiv.Decom, Small.AuxEquiv.Equivocate p(κ) ∈ poly(κ) times. By
the efficiency of the underlying scheme, we can see poly(κ, |aux|) · poly(κ) ∈ poly(κ, |aux|) and
poly(2κ, |aux|) · poly(κ) ∈ poly(2κ, |aux|)

Claim C.8. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is a correct setupless equivocal
commitment scheme.

Proof. By correctness of Small.AuxEquiv, Small.AuxEquiv.Decom((aux, i),
Small.AuxEquiv.Com(1κ, (aux, i), b)) = b, so AuxEquiv.Decom returns b as well.

Claim C.9. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is a (T(·),K(·)/p(κ)) setupless
equivocal commitment scheme.

Proof. We will show that if there exists an algorithm A given non-uniform polynomial advice(κ)
running in time poly(T(κ)) such that A outputs K = K(·)/p(κ) equivocations on AuxEquiv, there
exists B has outputs K(·) equivocations on Small.AuxEquiv.

Let
(

(aux(1), c(1), d
(1)
0 , d

(1)
1), . . . ,

(aux(K), c(K), d
(K)
0 , d

(K)
1)

)
← A(1κ)

61

For each i ∈ [K]

• Parse c(i) as (c
(i)
1 , . . . , c

(i)
p(κ))

• Parse d(i)
0 as (d

(i)
0,1, . . . , d

(i)
0,p(κ))

• Parse d(i)
1 as (d

(i)
1,1, . . . , d

(i)
1,p(κ))

• Output
(

(aux(i), 1), c
(i)
1 , d

(i)
0,1, d

(i)
1,1

)
, . . . ,

(
(aux(i), p(κ)), c

(i)
p(κ), d

(i)
0,p(κ), d

(i)
1,p(κ)

)
Recall by correctness Small.AuxEquiv.Decom((aux(i), j), c

(i)
j , d

(i)
b,j) = b, so B has successfully out-

put p(κ) ·K = K(·) equivocations. Note that since aux(i) 6= aux(i′) for i 6= i′, we can see that all the
aux output by B are not equal as well.
B simply runs A and returns it’s output, so also runs in poly(T(κ)) time.

Claim C.10. (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is an equivocal setupless equiv-
ocal commitment scheme.

Proof. Consider the distributions Dj defined as follows:

• For i ∈ [j], set (ci, di)← Small.AuxEquiv.Com(1κ, (aux, i), b)

• For i ∈ [j+1, p(κ)], compute Small.AuxEquiv.Equivocate(1κ, aux)→ (c∗, d∗0, d
∗
1) and set (ci, di) =

(c∗, d∗b)

• Output aux, {ci}i∈[p(κ)], {di}i∈[p(κ)]

Notice that eachDj−1 andDj only differ on cj , dj . By the equivocal property of Small.AuxEquiv,
these distributions have negligible statistical distance. SinceD0 is exactly the output of AuxEquiv.Com
and Dp(κ) is exactly the output of AuxEquiv.Equivocate, since there are only a polynomial number
of distributions, we can conclude that these distributions have negligible statistical distance as
well.

D Constructing Hinting PRGs with Injective Extension

D.1 Security Analsyis of Construction from Section 5.2

Theorem D.1. Let LossyHint be a 2κ
δ
-secure ρ(κ)-lossy Lossy hinting function. Let F be a 2κ

δ
-

secure κδ-leakage resilient injective one way function. Then the following construction 5.2 is a
2κ

δ
-secure hinting PRG with injective extension.

We will proceed through a sequence of series of experiments from β = 0 to β = 1 in the hinting
PRG security game. Let P iA be the probability that an adversary A returns 1 on game i. We will
show that the difference in probability A returns 1 in the experiment where β = 0 and β = 1 are
negligibly close.

62

Experiment 0 This is the distribution received by adversaryA generate using the hinting PRGscheme
above when β = 0.

• n = (ρ(κ) + `)1/δ

• LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n; rSetup)

• f ← GenF (1n)

• t1, . . . t`
R←− ({0, 1}n)`

• s R←− {0, 1}n

• For i ∈ [`] set bi ← hcb(s, ti)

• r0 = b1b2 . . . b`

• rext = f(s)

• ri,si = LossyHint.Eval(pp, s, i)

• ri,si
R←− {0, 1}` ∀ i ∈ [n]

• Output n, (LossyHint.pp, f, t1, . . . t`), r0, rext, {ri,b}i∈[n],b∈{0,1}

Experiment 1

• n = (ρ(κ) + `)1/δ

• LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n; rSetup)

• f ← GenF (1n)

• t1, . . . t`
R←− ({0, 1}n)`

• s R←− {0, 1}n

• LossyHint.hint = LossyHint.Sim1(rSetup, LossyHint.pp, s)

• For i ∈ [`] set bi ← hcb(s, ti)

• r0 = b1b2 . . . b`

• rext = f(s)

• ri,si = LossyHint.Eval(pp, s, i)

• ri,si
R←− {0, 1}` ∀ i ∈ [n]

• ri,b = LossyHint.Sim2(rSetup, LossyHint.hint, LossyHint.pp, i, b)

• Output n, (LossyHint.pp, f, t1, . . . t`), r0, rext, {ri,b}i∈[n],b∈{0,1}

63

Experiment 2.j for j ∈ [`]

• n = (ρ(κ) + `)1/δ

• LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n; rSetup)

• f ← GenF (1n)

• t1, . . . t`
R←− ({0, 1}n)`

• s R←− {0, 1}n

• LossyHint.hint = LossyHint.Sim1(rSetup, LossyHint.pp, s)

• For i ∈ [`] if i ≤ j set bi
R←− {0, 1}. Else set bi ← hcb(s, ti)

• r0 = b1b2 . . . b`

• rext = f(s)

• ri,b = LossyHint.Sim2(rSetup, LossyHint.hint, LossyHint.pp, i, b)

• Output n, (LossyHint.pp, f, t1, . . . t`), r0, rext, {ri,b}i∈[n],b∈{0,1}

Experiment 3

• n = (ρ(κ) + `)1/δ

• LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n; rSetup)

• f ← GenF (1n)

• t1, . . . t`
R←− ({0, 1}n)`

• s R←− {0, 1}n

• LossyHint.hint = LossyHint.Sim1(rSetup, LossyHint.pp, s)

• For i ∈ [`] set bi
R←− {0, 1}.

• r0 = b1b2 . . . b`

• rext = f(s)

• ri,b = LossyHint.Sim2(rSetup, LossyHint.hint, LossyHint.pp, i, b)

• ri,si = LossyHint.Eval(pp, s, i)

• ri,si
R←− {0, 1}` ∀ i ∈ [n]

• Output n, (LossyHint.pp, f, t1, . . . t`), r0, rext, {ri,b}i∈[n],b∈{0,1}

64

Lemma D.1. If LossyHint is a 2κ
δ
-secure lossy hinting function, then for any poly(2κ

δ
) time algo-

rithm A, there exists a negligible function negl(·) such that for all κ ∈ N, |P0
A − P1

A| ≤ negl(κ).

Proof. LetA be an algorithm for the above experiments. Consider B, an adversary for the security
game of lossy hinting functions

B
(

LossyHint.pp,

(
s, rβext,

{
rβi,b

}
i∈[n],b∈{0,1}

))
• f ← GenF (1n)

• t`, . . . t`
R←− ({0, 1}n)`

• For i ∈ [`] set bi ← hcb(s, ti)

• r0 = b1b2 . . . b`

• Run A(n, (LossyHint.pp, f, t1, . . . t`), r0, r
β
ext,
{
rβi,b

}
i∈[n],b∈{0,1}

)

We can observe that when β = 0, the input to A is exactly Experiment 0, and similarly, is
Experiment 1 when β = 1. By the security of lossy hinting functions, the advantage of B in
distinguishing β is negligible, and so |P0

A − P1
A|must be negligible as well.

Lemma D.2. For any adversary A, |P1
A − P2.0

A | = 0.

Proof. These experiments are identical.

Lemma D.3. If LossyHint is a ρ(·)-lossy lossy hinting function and f is κδ leakage resilient one way
function (both 2κ

δ
-secure), then for any poly(2κ

δ
) adversary A, there exists a negligible function

negl(·) such that for all κ ∈ N, j ∈ [`], |P2.j−1
A − P2.j

A | ≤ negl(κ).

Proof. Note Experiments 2.j − 1 and 2.j differ only in how bit bj is computed. Note in the former,
it is computed as hcb(s; tj), while in the latter, it is a uniformly random bit. Consider the function
g[rSetup, tj+1, . . . t`](s) = Sim1(rSetup, s), pp, hcb(s, tj+1), . . . , hcb(s, t`). Since the output of g is l(κ) +
`− j ≤ ρ(κ) + ` ≤ nδ bits, by definition of leakage resilience, f ′(s) = f(s)||g[rSetup, tj+1, . . . t`](s) is
one way. Let A be an adversary for the above experiments. Consider the program C

C(f ||g[rSetup, tj+1, . . . , t`], y||(LossyHint.hint, bj+1, . . . , b`), tj , b)

• n = (ρ(κ) + `)1/δ

• LossyHint.pp← LossyHint.Setup(1κ, 1`, 1n; rSetup)

• t1, . . . tj−1
R←− ({0, 1}n)`

• For i ∈ [j − 1], set bi
R←− {0, 1}

• r0 = b1, . . . , bj−1, b, bj+1, . . . , b`

• rext = y

65

• ri,b = LossyHint.Sim2(rSetup, LossyHint.hint, LossyHint.pp, i, b)

• Output A(n, (LossyHint.pp, f, t1, . . . t`), r0, rext, {ri,b}i∈[n],b∈{0,1})

Observe that when b = hcb(s, tj), the distribution given to A is exactly that of Game 2.j − 1,

and similarly, is Game 2.j when b R←− {0, 1}. By the security of hardcore bits on the function f ′(s),
the advantage of C should be negligible in distinguishing these two cases, and so must be the
difference |P2.j−1

A − P2.j
A |.

Lemma D.4. If LossyHint is a 2κ
δ
-secure lossy hinting function, then for any poly(2κ

δ
) adversary

A, there exists a negligible function negl(·) such that for all κ ∈ N, |P2.`
A − P3

A| ≤ negl(κ).

Proof. This proof proceeds analogously to the Lemma D.1 Let A be an adversary for the above
experiments. Consider B, an adversary for the security game of lossy hinting functions

B
(

LossyHint.pp,

(
s, rβext,

{
rβi,b

}
i∈[n],b∈{0,1}

))
• f ← GenF (1n)

• t`, . . . t`
R←− ({0, 1}n)`

• For i ∈ [`] set bi
R←− {0, 1}

• r0 = b1b2 . . . b`

• Run A(n, (LossyHint.pp, f, t1, . . . t`), r0, r
β
ext,
{
rβi,b

}
i∈[n],b∈{0,1}

)

We can observe that when β = 1, the input to A is exactly Experiment 2.`, and similarly,
is Experiment 3 when β = 0. By the security of lossy hinting functions, the advantage of B in
distinguishing β is negligible, and so must |P2

A − P3
A|.

Since Experiment 3 is exactly the distribution of hintingPRG when β = 1, we can conclude
that for any poly(2κ

δ
) time adversary |P0

A − P3
A| ≤ negl(κ), which is it’s advantage in the hinting

PRG security game.

D.2 Lossy Hinting Functions from Decisional Diffie Hellman

We present a construction of lossy hinting functions from Decisional Diffie Hellman (DDH). The
construction follows along the same lines of the construction of hinting PRGs from DDH as per
[KW19]. But in the security proof, except going through the full sequence of experiments, we
simply need to execute the DDH indistinguishability argument utilized in Experiment 0 to 1 in
[KW19]. We omit the later statistical and computational arguments. For simplicity, we first present
construction relying on the DDH assumption, but a similar construction of lossy hinting functions
relying only on Computational Diffie Hellman (CDH) can be found in the following section.

LossyHint.Setup(1κ, 1`, 1n; rSetup)

• Generate G as the description of a prime order group of order p, where p is a κ bit prime.

66

ExtractBits(1κ, 1`, g1, . . . , gm)

• For each i ∈ m, interpret each gi as a natural number in [p]a. We then extract ` bits from
g1, . . . , gm, where p = |G|.

• Let c =
∑m
i=1(gi − 1) · pi−1.

• Output binary representation of c mod 2`.

aWe assume there is an efficiently computable bijective mapping from G → [p]

Figure 7: Routine ExtractBits

• For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G

• Let m =
⌈
`+κ
log p

⌉
• For i ∈ [n], j ∈ [m], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
• For i ∈ [n], j ∈ [m], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

• Output pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

LossyHint.Eval
(

pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}, s ∈ {0, 1}n, i ∈ [n]
)

• For j ∈ [m], set zj =
∏n
k=1 Hi,j,si [sk, k]

• Output ExtractBits(1κ, 1`, z1, . . . , zm)

LossyHint.Sim1(pp, rSetup, s)

• Compute h =
∏n
i=1 gi,si

• Output hint = h

LossyHint.Sim2(pp, rSetup, hint = h, i ∈ [n], b ∈ {0, 1})

• For j ∈ [m], set zj = hρi,j,b

• Output ExtractBits(1κ, 1`, z1, . . . , zm)

Analysis We will proceed through a sequence of series of experiments from β = 0 to β = 1 in the
initial lossy hinting function security game. Let P iA be the probability that an adversary A returns
1 on experiment i. We will show that the difference in probability A returns 1 in the experiment
where β = 0 and β = 1 are negligibly close.

67

Experiment 0 This is the output given to the adversary in the lossy hinting function security
game when β = 0.

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G

– Let m =
⌈
`+κ
log p

⌉
– For i ∈ [n], j ∈ [m], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [m], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

– pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [m], set zj =
∏n
k=1 Hi,j,si [sk, k]

– Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Generate ri,si for i ∈ [n]

– Set ri, si
R←− {0, 1}`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Experiment 1k for k ∈ [n]

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G

– Let m =
⌈
`+κ
log p

⌉
– For i ∈ [n], j ∈ [m], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [m], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

– pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate s R←− {0, 1}n

68

• Generate ri,si for i ∈ [n]

– For j ∈ [m], set zj =
∏n
k=1 g

ρi,j,si
k,sk

– Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Generate ri,si for i ∈ [n]

– If i ≤ k
For j ∈ [m],

∗ Set zj
R←− G

Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Experiment 2k

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G

– Let m =
⌈
`+κ
log p

⌉
– For i ∈ [n], j ∈ [m], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [m], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

– pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [m], set zj =
∏n
k=1 g

ρi,j,si
k,sk

– Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Generate ri,si for i ∈ [n]
For j ∈ [m],

– If i ·m+ j −m ≤ k
∗ Set zj =

∏n
k=1 g

ρi,j,si
k,sk

– Else

∗ Set zj
R←− G

– Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

69

Experiment 3 In this experiment, all the ri,b values are computed using LossyHint.hint rather
than multiplying the underlying gi,j,b group elements. This is exactly the output computed by
LossyHint.Sim1, LossyHint.Sim2.

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G

– Let m =
⌈
`+κ
log p

⌉
– For i ∈ [n], j ∈ [m], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [m], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

– pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate hint = h =
∏n
k=1 gk,sk

• Generate ri,b for i ∈ [n], b ∈ {0, 1}

– For j ∈ [m], set zj = hρi,j,b

– Set ri,b ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Claim D.1. Suppose g1, . . . gm are uniformly random group elements. Then ∀m ≥ `+κ
log p the output

of ExtractBits(1κ, 1`, g1, . . . , gm) is statistically close to a uniformly random bitstring on ` bits.

Proof. First, we observe that the c generated by ExtractBits is a uniformly random element in
[0, pm−1], as we can take the p-ary representation of c, and find the corresponding group elements
which map to the appropriate digits. Since the mapping is surjective and |G|m = pm, this mapping
is bijective and hence c is uniform. Thus, for any 0 ≤ c′ < 2`, we can bound the probability that

c mod 2` = c′ with
[
pm

2`
−1

pm ,
pm

2`
+1

pm

]
. Thus, we can bound the total statistical difference from the

uniform distribution over all 2` outputs with

2` · 2

pm
≤ 2 · 2`

p
`+κ
log p

=
2

2κ

, which is negligible.

Note since LossyHint.Setup calls ExtractBits with m =
⌈
`+κ
log p

⌉
, the above claim holds.

70

Lemma D.5. For any adversary A |P0
A − P10

A | = 0.

Proof. In Experiment 1k for k ∈ [n], we deviate from Experiment 0 for values i ∈ [n] where i ≤ k.
Since k = 0, the experiments are identical.

Lemma D.6. For any adversary A, k ∈ [n], there exists a negligible function negl(·) such that for
all κ ∈ N, |P1k−1

A − P1k

A | ≤ negl(κ).

Lemma D.7. We observe Experiment 1k−1 and Experiment 1k differ only in how rk,sk is generated.

In Experiment 1k−1, it is generated as rk,sk
R←− {0, 1}`, while in Experiment 1k, it is generated

as ExtractBits(1κ, 1`, z1, . . . , zm) for uniformly random zi. From Claim D.1, these are statistically
close.

Lemma D.8. For any adversary A |P1n

A − P20

A | = 0.

Proof. In Experiment 2k, we deviate from Experiment 1n for values i ∈ [n] and j ∈ [m], where
i ·m+ j −m ≤ k. Since k = 0 and i, j ≥ 1, these experiments are identical.

Lemma D.9. Assuming poly(2log |G|δ)-hardness of DDH, for any poly(2κ
δ
) adversaryA, for any k ∈

[n ·m], there exists a negligible function negl(·) such that for all κ ∈ N, |adv2k−1

A − adv2k

A | ≤ negl(κ).

Proof. Observe these experiments only differ on ri,j,si such that i ·m+ j−m = k. Since j ∈ [m], we
can see there exists a unique i∗, j∗ for this. Suppose A can distinguish between Experiments 2k−1

and 2k with advantage ε. Then consider the following algorithm Bwhich runs in poly(A) time and
breaks DDH with advantage at least ε− negl(κ).

B
(
g, g1 = ga, g2, h

′)
• Generate s R←− {0, 1}`

• For (i, b) ∈ [n]× {0, 1}\i∗, s∗, set ai,b to be a uniformly random group elements of Zp

• For (i, b) ∈ [n]× {0, 1}\i∗, s∗, set gi,b = gai,b to be a uniformly random group element of G

• Let m = `+κ
log p

• For (i, j, b) ∈ [n]× [m]× [b]\{(i∗, j∗, si∗)}, set ρi,j,b to be a uniformly random element of Zp

• Set gi∗,si∗ = g1/
∏
k 6=i∗ gk,sk

• For (i, j, b) ∈ [n]× [m]× [b]\{(i∗, j∗, si∗)},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ai,j,b
k,β otherwise

∀β ∈ {0, 1}, k ∈ n, Hi∗,j∗,si∗ [β, k] =

{
⊥ if (k, β) = (i∗, si∗)

g
ak,β
2 otherwise

• pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

71

• Generate ri,si ← LossyHint.Eval(pp, s, i)

• Generate ri,si for i ∈ [n]

– For j ∈ [m]:

– If i ·m+ j −m ≤ k
∗ Set zj =

∏n
k=1 g

ρi,j,si
k,sk

– Else If i ·m+ j −m = k

∗ Set zj = h′

– Else

∗ Set zj
R←− G

– Set ri,si ← ExtractBits(1κ, 1`, z1, . . . , zm)

• Run A(pp, s, {ri,b}i∈[n],b∈{0,1})

Observe that the above reduction computes public parameters LossyHint.pp consistent with
setting ρi∗,j∗,si∗ = a and gi∗,si∗ = g1/

∏
k 6=i∗ gk,sk . Since g1 is a uniformly random group element

independent of g, gi∗,si∗ is also a uniformly random element of G independent of other gi,b. Now
note that

∏n
k=1 g

ρi∗,j∗,si∗
k,sk

= ga2 , so zj∗ =
∏n
k=1 g

ρi∗,j∗,si∗
k,sk

when g, g1, g2, h
′ is a DDH triple, which is

exactly the output of Experiment 2k. Conversely, when h′ is uniformly random, so is zj∗ , which is
the output of Experiment 2k−1.

Lemma D.10. For any adversary A |P2n·m
A − P3

A| = 0.

Proof. We can observe that since h =
∏n
k=1 gk,sk ,

hρi,j,b =

(
n∏
k=1

gk,sk

)ρi,j,b
=

n∏
k=1

g
ρi,j,b
k,sk

so the z values computed are equal.

D.3 Lossy Hinting Function from Computational Diffie Hellman

LossyHint.Setup(1κ, 1`, 1n; rSetup)

• Generate G as the description of a prime order group of order p, where p is a κ bit prime.

• For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G
• For i ∈ [n], j ∈ [`], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
• For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

Also choose each ti,j,b as independent randomness for hardcore bit extraction.

72

• Output pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[`],b∈{0,1}

LossyHint.Eval
(

pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[`],b∈{0,1}, s ∈ {0, 1}n, i ∈ [n]
)

• For j ∈ [`], set zj = hcb (
∏n
k=1 Hi,j,si [sk, k], ti,j,si)

• Output z1z2 . . . z`

LossyHint.Sim1(pp, rSetup, s)

• Compute h =
∏n
i=1 gi,si

• Output hint = h

LossyHint.Sim2(pp, rSetup, hint = h, i ∈ [n], b ∈ {0, 1})

• For j ∈ [`], set zj = hcb (hρi,j,b , ti,j,b)

• Output z1z2 . . . z`

Analysis We will proceed through a sequence of series of experiments from β = 0 to β = 1 in the
initial lossy hinting function security game. Let P iA be the probability that an adversary A returns
1 on experiment i. We will show that the difference in probability A returns 1 in the experiment
where β = 0 and β = 1 are negligibly close.

Experiment 0 This is the output given to the adversary in the lossy hinting function security
game when β = 0.

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.
– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G
– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

Also choose each ti,j,b as independent randomness for hardcore bit extraction.
– pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [`], set zj = hcb(
∏n
k=1 Hi,j,si [sk, k], ti,j,si)

– Set ri,si = z1z2 . . . z`

• Generate ri,si for i ∈ [n]

– Set ri,si
R←− {0, 1}`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

73

Experiment 1k for k ∈ [` · n]

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G
– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.
– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

Also choose each ti,j,b as independent randomness for hardcore bit extraction.

– pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [`], set zj = hcb(
∏n
k=1 Hi,j,si [sk, k], ti,j,si)

– Set ri,si = z1z2 . . . z`

• Generate ri,si for i ∈ [n]
For j ∈ [`],

– If i · `+ j − ` ≤ k

∗ Set zj = hcb
(∏n

k=1 g
ρi,j,si
k,sk

, ti,j,si

)
– Else

∗ Set zj
R←− {0, 1}

– Set ri,si = z1z2 . . . z`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Experiment 2 In this experiment, all the ri,b values are computed using LossyHint.hint rather
than multiplying the underlying gi,j,b group elements. This is exactly the output computed by
LossyHint.Sim1, LossyHint.Sim2.

• Run LossyHint.Setup

– Generate G as the description of a prime order group of order p, where p is a κ bit prime.

– For i ∈ [n], b ∈ {0, 1}, set gi,b to be a uniformly random group element of G
– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, set ρi,j,b to be a uniformly random element of Zp.

74

– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ρi,j,b
k,β otherwise

Also choose each ti,j,b as independent randomness for hardcore bit extraction.

– pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate hint = h =
∏n
k=1 gk,sk

• Generate ri,b for i ∈ [n], b ∈ {0, 1}

– For j ∈ [`] Set zj = hcb (hρi,j,b , ti,j,si)

– Set ri,b = z1z2 . . . z`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Lemma D.11. For any adversary A |P0
A − P10

A | = 0.

Proof. In Experiment 1k, we deviate from Experiment 0 for values i ∈ [n] and j ∈ [m], where
i ·m+ j −m ≤ k. Since k = 0 and i, j ≥ 1, these experiments are identical.

Lemma D.12. For any adversary A, k ∈ [n], there exists a negligible function negl(·) such that for
all κ ∈ N, |P1k−1

A − P1k

A | ≤ negl(κ).

Lemma D.13. We observe Experiment 1k−1 and Experiment 1k differ only in how rk,sk is gener-

ated. In Experiment 1k−1, it is generated as rk,sk
R←− {0, 1}`, while in Experiment 1k, it is generated

as ExtractBits(1κ, 1`, z1, . . . , zm) for uniformly random zi. From Claim D.1, these are statistically
close.

Lemma D.14. For any adversary A |P1n

A − P20

A | = 0.

Proof. In Experiment 2k, we deviate from Experiment 1n for values i ∈ [n] and j ∈ [m], where
i ·m+ j −m ≤ k. Since k = 0 and i, j ≥ 1, these experiments are identical.

Lemma D.15. Assuming poly(2log |G|δ)-hardness of CDH, for any poly(2κ
δ
) adversary A, for any

k ∈ [n · m], there exists a negligible function negl(·) such that for all κ ∈ N, |adv1k−1

A − adv1k

A | ≤
negl(κ).

Proof. Observe these experiments only differ on ri,j,si such that i ·m+ j−m = k. Since j ∈ [m], we
can see there exists a unique i∗, j∗ for this. Suppose A can distinguish between Experiments 1k−1

and 1k with advantage ε. Then consider the following algorithm Bwhich runs in poly(A) time and
distinguish the following distributions

D1 = (g, g1 = ga, g2, hcb(ga2 ; t), t) : g, g2
R←− G; a

R←− Zp, t
R←− {0, 1}`hcb

D2 = (g, g1 = ga, g2, b
′, t) : g, g2

R←− G; a
R←− Zp, b′

R←− {0, 1}; t R←− {0, 1}`hcb

75

, which, by hardness of CDH and definition of hardcore bits should only occur with negligible
advantage.

B
(
g, g1 = ga, g2, b

′, t
)

• Generate s R←− {0, 1}`

• For (i, b) ∈ [n]× {0, 1}\i∗, s∗, set ai,b to be a uniformly random group elements of Zp

• For (i, b) ∈ [n]× {0, 1}\i∗, s∗, set gi,b = gai,b to be a uniformly random group element of G

• For (i, j, b) ∈ [n]× [`]× [b]\{(i∗, j∗, si∗)}, set ρi,j,b to be a uniformly random element of Zp

• Set gi∗,si∗ = g1/
∏
k 6=i∗ gk,sk

• For (i, j, b) ∈ [n]× [`]× [b]\{(i∗, j∗, si∗)},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

g
ai,j,b
k,β otherwise

Set ti,j,b
R←− {0, 1}`hcb .

∀β ∈ {0, 1}, k ∈ n, Hi∗,j∗,si∗ [β, k] =

{
⊥ if (k, β) = (i∗, si∗)

g
ak,β
2 otherwise

Set ti∗,j∗,si∗ = t

• pp = G, {Hi,j,b, ti,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate ri,si ← LossyHint.Eval(pp, s, i)

• Generate ri,si for i ∈ [n]

– For j ∈ [`]:

– If i · `+ j − ` ≤ k
∗ Set zj = hcb(

∏n
k=1 g

ρi,j,si
k,sk

, ti,j,si)

– Else If i · `+ j − ` = k

∗ Set zj = b′

– Else

∗ Set zj
R←− {0, 1}

– Set ri,si = z1z2 . . . z`

• Run A(pp, s, {ri,b}i∈[n],b∈{0,1})

76

Observe that the above reduction computes public parameters LossyHint.pp consistent with
setting ρi∗,j∗,si∗ = a and gi∗,si∗ = g1/

∏
k 6=i∗ gk,sk . Since g1 is a uniformly random group element

independent of g, gi∗,si∗ is also a uniformly random element of G independent of other gi,b. Now
note that

∏n
k=1 g

ρi∗,j∗,si∗
k,sk

= ga2 , so zj∗ = hcb(
∏n
k=1 g

ρi∗,j∗,si∗
k,sk

, t) when g, g1, g2, b
′ is drawn from D1,

which is exactly the output of Experiment 2k. Conversely, when b′ is uniformly random from D2,
so is zj∗ , which is the output of Experiment 2k−1.

Lemma D.16. For any adversary A |P1n·m
A − P2

A| = 0.

Proof. We can observe that since h =
∏n
k=1 gk,sk ,

hρi,j,b =

(
n∏
k=1

gk,sk

)ρi,j,b
=

n∏
k=1

g
ρi,j,b
k,sk

so the z values computed are equal.

D.4 Lossy Hinting Functions from Learning with Errors

LossyHint.Setup(1κ, 1`, 1n; rSetup)

• Let LWEd,p,χ be the parameters for our LWE assumption where dimension is d, modulus
is p and noise distribution is χ

• For i ∈ [n], b ∈ {0, 1}, generate ai,b
R←− Zdp

• For i ∈ [n], j ∈ [`], b ∈ {0, 1}, generate vi,j,b
R←− Zdp

• For i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, generate ek,βi,j,b
R←− χ

• For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

• Output {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

LossyHint.Eval
(
pp = G, {Hi,j,b}i∈[n],j∈[`],b∈{0,1}, s ∈ {0, 1}n, i ∈ [n]

)
• For j ∈ [`], set zj = msb(

∑n
k=1 Hi,j,si [sk, k])

• Output z1, z2, . . . z`

LossyHint.Sim1(rSetup, s)

• Compute a =
∑n

i=1 ai,si

• Output hint = a

LossyHint.Sim2(rSetup, hint = a, i ∈ [n], b ∈ {0, 1})

• For j ∈ [m], set zj = msb(aT · vi,j,b + ei,j,b)

• Output z1, z2, . . . z`

77

Analysis We will proceed through a sequence of experiments from β = 0 to β = 1 in the initial
lossy hinting function security game, and show the advantage of any adversary in distinguishing
said games must be negligible.

Experiment 0 This is the output given to the adversary in the lossy hinting function security
game when β = 0.

• Run LossyHint.Setup

– Let LWEd,p,χ be the parameters for our LWE assumption where dimension is d, modulus
is p and noise distribution is χ

– For i ∈ [n], b ∈ {0, 1}, generate ai,b
R←− Zdp

– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, generate vi,j,b
R←− Zdp

– For i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, generate ek,βi,j,b
R←− χ

– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

– pp = {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [`], set zj = msb(
∑n

k=1 Hi,j,si [sk, k])

– Set ri,si ← z1, z2, . . . z`

• Generate ri,si for i ∈ [n]

– Set ri, si
R←− {0, 1}`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Experiment 1k for k ∈ [n ·m]

• Run LossyHint.Setup

– Let LWEd,p,χ be the parameters for our LWE assumption where dimension is d, modulus
is p and noise distribution is χ

– For i ∈ [n], b ∈ {0, 1}, generate ai,b
R←− Zdp

– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, generate vi,j,b
R←− Zdp

– For i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, generate ek,βi,j,b
R←− χ

78

– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

– pp = {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

• Generate ri,si for i ∈ [n]

– For j ∈ [`], set zj = msb(
∑n

k=1 Hi,j,si [sk, k])

– Set ri,si ← z1, z2, . . . z`

• Generate ri,si for i ∈ [n]

– For j ∈ [`]:

– If i · `+ j − ` ≤ k
∗ Set zj = msb(

∑n
k=1 a

T
k,sk
· vi,j,si + ek,ski,j,si

)

– Else

∗ Set zj
R←− {0, 1}

– Set ri,si ← z1, z2, . . . , z`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Experiment 2 In this experiment, all the ri,b values are computed using hint rather than multiply-
ing the underlying gi,j,b group elements. This is exactly the output computed by LossyHint.Sim1, LossyHint.Sim2.

• Run LossyHint.Setup

– Let LWEd,p,χ be the parameters for our LWE assumption where dimension is d, modulus
is p and noise distribution is χ

– For i ∈ [n], b ∈ {0, 1}, generate ai,b
R←− Zdp

– For i ∈ [n], j ∈ [`], b ∈ {0, 1}, generate vi,j,b
R←− Zdp

– For i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, generate ek,βi,j,b
R←− χ

– For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

– pp = {Hi,j,b}i∈[n],j∈[`],b∈{0,1}

• Generate s R←− {0, 1}n

79

• Generate hint = a =
∑n

i=1 ai,si

• Generate ri,si for i ∈ [n], b ∈ {0, 1}

– For j ∈ [`], set zj = msb(aT · vi,j,b + ei,j,b)

– Set ri,si ← z1, z2, . . . , z`

• Output pp, s, {ri,b}i∈[n],b∈{0,1}

Lemma D.17. For any adversary A |P0
A − P10

A | = 0.

Proof. In Experiment 1k, we deviate from Experiment 0 for values i ∈ [n] and j ∈ [`], where
i · `+ j − ` ≤ k. Since k = 0 and i, j ≥ 1, these experiments are identical.

Lemma D.18. Assuming LWEd,p,χ is a secure assumption, for any poly(2κ
δ
) adversary A, for any

k ∈ [n ·m], there exists a negligible function negl(·) such that for all κ ∈ N, |P1k−1

A −P1k

A | ≤ negl(κ).

Proof. Observe these experiments only differ on ri,j,si such that i ·`+j−` = k. Since j ∈ [`], we can
see there exists a unique i∗, j∗ for this. Suppose there exists some A which distinguish between
Experiments 1k−1 and 1k with advantage ε. Then consider the following algorithm B which runs
in poly(A) time and breaks LWE with advantage at least ε− negl(κ).

B (1κ)

• Generate s R←− {0, 1}`

• Query the challenger for 2n − 1 LWE queries and a single challenge {ak,β, hk,β}k∈[n],β∈{0,1}
(where ai∗,si∗ , hi∗,si∗ is the challenge)

• For i ∈ [n], j ∈ [`], b ∈ {0, 1}, generate vi,j,b
R←− Zdp

• For i, k ∈ [n], j ∈ [`], b, β ∈ {0, 1}, generate ek,βi,j,b
R←− χ

• For i ∈ [n], j ∈ [`], b ∈ {0, 1},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

• For (i, j, b) ∈ [n]× [`]× {0, 1}\{(i∗, j∗, si∗)}, generate vi,j,b
R←− Zdp

• For (i, j, b) ∈ [n]× [`]× {0, 1}\{(i∗, j∗, si∗)}, generate ek,βi,j,b
R←− χ for all k, β ∈ [n]× {0, 1}

• Set gi∗,si∗ = g1/
∏
k 6=i∗ gk,sk

• For (i, j, b) ∈ [n]× [`]× [b]\{(i∗, j∗, si∗)},

∀β ∈ {0, 1}, k ∈ n, Hi,j,b[β, k] =

{
⊥ if (k, β) = (i, b)

aT
k,β · vi,j,b + ek,βi,j,b otherwise

∀β ∈ {0, 1}, k ∈ n, Hi∗,j∗,si∗ [β, k] =

{
⊥ if (k, β) = (i∗, si∗)

hk,β otherwise

80

• pp = G, {Hi,j,b}i∈[n],j∈[m],b∈{0,1}

• Generate ri,si ← LossyHint.Eval(pp, s, i)

• Generate ri,si for i ∈ [n]

– For j ∈ [`]:

– If i · `+ j − ` ≤ k
∗ Set zj = msb(

∑n
k=1 a

T
k,sk
· vi,j,si + ek,ski,j,si

)

– Else If i, j = i∗, j∗

∗ Set zj = msb(
∑

k 6=iHi,j,si [sk, k] + hi,si)

– Else

∗ Set zj
R←− {0, 1}

– Set ri,si ← z1, z2, . . . , z`

• Run A(pp, s, {ri,b}i∈[n],b∈{0,1})

Note that when (ai∗,si∗ , hi∗,si∗) is a true LWE sample, then
∑

k 6=iHi∗,j∗,si∗ [sk, k] + hi∗,si∗ =∑
k 6=iHi∗,j∗,si∗ [sk, k] + aT

k,sk
· vi∗,j∗,si∗ + e, so zj∗ =

∑n
k=1 a

T
k,sk
· vi∗,j∗,si∗ + ek,ski∗,j∗,si∗

, which is exactly
the output of Experiment 1k. Conversely, when hi∗,si∗ is uniformly random, then so is zj∗ , which
is the output of Experiment 1k−1.

Lemma D.19. For any adversary A |adv1n·m
A − adv2

A| = 0.

Proof. We can observe that since h =
∏n
k=1 gk,sk ,

hρi,j,b =

(
n∏
k=1

gk,sk

)ρi,j,b
=

n∏
k=1

g
ρi,j,b
k,sk

so the z values computed are equal.

D.5 Succinct Hinting PRG

We now show that the transformation discussed in Subsection 5.2.1 is in fact a succinct hinting
PRG with injective extension.

Lemma D.20. S.HPRG is a 2κ
δ
-secure hinting PRG

Proof. Consider the following sequence of experiments

81

Experiment 0 This is the distribution received by adversary A generate using S.HPRG scheme
above when β = 0.

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r′0 = HPRG.Eval(pp, s, i)

• r0 = PRG(r′0, 1
`)

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– ri,si = PRG(r′i,si , 1
`)

– ri,si
R←− {0, 1}`

• Output n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

Experiment 1

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r′0 = HPRG.Eval(pp, s, i)

• r0 = PRG(r′0, 1
`)

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– r′i,si
R←− {0, 1}κ

δ
ε

– ri,b = PRG(r′i,b, 1
`) ∀ b ∈ {0, 1}

• Output n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

82

Experiment 2

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r′0
R←− {0, 1}κ

δ
ε

• r0 = PRG(r′0, 1
`)

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– r′i,si
R←− {0, 1}κ

δ
ε

– ri,b = PRG(r′i,b, 1
`) ∀ b ∈ {0, 1}

• Output n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

Experiment 3

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r0
R←− {0, 1}`

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– r′i,si
R←− {0, 1}κ

δ
ε

– ri,b = PRG(r′i,b, 1
`) ∀ b ∈ {0, 1}

• Output n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

Experiment 4 This is the distribution received by adversary A generate using S.HPRG scheme
above when β = 1.

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r0
R←− {0, 1}`

83

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– ri,si = PRG(r′i,si , 1
`)

– ri,si
R←− {0, 1}`

• Output n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

Claim D.2. Experiments 0 and 1 are computationally indistinguishable to all time poly(2κδ) algo-
rithms.

Proof. To see this, consider a sequence of n sub-experiments 0.j. In sub-experiment 0.j, we com-

pute ri,si as per experiment 1 for all i ≤ j - i.e. as PRG(r′i,si , 1
`) : ri,si

R←− {0, 1}κ
δ
ε and compute it

as experiment 0 for all i > j - i.e. as ri,si
R←− {0, 1}`. Suppose we had a distinguisher D between

sub-experiments 0.j − 1 and 0.j. Then consider the following adversary A against the security of
PRG

Reduction A(1κ
δ
ε) :

• Receive PRG challenge r ∈ {0, 1}`

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r′0 = HPRG.Eval(pp, s, i)

• r0 = PRG(r′0, 1
`)

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– ri,si = PRG(r′i,si , 1
`)

∗ If i < j, r′i,si
R←− {0, 1}κ

δ
ε ; ri,si = PRG(r′i,si , 1

`)

∗ If i = j, ri,si = r

∗ If i > j, ri,si
R←− {0, 1}`

• Run D
(
n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

)
and forward output.

Observe that when r is a PRG output, this is exactly experiment 0.j, and when r is truly
random, this is exactly experiment 0.j − 1. Since there are only a polynomial number of sub-
experiments, we can conclude that sub-experiments 0.0 and 0.n are indistinguishable as well,
which correspond exactly to experiments 0 and 1. Note that since A is run on security parameter
κ′ = κ

δ
ε , by 2κ

′ε
= 2κ

δ
subexponential security of PRG, D and A can run in poly(2κ

δ
) time.

84

Claim D.3. Experiments 1 and 2 are computationally indistinguishable to all time poly(2κδ) algo-
rithms.

Proof. Here, we can rely on the security of the underlying hinting PRG HPRG. Let D be a distin-
guisher between Experiments 1 and 2. Then consider the following distinguisher A against the
HPRG security

Reduction A
(

pp, r′β0 , r
′
ext,
{
r′i,b

}
i∈[n],b∈{0,1}

)
:

• r0 = PRG(r′β0 , 1
`)

• rext = r′ext

• ∀i ∈ [n]

– ri,b = PRG(r′i,b, 1
`) ∀ b ∈ {0, 1}

• Run D
(
n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

)
and forward output.

Observe that when β = 0, r′β0 comes from HPRG.Eval making the distribution received by D
identical to Experiment 1, while when β = 1, it is truly random string, making the distribution
received by D to be experiment 2.

Claim D.4. Experiments 2 and 3 are computationally indistinguishable to all time poly(2κδ) algo-
rithms.

Proof. Let D be a distinguisher between Experiments 2 and 3. Then consider the following distin-
guisher A against the PRG security

Reduction A(1κ
δ
ε) :

• Receive PRG challenge r ∈ {0, 1}`

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• Set r0 = r

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– r′i,si
R←− {0, 1}κ

δ
ε

– ri,b = PRG(r′i,b, 1
`) ∀ b ∈ {0, 1}

• Run D
(
n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

)
and forward output.

85

Observe that when r is a PRG output, this is exactly experiment 2, and when r is truly random,
this is exactly experiment 3. Similar to the distinguisher between experiments 0 and 1, since PRG

is run on a seed of size κ
δ
ε , this is secure against poly(2κ

δ
) time adversaries.

Claim D.5. Experiments 3 and 4 are computationally indistinguishable to all time poly(2κδ) algo-
rithms.

Proof. Much like the argument from experiments 0 to 1, consider a sequence of n sub-experiments
3.j. In sub-experiment 3.j, we compute ri,si as per experiment 3 for all i > j - i.e. as PRG(r′i,si , 1

`) :

ri,si
R←− {0, 1}κ

δ
ε and compute it as experiment 4 for all i ≤ j - i.e. as ri,si

R←− {0, 1}`. Suppose
we had a distinguisher D between sub-experiments 3.j − 1 and 3.j. Then consider the following
adversary A against the security of PRG

Reduction A(1κ
δ
ε) :

• Receive PRG challenge r ∈ {0, 1}`

• (pp, n) = HPRG.Setup(1κ, 1κ
δ
ε)

• s R←− {0, 1}n

• r0
R←− {0, 1}`

• rext = HPRG.ExtEval(pp, s)

• ∀i ∈ [n]

– r′i,si = HPRG.Eval(pp, s, i)

– ri,si = PRG(r′i,si , 1
`)

∗ If i < j, ri,si
R←− {0, 1}`

∗ If i = j, ri,si = r

∗ If i > j, r′i,si
R←− {0, 1}κ

δ
ε ; ri,si = PRG(r′i,si , 1

`)

• Run D
(
n, ((pp, `), n)), r0, rext, {ri,b}i∈[n],b∈{0,1}

)
and forward output.

Observe that when r is truly random, this is exactly experiment 3.j, and when r is a PRG
output, this is exactly experiment 3.j − 1. Since there are only a polynomial number of sub-
experiments, we can conclude that sub-experiments 3.0 and 3.n are indistinguishable as well,
which correspond exactly to experiments 3 and 4 respectively. Note that sinceA is run on security
parameter κ′ = κ

δ
ε , by 2κ

′ε
= 2κ

δ
subexponential security of PRG, D and A can run in poly(2κ

δ
)

time.

Lemma D.21. S.HPRG is succinct

86

Proof. Observe the injective extension and seed length of of S.HPRG are simply that of HPRG.
Since HPRG is invoked on parameters independent of `, these lengths must be independent of `
as well. The public parameters are likewise that of HPRG, with ` in binary. Since ` is polynomially
bounded in κ, this can be written in κ bits.

E Removing the Same Tag Restriction

We discuss how to remove the “same-tag” restriction from a commitment scheme. We transform
a non-uniform sub-exponentially CCA secure for N ′ = 2N tags that only allows the adversary
to query on one tag Definition 3.6 to a CCA secure scheme on N tags where the adversary does
not have this restriction. We will perform the transformation using non uniform subexponentially
secure primitives AuxEquiv (Section 4), extended hinting PRG (Section 5). The transformation
runs polynomial in N and the runtime of the primitives involved, thus N should always stay
polynomial in the security parameter. Looking ahead, when we combine this transformation with
the amplification transformation in Section 7, we want to remove the restriction first before ending
up with a scheme exponential in the number of tags.

The techniques in this section overlap substantially with Section 6 and we include the formal
details for completeness. The main difference in the construction is that we commit to a tag tag ∈
[N] by including a commitment where x ∈ [N] \ {tag} to all tags (x, 0) and (x, 1). The idea is that
we can answer all the queries made by the adversary by opening under the challenge tag tag∗

(since the adversary is not allowed to query on tag∗, all other queries will have commitments to
tag∗).

Let the hinting PRG scheme (Setup,Eval,ExtEval,CheckParams) be a succinct T = 2κ
γ

secure
for some constant γ ∈ (0, 1). Let AuxEquiv be T = 2κ

δ
-binding secure and statistically hiding

where δ ∈ (0, 1). and Let (Small.Com,Small.Val,Small.Recover) be a 2κ
c
-subexponentially secure,

weak binding, 2κ
v
-efficient CCA commitment scheme for N ′(κ) = N ′ = 4N tags where c < 1

and v ≥ 1 for message length u(κ)12. We will assume tags take identities of the form (i, β,Γ) ∈
[N]× {0, 1} × {0, 1} and that the Small.Com algorithm take in random coins of length `(κ).

Let m be the message input to the commitment algoritm and length be denoted by |m|. Let
n′ = n′(κ) be the length of the seed plus public parameters plus injective extension of the hint-
ing PRGscheme when invoked on security parameter κ

v
δγ . Since the scheme is succinct, n′ is

a function of only κ′′ (and hence κ) and not the block length, which we will specify later. By
Lemma 4.2, we will set AuxEquiv to be (2κ

δ
, |advice|2·n′)-binding secure, and let |y| refers to the length

of the decommitment strings of said scheme. Finally, we run Small.Com on messages of size |y|,
and let ` be the size of randomness used by Small.Com on said input size. We set the block size
of our hinting PRGscheme to be the maximum of |m|, N · `. For ease of notation we assume that
HPRG.Eval(pp, s, 0) ∈ {0, 1}|m| and ∀i ∈ [n], HPRG.Eval(pp, s, i) ∈ {0, 1}`·N , i.e. we ignore any extra
bits output by the HPRG.Eval algorithm.

Our transformation will produce three algorithms, (CCA.Com,CCA.Val,CCA.Recover) which
we prove non-uniform 2κ

c
-subexponentially secure and 2κ

v′
-efficient where v′ = v·ṽ

δ·γ . The con-

struction will call AuxEquiv on security parameter κ′ = κ
v
δ , HPRG on security parameter κ′′ = κ

v
δ·γ

12Recall from Definition 3.2 that a 2κ
v

-efficient scheme with v ≥ 1 implies that the runtime of Small.Val is polynomial
in 2κ

v

.

87

and Same on security parameter κ. For simplicity, we assume that the message space of Same, u(κ)
is equal to the length of the decommitment string of the equivocal commitment called on κ′.

The proof proceeds similarly to Section 6 where we first switch the way we answer the CCA.Val
oracle from brute force algorithm to CCA.ValAlt(tag∗, com,L)→ m ∪ ⊥. CCA.ValAlt has the prop-
erty that it depends only on one tag, tag∗ (the exception being the check at the start which checks
if tag∗ = com.tag and outputs ⊥). The rest of the proof follows a similar sequence of steps as
Section 6, where we introduce equivocations and reduce information about the seed. Utilizing the
security of the hinting PRG with injective extension, we are able to remove the information in the
block containing the message and thus hide the message.

CCA.FindSeed(aux)

Inputs: String aux = (HPRG.pp, aux′)

Output: s̃ ∈ {0, 1}n ∪ ⊥

• Parse aux as (HPRG.pp, aux′)

• Iterate through all s̃ ∈ {0, 1}n

– If aux′ = HPRG.ExtEval(HPRG.pp, s̃), return s.

• Return ⊥

Figure 8: Routine CCA.FindSeed

CCA.Check(s̃, com)

Inputs: Seed candidate s̃ = s̃1, s̃2, . . . , s̃n

Commitment com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N]\{tag})i∈[n])
)

Output: {0, 1}

• For i ∈ [n]

1. Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s̃, i)

2. For x ∈ [N] \ {tag}
(a) Let ỹi = Same.Recover(cx,i,s̃i , rx,i). If ỹi = ⊥, output 0

(b) If cx,i,s̃i 6= Same.Com(1κ, (x, tagx, s̃i), ỹi; rx,i), output 0.
(c) If s̃i 6= AuxEquiv.Decom(aux, σi, ỹi), output 0.

• Parse aux as (HPRG.pp, aux′).

• If HPRG.CheckParams(HPRG.pp, n) = 0, output 0.

• If aux′ 6= HPRG.ExtEval(HPRG.pp, s) output 0.

• If all the above checks have passed, output 1.

Figure 9: Routine CCA.Check

88

CCA.FindAlt(x′, com,L)

Inputs: Index x′ ∈ [N]

Commitment com =
(

tag, aux, c, (σi, (cx,i,0, cx,i,1)x∈[N]\{tag})i∈[n])
)

Polynomial Size Non-Uniform Advice List L
Output: s̃ ∈ {0, 1}n

• If for some s̃ ∈ {0, 1}n, (s̃, com.aux) ∈ L, where s̃ is the seed recorded from the advice. Output
s̃.

• Else if com.aux is not recorded in L,

– For each i ∈ [n]

1. Let ỹi = Same.Val(cx′,i,0)

2. Set z̃i = AuxEquiv.Decom(aux, σi, ỹi). If z̃i = ⊥, set s̃i = 1. Else, set s̃i = z̃i.

– Output s̃ = s̃1, s̃2, . . . , s̃n.

Figure 10: Routine CCA.FindAlt

CCA.Equiv(com)

Inputs: Commitment com =
(

tag, aux = (HPRG.pp, aux′), c, (σi, (cx,i,0, cx,i,1)x∈[N]\{tag})i∈[n])
)

Output: Equivocation (aux, c, d0, d1) ∪ ⊥

• For all i ∈ [n], x ∈ [N] \ {tag}, b ∈ {0, 1},

– If, AuxEquiv.Decom(Small.Val(com.cx,i,b)) = 0, and
AuxEquiv.Decom(Small.Val(com.cx,i,b)) = 1.
Return (aux, σi,Small.Val(com.cx,i,b),Small.Val(com.cx,i,b))

• Return ⊥

Figure 11: Routine CCA.Equiv

Transformation OneToMany(Same = (Same.Com, Same.Val, Same.Recover),HPRG,AuxEquiv, w(κ), v′)→
NM = (CCA.Com,CCA.Val,CCA.Recover) :

CCA.Com(1κ, tag ∈ [N],m ∈ {0, 1}w(κ); r)→ com

1. Compute κ′ = κ
v
δ . Compute κ′′ = κ

′ 1
γ .

2. Sample (HPRG.pp, n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

3. Sample s = s1 . . . sn
R←− {0, 1}n as the seed of the hinting PRG.

4. Set aux = (HPRG.pp,HPRG.ExtEval(HPRG.pp, s)).

5. For all i ∈ [n] run AuxEquiv.Com(1κ
′
, aux, si)→ (σi, yi).

89

6. Let for x ∈ [N], i ∈ [n], rx,i, r̃x,i ∈ {0, 1}` be defined as follows13:

7. For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

8. Compute c = m⊕ HPRG.Eval(HPRG.pp, s, 0)

9. For i ∈ [n], x ∈ [N] \ {tag}
(a) If si = 0

i. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; rx,i)

ii. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; r̃x,i)

(b) If si = 1

i. cx,i,0 = Same.Com(1κ, (x, 0),msg = yi; r̃x,i)

ii. cx,i,1 = Same.Com(1κ, (x, 1),msg = yi; rx,i)

Output com =
(

tag, aux,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N]\{tag})i∈[n])
)

as the commitment. All of
the randomness is used as the decommitment string.

CCA.Val(com)→ m ∪ ⊥

1. Set s̃ = CCA.FindSeed(com.aux).

2. If CCA.Check(s̃, com) = 0 output ⊥.

3. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.ValAlt(tag∗, com,L)→ m ∪ ⊥

1. If com.tag = tag∗, output ⊥.

2. Set s̃ = CCA.FindAlt(tag∗, com,L).

3. If CCA.Check(s̃, com) = 0 output ⊥.

4. Output c⊕ HPRG.Eval(HPRG.pp, s̃, 0).

CCA.Recover(com, r)→ m ∪ ⊥

1. From r, parse seed s of Hinting PRG.

2. If CCA.Check(com, s) = 0, output ⊥.

3. From com, parse the commitment component c and the public parameter HPRG.pp.

4. Output c⊕ HPRG.Eval(HPRG.pp, s, 0)

The procedures CCA.Exp (Figure 5), CCA.AdviceList (Figure 6) remain the exact same where the
parameter settings and CCA.Equiv is run according to Section E.

Remark E.1. The randomness rtag,i and r̃tag,i are not used for all i ∈ [n], but we generate it this
way for notational simplicity.

13We will only use (N − 1) · n random bits, but we generate extra n · ` bits for simplifying notation.

90

Correctness and Efficiency.

Efficiency

Claim E.1. If (Same.Com, Same.Val, Same.Recover) is 2κ
v
-efficient CCA commitment scheme as per

Definition 3.2 with tag spaceN(κ) ∈ poly(κ), (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate)
is an efficient equivocal commitment scheme as per Definition 4.3, v, v′ are constants where v ≥ 1,
then (CCA.Com,CCA.Val,CCA.Recover) is 2κ

v′
-efficient CCA commitment scheme. Moreover, there

exists a non-uniform algorithm CCA.ValAlt that runs in time poly(|m|, 2κv).

Proof.

• CCA.Com calls Same.Com 2 · n · (N − 1) times on the output of AuxEquiv.Com in addition
to some other poly-time computation. By Definition 3.2, Same.Com is poly(|m|, κ). Since
AuxEquiv.Com runs in time poly(κ′) by Definition 4.3, this bounds the message of Small.Com
with poly(κ). Along with the fact that n is bounded by the security parameter, and N is
bounded by the tag space which we assume is poly(κ), this is overall polynomial bounded
in κ.

• CCA.Recover does a single ⊕, and since com and r are both bounded by poly(κ) by the run-
time of CCA.Com, CCA.Recover runs in poly(|m|, κ) as well.

• CCA.Val checks every possible seed in {0, 1}n, i.e. runs in time 2n where n is in poly(κ′′) =

Θ(κ′′ṽ) = Θ(κv
′
). Thus the oracle is 2κ

v′
-efficient from Definition 3.2.

• Additionally, CCA.ValAlt non-uniformly calls CCA.FindAlt that performs a check on a poly-
nomial size list L and calls Same.Val, n = poly(κ) times. As Same.Val runs in time 2κ

v
, thus

the runtime is poly(|m|, 2κv) where v ≥ 1.

Correctness.

Claim E.2. If (Same.Com,Same.Val,Same.Recover) is a correct CCA commitment scheme as per
Definition 3.1 and (AuxEquiv.Com,AuxEquiv.Decom) is a correct equivocal commitment scheme as
per Definition 4.2, hinting PRG satisfies the properties Definition 5.3, Definition 5.2 then (CCA.Com,
CCA.Decom, CCA.Val) is a correct CCA commitment scheme.

Proof. By the fact that the hinting PRG sets up parameters that are injective from Definition 5.3,
Definition 5.2 implies that the same seed is output by CCA.FindSeed as was constructed by CCA.Com.

Note that if base scheme is correct, then ∀i ∈ [n], x ∈ [N] \ {tag}, b ∈ {0, 1},

Same.Val(Same.Com(1κ, (x, b), yi; r)) = yi.

Also from the correctness of equivocal scheme, ∀i ∈ [n],

AuxEquiv.Decom(aux,AuxEquiv.Com(1κ
′
, aux, si)) = s.,

On input s, ∀i ∈ [n], x ∈ [N] \ {tag}, correctly sets the randomness along cx,i,si and c ⊕
HPRG.Eval(HPRG.pp, s, 0) = m. We can observe that the scheme is correct.

91

Below is an additional claim on the decryption oracle query of CCA.ValAlt.

Claim E.3. CCA.ValAlt alternate decryption oracle only queries Same.Val on the tag (tag∗, 0).

Proof. We can see CCA.ValAlt only ever calls Same.Val on commitments with tag (tag∗, 0). If
com.tag = tag∗, we output ⊥ and aborts without an oracle call to Same.Val. Otherwise, as com
contains commitments under every tag except (com.tag, 0) and (com.tag, 1), CCA.ValAlt can query
the oracle on tag (tag∗, 0).

Recovery from Randomness. It is easy to see that the above scheme also satisfies the recovery
from randomness property.

E.1 Proof of Security

We now prove security by showing a sequence of games that prove that we can transform a 2κ
c
-

subexponentially “same tag" CCA secure 2κ
v
-efficient scheme on 2N tags to a 2κ

c
-subexponentially

CCA secure 2κ
v′

-efficient scheme on N tags.
The proof will follow the same techniques as in Section 6. The notable aspect different from

the amplification section is based on Claim E.3, i.e. the security relies on the fact that the requests
to the Same.Val oracle are made on the “same tag”.

Theorem E.1. Let (Same.Com,Same.Val, Same.Recover) be a correct, polynomially efficient, weak
binding “same tag" 2κ

c
-subexponentially secure (Definition 3.6, 2κ

v
-efficient CCA commitment

scheme for N ′(κ) = N ′ = 2N ∈ poly(κ) tags and message space u(κ) ∈ poly(κ) where c < 1 and
v ≥ 1. Let (Setup,Eval,ExtEval,CheckParams) be T = 2κ

γ
secure hinting PRG with injective ex-

tension for some constant γ ∈ (0, 1) and (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) be
T = 2κ

δ
-binding secure and statistically hiding setupless equivocal commitment where δ ∈ (0, 1).

Then the above commitment scheme (CCA.Com,CCA.Val) is a correct, polynomially efficient, bind-
ing, non-uniform 2κ

c
-subexponentially secure for N tags that is 2κ

v′
-efficient and commits to mes-

sages of length w(κ) ∈ poly(κ) where v′ = v·ṽ
δ·γ .

Proof. Correctness, polynomial efficiency, binding and randomness recovery follow along the lines
of Section 6.

We first define our sequence of games. Then for each adjacent set of games we prove that the
advantage of any non-uniform attacker A that runs in time poly(2κ

c
) must be negligibly close.

Game 0. This is the original message hiding game between a challenger and a non-uniform
attacker for 2κ

c
-subexponentially secure adversaries. The game is parameterized by a security

parameter κ.

1. The attacker sends a “challenge tag” tag∗ ∈ [N].

2. Pre Challenge Phase: The attacker makes repeated queries commitments

com =
(

tag, aux,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N]\{tag})i∈[n]

)
.

If tag = tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

92

3. Challenge Phase

(a) The attacker sends two messages m∗0,m
∗
1 ∈ {0, 1}w

(b) Part 1:
• Compute κ′ = κ

v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).
• For all i ∈ [n] run AuxEquiv.Com(1κ

′
, aux∗, s∗i)→ (σ∗i , y

∗
i).

• Let r∗x,i, r̃
∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

i. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

ii. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

(c) Part 2:
• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N] \ {tag}

i. If s∗i = 0

A. c∗x,i,0 = Small.Com(1κ, (x, 0), y∗i ; r
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, 1), y∗i ; r̃
∗
x,i)

ii. If s∗i = 1

A. c∗x,i,0 = Small.Com(1κ, (x, 0), y∗i ; r̃
∗
x,i)

B. c∗x,i,1 = Small.Com(1κ, (x, 1), y∗i ; r
∗
x,i)

• Output com =

(
tag∗, aux∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]\{tag}

)i∈[n])

)
as the

commitment. All of the randomness is used as the decommitment string.

4. Post Challenge Phase: The attacker again makes commitment queries com. If tag = tag∗ the
challenger responds with ⊥. Otherwise it responds as

CCA.Val(com).

5. The attacker finally outputs a guess b′.

Game 1. This is same as Game 0, except that during the Pre Challenge Phase and Post Chal-
lenge Phase, challenger using CCA.ValAlt to answer queries. Let A be an adversary with non-
uniform advice that tries to guess the difference between the two games. The Challenger uses
CCA.ValAlt(tag∗, com,L) to return queries whereL is generated through the procedure CCA.AdviceList.

1. Non-uniform Computation: The challenger generates the list
L(0),L(1), . . . ,L ← CCA.AdviceList(1κ, (A, advice)) by interacting with the attacker A. It uses
L to answer adversaries queries.

93

2. The attacker sends a “challenge tag” tag∗ ∈ [N].

3. Pre Challenge Phase: The attacker makes repeated queries commitments com. If com.tag =
tag∗ the challenger responds with ⊥. Otherwise it responds as

CCA.ValAlt(tag∗, com,L).

4. Challenge Phase

5. Post Challenge Phase: Same as Pre Challenge Phase.

6. The attacker finally outputs a guess b′.

Game 2. In this game in Part 1 the (σ∗i , y
∗
i) are now generated from the AuxEquiv.Equivocate

algorithm instead of the Equiv.Com algorithm.

• Compute κ′ = κ
v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Sample (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(|m|,N ·`)).

• Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.
• Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).
• Let r∗x,i, r̃

∗
x,i ∈ {0, 1}` be defined as follows:

• For i ∈ [n]

1. Compute (r∗1,i, r
∗
2,i, . . . , r

∗
N,i) = HPRG.Eval(HPRG.pp∗, s∗, i)

2. Sample (r̃∗1,i, r̃
∗
2,i, . . . , r̃

∗
N,i)

R←− {0, 1}N ·`

• For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, aux∗)→ (σ∗i , y

∗
i,0, y

∗
i,1).

• For all i ∈ [n], set y∗i = y∗i,s∗i
.

Game 3 In this game in Part 2 we move to c∗x,i,0 committing to y∗i,0 and c∗x,i,1 committing to y∗i,1
for all x ∈ [N] \ {tag∗}, i ∈ [n] independently of the value of s∗i .

• It chooses a bit b ∈ {0, 1} and sets c∗ = HPRG.Eval(HPRG.pp∗, s∗, 0)⊕m∗b .
• For i ∈ [n], x ∈ [N] \ {tag∗}

1. If s∗i = 0

(a) c∗x,i,0 = Same.Com(1κ, (x, 0), y∗i,0; r∗x,i)

(b) c∗x,i,1 = Same.Com(1κ, (x, 1), y∗i,1; r̃∗x,i)

2. If s∗i = 1

(a) c∗x,i,0 = Same.Com(1κ, (x, 0), y∗i,0; r̃∗x,i)

(b) c∗x,i,1 = Same.Com(1κ, (x, 1), y∗i,1; r∗x,i)

• Finally, it sends com∗ =

(
tag∗,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]\{tag∗}

)i∈[n])

)
as the com-

mitment. All of the randomness is used as the decommitment string.

94

Game 4. In this game c∗ is chosen uniformly at random (instead of choosing HPRG.Eval(HPRG.pp∗, s∗, 0)⊕
m∗b).

E.2 Analysis.

Next, we show by a sequence of lemmas that no non-uniform with runtime poly(2κ
c
) adversary

where c ∈ (0, 1) can distinguish between any two adjacent games with non-negligible advantage.
In the last game, we show that the advantage of any such adversary is negligible. We will let advxA
denote the quantity Pr[b′ = b]− 1

2 in Game x.

Lemma E.1. Suppose (AuxEquiv.Com,AuxEquiv.Decom,AuxEquiv.Equivocate) is (2κ
δ
, |advice|2n′) bind-

ing secure Definition 4.4 auxilary input equivocal commitment scheme. HPRG be an injectively
extended hinting PRG and Small.Val is v-efficient. Then, for an non-uniform adversary A running
in time poly(2κ

c
) where c ∈ (0, 1) there exists a negligible function negl(·) such that for all κ ∈ N,

|adv0
A − adv1

A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κ
v
δ .

Proof. The proof is identical to Lemma 6.4 and the accompanying lemmas. The only change is the
procedure CCA.Equiv, where we check for equivocation for all tags except one. For brevity, we
don’t repeat the exact details.

Lemma E.2. Assuming that the equivocal commitment is statistically equivocal from Definition 4.5.
For any adversary A, there exists a negligible function negl(·) such that for all κ ∈ N, |adv1

A −
adv2
A| ≤ negl(κ) where equivocal commitment is run on security parameter κ′ = κ

v
δ .

Proof. From Definition 4.5, we know that the statistical distance between (aux∗, σ∗i , y
∗
i) in Games 1

and 2 is negligible. Since the rest of the inputs to the games are the same, this bounds the statistical
distance of the output by a negligible function negl(κ) as well.

Lemma E.3. Assuming that the base commitment scheme is 2κ
c
-subexponentially CCA secure,

2κ
v
-efficient CCA commitment. For any non-uniform adversary A that runs in time poly(2κ

c
),

there exists a negligible function negl(·) such that for all κ ∈ N, |adv2
A − adv3

A| ≤ negl(κ).

Proof. Let A be an adversary given advice that has non-negligible advantage given by the polyno-
mial p(·) in distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv2
A − adv3

A| ≥
1

p(κ)
.

Define Game 20 as Game 2. For all j ∈ [N ·n], we define Game 2j same as Game 2j−1, with the
following additional changes:
We can write j = (i′ − 1) · N + (x′ − 1) where x′ ∈ [N], i′ ∈ [n] from Euclidean division, and we
change the way c∗

x′,i′,s̄∗i

14 is generated from

c∗x′,i′,s̄∗
i′

= Small.Com(1κ, (x′, s̄∗i′), y
∗
i′,s∗

i′
; r̃∗x′,i′)

14There are n games where x′ = tag∗ for which c∗x′,i′,s̄∗
i′

don’t exist. We will treat these as identical to previous games,

but leave them in to avoid cluttering notation.

95

to
c∗x′,i′,s̄∗

i′
= Small.Com(1κ, (x′, s̄∗i′), y

∗
i′,s̄∗

i′
; r̃∗x′,i′)

Observe that Game 2N ·n is exactly Game 3.
Thus ∃j = j(κ) ∈ [N · n], for infinitely many κ ∈ N,

|adv
2j−1

A − adv
2j
A | ≥

1

p(κ)(N · n)
.

We will show a reductionBj that achieves a non negligible advantage to the security of Same.Com.

Reduction Bj(1κ) :

Non-Uniform Computation:

• Run L ← CCA.AdviceList(1κ, (A, advice)) non-uniformly.

• Compute equivocations.

– Compute κ′ = κ
v
δ .

– Compute κ′′ = κ
′ 1
γ .

– Let (HPRG.pp∗, n)← HPRG.Setup(κ′′, 1max(w,N ·`)).

– Sample s∗ = s∗1 . . . s
∗
n

R←− {0, 1}n as the seed of the hinting PRG.

– Set aux∗ = (HPRG.pp∗,HPRG.ExtEval(HPRG.pp∗, s∗)).

– For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, aux∗)→ (σ∗i , y

∗
i,0, y

∗
i,1).

– Let L be (s∗, aux∗, {(σ∗i , y∗i,0, y∗i,1)}i∈n).

1. A sends a challenge tag∗ ∈ [N] to Bj .
2. Let c∗

x′,i′,s̄∗
i′

be the commitment changed in Game 2j as described above.

3. Send challenge tag (x′, s̄∗i′) to challenger.
4. Pre Challenge Phase:

• For every com query,

com =
(

tag, aux,HPRG.pp, c, (σi, (cx,i,0, cx,i,1)x∈[N])i∈[n])
)

to Bj .
• Bj answers by running CCA.ValAlt(tag∗, com,L). This can be done efficiently using
Bj ’s own Pre Challenge oracle access to Same.Val, L generated non-uniformly and runs
CCA.FindAlt manually. By Claim E.3, these will all be to the same tag.

5. Challenge Phase:

• A sends two messages m0,m1 ∈ {0, 1}w.

• Select a random bit β.

6. Part 1:

96

• Recall κ′ = κ
v
δ , κ′′ = κ

′ 1
γ .

• Now usingL, we retreive the non-uniform equivocations, i.e. parseL as (s∗, aux∗, {σ∗i , y∗i,0, y∗i,1}i∈n).

• Let rx,i, r̃x,i ∈ {0, 1}` be defined as follows:
• For i ∈ [n]

(a) Compute (r1,i, r2,i, . . . , rN,i) = HPRG.Eval(HPRG.pp, s∗, i)

(b) Sample (r̃1,i, r̃2,i, . . . , r̃N,i)
R←− {0, 1}N ·`

(a) Submit m∗0 = y∗i,s∗
i′
,m∗1 = y∗i′,s̄∗

i′
to challenger

(b) Receive com∗ = Same.Com((x′, s̄∗i′),m
∗
b ; r) from challenger

(c) Set c∗
x′,i′,s̄∗

i′
= com∗

(d) Run Phase 2 of Challenge Phase using the message mβ with the exception that c∗
x′,i′,s̄∗

i′

is computed as noted above and submit output to A.

7. Post Challenge Phase: Proceeds exactly as Pre Challenge Phase.
8. Receive bit guess β′ from A.
9. If β = β′, output 0. Otherwise, output 1.

Claim E.4. Bj is a non-uniform algorithm that outputs polynomial size advice and runs in time
poly(2κ

c
).

Proof. Since the procedure CCA.AdviceList outputs a polynomial size list L and since n and output
of AuxEquiv.Equivocate is polynomial in κ, L is polynomial in κ and Bj gets polynomial size advice.

The runtime of Bj includes running the algorithm A that runs in time poly(2κ
c
) and other

algorithms that run in poly(κ). Note that it doesn’t need to run Small.Val as it uses the oracle from
the security of the small commitment scheme and it gets equivocations non-uniformly.

Claim E.5. The advantage of Bj in winning the “same tag" message hiding game for the base
commitment scheme Same.Com from Definition 3.6 is ≥ 1

2p(κ)(N ·n) for infinitely many κ ∈ N.

Proof. First we observe that from Claim E.3, the queries made by Bj to the challenger preserve the
“same tag" condition.

Secondly, observe that if β = 0, then

c∗x′,i′,s̄∗
i′

= Same.Com((x′, s̄∗i′), y
∗
i′,s∗

i′
; r)

which is exactly what it is in Game 2j−1, and similarly, if β = 1

c∗x′,i′,s̄∗
i′

= Same.Com((x′, s̄∗i′), y
∗
i′,s̄∗

i′
; r)

which is what it is in Game 2j .
Let q be the probability A wins Game 2j and A wins Game 2j−1 with probability q ± 1

p(κ)·N ·n .
Bj wins if β = β′ and b = 0 - i.e. A wins Game 2j−1 or if β 6= β′ and b = 1 - i.e. A loses Game 2j .
Thus for infinitely many κ ∈ N, the probability of Bj winning is given by,

1

2

(
q ± 1

p(κ) ·N · n

)
+

1

2
(1− q) =

1

2
± 1

2 · p(κ) ·N · n
.

97

As Same.Com is a “same tag" secure scheme, the proof of the lemma follows immediately by
contradiction from the above claims.

Lemma E.4. Assuming that the hinting PRG is subexponentially secure with T = 2κ
γ

where γ ∈
(0, 1) from Definition 5.1. For any non-uniform 2κ

c
-subexponentially secure adversary A, there

exists a negligible function negl(·) such that for all κ ∈ N, |adv3
A − adv4

A| ≤ negl(κ) where hinting
PRG is run on security parameter κ′′ = κ

′ 1
γ = κv

′
= κ

v
δ·γ .

Proof. Let A be a non-uniform adversary given advice that has non-negligible advantage given by
the polynomial p(·) in distingushing between the two games, i.e. for infinitely many κ ∈ N,

|adv3
A − adv4

A| ≥
1

p(κ)
.

We will construct a poly(2κ
c
) time non-uniform adversary Bwhich has advantage 1

2p(κ) in the hint-
ing PRG Game as per Definition 5.1 where inputs were called on security parameter κ′′.

Reduction B
(

HPRG.pp,

(
rβ0 , r

β
ext,
{
rβi,b

}
i∈[n],b∈{0,1}

))
:

Non-Uniform Computation:

• Run L ← CCA.AdviceList(1κ, (A, advice)) non-uniformly.

1. Choose a random bit a ∈ {0, 1}.

2. Run A

(a) Pre Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com,L) using L.

(b) A sends two messages m0,m1 ∈ {0, 1}w.

(c) Challenge Phase:

• Compute κ′ = κ
v
δ .

• Compute κ′′ = κ
′ 1
γ .

• Let r∗x,i,b ∈ {0, 1}` be defined as follows:
• For i ∈ [n], b ∈ {0, 1}

i. Split up (r∗1,i,b, r
∗
2,i,b, . . . , r

∗
N,i,b) = rβi,b

• For all i ∈ [n] run AuxEquiv.Equivocate(1κ
′
, rβext)→ (σ∗i , y

∗
i,0, y

∗
i,1).

(d) Part 2:

• Set c∗ = rβ0 ⊕m∗a.
• For i ∈ [n], x ∈ [N] \ {tag∗}, b ∈ {0, 1}

i. c∗x,i,b = Same.Com(1κ, (x, b), y∗i,b; r
∗
x,i,b)

• Finally, it sends com∗ =

(
tag∗, rβext,HPRG.pp∗, c∗, (σ∗i ,

(
c∗x,i,0, c

∗
x,i,1

)
x∈[N]\{tag∗}

)i∈[n])

)
as the commitment. All of the randomness is used as the decommitment string.

98

(e) Post Challenge Phase: Receive challenge commitments com from A and respond with
CCA.ValAlt(tag∗, com,L).

(f) Receive a′ from A.

3. If a′ = a, then output β′ = 1. Otherwise output β′ = 0.

Claim E.6. B is a non-uniform algorithm that outputs polynomial size advice and runs in time

poly(2κ
′′γ

) = poly(2κ
′
) = poly(2κ

v
δ).

Proof. B runs CCA.ValAlt that runs in time poly(|m|, 2κv) from Claim E.1. Additionally, it runs
AuxEquiv.Equivocate n times that runs in time 2κ

′
. Since message lengths are polynomial in κ and

N, ` are polynomial in κ implying n is poly(κ). The whole algorithm runs in time 2κ
′′γ

.

Claim E.7. If A has advantage |adv3
A − adv4

A| ≥ 1
p(κ) , B has advantage in the HPRG game in

Definition 5.1 ≥ 1
2p(κ)

Proof. We observe that when β = 1 in the HPRG Game - when B receives(
r1

0 = HPRG.Eval(HPRG.pp, s, 0), r1
ext = HPRG.ExtEval(HPRG.pp, s),{

r1
i,si = HPRG.Eval(HPRG.pp, s, i), r1

i,s̄i

R←− {0, 1}`
}
i∈[n]

)
A is run on exactly Game 3, and when β = 0 - i.e. when B receives(

r0
0

R←− {0, 1}`, r0
ext = HPRG.ExtEval(HPRG.pp, s),{

r0
i,si = HPRG.Eval(HPRG.pp, s, i), r0

i,s̄i

R←− {0, 1}`
}
i∈[n]

)
A is run is identical to Game 4 (barring the fact that we are replacing c∗ with m∗β ⊕ r0

0 rather

than just c∗ R←− {0, 1}`, but these are identically distributed). So suppose A has probability p of
winning Game 4. Then we can see that B wins the HPRG (β′ = β) game either when A is run on
Game 3 and wins, or when A is run on Game 4 and loses. These events happen with probabilities

1

2

(
p± 1

p(κ)

)
+

1

2
(1− p) =

1

2
± 1

2 · p(κ)

for infinitely many κ ∈ N.

Since B’s advantage must be negligible by Definition 5.1, a contradiction, which concludes our
proof.

Lemma E.5. For any adversary A, adv4
A = 0.

Proof. The challenge commitment is independent of the message. Thus the probability of any
adversary guessing an independent random bit is 1

2 .

From the above lemmas we can conclude that adv0
A = negl(κ). This completes the proof of the

theorem.

99

	Introduction
	Overview of Techniques
	Background
	Non-uniform Security
	CCA Commitments
	Definition

	Setupless Equivocal Commitments against Non-Uniform Adversaries
	Distinct Strong Keyless Multi-Collision Resistance
	Setupless Equivocal Commitment with Auxillary Input
	Construction
	Amplification

	Hinting PRGs with injective extension
	Definitions
	Lossy hinting functions
	Leakage Resilient One Way Functions
	Goldreich Levin Hardcore bits

	Construction
	Achieving Succinctness

	Tag Amplification
	Proof of Security
	Analysis
	Valuation Mode Switching
	Analyzing sequence of Games

	Compilation of Transformations
	Acknowledgments
	References
	Preliminaries
	(k,) Strong Extractors
	Diffie Hellman Assumptions
	Learning With Errors Assumptions

	Distinct Strong Collision Resistance in the Auxiliary-Input Random Oracle Model
	Analysis of Section 4
	Analysis of Construction
	Analysis of Amplification

	Constructing Hinting PRGs with Injective Extension
	Security Analsyis of Construction from Section 5.2
	Lossy Hinting Functions from Decisional Diffie Hellman
	Lossy Hinting Function from Computational Diffie Hellman
	Lossy Hinting Functions from Learning with Errors
	Succinct Hinting PRG

	Removing the Same Tag Restriction
	Proof of Security
	Analysis.

