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Abstract

We present an attack on SIDH which does not require any endomorphism information on
the starting curve. Our attack has subexponential complexity thus significantly reducing the
security of SIDH and SIKE; our analysis and preliminary implementation suggests that our
algorithm will be feasible for the Microsoft challenge parameters p = 2110367 − 1 on a regular
computer. Our attack applies to any isogeny-based cryptosystem that publishes the images of
points under the secret isogeny, for example Séta [28] and B-SIDH [9]. It does not apply to
CSIDH [8], CSI-FiSh [3], or SQISign [11].

1 Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) [16] is a key exchange proposed in 2011 by Jao and
De Feo that makes use of isogenies between elliptic curves. A well-studied hard problem in number
theory is to find an unknown high-degree isogeny between two (supersingular) elliptic curves over
a finite field, on which many cryptosystems [3, 8, 9, 11, 28] are based. This is a problem that
is also believed to be hard for quantum computers, and as such isogeny-based cryptography has
been one of the frontrunners in developing post-quantum cryptographic algorithms. Arguably the
most influential primitive in the field of isogeny-based cryptography is Supersingular Isogeny Key
Encapsulation (SIKE) [14], which is the incarnation of SIDH that was submitted to the NIST
competition to find a new post-quantum-safe cryptographic standard [22] and is currently in the
Fourth Round to be considered for standardization. In comparison to cryptosystems that rely purely
on the isogeny problem, such as CSIDH [8], CSI-FiSh [3], and SQISign [11], the hardness assumption
underlying SIKE is weaker as the image of some torsion points under the secret isogeny are also
revealed. This gives rise to the supersingular isogeny with torsion (SSI-T) problem stated more
precisely below. This has been shown to be weaker than the pure isogeny problem in a line of
work pioneered by Petit [24] in 2017 and continued and built upon in multiple papers in the last 5
years [5, 13, 26]. However, the SIKE parameters had not been effected by these attacks, which all
applied only to variants of SIDH.

In this paper we present an algorithm that solves the supersingular isogeny with torsion (SSI-T)
problem in reasonable time for parameters that were believed to be secure, which is the hardness
assumption underlying SIKE as well as any other SIDH-related protocols such as B-SIDH [9] and
Séta [28]. This is recalled below:

∗Supercedes [21] from 8th August 2022.
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Supersingular Isogeny with Torsion (SSI-T):

Given coprime integers A and B, two supersingular elliptic curves E0/Fp2 and EA/Fp2 connected
by an unknown degree A-isogeny φA : E0 → EA, and given the restriction of φ to the B-torsion of

E0, recover an isogeny φ matching these constraints.

In particular, note that the SSI-T problem does not assume that E0 is special in any way, for
example that it has known endomorphism ring; our attack applies for any starting curve E0. As
such, it does not have the obvious mitigation that previous torsion-point attacks have had of using a
trusted setup. Our attack has subexponential complexity and as such there will be large parameters
for which our attacks become infeasible; however since releasing the first version of this paper [21]
Damien Robert has released a polynomial-time attack on SSI-T that also does not assume that E0

is special in any way [27].
Finally, our attack makes full use of the public torsion points and as such has no effect on any

isogeny-based cryptosystem that does not publish images of points under the secret isogeny, such
as CSIDH [8], CSI-FiSh [3], and SQISign [11].

Related work

The inspiration for this attack came from an unrelated collaboration of Luciano Maino with Wouter
Castryck and Thomas Decru studying superspecial principally polarized abelian surfaces and (2,2)-
isogenies between them, as well as endomorphisms of the form(

a bφ̂
cφ d

)
.

Upon discovering our attack and sharing our idea with Castryck and Decru we found out that
they had independently discovered an attack building on the previous collaboration in a different
direction. They had already written their implementation and paper, although it was not yet public,
and they were kind enough to share both with us as well as to note our forthcoming independent
attack in their paper. In particular we were able to build on their implementation rather than
starting from scratch when implementing the (2,2)-isogenies in our algorithm, for which we are
very grateful. Their paper is now public [7]; they present a polynomial-time attack and provide an
implementation for all the proposed NIST parameter sets for SIKE, but their attack relies on the
knowledge of End(E0), so can potentially be mitigated by generating a starting curve with no known
non-scalar endomorphisms. Unsurprisingly given the common source of inspiration, our attack is
similar to that of Castryck and Decru, especially the version they hint at in [7, §8.3].

One point where our attack differs is that we recover the secret directly rather than using a
‘decision strategy’ (c.f. [7, §2.3]); Rémy Oudompheng [23] and Benjamin Wesolowski [33] noted
that the Castryck-Decru attack can be altered to recover the secret directly at a similar time to the
first version of this paper becoming widely available.

Finally, since making this work available in [21], Damien Robert has significantly improved on the
result [27], giving a polynomial-time attack on SIDH with arbitrary starting curve by constructing
a special endomorphism of E4

0 × E4
A.

Further acknowledgements

We would like to thank Lorenz Panny for useful discussions regarding complexity of extension
field arithmetic and computations of isogenies with non-rational points in the kernel, for useful
comments on an earlier draft of this paper, and for working on the implementation of the attack
together with Giacomo Pope, to whom we are also deeply indebted. We thank Christophe Petit,
for useful comments regarding methods to compute isogenies with irrational kernel points, and Eda
Kirimli, for useful discussions. We are also extremely grateful to Luca De Feo, who shared with
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us a better method to find attack parameters during ANTS-XV, which in particular led to an
argument that our algorithm has subexponential complexity. We would also like to thank COSIC
and KU Leuven for hosting Luciano Maino as an intern, sparking his collaboration that led to
this paper. Luciano Maino was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) Centre for Doctoral Training (CDT) in Trust, Identity, Privacy and Security in
Large-scale Infrastructures (TIPS-at-Scale) at the Universities of Bristol and Bath.

Comparison to previous version

This is the second version of this paper; we note here the differences for the convenience of the reader.
The most important difference is the statement of Theorem 1: In version one [21] we claimed that
the (B,B)-isogeny with kernel

⟨(PB , cφ(PB)), (QB , cφ(QB))⟩

was an endomorphism of E × E′. Upon working on the implementation of Algorithm 1 together
with Lorenz Panny and Giacomo Pope (in particular implementing this (B,B)-isogeny) we observed
that it is not an endomorphism but an isogeny as now stated correctly in Theorem 1. Algorithm 1
is basically unchanged except for pushing the A-torsion of E′ through the isogeny Φ rather than
the A-torsion of E.

There are additionally some minor changes: A new algorithm to select attack parameters from
Luca De Feo answering [21, Open Question 2], an argument that this method of parameter selection
leads to an attack of complexity LA(c, 1/2) for some constant c (also due to De Feo), and some
updates on related work [23, 27, 33] representing advances that have appeared since [21].

2 The attack

Let all notation be as in the SSI-T problem statement above. The core idea behind our attack is to
construct an elliptic curve E, an isogeny φf : E → E0, and a polarized isogeny Φ originating from
the abelian surface E × EA such that one of its components reveals the dual of the secret isogeny
φA : E0 → EA. This is a natural generalization of previous papers on torsion-point attacks (for
example [24, 26]) in which a special endomorphism of EA was constructed that leaked information
about the secret isogeny; the success of using isogenies from E×EA in place of elements of End(EA)
essentially stems from there being more choice in higher dimension.

We will notate our isogenies E1 × E2 → E3 × E4 in matrix notation; the matrix(
α β
γ δ

)
represents that α ∈ Hom(E1, E3), β ∈ Hom(E2, E3), γ ∈ Hom(E1, E4), and δ ∈ Hom(E2, E4), and
maps

(P, P ′) 7→ (α(P ) + β(P ′), γ(P ) + δ(P ′)).

Our attack is a consequence of the following theorem:
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Theorem 1. Let f , A, and B be pairwise coprime integers such that B = f + A and c = 1/A
(mod B), and let E/Fp2 , E′/Fp2 , E0/Fp2 , and F/Fp2 be elliptic curves connected by the following
commutative diagram of isogenies:

E0 E′

E F ,

φf
φ

φ′

g′

gf

(1)

where deg(φf ) = deg(gf ) = f and deg(φ′) = deg(g′) = A. Let {PB , QB} be a basis of E[B], and let

K := ⟨(PB , cφ(PB)), (QB , cφ(QB))⟩.

Then K is the kernel of the (B,B)-isogeny

Φ =

(
φf −φ̂′

g′ ĝf

)
∈ Hom(E × E′, E0 × F ),

which respects the natural product polarizations on E × E′ and E0 × F .

Before proving this theorem, we present our attack. For ease of notation, in all that follows
we will assume that A = ℓaA and B = ℓbB . We can use Theorem 1 with (E′, φ′) = (EA, φA) to
recover φA by evaluating Φ on EA[A] and deducing the action of −φ̂A on EA[A]; equivalently we
can recover part of φA by choosing φ′ that divides φA. However, to compute Φ we first need to find
its domain; in particular, the attacker needs to compute φf . The attacker can choose any isogeny
of degree f and an elliptic curve E (satisfying the conditions coming from Theorem 1) such that
φf : E → E0. However, the problem faced by the attacker is that the computation of φf is not
necessarily easy as there is no reason that B − A would be smooth. To mitigate this, we increase
our pool of available cofactors f by brute-forcing the last few steps of φA and/or by brute-forcing
some extra torsion-point images.

The picture that we should keep in mind when reading through the attack below is the following
commutative diagram, where:

• φA : E0 → EA is the secret key,

• φf : E → E0 is a f -isogeny chosen by the attacker,1

• φℓiA
: E′ → EA is a guess of the (dual of the) last i steps of φA,

• φ′ : E0 → E′ is the corresponding first a− i steps of φA such that φA = φℓiA
◦ φ′, and

• φ : E → E′ is the fℓa−i
A -isogeny to which we apply Theorem 1.

E0 E′ EA

E

φf φ

φ′ φℓiA

φA

(2)

1In practise, the attacker computes φ̂f and deduces φf from this.
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The attack is described in Algorithm 1. To discuss the complexity of this attack we should split it
into three parts:

1. The precomputation step (Step 1); this can be done once-and-for-all for each parameter set
A,B.

2. The cofactor isogeny computation (Step 2); if SIDH is set up with a fixed (arbitrary) E0, this
can be done once-for-all for this E0.

3. The online steps (Steps 3 to 7); these steps need to be performed for every new public key.

The cost of the cofactor isogeny computation. The cofactor isogeny is deterministic and chosen by
the attacker. As such, it does not need to be recomputed at any point because a wrong guess was
made when brute-forcing. We compute the isogeny φf via a chain of prime-degree q−isogenies φq.
The cost of computing φq for the larger factors of q is discussed in detail in Section 2.1.2 and can

be approximated by Õ(q3/2) multiplications in Fp2 plus a call to an oracle to find an irreducible

polynomial of degree ≈ q in Fp2 or Õ(q2) multiplications in Fp2 plus a call to an oracle for factoring
the q−division polynomial over Fp2 .

The cost of the online steps. The discussion in Section 2.1.1 approximates the cost of Steps 3 to 7
by ≈ C · e4ℓiAq4e log qe, where qe is the largest prime dividing e and C is polynomial in log(p). We
allow i and e to grow to increase the pool of options for f in order to get a smaller qf .

The precomputation. If SIDH is set up to start every key exchange with a new E0, the optimal
choice of (e, i, j, f) for the attacker ensures that the cost of Step 2 is approximately the same as the
cost of Steps 3 to 5. One could perform a brute force search over all parameters (e, i, j, f) such that

q
3/2
f ≤ e4ℓiAq

4
e log qe and 0 ≤ j ≤ b, which would be costly.

However, since sharing the first version of this paper [21], Luca De Feo shared with us a subex-
ponential algorithm for the precomputation leading both to a subexponential cofactor isogeny com-
putation and to subexponential online steps. His argument is as follows: Suppose that we wish
to target A ≈ B ≈ 2b. To achieve subexponential complexity L2b(c, 1/2), one can see from the
complexity discussion of the online and cofactor steps above that it is sufficient to find parameters

(e, i, j, f) such that e, ℓiA ≈ 2
√
b, and f is

√
b

√
b
-smooth.

To achieve this, we search for solutions to the equation

xAℓ−i
A + yBℓ−j

B = z, (3)

where x and y are ≤ 2
√
b and z is

√
b

√
b
-smooth, and i and j are fixed at some chosen values such

that ℓiA ≈ ℓjB ≈ 2
√
b. This corresponds to e = −y (not necessarily coprime to B) and f = −xz; if xz,

y > 0 then we switch the roles of A and B and this will correspond to e = −x and f = −yz. Writing
f = −xz corresponds to decomposing φf : Ef → E0 into a degree-(−z)-isogeny φ−z : Ef → E′

0 and
a degree-x-isogeny φx : E′

0 → E0, and recovering φA ◦ φx by applying Algorithm 1 with A = xA,
E0 = E′

0, and φA = φA ◦ φx.
To find such (x, y, z) for a given (i, j), we run Euclid’s xgcd algorithm on (Aℓ−i

A , Bℓ−j
B ) until we

find (x0, y0, z0) and (x1, y1, z1) such that xi, yi ≈ 2
√
b/2; this should correspond to zi ≈ 2b−

√
b/2.

Then, search through all linear combinations uz0 + vz1 with u, v ≤ 2
√
b/2 and save the smoothest

result; call this z. An integer (such as z) of size 2b is
√
b

√
b
-smooth with probability ρ(β), where

2b/β =
√
b

√
b
and ρ is the Dickman-ρ function which can be approximated by ρ(β) ≈ β−β . Therefore,

we are likely to find a
√
b

√
b
-smooth choice z if the number of choices for (u, v), that is 2

√
b, is ≈ ββ .
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A short calculation shows that

log2(β
β) =

√
b

(
1 +

2− 2 log2 log2 b

log2 b

)
≈ log2(2

√
b).

We give some examples for concrete parameters in Section 2.1.1.

Algorithm 1: Recovering the secret isogeny.

Input: Coprime integers A = ℓaA and B = ℓbB , two supersingular elliptic curves E0/Fp2 and
EA/Fp2 connected by an unknown degree-A-isogeny φA : E0 → EA, a basis
{PB , QB} of E0[B], a basis {PA, QA} of E0[A], the image points φA(PB), φA(QB).

Output: φA : E0 → EA.

1 Compute integers e, j, f , and i such that e is small and smooth, 0 ≤ j ≤ b, f is smooth and

positive, i is small, (Aℓ−i
A )−1 = c (mod eBℓ−j

B ), and eBℓ−j
B = f +Aℓ−i

A . For ease of

notation, we set A′ = Aℓ−i
A and B′ = Bℓ−j

B . For more details, see Section 2.1.1.
2 Compute a curve that is f -isogenous to E0, define the dual of the computed isogeny to be

φf : E → E0, and compute φ̂f (PA), φ̂f (QA), φ̂f (PB), φ̂f (QB). For more details, see
Section 2.1.2.

3 Compute a basis {PeB′ , QeB′} of E[eB′] such that [e]PeB′ = [ℓjB ]φ̂f (PB) and

[e]QeB′ = [ℓjB ]φ̂f (QB).
4 Choose a guess φℓiA

: E′ → EA for the last i steps of φA, recall the definition of the

corresponding φ : E → E′ from diagram (4), and choose R,S ∈ E′[eB′] such that

[e]R = [ℓ−i
A fℓjB ]φ̂ℓiA

◦ φA(PB)

and
[e]S = [ℓ−i

A fℓjB ]φ̂ℓiA
◦ φA(QB);

R,S are a guess for the images φ(PeB′), φ(QeB′) respectively.
5 Compute a (eB′, eB′)-isogeny with domain E × E′ and kernel

ker(Φguess) = ⟨(PeB′ , cR), (QeB′ , cS)⟩.

If the codomain splits, continue (see Remark 1). Else, return to Step 4 and take a new guess
(φℓiA

, R, S). For more details see Section 2.2.

6 Choose a basis {P,Q} of E′[A′]; compute φ̂′(P ) and φ̂′(Q) via

Φ(0E , P ) = (−φ̂′(P ), ĝf (P ))) and Φ(0E , Q) = (−φ̂′(Q), ĝf (Q))).

7 Compute ker(φ′) = ⟨φ̂′(P ), φ̂′(Q)⟩ and return φℓiA
◦ φ′.

Remark 1. Step 5 in Algorithm 1 has a small chance of causing the overall algorithm to fail, as a
split Jacobian may accidentally be the codomain for an incorrect guess. However it is easy to check
whether or not E0 is a factor and furthermore the chance of failure is very small.

Proof of Theorem 1. To prove this result we employ Kani’s Reducibility Criterion [17, Theorem 2.6]
(c.f. similar use in [7, Theorem 1]). In Kani’s language, we have set up our parameters so that
(φ, ker(φf ), [f

−1]φ̂f ker(φ
′)) is an isogeny diamond configuration of order B; that is, setting H1 =

ker(φf ) and H2 = [f−1]φ̂f ker(φ
′) we have the conditions H1 ∩H2 = {0E}, #H1 +#H2 = B and
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#H1 ·#H2 = deg(φ). By [17, Theorem 2.6], there exists a unique anti-isometry ψ : E[B] → E′[B]
such that, for all Pi ∈ [B]−1Hi,

ψ(fP +AQ) = φ(Q− P ).

Since in the rest of the proof we shall use ψ explicitly, we now reconstruct ψ. Define ψ̃ : E[B] →
E′[B] to be the map ψ̃(P ) := cφ(P ). The map ψ̃ is an isomorphism and also an anti-isometry with
respect to the B-Weil pairing:

eE
′

B (ψ̃(P ), ψ̃(Q)) = eEB(P,Q)c
2fA = eEB(P,Q)−c2A2

= eEB(P,Q)−1.

Let Pi ∈ [B]−1Hi, then ϕ(Pi) ∈ E′[B]. Observe that

ψ̃(fP +AQ) = cφ(fP +AQ) = φ(Q)− φ(P ),

hence ψ = ψ̃ = cφ|E[B].
Furthermore, we have set up our parameters so that, following [17, Remark 2.2], the tuple

(φ,φf , φ
′, g′, gf ) is an an isogeny factor set representing (φ,H1, H2). It then follows from the proof

of [17, Theorem 2.6] that Φ is an isogeny E ×E′ → E0 × F whose kernel is maximal isotropic with
respect to the B-Weil pairing by identifying the principal polarization of each elliptic curve with
the identity map.

Finally, by the proof of [17, Corollary 2.4], the kernel of Φ is given by the graph of ψ = cφ|E[B],
that is ker(Φ) = ⟨(PB , cφ(PB)), (QB , cφ(QB))⟩.

2.1 Complexity of Algorithm 1

Here we give some details on and study the complexity of the first four steps of Algorithm 1 in
the case relevant to SIKE, namely A = 3a and B = 2b, with a focus on the Microsoft challenge
parameters A = 367 and B = 2110 and the parameters that were proposed for NIST level I A = 3137

and B = 2216.

2.1.1 Choosing parameters

To understand Step 1, we recall the commutative diagram that we keep in mind during this attack,
where:

• φA : E0 → EA is the secret key,

• φf : E → E0 is a f -isogeny chosen by the attacker,

• φℓiA
: E′ → EA is a guess of the last i steps of φA,

• φ′ : E0 → E′ is the corresponding first a− i steps of φA such that φA = φℓiA
◦ φ′, and

• φ : E → E′ is the fℓa−i
A -isogeny to which we apply Theorem 1.

E0 E′ EA

E

φf φ

φ′ φℓiA

φA

(4)
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Choosing f . The shape of f determines the complexity of computing φf . The cofactor f does
not need to be small as the isogeny is deterministic but it does need to be smooth: consider the
extreme case that f is prime and ≈ A, computing φf directly will be harder than computing φA

directly (because of the extension field arithmetic). Exactly how smooth we require f to be depends
on what we hope we can achieve in complexity for the attack. If q is the largest prime divisor of
f then the complexity of Step 2 will be dominated by the cost of the computation of a q-isogeny,
which can be performed O(

√
q) multiplications in the field of definition of a generator of the kernel

of the isogeny using sqrtVelu [1, Section 4.1.4]. The field of definition is however hard to control,
and large field extensions can seriously slow down our arithmetic. It is hard to make this precise;
for some values of q the minimal k for which E(Fpk) contains a q-torsion point will be much smaller
than q and in some cases it will be much larger.

In order to make an approximation of the complexity of computing φf on which we can base our
search for good parameters for our attack, we ran some experiments to look at the behaviour of field
extensions for different values of p. As an illustration let us consider E1728/Fp with p = 22163137−1
as in the proposed NIST level I parameters for SIKE. Only the even degree extension fields are
relevant as the codomain of each isogeny is defined over Fp2 . Figures 2, 3, and 4 show the q for
which there exists an even k ≤ 1000 such that there is an Fpk -rational point of order q (only the
minimal even k is depicted). In total, we find 72% of the primes < 102 (c.f. Figure 2), 62.5% of
the primes < 103 (c.f. Figure 3), and 22% of the primes < 104 (c.f. Figure 4). Based on these
experiments, to guide our parameter selection for our attack we make a very crude estimate that
we expect the minimal field extension for the maximal q dividing f is about size q. This gives us
a very rough estimate of Õ(q3/2) for the complexity of computing a φq-isogeny, which in turn is
the dominating cost of computing φf . If the largest factor of our smoothest f only admits very
large extension fields we can of course choose to take a slightly less smooth f (that is, a slightly
bigger q) where the field extension is smaller, or use Kohel’s algorithm at the expense of increase
the complexity to Õ(q2); see Section 2.1.2 for more details.

Choosing i and e. The cost coming from i is the cost of brute-forcing all the cyclic 3i = ℓiA-
isogenies from EA, which costs ≈ 3i multiplications in Fp2 . This is however multiplied by the brute-
force cost of guessing the images of the e-torsion points in Step 4 and by the cost of computing Φ.
Guessing the images of the e-torsion points amounts to checking all the pairs of points of order e
on E′, which is ≈ e4. This is one sense in which e and i have to be ‘small’: We have to run Steps 3
to 5 of Algorithm 1 ≈ e43i times.

Additionally, the isogeny Φ (which we will attempt to compute ≈ e43i times) is an (eB′, eB′)-
isogeny; in particular it factors via an (e, e)-isogeny. So, in addition we require e to be q-smooth,
where q is the largest prime for which it is feasible to compute (q, q)-isogenies (potentially over an
extension field, which again will add a non-negligible cost). The need for the computation of the
(e, e)-isogeny is the main barrier to implementing our algorithm for the proposed NIST parameters,
as to do so requires a working implementation of (q, q)-isogenies, which while should theoretically
be possible and reasonably fast, requires some research to achieve. There exists literature on this
topic [4, 6, 19, 20], from which we have made a baseline assumption than computation of a (q, q)-
isogeny over Fpk can be performed in O(q3) multiplications in Fpk . However, there is very little
existing work in the way of practical implementation of supersingular Jacobians and products of
elliptic curves. We do note here that it would be possible to avoid implementing the factors of the
(e, e)-isogenies to also map to and from products of elliptic curves, as we can ensure to start and
finish the computation of Φ with a (2,2)-isogeny, which may make the practical implementation of
(e, e)-isogenies with regards to this attack a more achievable goal.

Working with our baseline assumption that a (q, q)-isogeny can be computed in approximately
q3 multiplications over the base field of its kernel, we expect the cost of computing Φ as a (eB, eB)-
isogeny to be dominated by the cost of computing a (q, q)-isogeny where q is the largest prime factor
of e. We leave a careful analysis of the sizes of the field extensions for genus 2 to later work that
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Figure 1: Extension field degrees < 1000 needed for Fpk -rational q-torsion

Figure 2: q < 102

Figure 3: q < 103

Figure 4: q < 104
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includes a practical implementation of (q, q)-isogenies for prime q ̸= 2, but let us assume for the sake
of argument that the slow down for the extension field arithmetic scales with q similarly to the elliptic
curve case. Then we approximate the cost of computing the (q, q)-isogeny by O(q3 · q log q). This is
probably an overestimate: More research is needed into the existence of sqrtVélu-style-algorithms
in the case of abelian surfaces. However, if the attack costs 2λ, note that e is already forced to be
relatively small compared to this by the fact that we have to search through ≈ e4 pairs of possible
images of e-torsion points. Because of this, we can expect e to be fairly smooth compared to f , for
example, so q (and the corresponding field extension) need not be particularly large.

In our choice of parameters for our toy example, we have chosen to demonstrate the use of e
without the need to delve into (q, q)-isogenies for q > 2 by choosing e = 23. In this case we need a
field extension of degree 4 for the 2b+1-torsion points, of degree 8 for the 2b+2-torsion points and of
degree 16 for the 2b+3-torsion points. This is not special to this instance but a consequence of the
fact that the pull-back of the multiplication-by-2 map contains a square root (and no other rational
but not integral powers), and so each lift of a point of order 2i to a point of order 2i+1 will either
double the degree of the field extension or keep it the same.

Choosing j. The choice of j only potentially effects the precomputation step, Step 1 of Algo-
rithm 1, as we achieve B′ = 2−jB-torsion points by multiplying the known B-torsion by 2j ; for this
reason we have no restrictions on non-negative j. Notice that we do not require e to be coprime to
B, so e may contain powers of two, accounting also for the possibility of negative j.

Concrete attack parameters. We present here some choices of attack parameters in three cases
of interest: A toy example to test our algorithm, the Microsoft challenge parameters, and the
parameters of SIKEp434 that were proposed for NIST Level I.

Toy parameters: We consider a small example to test our algorithm: A = 38, B = 215, i = 3, e = 8,
j = 0, f = 5 · 72 · 11 · 97. The largest field extension that we need for the computation of φf is Fp20 ,
for the 11-isogeny. The largest field extension for e = 8 is 16, for the pullbacks of the order-215

points to order-218 points.

Challenge parameters: We consider one of the sets of challenge parameters put forward by Mi-
crosoft [10]: A = 367, B = 2110, i = 7, e = 1, j = 2,

f = 5 · 7 · 133 · 432 · 73 · 151 · 241 · 269 · 577 · 613 · 28111 · 321193.

The largest field extension we would need for the computation of φ321193 using sqrtVélu is
of degree 642384; in this case it might be faster to use a variant of Kohel’s algorithm to avoid
the extension field arithmetic (see Section 2.1.2 for more details). Based on preliminary SageMath
experiments, we expect the computation of φ321193 to be feasible on a regular laptop. The extension
field degrees for all the factors of f are given by

[k, q] =[8, 5], [12, 7], [24, 13], [28, 43], [144, 73], [75, 151], [480, 241],

[67, 269], [1152, 577], [1224, 613], [56220, 28111], [642384, 321193].

The choice of i = 7 also means that we need to run Steps 3 to 5 of Algorithm 1 up to 37 ≈ 211 times,
which we expect to take at most a few hours on a laptop. In particular, if the SIDH instantiation
uses a fixed (arbitrary) starting curve, the computation of φf can be performed as a precomputation
and the attack on an individual public key is relatively fast, just some Richelot isogenies of abelian
surfaces and 3-isogenies of elliptic curves, repeated potentially 37 times.

We have thus far restricted ourselves to e and B being a powers of two, as we want to demonstrate
our attack and do not yet have adequate resources at our disposal to compute (ℓ, ℓ)-isogenies for
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i j x y z

19 27 41 · 2333 −101 · 241 −54 · 19 · 47 · 61 · 857 · 2903 · 60889 · 216617
·342497 · 2309969 · 2945407 · 3951767 · 4037069

16 24 1823581 −239 · 6553 −11 · 13 · 19 · 29 · 631 · 6043 · 16451 · 29759 · 139987
·364513 · 1850837 · 3464849 · 6344729 · 26440207

15 27 123551 −2546657 −52 · 29 · 103 · 1549 · 28201 · 55933 · 243431
·1874903 · 4421117 · 6553021 · 14183149 · 39691591

16 29 5 · 72 · 1171 −7884713 −173 · 853 · 883 · 8627 · 26759 · 692929 · 3500557
·5202137 · 6065333 · 15108221 · 28512793

16 25 79 · 139 · 499 −197 · 47777 −5 · 11 · 17 · 571 · 35099 · 40639 · 48889 · 81281
·138899 · 1285429 · 8464307 · 13664309 · 17314859

16 24 −467 · 5419 5 · 434689 −7 · 103 · 109 · 2791 · 3643 · 36191 · 47581 · 99817
·401119 · 749467 · 2690497 · 2863607 · 3014203

16 25 −197 · 9391 11 · 307 · 941 −5 · 233 · 431 · 659 · 4219 · 237277 · 371341 · 820643
·2362589 · 3896323 · 14204429 · 55510211

17 26 −1 1 −11 · 23 · 31 · 131 · 281 · 311 · 601 · 3331 · 8059
·8761 · 163411 · 1164091 · 2101681 · 4027511 · 11144321

Table 1: Some possible attack parameters for SIKEp434

ℓ > 2. However, looking at the Microsoft challenge parameters can already illustrate the freedom
that being able to compute efficiently (ℓ, ℓ)-isogenies for ℓ ̸= 2 can provide: We open up more options
for attack parameters, including in this case in which one requires very little brute-force (only
repeating Steps 4 to Step 5 up to 4 times): A = 2110, B = 367, A′ = 2a−j = 2108, B′ = 3b−i = 348,
e = 1, and

f = 5 · 7 · 13 · 61 · 73 · 431 · 593 · 607 · 881 · 36997 · 139393 · 227233.

The extension field degrees for all the factors of f are given by

[k, q] =[8, 5], [12, 7], [24, 13], [60, 61], [144, 73],

[860, 431], [1184, 593], [303, 607], [220, 881],

[73992, 36997], [34848, 139393], [56808, 227233].

NIST Level I parameters: To select attack parameters for SIKEp434, that is, with A = 3137 and
B = 2216, we rely on De Feo’s algorithm for parameter selection outlined in the ‘precomputation
step’ complexity analysis of Section 2. Table 1 shows some outputs of De Feo’s algorithm for
SIKEp434 parameters; these represent (i, j, x, y, z) such that

x3137−i + y2216−j = z.

We leave the details on the best parameter choice to further study, as all these parameters require
a working implementation of (ℓ, ℓ)-isogenies for ℓ > 2. Note that the last entry in the table only
requires the computation of (3, 3)-isogenies, at the expense of some smoothness of f = −yz; the
largest degree of elliptic-curve isogeny required in this choice is 11144321.
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2.1.2 Computing the cofactor isogeny

The points in the kernel of a factor φq of φf will not be defined over Fp2 in general. When we
choose the value of f , as well as checking that f is smooth, we check, for each prime factor q, the
degree k of the field extension that would be required to find a point of order q.

When computing an isogeny φq : En → En+1 through which φf factors, in order to control field
extensions in the whole attack, we need to choose φq so that

• the codomain En+1 is defined over Fp2 , and

• the image points φq(P ) and φq(Q) are defined over Fp2 .

To compute large-degree isogenies, we can use the sqrtVélu method described in [1, Section 4.14],
which has complexity Õ(q1/2mk), where mk is the cost of a multiplication in Fpk . As outlined above
we expect k ≈ q on average if we allow for some freedom in the choice of f . To guide our choice of
attack parameters, we therefore take the complexity of computing our large-degree isogenies and the
images of points under these to be Õ(q3/2). However, for large k, finding an irreducible polynomial
to generate Fpk may be a bottleneck. We leave investigation into whether or not this search can be
improved using a quantum algorithm to future work.

When the minimal extension degree of the field in which the kernel points of a q-isogeny φq

are defined is large, it will be faster to instead use a variant of Kohel’s algorithm [18, Section 2.4].
Kohel’s algorithm computes the isogeny from its kernel polynomial, which, assuming E is defined
as y2 = f(x), is defined by

K(x) =
∏

(xP ,±yP )∈ker(φ)

(x− xP ) ∈ Fp2 [x];

each xP appears only once so deg(K) = (q − 1)/2. Constructing the kernel polynomial from this
definition would also require computing the extension field in which the xP live, but we can also
construct a choice for K(x) from the q-division polynomial.

The q-division polynomial for E is defined by

ψq(x) =
∏

(xP ,±yP )∈E[q]

(x− xP ) ∈ Fp2 [x],

and can either be precomputed for an E with general coefficients (e.g. a Montgomery coefficient A)
or computed recursively for a given E [29, Exercise 3.7]. In [2, Section 9] a careful analysis is given
of both approaches to computing division polynomials; evaluation of a precomputed polynomial can
be faster if q is fairly small but if q is large enough that multiplying polynomials of degree q2 will be
faster using FFT, then it will be faster to compute them directly for any given E. For these large
q, the cost of computing the division polynomial is O(q2 log q).

So, suppose we have computed the q-division polynomial, we can then factorize the degree-
(q2 − 1)/2-polynomial ψq into irreducible factors over Fp2 . If there exists an irreducible factor of
φq of degree (q − 1)/2, then we can choose this for K(x), the kernel polynomial of E, and compute
φq using Kohel’s algorithm in time O(q2). The factorization of division polynomials has been
completely described by Verdure [32]. In particular, for large k there exists at least one irreducible
factor of degree (q − 1)/2 over Fp2 .

Although factorization of large-degree polynomials is polynomial-time in log(p) and q, as q is
large the complexity of this step can easily grow to infeasible. We hope that our algorithm can
be improved by either searching for only one2 irreducible factor of degree (q − 1)/2, or by using
quantum algorithms (e.g. [12]), or both. We leave the details of this to future work.

2Since we only need an irreducible factor of degree (q−1)/2, after the “Distinct-degree factorization” stage in [12],
we can run “Equal-degree factorization” on a single square-free polynomial. However, this does not improve the
asymptotic complexity of the algorithm in our case.
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In this case, for large q, the entire cost of computing φq is Õ(q2) multiplications in Fp2 , plus a
call to a (quantum?) oracle for factoring.

2.2 Computing (ℓ, ℓ)-isogenies

In order for our algorithm to reach its full potential it is necessary to also consider integers e in
Step 1 of Algorithm 1 that do not divide B, and in particular are not necessarily powers of two. It
may also be that there is a nice parameter choice (e, i, j, f) with A a power of 2 and B a power of 3
(c.f. the attack parameter suggestions in Section 2.1.1), or one may want to consider more general
setups. In all of these cases, in Step 5 of Algorithm 1 it will be necessary to compute (ℓ, ℓ)-isogenies
for ℓ ̸= 2, which as observed above requires more research to achieve practically (for ℓ = 3 there is
however already some interesting work on this topic [6]). For this reason, we leave all instantiations
of the attack that use e not dividing B to future work and focus on the case of (2, 2)-isogenies, that
is, B = 2b and e|B. Recall that we set B′ = B2−j , where 0 ≤ j ≤ b.

In order to compute the chain of (2, 2)-isogenies whose composition is the (eB′, eB′)-isogeny Φ,
we need to able to compute three different flavours of (2, 2)-isogenies between principally polarized
abelian surfaces:

• A (2,2)-isogeny from a Jacobian of a genus 2 curve to a Jacobian of a genus 2 curve, for which
we refer to reader to [31, §2.3.1].

• A (2,2)-isogeny from a Jacobian of a genus 2 curve to a product of elliptic curves, for which
we refer the reader to [30, Proposition 8.3.1]. (This is required for the last step of Φ).

• A (2,2)-isogeny from a product of elliptic curves to the Jacobian of a genus 2 curve, for which
we refer the reader to [7] for more details. (This is required for the first step of Φ).

Upon sharing our application to breaking SIKE with Castryck and Decru, they were kind enough
to share an implementation of this step with us that they had written for their paper [7], which at
the time was not publicly available. Their implementation and description of the first step of the
(2,2)-isogeny path (ProdToJac) and of the intermediate steps (JacToJac) provided us with useful
insights, and the current (still unavailable) incarnation of our implementation of our attack now
uses Giacomo Pope and collaborator’s SageMath implementation [25] for these steps, modified only
to include the computation of the images of the 3-power torsion points.

3 Future work

Our algorithm to attack SIDH, discovered independently from the polynomial-time attack of Cas-
tryck and Decru [7] but inspired by an earlier joint project, makes no use of any special endo-
morphisms on E0 and as such can be applied to an arbitrary starting curve E0. Our attack has
complexity LA(c, 1/2), where c is some constant, however, since publishing the first version of this
paper [21], Damien Robert has published an algorithm loosely inspired by our paper and [7] which
breaks arbitrary-starting-curve SIKE in polynomial-time.

An implementation of our attack for the Microsoft challenge parameters will appear in a later
version of this paper, and if progress is made on the computation of (ℓ, ℓ)-isogenies also for the
proposed NIST level I parameters, to get some benchmark timings.

Finally, we propose some open questions, the answers to which will increase our understanding
of the reach of this attack and how to compute rescaled parameters for SIKE achieving the required
security levels with respect to this attack, assuming of course that it is possible to construct starting
curves with unknown endomorphisms to mitigate the polynomial-time attack of [7].

13



Open question 1. How can we compute the optimal choice for f , taking into account all speed-ups
available from subfield arithmetic? Can we implement an operation counter to find best trade-off?

Open question 2. The algorithm we currently use to select parameters in Step 1 of Algorithm 1,
suggested by Luca De Feo, has subexponential complexity. Can we improve this algorithm?

Open question 3. For a given new large parameter set for SIKE, starting from a curve with
no known non-integral endomorphisms, can we prove that it has 2λ-bit security? That is, can we
prove that there is no choice (e, i, j, f) for which our attack takes < 2λ multiplications in Fp2 (or
equivalent)?
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