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Abstract

We present the first non-interactive delegation scheme for P with time-tight parallel prover
efficiency based on standard hardness assumptions. More precisely, in a time-tight delegation
scheme—which we refer to as a SPARG (succinct parallelizable argument)—the prover’s parallel
running time is t+ polylog(t), while using only polylog(t) processors and where t is the length
of the computation. (In other words, the proof is computed essentially in parallel with the
computation, with only some minimal additive overhead in terms of time).

Our main results show the existence of a publicly-verifiable, non-interactive, SPARG for P
assuming polynomial hardness of LWE. Our SPARG construction relies on the elegant recent
delegation construction of Choudhuri, Jain, and Jin (FOCS’21) and combines it with techniques
from Ephraim et al (EuroCrypt’20).

We next demonstrate how to make our SPARG time-independent—where the prover and
verifier do not need to known the running-time t in advance; as far as we know, this yields
the first construction of a time-tight delegation scheme with time-independence based on any
hardness assumption.

We finally present applications of SPARGs to the constructions of VDFs (Boneh et al,
Crypto’18), resulting in the first VDF construction from standard polynomial hardness assump-
tions (namely LWE and the minimal assumption of a sequentially hard function).
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1 Introduction

In an interactive proof system, a prover interacts with a verifier in order to prove the validity of
a computational statement, with the guarantee that the verifier will be convinced if and only if
the statement is true. Since their introduction by Goldwasser, Micali, and Rackoff [GMR89], proof
systems have become one of the most fundamental concepts in cryptography and more generally
in theoretical computer science.

In this work, we focus on the application of proof systems to computational delegation, where
a weak verifier outsources a potentially expensive computation to a powerful yet untrusted prover,
who performs the computation and returns the output as well as a proof certifying its validity. We
focus on delegating deterministic polynomial-time computation with the non-trivial requirement
that the proof system is succinct [Kil92, Mic00], meaning that the verifier’s running time and
the length of the communication between the prover and verifier is essentially independent of the
running time of the delegated computation.

Interest in succinct delegation has exploded in recent years due to its many applications in
internet-scale, distributed protocols like blockchains and cryptocurrencies. Two key features for
enabling these applications are non-interactivity and public verifiability. Non-interactivity stipu-
lates that a proof consists of just a single message to the verifier, and public verifiability means
that any third party can trust the validity of the proof. Such delegation schemes are known
as publicly-verifiable SNARGs (succinct, non-interactive, arguments), and have seen immense
effort in recent years from both the applied and theoretical communities in cryptography (see,
e.g., [PHGR13, BCG+14, BCC+17, BBHR19, CJJ21]).

On the theory side, constructing publicly verifiable SNARGs from standard assumptions was
previously elusive for many years, partially because of inherent bottlenecks for constructing SNARGs
for all of NP from falsifiable assumptions [GW11]. However, the beautiful recent works of Kalai,
Paneth, and Yang [KPY19] and Choudhuri, Jain, Jin [CJJ21] have shown that when restricting to
languages in P, SNARGs can be constructed from falsifiable assumptions, including most recently
from the polynomial hardness of LWE [CJJ21].

On Parallel Prover Efficiency. Aside from improving the underlying assumptions, a major
bottleneck for the adoption of SNARGs has been prover efficiency. There have been many works
(e.g., [BC12, CFH+15, WZC+18, HR18, BHR+20, BHR+21] to name a few) focused on improving
the asymptotic efficiency of the prover as much as possible under various assumptions. In the
setting of delegation, this means that the running time of the prover should ideally be as close
as possible to the time t of the delegated computation, which is inherent for the prover to even
compute the output itself. To date, the best asymptotic constructions achieve quasi-linear overhead
by the prover, with running time t · poly(λ, log t) where λ is the security parameter.

Recently, the work of Ephraim, Freitag, Komargodski, and Pass [EFKP20b] showed how to
construct parallelizable delegation schemes (which they call SPARKs) where the prover has parallel
running time t + poly(λ, log t) (i.e., with only additive overhead and no multiplicative overhead)
using only a modest number, poly(λ, log t), of processors. Their protocols even work for NP, but at
the cost of either assuming SNARKs (succinct non-interactive arguments of knowledge) for NP—
that are only known to exist from non-standard and non-falsifiable assumptions—or only achieving
an interactive protocol (assuming just standard collision-resistant hash functions). Thus, the state-
of-the art leaves open the question of whether we can get a non-interactive delegation scheme, even
just for P, with tight prover efficiency from standard (falsifiable) assumptions:

Can we construct publicly verifiable, succinct, parallelizable delegation schemes for P
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from standard, falsifiable, assumptions?

We refer to such publicly verifiable, succinct, parallelizable delegation schemes as SPARGs (succinct
parallelizable arguments) for P, following the notation of SPARKs from [EFKP20b].

In this work, we resolve the above-mentioned problem, constructing the first non-interactive
delegation schemes where the prover has t+ poly(λ, log t) parallel running time using poly(λ, log t)
processors based on standard assumptions. More precisely, our construction only relies on the
polynomial hardness of the LWE assumption.

Theorem 1.1 (SPARGs for P from LWE; Informal (see Corollary 5.2)). Assuming hardness of
LWE, there exists a non-interactive SPARG for P.

We additionally present strengthenings of the above theorem—including a SPARG for compu-
tations that are themselves parallelized, and obtaining so-called time-independent SPARGs, where
the prover and verifier need not know the length t of the computation in advance—and present
corollaries of these results, including the first construction of a Verifiable Delay Function (VDF)
[BBBF18] from standard (polynomial) hardness assumptions.

1.1 Our Results in More Detail

Let us present our results in more detail. As a starting point for our work, we observe that SPARGs
for P can be constructed based on the notion of RAM delegation, following the framework of the
SPARK construction due to [EFKP20b], so long as the RAM delegation scheme satisfies quasi-
linear prover efficiency. RAM delegation is known under various assumptions, and most recently
was shown secure under LWE [CJJ21]. Unfortunately, known RAM delegation schemes do not
satisfy the quasi-linear prover efficiency that we desire. Therefore, our main result is to show how
to adapt existing schemes to satisfy a notion of efficiency that will suffice for our construction.

Updatable RAM Delegation. We start by defining the notion of an updatable RAM delegation
scheme with quasi-linear efficiency. From an efficiency perspective, this is weaker than a (non-
updatable) RAM delegation scheme satisfying quasi-linear efficiency. Nevertheless, we show that
it suffices for our purposes, and can be constructed by relying on the RAM delegation scheme
of [CJJ21].

At a high level, an updatable RAM delegation scheme is a delegation scheme for RAM com-
putations that allows for incremental updates and proofs for intermediate pieces of the overall
computation. Specifically, a prover can perform part of a computation and obtain the resulting
state as well as some additional auxiliary information aux corresponding to this section of the com-
putation. Given aux, it can then continue to update the computation to a new state, producing
a new piece of auxiliary information aux′. The auxiliary information aux for any sub-computation
can be used as a “witness” to efficiently compute a proof for the corresponding piece of the compu-
tation. (We note that the proof is for a deterministic computation, but the auxiliary input/ witness
is provided for efficiency purposes.) This enables a large computation to be updated and proved
in different pieces, and in particular allows for taking advantage of the prover’s knowledge of aux,
from running the computation, in order to generate a proof with significantly less overhead.

In more detail, we require an updatable delegation scheme with the following efficiency proper-
ties:

• Efficiency of computing aux: Given a RAM configuration cf, auxiliary information auxcf ,
and time t, the new configuration cf ′ and its associated auxiliary information auxcf′ that
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results after t steps of computation starting from cf can be computed in time t + poly(λ)
using poly(λ) parallel processors.

• Efficiency of generating proofs given aux: Given auxiliary information aux correspond-
ing to a t step transition from initial configuration cf to final configuration cf ′, a proof of
correctness for this transition can be generated in time t · poly(λ, log t). For an updatable
scheme, we refer to this as quasi-linear prover efficiency. (Note that this is a stronger effi-
ciency requirement than the one used in [CJJ21], where the prover running-time would grow
with |cf|.)

Let us highlight that any RAM delegation scheme is also an updatable one (by simply letting aux
be empty), but does not necessarily satisfy quasi-linear overhead when generating proofs given
aux. Using the auxiliary information, aux, is helpful for us in achieving this prover efficiency. In
particular, we show how to combine the ideas behind the SNARG construction of [CJJ21] with the
updatable hash tree from [EFKP20b] to get an updatable RAM delegation from LWE with the
desired efficiency.

Theorem 1.2 (Efficient Updatable RAM Delegation; Informal (see Theorem 4.4)). Assuming
hardness of LWE, there exists a succinct, publicly verifiable, updatable RAM delegation scheme
with quasi-linear prover efficiency.

SPARGs from updatable RAM delegation. Next, we show how to adapt the SPARK con-
struction of [EFKP20b] to rely on any updatable RAM delegation scheme with quasi-linear prover
efficiency, rather than relying on SNARKs with quasi-linear prover efficiency. We highlight that the
construction in [EFKP20b] relied on the proof of knowledge property of the underlying delegation
scheme (i.e., the SNARK in use) and it is not known how to replace it with just a SNARG. This is
why we resort to using the more complicated object of an updatable RAM delegation scheme with
quasi-linear prover efficiency.

Theorem 1.3 (SPARGs from Updatable RAM Delegation; Informal (see Theorem 5.1)). Assume
the existence of a succinct, publicly verifiable, updatable RAM delegation scheme with quasi-linear
efficiency. Then there exists a non-interactive SPARG for P.

Theorem 1.1 then follows as a direct corollary of Theorems 1.2 and 1.3.
We also extend this result to the setting of parallel computations. Specifically, given a com-

putation that can be done in time t with p processors, we show a SPARG that preserves depth
by running in time t + poly(λ, log(t · p)), while only using p · poly(λ, log(t · p)) processors. This is
in contrast to the naive approach of using the above SPARG for sequential computations, which
would naively result in parallel time that depends on the total work t · p rather than the depth
t. We obtain this result by extending the updatable RAM delegation scheme above to be depth
preserving for parallel computations—that is, both the parallel time and processors used by the
delegation scheme scale quasi-linearly with that of the computation.

Theorem 1.4 (SPARGs for Parallel Computations; Informal (see Theorem 6.9)). Assume the exis-
tence of a succinct, publicly verifiable, updatable RAM delegation scheme for parallel computations
that is depth-preserving. Then there exists a non-interactive SPARG for polynomial-time, parallel
computations.
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Time-independent SPARGs. SPARKs [EFKP20b] were initially defined such that in order to
prove a t-time computation, the prover was provided the time bound t as input. It is perhaps
natural to assume that this might be necessary in order to “fit the computation of the proof”
in during the computation itself. However, in many scenarios, the time bound t may not be a
priori known. To circumvent this issue, we define the notion of a time-independent SPARG, which
satisfies the same properties as a SPARG except that the prover and verifier no longer get t as
input. We additionally show how to extend the above construction to achieve a time-independent
SPARG from LWE:

Theorem 1.5 (Time-independent SPARGs from LWE; Informal (see Corollary 7.4)). Assuming
hardness of LWE, there exists a non-interactive, time-independent SPARG for P.

As far as we know, this yields the first construction of a SPARG with time-independence based
on any hardness assumption (that is, a similar result was not known from the stronger notion of
SPARKs).

To prove Theorem 1.5, we define the notion of a time-tight, updatable RAM delegation. Essen-
tially, this is a RAM delegation as above, but with the prover efficiency properties of a SPARG,
where the final configuration is not known at the start of proof generation. We emphasize that the
prover for such a scheme is given the time bound t as input in order to compute the proof in time
t+poly(λ, log(t)). We then give a generic transformation that starts with any time-tight, updatable
RAM delegation scheme (that is given the time bound t as input) and constructs a non-interactive,
time-independent SPARG.

Theorem 1.6 (Time-independent SPARG transformation; Informal (see Theorem 7.3)). Given
any time-tight, updatable RAM delegation scheme, there exists a non-interactive, time-independent
SPARG for P.

Furthermore, a minor adaptation of our construction of a SPARG for P from LWE (Theo-
rem 1.1 above) satisfies the notion of a time-tight, updatable RAM delegation scheme, which gives
Theorem 1.5 above.

Applications: Verifiable Delay Functions from Standard Assumptions. Finally, we ob-
serve that one of the main applications of non-interactive SPARKs for P from [EFKP20b] was to
constructing verifiable delay functions [BBBF18]. Roughly speaking, a VDF is publicly-verifiable
function that can be computed in time t, but cannot be noticeably sped up with poly(t) processors.
VDFs have important applications in generating trusted randomness in distributed applications
(see [BBBF18, Chi, Eth] for more details).

[EFKP20b] showed that any function f can be made verifiable essentially “for free”, by com-
puting the output of the f and a proof certifying its correctness using a SPARK for f , and that a
VDF can be obtained by simply computing any sequential function—that is, a function that can
be computed in time t, but cannot be noticeably sped up with poly(t) processors—with a SPARK.
But given that non-interactive SPARKs are only known based on non-falsifiable assumptions, this
only gave new VDF constructions assuming non-falsifiable assumptions (namely, the existence of
SNARKs for NP).

We note, however, that the transformation in [EFKP20b] actually does not rely on the argu-
ment of knowledge property of the underlying SPARK and a SPARG for parallel P computations
suffices. Consequently, we can achieve the same results but replacing the SNARK assumptions
from [EFKP20b] with just polynomial hardness of LWE.
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Theorem 1.7 (VDFs from LWE and any sequential function; Informal (see Corollary 8.2)). As-
suming the (polynomial) hardness of LWE and the existence of a sequential function, there exists a
verifiable delay function.

Let us highlight that the assumption that sequential functions exist is necessary for the con-
struction of a VDF—any VDF trivially is a sequential function. On top of this minimal assumption,
our construction only assume the hardness of LWE. As far as we know, before our work, it was
not known how to get VDF (in the plain model, without random oracles) based on any standard
polynomial hardness + the assumption that sequential functions exist. In particular, previously,
VDFs were known based on either (a) iteratively-sequential functions1 and SNARGs [BBBF18], (b)
sequential functions and SNARKs for NP [EFKP20b], or (c) sub-exponential LWE assumption and
the sequentiality of repeated squaring in a group of unknown order [LV20], or various construction
in the random oracle model [Pie19, Wes19, EFKP20a]. We emphasize that in terms of practical effi-
ciency, our construction does not compete with constructions in the ROM (such as [Pie19, Wes19]),
but our goal here is simply to show that VDFs as a primitive can be based on standard hardness
assumptions.

As pointed out in [EFKP20b], since a SPARG makes any deterministic computation verifiable,
our transformation applies to sequential functions that may satisfy other properties like memory-
hardness. We note that memory-hardness is useful for ASIC-resistance in VDFs, making so at-
tackers cannot easily invest in special-purpose hardware and gain an advantage in computing the
VDF quicker. Informally, a memory-hard sequential function is a sequential function that addition-
ally requires a large memory footprint throughout the computation (for a more formal treatment,
see, e.g., [DGN03, DNW05, AS15, ACK+16, ABP17, ABP18, DLP18] for examples of different
definitions and constructions of candidate memory-hard functions). It follows that our techniques
can be used to achieve a memory-hard VDF based on the hardness of LWE and the existence
of any memory-hard sequential function (and our result is not tailored to any specific definition
of memory-hardness). Previously, the only known construction of a memory-hard VDF was the
construction in [EFKP20b] which relied on the existence of a memory-hard sequential function and
SNARKs for NP.

1.2 Related Work

We first focus on the computational assumptions needed for SNARGs and RAM delegation. In the
setting of information-theoretic security, the celebrated protocols of Goldwasser, Kalai, and Roth-
blum [GKR15] and Reingold, Rothblum, and Rothblum [RRR21] first showed how to construct
interactive delegation protocols for bounded depth and bounded space computations, respectively.
Shifting our attention to simple 2-round protocols or non-interactive protocols in the CRS model
with only computational security, Kalai, Raz, and Rothblum [KRR14] construct privately verifi-
able delegation for any time and space Turing machines based on the quasi-polynomial hardness of
LWE. Kalai and Paneth [KP16] extend this to the setting of privately verifiable RAM delegation,
and it was shown how to implement this approach based on polynomial-hardness assumptions by
Brakerski, Holmgren, and Kalai [BHK17]. Holmgren and Rothblum [HR18] show how to implement
the approach of [KRR14] for RAM delegation with a specific no-signaling MIP with quasi-linear
overhead in both time and space, based on the subexponential hardness of LWE. Kalai, Paneth, and
Yang [KPY19] achieved the first publicly verifiable RAM delegation scheme based on a new falsfiable
decisional assumption on groups with bilinear maps. Jawale, Kalai, Khurana, and Zhang [JKKZ21]

1An iteratively sequential function f has the property that the t-wise composition f (t) of f cannot be computed
faster than computing f sequentially t times, even with poly(t) processors.
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show how to achieve publicly verifiable delegation for bounded depth computation from subexpo-
nential hardness of LWE. Finally, Choudhuri, Jain, and Jin [CJJ21] construct publicly veriable
RAM delegation from polynomial hardness of LWE.

We note that implicit in the works of [KP16, BHK17, KPY19, CJJ21], building off the techniques
of [KRR14], is the notion of a quasi-argument for a class of restricted NP statements. This is an
argument system that has a special “no-signaling” extractor for certain NP languages that is used
to prove soundness of RAM delegation statements relative to an associated hash tree.

Efficient PCPs. We note that many SNARGs and delegation protocols are based on probabilisti-
cally checkable proofs (PCPs) building off the protocols of Kilian [Kil92] (in the interactive setting)
and Micali [Mic00] (in the random oracle model using the Fiat-Shamir heuristic [FS86]). Originally
PCP constructions required polynomial length and prover running time [BFLS91, ALM+98]. Ben-
Sasson and Sudan [BS08] gave the first construction of a PCP with quasi-linear overhead, meaning
that a PCP for a t-time (possibly non-deterministic) computation had overall size t · polylog(t).
Subsequent work by [BCGT13] give a highly parallelizable PCP that can be computed in parallel
time polylog(t) with t processors, after computing the computation tableau. Interactive oracle proofs
(IOPs) are a multi-round generalization of PCPs, introduced in [RRR21] and [BCS16], that are also
useful for delegation protocols. There is a fruitful line of work [BCG+17, BCG+19, RR20] resulting
in linear-size IOPs useful for delegation, although the prover still runs in at least quasi-linear time.

Parallelism in proofs. The works of [BBBF18] and [DGMV20] first introduced the technique of
computing a proof in parallel to a computation in order to improve the prover’s parallel efficiency.
They first applied this technique to iteratively sequential functions, which necessarily have low
space, in the context of verifiable delay functions. The work of [EFKP20b] shows how to apply this
technique generically to any, not necessarily space bounded, computation. However, their generic
transformation requires interaction or relies on SNARKs in the non-interactive setting.

2 Techniques

In this section, we give an overview of our SPARG constructions. Our constructions will be for
RAM computations, so we start with a brief overview of our model. Recall that a RAM machine
M is an algorithm with random access to a (possibly long) string D in memory, and keeps a small
local state state. At each step of computation, M reads or writes to a location in memory and
updates its local state. We say that M(x) outputs y in t steps if, when the initial memory of M
contains x, after t steps the local state has a special halting symbol and y is written to memory.
The configuration cf of a RAM machine at any step of the computation consists of its memory and
local state, and hence fully describes the computation at that point.

2.1 SPARGs from LWE

In this section, we overview our construction of SPARGs for P. Our starting point is the non-
interactive SPARK construction for NP due to [EFKP20b]. Recall that to construct SPARGs,
we are only concerned with proving soundness for deterministic, polynomial-time computations,
whereas the SPARK construction is an argument of knowledge, which is a stronger notion that
in turn relies on assumptions that are too strong for our setting. We start by giving an overview
of the SPARK construction, and then discuss how we modify it to achieve SPARGs from weaker
assumptions.
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SPARK construction. We start by overviewing the SPARK construction of [EFKP20b], hence-
forth the EFKP construction, which relies on a SNARK for NP. To prove that a M(x) = y in t
steps, recall that the goal is for the SPARK prover to run in time at most t+polylog t. The high-level
approach of EFKP is to split the computation into sub-computations, and give a SNARK proof for
each sub-computation in parallel to computing and proving subsequent steps of the computation.

To illustrate this, suppose that the underlying SNARK requires time 2k to prove k steps of RAM
computation. Then, the largest portion of computation that can be computed and proven by time
t is k = t/3, as one can spend time t/3 computing these steps of the computation, and then spend
time 2t/3 proving that it was done correctly, thus obtaining a proof π1 of the first t/3 steps by time
t. The observation of EFKP (following prior works [BBBF18, DGMV20]) is that this idea can be
applied recursively. Specifically, while π1 is being proven, they continue by computing and proving
1/3 of the remaining computation in parallel to proving π1. Overall, they show that this results
in roughly O(log t) “threads”, where each thread computes 1/3 of the remaining computation, and
then begins a SNARK proof while the next parallel thread starts computing. Thus, the full SPARK
proof consists of O(log t) SNARK proofs, all completing by time t. More generally, if the underlying
SNARK could prove k steps of computation in time α? ·k, then this would result in having roughly
α? · log t proofs (and parallel processors).

While this approach seems promising, it only gives a SPARK for computations with bounded
memory size. In particular, it requires giving proofs about intermediate states of the RAM com-
putation. Since the intermediate state of a RAM computation is its configuration cf, the above
approach requires using the SNARK to prove statements of the form (M, cf, cf ′, k) stating the M
transitions from configuration cf to configuration cf ′ in time k. However, the size of each configu-
ration scales with the memory size of M , and thus giving SNARK proofs for these statements will
depend on the memory size as well.

To remedy this, rather than proving that M transitions from cf to cf ′ in k steps, EFKP show
that the prover can maintain an updatable digest rt to the configuration at any given time step,
and prove that there exists a sequence of k updates to rt, according to M , that result in rt′. At
a high level, the digest corresponds to a Merkle tree of the memory at each time step based on a
collision-resistant hash function, and each time M reads or writes to memory, the corresponding
update is done to the Merkle tree. At the end of the computation, the prover can simply open the
bits of the output y with respect to the final digest, which the verifier can then check efficiently.

Crucially, each update to the digest can be certified with a very short proof (corresponding to
its authentication path in the Merkle tree). Therefore, they rely on a SNARK for the NP language
Lupd that where an instance (M, rt, rt′, k) has a witness consisting of the k updates to the Merkle
tree. The relation for this language has complexity roughly k · poly(λ), as it only requires running
M for k steps and checking that each update was done correctly. It is therefore feasible to have a
SNARK where the prover overhead for proving Lupd statements is independent of t. Specifically,
EFKP instantiate this framework with a SNARK with quasilinear overhead, where an instance
corresponding to k updates can be proven in time roughly k · poly(λ, log k).

Relaxing SPARKs to SPARGs. Given that the EFKP construction relies on an underlying
argument of knowledge, a natural approach to constructing a SPARG is to replace the underlying
SNARK with a SNARG, and try to prove soundness for computations in P.

Consider the following straightforward attempt to prove soundness with this approach. Suppose
for contradiction that there exists an adversary A who succeeds at convincing the verifier of a false
statement (M,x, t, y) where M(x) 6= y. Following the EFKP construction, this means that A
outputs sub-proofs π1, . . . , πm, where the ith sub-proof certifies that M transitions from digest
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rti−1 to digest rti in some number of steps. Ideally, we would like to say that if the statement itself
is false, then there must be a sub-proof corresponding to a false statement, hence breaking soundness
of the underlying SNARG. However, we cannot claim that this is the case—all the sub-proofs could
correspond to true statements if one of them contains a collision in the hash function.

Specifically, it could be the case that for some i, the sequence of updates used by A to prove
that rti−1 transitions to rti corresponds to a “divergent” path of computation, and in reality M
makes a different sequence of updates after the step corresponding to rti−1.

The proof of [EFKP20b] relied on the extractability of the SNARK to show that if all sub-
statements were true, then A must be able to produce a hash collision at the point where the
computation diverged, in contradiction. However, if we are only relying on a SNARG, we have no
way to extract the collision and reach a contradiction.

Nevertheless, we have one advantage over the EFKP approach which we have not yet used—we
are only trying to prove soundness for deterministic computations, whereas their proof had to hold
even for non-deterministic ones. In particular, this means that given M,x, we can actually compute
the true sequence of updates in polynomial time, and thus determine exactly in which sub-proof
the computation diverged.

This does not quite solve the problem, because we still have no way to extract a collision between
rti−1 and rti. However, it does capture an important soundness property, which will turn out to be
the key component of our construction. Observe that the above proof of soundness would succeed
if the underlying SNARG satisfied the following:

No PPT adversary A can produce a proof π, a transcript of the computation of M as
well as digests rt, rt′ and some number of steps k such that (a) the verifier accepts π as a
proof for (M, rt, rt′, k), (b) rt is the correct digest at the beginning of the computation,
but (c) rt′ is not the correct resulting digest after k steps.

This definition morally captures the fact that A should not be able to find a collision in the hash
function, but does not require extractability to actually produce that collision. In particular, it can
be viewed as a notion of soundness relative to a CRH, where the verifier only sees a digest of the
statement, yet cannot be convinced on digests of false statements.

From RAM Delegation to SPARGs. We observe that this property stated above is in fact
the notion of soundness for RAM delegation schemes. In particular, prior work (such as [KP16,
KPY19, CJJ21]) adopted this as a meaningful notion of soundness for RAM delegation to capture
the setting where a weak verifier, who may have pre-computed a digest of a large database, delegates
a computation on that database and can verify the updated digest after the computation to enable
future outsourcing on the updated database.

Putting everything together, to prove soundness of the EFKP construction for deterministic
computations, it suffices to rely on a RAM delegation scheme with the above soundness notion,
rather than a SNARK. By relying on the recent RAM delegation scheme due to [CJJ21], we obtain
a sound scheme based only on LWE.

Updatable Delegation. There is one remaining caveat to the construction, which is that by
replacing the SNARK with a delegation scheme, we have to ensure that each sub-proof computed
using the delegation scheme can be done with low prover overhead so that the resulting construction
satisfies the tight efficiency requirements of a SPARG.

Looking at the delegation scheme due to [CJJ21], in order to delegate the computation of M
starting at configuration cf, the scheme first computes a Merkle tree of cf (analogously to the Merkle
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tree approach in [EFKP20b]), and then proceeds to compute the updates to the Merkle, and prove
their correctness using underlying building blocks. We observe that other than computing this
initial Merkle tree, the delegation prover has quasilinear overhead. Specifically, we show that when
delegating a statement corresponding to k steps of computation, everything other than computing
the initial Merkle tree can be done in time k · poly(λ, log k).

To put this into context in our scheme, recall that we will be breaking up the computation of
M into sub-computations, indexed by configurations cf0, cf1, . . . , cfm, for which we will then use
the delegation scheme to prove that cfi−1 transitions to cfi for each sub-computation i. However,
if the delegation prover then hashes down each cfi at the beginning of each sub-proof, the running
time of our SPARG will then rely on the memory size, which as mentioned above, does not suffices
for us.

We resolve this by using another piece of the EFKP construction, specifically their Merkle tree
instantiation. Recall that they gave a construction, termed a concurrently updatable hash function,
which enabled updating the Merkle tree in parallel to the computation with very little overhead. We
observe that if the Merkle tree in the RAM delegation scheme is instantiated with a concurrently
updatable hash function, then when computing each configuration cfi, we can compute in parallel
the Merkle tree digest of cfi, and give this to the delegation prover as auxiliary input.

At a high level, this captures a notion which we call updatability for RAM delegation schemes,
since while running the computation from computing a proof that cfi−1 transitions to cfi, the
Merkle tree for cfi computed during the proof can be given to the next prover.

We show that the [CJJ21] scheme satisfies this notion of upatability when instantiated with the
hash tree due to [EFKP20b], and that this notion of updatability suffices to achieve the required
prover efficiency from the delegation scheme in order to instantiate the EFKP framework and obtain
a SPARG for P.

2.2 SPARGs for Parallel Computations

The above framework gives a SPARG for sequential computations—namely, a proof system that
runs in time t+ poly(λ, log t) for t-time computations. However, it is very natural to consider the
setting where the computation itself can be parallelized. In this setting, we show that our SPARG
construction can be extended to prove parallel computations while preserving the depth of the
computation. Specifically, for computations that take time t with p processors, our SPARG will
run in time t+ poly(λ, log(t · p)) with p · poly(λ, log(t · p)) processors.

To achieve this, recall that the prover in our SPARG construction above splits the computation
into many sub-computations. For each sub-computation, the prover runs the computation in par-
allel to updating a hash tree to its memory. It then uses an updatable RAM delegation scheme to
prove correctness of this sub-computation. Efficiency of the resulting construction relies on the fact
that (1) computing M(x) and updating the hash tree can be done in parallel in time essentially t,
and (2) the delegation scheme has quasi-linear overhead, so proving any sequence of k steps takes
time k · poly(λ, log k).

To extend this to the setting of parallel computations, we observe that the prover can run the
computation in time t with p processors. Moreover, the hash tree due to [EFKP20b] allows for
concurrent updates, and so the updates can be done in parallel to the computation. However, a
challenge arises when using the updatable RAM delegation scheme in this setting, as we have to
prove correctness of concurrent updates. Specifically, for a sub-computation corresponding to k
steps, the concurrent updates to the hash tree result in k updates each to p locations in memory (as
opposed to a single location each, as in the sequential case). The efficiency of our updatable RAM
delegation scheme depends, in particular, polynomially on the time to verify a single update, which
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is poly(p) when considering concurrent updates. Therefore, this would not result in a delegation
scheme with quasilinear prover efficiency—instead, the prover time would depend polynomially on
p, which is undesirable when p is large.

The dependence on the time to verify a single update is inherent to our updatable RAM dele-
gation construction, and in particular stems from the underlying building blocks used in [CJJ21].
Therefore, it is not immediately clear how to move forward—in order to avoid any delays with
running the main computation, we have to perform concurrent updates, but the delegation scheme
is incompatible with these updates.

To solve this, we observe that we can transform concurrent updates to sequential ones—namely,
k concurrent updates on p locations each can be turned into k ·p updates, each to a single location.
We call a hash tree with this property sequentializable. At a high level, we do so by taking advantage
of the Merkle tree structure, and the fact that an authentication path for an individual location
` can be derived from the updates to a set of locations containing `. We form the authentication
paths corresponding to the sequential updates level by level, resulting in time poly(λ, log p) to
sequentialize a concurrent update when using p processors. Therefore, for a sub-computation with
k steps, we can sequentialize the updates in parallel time k ·poly(λ, log p). Crucially, sequentializing
the updates does not delay the main computation of M(x)—instead, the sequentialization can be
seen as part of the “proof” phase, before calling the RAM delegation prover.

After sequentializing the updates, a k-time sub-computation results in k · p individual updates.
We are not quite done, because applying our updatable RAM delegation scheme to prove correctness
of these updates would result in time quasilinear in the total work k · p, rather than simply k. As
the final step in our construction, we observe that the computation of the RAM delegation proof
can be parallelized as well. Specifically, recall that our RAM delegation scheme is given the updates
as a witness to the computation, and is only required to compute the proof. When given T = t · p
sequentialized updates, it runs in quasilinear time T · poly(λ, log T ). As a final observation, we
show that for any number of processors p, the RAM delegation prover can be made to run in time
T/p · poly(λ, log T ) with p processors, when given these updates. At a high level, this follows due
to the fact that the underlying updatable delegation scheme treats the T updates as a batch of
T individual statements for which it proves correctness. In particular, we show that the proofs
of these statements (and the information tying them together) can be computed in parallel, thus
giving the desired efficiency.

Putting everything together, the combination of sequentializing the updates and running the
parallelized delegation prover gives the desired quasilinear efficiency for our RAM delegation scheme,
which in turn suffices to get a SPARG for parallel computations.

2.3 Time-Independent SPARGs

We consider the application of SPARGs to time-tight RAM delegation, where by time-tight we
mean a delegation protocol that satisfies the same efficiency properties as a SPARG. So far, we
have assumed that the time bound t for the computation is provided as input. This seems like
the a natural requirement as we have to compute the proof of the computation completely during
the computation itself. We show that this is actually not necessary, at least in the case of non-
interactive delegation. In particular, we show how to construct a non-interactive SPARG for any
t-time computation M(x) where t does not need to be provided as input—we refer to this as a time-
independent SPARG—given a non-interactive SPARG that does take as input the time bound t.
(In fact, we actually use a time-tight RAM delegation scheme in order to break up the computation
into different parts, which we will discuss more below.)

As a first attempt, what if the prover computed a SPARG for all possible time bounds T? The
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Figure 1: An example of the time-independent SPARG prover for a computation M(x) that takes
t = 11 steps. A proof π(a,b) corresponds to a RAM delegation proof that M on input x starts at
configuration cfa and ends at configuration cfb. The horizontal axis represents parallel time, and
the prover is computing all proofs along a given vertical slice in parallel. Each separate thread
corresponds to a memory block that is being updated and outputting proofs for the corresponding
intervals at the same time. The additive overhead per interval is indicated in red, but can be
computed separately while the subsequent update continues. The final proof output by the prover
consists of the sub-proofs corresponding to the 1’s in the binary representation of the actual time t.
For t = 11 shown in the picture, this corresponds to the 8, 2, and 1 digits, so the prover eventually
outputs the proofs π(0,8), π(8,10), and π(10,11). All other proofs are discarded, and are thus greyed
out in the picture above.

prover could run the computation on the side, see when it halts, and use the proof corresponding to
the actual time bound t, ignoring all other proofs. If we compute all the SPARG proofs in parallel,
then the prover will compute a proof in the desired parallel time, but this requires using more than
t processors! Even worse, we don’t necessarily know a priori a bound on what the running time
will be, so we would even need to use potentially super-polynomially many processors to handle all
polynomial-time computations. Instead, we want to compute the time-independent SPARG using
only a modest, say fixed polynomial poly(λ) in the security parameter, overhead in the number of
processors required.

In an effort to reduce the number of processors used, the prover could instead compute proofs
only for the time bounds T = 20, 21, 22, 24, . . . , 2λ, assuming that the polynomial time bound t is at
most 2λ for large enough security parameters λ. Now we only have a λ+ 1 overhead in the number
of processors required. However, if in computing M(x) we find out that the true time bound t is
not close to a power of 2, then we may have a factor of 2 over head in the time to compute the
next largest proof that encapsulates the full computation. Even a small multiplicative overhead is
not allowed for SPARGs, so this approach unfortunately does not achieve what we want.

In order to maintain optimal parallel time with only a small overhead in the number of processors
used, we leverage the techniques described in Section 2.1 to break down the proof of the entire
computation into proofs of various sub-computations while still guaranteeing soundness. This is
why we actually need to start with RAM delegation for our underlying scheme so that breaking
the proofs into many parts does not scale with the space of the underlying computation.

The idea of the full construction is to compute proofs for the time bounds T = 20, 21, . . . , 2λ,
but after each proof of size 2i finishes, to continue to compute proofs in regular intervals of size
2i that continue that computation (using the same associated memory). So, for every size 2i and
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every j ≥ 1, we will have a proof corresponding to the interval of the computation between steps
(j − 1) · 2i and j · 2i. For any such starting point a and ending point b, we let π(a,b) denote the
associated proof. Ignoring efficiency for now, this means that after the machine M(x) halts at
time t, we can simply collect m proofs π(0,a1), π(a1,a2), . . . , π(am−1,t) that cover the entire interval
from 0 to t via intervals of powers of 2. These intervals will then simply correspond to the binary
representation of t, so there will be m ≤ λ proofs in total.

In order to make this approach work, we need a specific, extremely efficient, underlying RAM
delegation scheme. Concretely, we need it to be the case that we can have a thread of computation
that computes proofs for all size 1 intervals (0, 1), (1, 2), (2, 3), . . . , (t − 1, t) without blowing up
the complexity of the protocol. Fortunately, our main SPARG construction actually gives us an
updatable delegation scheme that is also time-tight. Essentially, this is an updatable delegation
scheme where an update of any sequence of k steps also outputs a proof of correctness for those k
steps. Furthermore, these updates and proofs can be pipelined together efficiently, ensuring that
computing a proof for all size 1 intervals in a row as above does not blow up the overall complexity
nor delay the output of later proofs in the sequence (namely the proof for the interval (i, i+ 1) still
finishes at time i+ 1 + poly(λ), where the delay is independent of i or t).

We finish by arguing why the protocol is succinct and satisfies the optimal parallel time re-
quirement of a SPARG while using only a fixed poly(λ) number of processors. For succinctness,
recall the number of proofs that the prover needs to output is simply the number of 1s in the
binary representation of the actual time bound t. Assuming t < 2λ, this implies that the number
of delegation proofs m that need to be sent at most λ, so there is at most a λ overhead in the size
of the proofs for the time-independent SPARG over the underlying RAM delegation scheme.

Analyzing the running time of the prover, we note that by assumption, the underlying updatable
delegation scheme has only an additive overhead of some polynomial β(λ) to compute proofs with
its updates, using at most β(λ) processors for each update procedure. All of the required proofs
finish by time t+β(λ), so the prover satisfies the required runtime efficiency, we just need to bound
the number of processors used. As each update/ proof computation uses β(λ) processors, we just
need to bound the number of update procedures happening at any given time. To do so, consider
any T steps into the computation. All proofs π(a,b) for a final configuration cfb where b < T−λ·β(λ)
have already been completed, as described above, so there are most λ · β(λ) proofs in progress for
ending configurations at or before cfT . Also, for each size 2i, there is at most one proof of size 2i

that could have been started and ends after cfT . This implies that are at most λ+λ ·β(λ) updates
computed at any given time, so the prover requires only a poly(λ) number of processors in total.

We emphasize that this transformation fundamentally relies on the fact that the underlying
delegation scheme is “time-tight” like a SPARG. Otherwise the overlap among all of the proofs
would be too great, and the protocol would require too many processors.

3 Preliminaries

Basic notation. For a distribution X, we denote by x ← X the process of sampling a value x
from the distribution X. For a set X , we denote by x ← X the process of sampling a value x
from the uniform distribution on X . Supp(X) denotes the support of the distribution X. For an
integer n ∈ N we denote by [n] the set {1, 2, . . . , n}. We use PPT as an acronym for probabilistic
polynomial time.

A function negl : N→ R is negligible if it is asymptotically smaller than any inverse-polynomial
function, namely, for every constant c > 0 there exists an integer Nc such that negl(λ) ≤ λ−c for all
λ > Nc. Two sequences of random variables X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally
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indistinguishable if for any non-uniform PPT algorithm A = {Aλ}λ∈N there exists a negligible
function negl such that

∣∣Pr
[
Aλ(1λ, Xλ) = 1

]
− Pr

[
Aλ(1λ, Yλ) = 1

]∣∣ ≤ negl(λ) for all λ ∈ N. For a
language L with relation RL, we let RL(x) denote the set of witnesses w such that (x,w) ∈ RL. We
say that an ensemble {Xn}n∈N is uniformly computable if there exists a Turing Machine M such
that M(1n) outputs Xn in time polynomial in n.

3.1 RAM Model

RAM computation consists of a machine M which keeps some local state state and has read/write
access to memory D ∈ ({0, 1}λ)∗ (equivalent to the tape of a Turing machine). Here, λ is the
security parameter and length of a word, and we let n ≤ 2λ be the number of words in memory
required to run M (see below). When we write M(x) to denote running M on input x, this means
that M expects its initial memory D to consist of x followed by zeros. The computation of M(x)
is defined in steps, where at each step the machine either reads or writes to a location in memory
and updates its local state. We assume that when M writes to a memory location `, it receives the
word previously at `. Without loss of generality, we assume that the state can hold O(log n) bits,
or a constant number of words, and that the local state at each time step includes the word read
in the previous step. We also assume that n words in memory can be allocated and initialized to
zeros for free.

The computation halts when the local state consists of a special halting value with the output y
of M(x) written at the start of the memory. We define the running time of a RAM machine M as
the number of accesses it makes to its working memory, which corresponds to the number of steps.

We define the configuration cf at any step of the computation to include the local state and
full memory at that step. This representation allows us to refer to RAM machines that transition
from a configuration cf to configuration cf ′ in some number of steps, as the configuration has all
information required to perform a step.

In order to measure the complexity of RAM computation, we note that on a fixed CPU archi-
tecture, RAM computation can be modeled where the program M and input x are both given in
memory and executed using a fixed machine U . We therefore fix any universal RAM machine U
and define the complexity of running M(x) to be the number of steps required to run U(M,x). As
all of our RAM computation will be in this model, for simplicity we say that M(x) requires access
to n words of memory if U(M,x) uses a total of n words in memory to write M , x, and all the
memory used by the computation. Henceforth, we say that M(x) halts in time t if running U on
memory M ||x||0n−|M,x| for t steps results in a halting state.

Parallel RAM Computation. We will also consider computations in the parallel RAM (PRAM)
setting, where each step of the machine can potentially branch to multiple processes that have ac-
cess to the same memory D. We assume that all processes in a PRAM computation have local
registers that can be used to communicate the results of each step.

Unless otherwise stated, we consider RAM machines to be in the exclusive-read exclusive-write
(EREW) model. This is the most restrictive PRAM model, where if some process accesses a
location (either a read or a write) in memory while another process accesses the same location
(either a read or a write), there are no guarantees for the resulting effect. For some of our results,
we give constructions in the concurrent-read exclusive-write (CREW) model, where processes that
read concurrently from a single location both receive the value at that location, but there are no
guarantees on concurrent writes.

To model the complexity of a (P)RAM machine M , we consider two complexity measures: work
and depth. Specifically, the work done by M(x) consists of the total amount of computation done
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by all processors measured in steps (or equivalently memory accesses). The depth of M(x) is the
number of sequential steps until M halts, where steps that occur in parallel are counted as one
step.

3.2 Universal Languages

In this section we define a universal language for deterministic RAM computation with long output,
following the universal relation introduced by [BG08].

Definition 3.1. The universal language LU is the set of instances (M,x, y, L, t) where M is a
deterministic RAM machine such that M(x) outputs y within t steps, and additionally |y| ≤ L.
We extend this to parallel computations by letting LUpar denote the set of instances (M,x, y, L, t, p)
where M is instead a PRAM machine that outputs in t parallel steps using p processors.

Additionally, we will be considering intermediate portions of RAM computation, where the
universal RAM machine U (see Section 3.1) transitions from configuration cf to cf ′ in t steps.

Definition 3.2. The universal RAM delegation language Ldel is the set of instances (cf, cf ′, t) such
that the universal RAM machine U transitions from configuration cf to configuration cf ′ in t steps.
We extend this to PRAM delegation by letting Ldel

par denote the set of instances (cf, cf ′, t, p) such that
U transitions from cf to cf ′ in t parallel steps with p processors.

3.3 Verifiable Delay Functions

In this section, we recall the definition of Verifiable Delay Function [BBBF18]. This definition is
adapted from [EFKP20b].

Definition 3.3. A Verifiable Delay Function (VDF) is a tuple of algorithms (Gen, Sample,Eval,
Verify) with the following syntax:

• pp← Gen(1λ): A PPT algorithm that on input a security parameter λ in unary, outputs public
parameters pp.

• x← Sample(1λ, pp): A PPT algorithm that on input a security parameter λ in unary, and public
parameters pp, outputs an value x.

• (y, π)← Eval(1λ, pp, x, t): An algorithm that on input a security parameter λ in unary, public
parameters pp, and a value x and integer t, outputs a value y and a proof π. We let Eval1,Eval2
denote the functions that compute only the first or second output of Eval, respectively, and
require that Eval1 is deterministic.

• b← Verify(1λ, pp, x, t, (y, π)): A PPT algorithm that on input a security parameter λ in unary,
public parameters pp, value x, integer t, value y and proof π, outputs a bit b indicating whether
to accept or reject.

We require the following properties.

• Completeness. For every λ, t ∈ N, pp in the support of Gen(1λ), x ∈ {0, 1}∗,

Verify(1λ, pp, x, t,Eval(1λ, pp, x, t)) = 1.
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• Soundness. For every non-uniform PPT algorithm A = {Aλ}λ∈N and polynomial T , there
exists a negligible function negl such that for every λ ∈ N, it holds that

Pr

 pp← Gen(1λ)
(x, y′, π′)← Aλ(pp)
y = Eval1(1

λ, pp, x, T (λ))
:

Verify(1λ, pp, x, T (λ), (y′, π′)) = 1
∧ y 6= y′

 ≤ negl(λ).

• Honest Evaluation. There exist polynomials p, q such that for any λ ∈ N, pp in the support of
Gen(1λ), and x in the support of Sample(1λ, pp), it holds that Eval(1λ, pp, x, t) can be computed
in time t+ p(λ, log t) with q(λ, log t) processors.

• ε-Sequentiality. For all non-uniform PPT algorithms A0 = {A0,λ}λ∈N, there exists a negligible
function negl such that for all λ ∈ N,

Pr


pp← Gen(1λ)
A1 ← A0(pp)
x← Sample(1λ, pp)
(t, y)← A1(x)

:
Eval1(1

λ, pp, x, t) = y
∧ depth(A1) ≤ (1− ε) · t

 ≤ negl(λ).

We note that the main differences between various definitions of VDFs is the running time of the
honest evaluator. For example, the definition of [BBBF18] requires that VDF.Eval can be computed
in time exactly t, whereas other works (e.g., [Pie19, EFKP20a, EFKP20b]) relax this. We allow
for additive slack in this evaluation time. Regardless of the specific running time of VDF.Eval, we
emphasize that the hardness of a VDF can be measured by considering the “gap” between honest
evaluation and sequentiality, which intuitively measures how much of a speedup an adversary can
gain over an honest evaluator. We also note that our definition of soundness is slightly weaker than,
e.g., [EFKP20a], as we only require soundness on a priori fixed polynomials T .

We additionally define a sequential function.

Definition 3.4. A Sequential Function is a tuple of algorithms (Gen,Sample,Eval) with the syntax
of the corresponding algorithms (VDF.Gen,VDF.Sample,VDF.Eval1) in a VDF, that satisfy honest
evaluation and sequentiality, and for which there exists a polynomial p such that for any λ, t ∈ N,
pp in the support of Gen(1λ), and x ∈ {0, 1}?, the output length of Eval(1λ, pp, x, t) is at most
p(λ, log t).

We remark that the requirement on the output length of a sequential function is necessary
for the function to be non-trivial. In particular, without this requirement, the sequential function
may simply output 1t. We also note that a VDF implies a sequential function. This follows by
considering the first output of the VDF evaluation function to be the output of the sequential
function. The resulting sequential function has bounded output due to the efficiency of verification
in a VDF.

3.4 RAM Delegation

In this section, we define RAM delegation, which will be the main building block for our SPARG
construction. Following [BHK17, KP16, KPY19, CJJ21], we define RAM delegation to capture
the following scenario: A verifier wishes to delegate a RAM computation M with some initial
configuration cf, such that running M for t steps starting with cf results in configuration cf ′. As M
may potentially use a large amount of memory, these configurations could be very long, and thus
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the approach in recent works has been to consider a verifier that only receives digests rt, rt′ of the
configurations cf, cf ′.

Recently, [KPY19, CJJ21] showed delegation schemes for RAM where soundness holds when
the verifier only receives these digests, and moreover suffice to delegate general computation with
Turing machines. We adopt this notion for this work. As discussed in Section 3.1, we will assume
that the machine M is already part of the memory in cf and thus give a definition for a fixed
universal RAM computation with the universal machine U .

Definition 3.5 (RAM Delegation). A publicly verifiable, succinct RAM delegation scheme for Ldel

is a tuple of probabilistic algorithms (Del.S,Del.D,Del.P,Del.V) with the following syntax:

• (crs, dk)← Del.S(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs and a digest key dk. We assume without loss of generality that crs contains
dk.

• rt = Del.D(dk, cf): A deterministic algorithm that on input a digest key dk and a RAM config-
uration cf outputs a digest rt.

• π ← Del.P(crs, (cf, cf ′, t)): A probabilistic algorithm that on input a common reference string
crs, and a statement (cf, cf ′, t), outputs a proof π.

• b ← Del.V(crs, (rt, rt′, t), π): A PPT algorithm that on input a a common reference string crs,
common reference string crs, statement (rt, rt′, t), and a proof π, outputs a bit b indicating
whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (cf, cf ′, t) ∈ Ldel with t, n ≤ 2λ where n is the memory
size of the configurations, it holds

Pr


(crs, dk)← Del.S(1λ)
rt = Del.D(dk, cf)
rt′ = Del.D(dk, cf ′)
π ← Del.P(crs, (cf, cf ′, t))

: V(crs, (rt, rt′, t), π) = 1

 = 1.

• Soundness: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N, polynomial-time
computable function T , and polynomial T such that T (λ) ≤ T (λ) for all λ ∈ N, there exists a
negligible function negl such that for every λ ∈ N, it holds that

Pr

 (crs, dk)← Del.S(1λ)
(cf, cf ′, rt, rt′, π)← Aλ(crs, dk)

:

V(crs, (rt, rt′, t), π) = 1
∧ (cf, cf ′, t) ∈ Ldel

∧ rt = Del.D(dk, cf)
∧ rt′ 6= Del.D(dk, cf ′)

 ≤ negl(λ),

where t = T (λ).

• Collision resistance: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N, it holds that

Pr

[
(crs, dk)← Del.S(1λ)
(cf, cf ′)← Aλ(crs, dk)

:
cf 6= cf ′

∧ Del.D(dk, cf) = Del.D(dk, cf ′)

]
≤ negl(λ).
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• Succinctness: There exist polynomials q1, q2, q3 such that for any λ ∈ N, (crs, dk) in the support
of Del.S(1λ), (cf, cf ′, t) ∈ Ldel, and proof π in the support of P(crs, (cf, cf ′, t)), it holds that

• |Del.V(crs, (rt, rt′, t), π)| ≤ q1(λ, log t) and

• |π| ≤ q2(λ, log t).

• Del.D(dk, cf) is computable in time |cf| · q3(λ) and has output length length λ.

3.5 SPARGs

In this section, we define SPARGs for P based on the notion of SPARKs introduced in [EFKP20b].
We note that while they do not restrict to computations with t ≤ 2λ steps, we require this as it is
standard in related notions (e.g., RAM delegation) and required for our construction.

Definition 3.6 (Non-interactive SPARGs for P). A Non-interactive Succinct Parallelizable Ar-
gument for a language L ⊆ LU is a tuple of probabilistic algorithms (G,P,V) with the following
syntax:

• crs ← G(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs.

• (y, π)← P(crs, (M,x,L, t)): A probabilistic algorithm that on input a common reference string
crs, and a statement (M,x,L, t), outputs a value y and a proof π.

• b← V(crs, (M,x, y, L, t), π): A PPT algorithm that on input a common reference string crs, a
statement (M,x, y, L, t), and a proof π, outputs a bit b indicating whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (M,x, y, L, t) ∈ L where M has access to n ≤ 2λ words
in memory and t ≤ 2λ,

Pr

 crs← G(1λ)
(y, π)← P(crs, (M,x,L, t))
b← V(crs, (M,x, y, L, t), π)

: b = 1

 = 1.

• Soundness for P: For all non-uniform polynomial-time provers P? = {P?λ}λ∈N and every poly-
nomial T , there is a negligible function negl such that for every λ ∈ N, it holds that

Pr

[
crs← G(1λ)
((M,x, y, L), π)← P?λ(crs)

:
V(crs, (M,x, y, L, t), π) = 1
∧ (M,x, y, L, t) 6∈ L

]
≤ negl(λ),

where t = T (λ).

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, crs in the support of
G(1λ), (M,x,L, t) ∈ L where M uses n ≤ 2λ words in memory, t ≤ 2λ, and (y, π) in the
support of P(crs, (M,x,L, t)), it holds that

• workV(crs, (M,x, y, L, t), π) ≤ q1(λ, |(M,x)|, L, log t),

• |y| ≤ L, and

• |π| ≤ q2(λ, L, log t).
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• Optimal prover depth: There exists polynomials q1 and q2 such that for all λ ∈ N and
(M,x, t, L, y) ∈ L where M has access to n ≤ 2λ words in memory and t ≤ 2λ, it holds
that

depthP(crs, (M,x,L, t)) = t+ q1(λ, |(M,x)|, L, log t)

and the total number of processors used by P is in q2(λ, log t).

If the above holds for L = LU , we say that (G,P,V) is a non-interactive SPARG for polynomial-time
RAM computation.

4 Updatable RAM Delegation

In this section, we discuss the main building block for our construction—updatable RAM delegation
with quasilinear overhead and local opening. Our starting point will be the recent delegation
scheme due to Choudhuri, Jain, and Jin [CJJ21], henceforth referred to as the CJJ construction.
In Section 4.1, we start by giving an overview of their construction, and show that it satisfies our
definition of RAM delegation. Then, in Section 4.2, we analyze the CJJ prover overhead, which,
as we show, depends on the memory size of the computation and therefore is not quasi-linear. To
remedy this, we introduce the notion of updatable delegation, and show that the CJJ scheme can
be instantiated as an updatable delegation scheme with quasi-linear prover overhead. Finally, in
Section 4.3, we extend this notion to satisfy a local opening property, which will be necessary for
our construction.

4.1 The CJJ Delegation Scheme

We start by giving an overview of the CJJ delegation scheme. We note that they present their
construction for a specific RAM machine M , but we simply treat this as the universal RAM machine
U .

The CJJ construction relies on the following building blocks:

• A hash tree that supports local reads and writes. This can be instantiated from collision-
resistant hash functions.

• A no-signalling somewhere-extractable commitment scheme, with a locality parameter ` cor-
responding to the size of extracted sets, which in particular determines the efficiency of the
commitment.

• A non-interactive batch argument (BARG) for NP. This is an argument where k instances
of a language can certified with a proof that only depends sub-linearly on k.

At a high level, their construction follows an approach in recent works (see, e.g., [KP16, KPY19,
EFKP20b]) which uses a locally updatable hash tree (based on Merkle trees) to succinctly prove
that each step of RAM computation was done correctly. Specifically, to prove that a RAM machine
transitions from configuration cf to configuration cf ′ in t steps, they run the computation while
simultaneously maintaining a hash tree of the memory at each step. Each step can then be verified
succinctly (in particular in time independent of |cf|) by verifying succinct local openings to the hash
tree. To turn this approach into a full-fledged delegation scheme, previous works have employed a
combination of succinct proof systems with various extractability properties to show soundness.

In the CJJ construction, they follow this framework. After running the computation along with
computing a short opening to the hash tree at each step, they give a no-signalling commitment
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c to the sequence of t updates to the hash tree. They then prove, using a BARG, that each
step of the computation was done correctly and consistently. Specifically, the BARG is for the
relation computed by the circuit Cstep that on input an index i and openings to c corresponding to
the ith step of computation, checks that (1) these openings are consistent with c, (2) correspond
to a valid step of computation, and (3) are valid openings to the hash tree. To show that this
construction is sound, they rely on a combination of BARG soundness, the no-signalling extraction
of the commitment scheme, and collision resistance. They show that this results in a scheme for
(deterministic) RAM delegation which can be based solely on LWE.

Next, we discuss the differences between the notion of RAM delegation satisfied by this con-
struction, and Definition 3.5.

Dependence on t. The CJJ scheme gives delegation for a fixed time bound t, and in particular
the setup algorithm depends on t. We observe that it suffices for the setup algorithm to assume a
fixed upper bound of 2λ on t. Regarding efficiency, the crs size, proof length, and running time of
the verifier are all bounded by a fixed polynomial poly(λ, log t). Thus, from an efficiency standpoint,
replacing t with 2λ in the setup phase still results in a succinct argument.

Regarding correctness, t is used in two places in the setup algorithm. First, it is used to sample
the key for the no-signalling commitment, because it determines the length of messages that the
commitment scheme is required to support. The construction of the commitment scheme is based
on [HW14], and is essentially a Merkle tree composed with fully homomorphic encryption (FHE)
scheme, where FHE evaluation is done on each pair of sibling nodes to determine the value of their
parent node. To do so, a separate FHE key is required for each level. It thus suffices to simply
generate λ such keys, as there will be at most log t ≤ λ levels. It follows that the functionality of
the commitment scheme is preserved even without prior knowledge of the message length.

The second place where t is used by the setup algorithm is when sampling public parameters
for BARG. The BARG construction, also given in [CJJ21], relies on a BARG for 2i statements for
i = 1, . . . , log t, and uses a priori knowledge of t to generates the CRS for each scheme. Similar to
the case of the commitment scheme, it suffices to generate λ keys for this upfront, where the ith
CRS will be for a BARG for 2i statements.

Putting everything together, it follows that the setup for the CJJ construction can be made
independent of t. In order to support this change, we give t to the prover and verifier in the clear,
as it will no longer be implicit in the CRS.

Soundness for polynomially-bounded T . In the CJJ scheme, the soundness property re-
quires that for every PPT adversary Aλ and polynomial T , the probability of Aλ successfully
proving a T (λ)-step false statement (that is, a statement (cf, cf ′, T (λ)) where running the machine
starting at configuration cf for T (λ) steps does not result in configuration cf ′) is negligible. For
technical reasons, we will require soundness to hold even when T is not a polynomial, as long as it
is both polynomial-time computable and polynomially bounded. The CJJ scheme directly extends
to hold in this case.

Delegation for arbitrary computation. The final difference between the CJJ construction
and our definition is that the construction gives a delegation scheme for an a priori fixed RAM
program M . This is because the setup algorithm for their scheme depends on |M |. As mentioned
above, we will be using this for the universal machine U with an a priori fixed size. We therefore
omit the size of the RAM machine to the setup algorithm.
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Putting everything together, it follows that the CJJ scheme satisfies our notion of RAM dele-
gation. As their scheme is based on LWE, the following holds.

Theorem 4.1 ([CJJ21]). Assuming the hardness of LWE, there exists a publicly verifiable, succinct
RAM delegation scheme for Ldel.

4.2 Updatable Delegation with Quasilinear Overhead

For our SPARG construction, we will be concerned with delegation schemes with tight prover
efficiency. In this section, we analyze the prover efficiency of the CJJ construction, and then show
that it can be made quasilinear in t when the prover is additionally given a witness for the RAM
computation. Along the way, we introduce the notion of Updatable Delegation, which enables the
desired prover efficiency and may be of independent interest.

We start by looking at the efficiency of each building block in the CJJ scheme individually.

• Hash tree: The hash tree used in [CJJ21] is effectively a Merkle tree based on a collision
resistant hash function. Computing the hash tree of a given configuration cf can be done in
time |cf| · poly(λ), but when given the hash tree already in memory, updating a word in the
tree can be done in time logarithmic in the size of the memory of the RAM program, and so
can be done in time poly(λ).

• BARG: Recall that the BARG enables proving k instances of an NP relation computable by
a circuit C. At a high level, the BARG prover in the construction due to [CJJ21] does the
following:

1. For each i ∈ [k], it first computes a PCP πi for the i’th statement. This takes time
k · poly(λ, |C|). Let L ∈ poly(λ, |C|) denote the length of a single PCP.

2. It then commits columnwise to the PCPs. Creating L commitments to k bits each takes
time L · k · poly(λ) (similar to below, the commitment is a variation on a Merkle tree,
where committing can be done in time linear in the committed message).

3. It then applies a correlation-intractable hash to the circuit C and commitment. As
shown in [CJJ21], the hash can be evaluated in time poly(λ, log k, |C|).

4. Next, it samples PCP queries for a single PCP using randomness derived from the
correlation-intractable hash. They use a PCP requiring poly(λ, log |C|) queries that can
be sampled in time poly(λ, |C|).

5. For each PCP, it then opens the query locations in the commitments. For each PCP,
this corresponds to opening a bit in poly(λ, log |C|) commitments. As each value can
be opened in time poly(λ, log k) due to the Merkle-tree structure of the commitment,
putting everything together this takes time k · poly(λ, log k, log |C|).

6. Finally, it recurses by running a BARG for k/2 instances, where they show that the
circuit for the smaller BARG has size poly(λ, log k, log |C|). Overall, there are log k
recursions.

Putting everything together, the BARG prover runs in time k · poly(λ, |C| , log k).

• No-signalling somewhere-extractable commitment: The no-signalling commitment construc-
tion is parameterized by an integer `, which determines the number of bits extractable from
the commitment scheme. For a fixed parameter `, the construction consists of ` independent
Merkle trees. Each Merkle tree consists of an FHE encryption of the committed message at
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the leaves, and uses FHE evaluation to compute the value of each node based on the values
of its child nodes. Thus, computing the commitment to a message of length N can be done
in time ` ·N · poly(λ), because it requires computing ` Merkle trees, which each require en-
crypting N bits and performing N FHE evaluations. Moreover, local openings to a single
bit in this commitment can be computed and verified in time ` · poly(λ, logN), as openings
consist of an authentication path in each of the ` Merkle trees.

Putting everything together, to delegate a t-time computation using the CJJ scheme, the prover
(a) creates a hash tree of the starting configuration, (b) runs the computation while simultaneously
updating the hash tree, (c) commits to the sequence of updates to the hash tree, where each update
additionally contains some efficiently computable auxiliary information, (d) creates local openings
in the commitment as a witness to each step of computation, and (e) proves that the computation
is correct using a BARG for the circuit Cstep. From the above analysis, (a) takes the time to
run Del.D(dk, cf) when cf is the starting configuration, (b) takes time t · poly(λ), (c) takes time
` · N · poly(λ) where ` is the length of a single update and N is the length of the committed
message, (d) takes time (t · `) · ` · poly(λ, logN) to open ` bits for each of the t steps, and (e)
takes time t · poly(λ, |Cstep| , log t). It remains to discuss the specific values |Cstep|, `, and N used
in the protocol. The parameter ` corresponds to the length of the values needed verify a single
step of computation, by computing that step and verifying the openings in the hash tree, and so
` ∈ poly(λ) (for a fixed polynomial that depends on the size of the universal RAM machine U).
The committed message consists of these values for each of the t steps, and thus N = t · `. Finally,
the circuit Cstep consists of computing a single step of the RAM program and verifying the openings
to the hash tree and commitment, which together takes time ` · poly(λ, logN) ∈ poly(λ, log t). All
together, this shows that the prover runs in time

Time
(
Del.P(1λ, (cf, cf ′, t))

)
≤ Time (Del.D(dk, cf)) + t · poly(λ) + ` ·N · poly(λ) + t · `2 · poly(λ, logN) + t · poly(λ, |Cstep| , log t)

≤ |cf| · poly(λ) + t · poly(λ) + t · poly(λ) + t · poly(λ, log t) + t · poly(λ, log t)

∈ |cf| · poly(λ) + t · poly(λ, log t).

Achieving quasilinear efficiency. For our SPARG construction, it will be crucial that the run-
ning time of the delegation prover Del.P does not depend on n, the memory size of the RAM pro-
gram. Therefore, the CJJ prover efficiency does not suffice for us, since the running time of the
prover on (cf, cf ′, t) depends linearly on |cf|.

We observe that this dependence on |cf| is due to the fact that the prover is given an arbitrary
starting configuration cf, and must compute a Merkle tree on the memory given in cf. For our
SPARG construction, we are not concerned with RAM computation from an arbitrary starting
point cf. Instead, we will start from an initial (short) configuration cf0, for which we can afford to
run in time proportional to |cf0| to generating the initial hash tree.

However, this does not entirely solve the problem, because rather than proving that cf0 results
in the final configuration cf ′ after t steps of computation, we will instead determine “midpoints”—
namely, configurations cf1, . . . , cfm, where cfm = cf ′. We will then rely on the delegation scheme to
prove statements of the form (cf0, cf1, k1), (cf1, cf2, k2), . . . , (cfm−1, cfm, km), that is, that starting
at cfi−1 and running for some number of steps ki results in configuration cfi. The main idea below
is that when we prove each statement (cfi−1, cfi, ki), we will already have information about cfi−1
from proving the previous statement. In particular, we will show that we can already have the
Merkle tree for cfi−1 in memory when we start the ith statement, rather than creating it from
scratch.
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This exact setting was addressed in [EFKP20b], where they showed that the hash tree can be
instantiated with collision-resistant hash functions to achieve the following guarantees:

1. Computing the hash tree for the initial configuration can be done in time |cf0| · poly(λ).

2. Given a hash tree in memory corresponding to any configuration cf, it holds that the compu-
tation can be run for any number of steps k while updating the hash tree with only poly(λ)
additive overhead. This implies that if cf results in cf ′ after k steps of computation, and we
have already computed a hash tree for cf, then we can compute the hash tree for cf ′ in time
k + poly(λ).

The requirements for the hash tree of [CJJ21] (which is based on [KP16]) are satisfied by that
of [EFKP20b] (see Section A.1 for the definition, and [EFKP20b] for a more in-depth discussion and
comparison between various definitions). Therefore, we observe that the CJJ construction satisfies
the following notion.

Definition 4.2. Consider a RAM delegation scheme (Del.S,Del.D,Del.P,Del.V) with the following
syntax modifications and additional algorithm Del.Update:

• (rt, tree) = Del.D(dk, cf): The digest algorithm additionally outputs a value tree.

• (rt′, tree′, w) = Del.Update(dk, t, tree): The update algorithm takes as input a digest key dk,
integer t, and a value tree, and outputs a digest rt′, a value tree′ and a witness w.

• π ← Del.P(crs, (cf, cf ′, t), w): The prover additionally takes as input a witness w. We require
that completeness is preserved when Del.P receives the witness w computed by Del.Update.

We note that tree and w can be communicated as pointers to memory. In particular, this implies
that Del.D(dk, cf) still runs in time |cf| · poly(λ).

We say that the scheme is β-updatable if for any λ ∈ N, statement (cf, cf ′, t) ∈ Ldel, keys
(crs, dk) in the support of Del.S(1λ), (rt, tree) = Del.D(dk, cf), and (rt′, tree′, w) = Del.Update(dk, t,
tree),

(rt′, tree′) = Del.D(dk, cf ′)

and Del.Update runs in t+ β(λ) steps with β(λ) processors. Furthermore, for any two consecutive
updates of length t1 and t2 starting at initial state (rt0, tree0), let (rt1, tree1, w1) = Del.Update(dk,
t1, tree0) and (rt2, tree2, w2) = Del.Update(dk, t2, tree1). Then, the output (rt2, tree2, w2) can be
computed in time t1 + t2 + β(λ). When β(λ) ∈ poly(λ), we say the scheme is updatable.

We emphasize that Del.P no longer has access to the hash tree in memory, as this would create
memory conflicts between Del.P and Del.Update. Instead, we can view Del.Update as the algorithm
that runs the computation on the hash tree, and collects all of the information needed to prove
correctness—namely, the hash tree updates, which make up the witness w. The prover Del.P can
then use this witness to form the proof. In the following definition, we quantify the prover efficiency
in an updatable delegation scheme.

Definition 4.3. An updatable RAM delegation scheme satisfies α-prover efficiency if for all λ ∈ N,
(crs, dk) in the support of Del.S(1λ), statement (cf, cf ′, t) ∈ Ldel using n ≤ 2λ memory with t ≤ 2λ,
(rt, tree) = Del.D(dk, cf), and (rt′, tree′, w) = Del.Update(dk, t, tree), it holds that

Time
(
Del.P(crs, (cf, cf ′, t), w)

)
= α(λ, t).
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Based on the above discussion, the CJJ scheme can be made to satisfy updatability and quasi-
linear prover efficiency. Specifically, we will instantiate the hash tree in the CJJ construction with
that of [EFKP20b], and modify the delegation scheme as follows:

• Del.D(1λ, cf) will output rt as before, as the root of the hash tree, and set tree to be the full
hash tree.

• Del.Update(dk, t, tree) will start with the hash tree in tree, run the computation for t steps
while updating the hash tree, and then output (rt′, tree′, w) where rt′ is the resulting root,
tree′ is the updated tree, and w is the list of all authentication paths for the t updates.

• Del.P(crs, (cf, cf ′, t), w) will use the updates in w to run the prover algorithm, rather than
computing them from scratch.

By combining the above discussion with Theorem 4.1, we get the following.

Theorem 4.4. Assuming the hardness of LWE, there exists a publicly verifiable, succinct, and
updatable RAM delegation scheme (Del.S,Del.D,Del.P,Del.V,Del.Update) for Ldel with α-prover
efficiency for α(λ, t) ≤ t · poly(λ, log t).

Proof sketch. For completeness, we note that the CJJ prover only requires the hash tree updates
to form the values that make up the proof. Thus, completeness follows when the prover receives
the witness w computed by Del.Update(dk, t, tree) where (rt, tree) ← Del.D(1λ, cf). For the prover
efficiency, it follows from the discussion and analysis of the CJJ scheme above that Del.P runs in
quasilinear time, given a witness consisting of updates to the computation.

For the updatability property of the resulting scheme, the efficiency of Del.Update follows from
that of the [EFKP20b] hash tree construction. For the correctness of Del.Update, consider any
configuration cf, and let cf ′ be the configuration resulting from t steps of computation. We want
to show that for (rt, tree) = Del.D(dk, cf), it holds that (rt′, tree′) given by Del.Update(dk, t, tree) is
equal to Del.D(dk, cf ′).

This follows from the updatability property of the hash tree in [EFKP20b]. We note that the
property we require here is slightly stronger than what they show, yet nonetheless follows from their
construction. The updatability property in [EFKP20b] (called update completeness), required that
after creating an initial hash tree for cf and doing the sequence of t updates to get to cf ′, the
resulting tree could be locally opened to any value consistent with the configuration cf ′. Here, we
require that after creating an initial hash tree to cf and performing the updates, the resulting tree
is identical to the one that would have been generated had we created a hash tree for cf ′.

Nevertheless, the [EFKP20b] construction satisfies this property. Specifically, the algorithm for
hashing cf first does an initialization step to hash an empty configuration, and then does an update
to all non-⊥ positions in cf. Let us denote these by S. The update algorithm modifies all of the
ancestors of nodes in S, denoted ancestors(S), in the hash tree.

Let us denote the positions changed when going from cf to cf ′ by S′. Hashing cf and then updat-
ing to cf ′ therefore results in generating the initial (empty) tree, doing an update to positions in S
by writing to ancestors(S), and then doing an update to positions in S′ by writing to ancestors(S′).
Conversely, hashing cf ′ corresponds to generating the initial (empty) tree, and then doing an up-
date to positions in S ∪ S′ by writing to ancestors(S ∪ S′). Since ancestors(S) ∪ ancestors(S′) =
ancestors(S ∪S′), and the values written are deterministic from the child values, one can show that
this results in identical trees.
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4.3 Local Opening

Given a RAM delegation scheme in which the verifier receives digests of the full configuration,
we will also require a scheme with a very natural local opening property: a set of locations can
be locally opened with respect to a digest, providing a short proof of the opening. As most RAM
delegation schemes employ an underlying Merkle tree, these are amenable to efficient local openings
whenever the Merkle tree is already in memory. We define the local opening property as follows.

Definition 4.5. An updatable RAM delegation scheme (Del.S,Del.D,Del.P,Del.V,Del.Update) sat-
isfies local opening with algorithms (Del.Open,Del.VerOpen) with the following syntax:

• (V, st, π) = Del.Open(dk, tree, S): On input a key dk, a tree tree, and a set of locations S,
output a set V of |S| words, a state st, and a proof π.

• b = Del.VerOpen(dk, rt, S, V, st, π): On input a key dk, a digest rt, a set of locations S, a set
of words V , a state st, and a proof π, output a bit b indicating whether to accept or reject.

As above, we note that tree can be given as a pointer to memory. We require the following properties:

• Local Completeness. Let dk be in the support of Del.S(1λ), cf be a configuration, S be an
ordered set of locations. Let (rt, tree) = Del.D(dk, cf) and (V, st, π) = Del.Open(dk, tree, S).
Then,

Del.VerOpen(dk, rt, S, V, st, π) = 1.

• Local Soundness. For all non-uniform PPT adversaries A = {Aλ}λ∈N, there exists a negligi-
ble function negl such that for all λ ∈ N, it holds that

Pr

 (crs, dk)← Del.S(1λ)
(rt, S, (V, st, π), (V ′, st′, π′)← Aλ((crs, dk))

:
Del.VerOpen(dk, rt, S, V, st, π) = 1 ∧
Del.VerOpen(dk, rt, S, V ′, st′, π′) = 1 ∧
(st, V ) 6= (st′, V ′)


≤ negl(λ).

Since the [EFKP20b] hash tree satisfies local opening, this property also extends to the dele-
gation scheme. We note that the syntactical difference between the above definition and the local
opening property in [EFKP20b] is that we include the local state st in an opening. This is due
to the nature of a RAM delegation scheme, which is concerned with a hash tree corresponding to
a RAM computation. Specifically, a digest rt in the delegation scheme above consists of a local
state st along with a hash tree digest digest. We therefore include the state here so as to make
local opening a natural extension of the collision-resistance property of RAM delegation, which
states that one cannot open a digest to two different configurations (that is, to cf = (st, D) and
cf ′ = (st′, D′) where (st, D) 6= (st′, D′)). The above definition extends this to the setting of local
opening. We can realize this definition from [EFKP20b] by defining the algorithm Del.Open, when
given a digest rt = (st, digest), to output the state st and the hash tree opening with respect to
digest. We can similarly define Del.VerOpen to accept the opening (V, st, π) with respect to rt on
locations S if and only if st matches the one given in rt and (V, π) is a valid hash tree opening for
digest on locations S. Putting everything together, we get the following corollary to Theorem 4.4.

Corollary 4.6. Assuming the hardness of LWE, there exists a publicly verifiable, succinct, and
updatable RAM delegation scheme for Ldel with local opening and α-updatable prover efficiency for
α(λ, t) ≤ t · poly(λ, log t).
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5 SPARGs for P

In this section, we give our construction of SPARGs for (sequential) RAM computations. Our
construction relies on a β-updatable RAM delegation scheme Del = (Del.S,Del.D,Del.P,Del.V,
Del.Update,Del.Open,Del.VerOpen) for Ldel with local opening and α-prover efficiency (see Sec-
tion 3.4). We use the following parameters when proving a statement (M,x,L, t).

• n ≤ 2λ is the memory used by M .

• α is the function denoting the prover efficiency of Del. We let α? , α(λ, t)/t be the multi-
plicative overhead, with respect to t, of running Del.P.

• β is the function denoting the efficiency of Del.Update.

• γ , α? + 1 is the fraction of remaining steps done in each chunk of the computation.

Theorem 5.1. Let Del be a publicly verifiable, succinct, and updatable delegation scheme for Ldel

with local opening and α-prover efficiency. Then, (G,P,V), given in Figure 5, is a SPARG for LU .
Specifically, for all λ ∈ N and (M,x, y, L, t) ∈ LU where M has access to n ≤ 2λ words in memory
and t ≤ 2λ, the following hold. Let α? be the multiplicative overhead of Del.P with respect to the
number of steps of computation. Then:

• The depth of the prover is bounded by t+L+(α?)2 ·poly(λ, |M,x|, log t) when using poly(λ)+
α? log t processors.

• The proof size is bounded by α? · poly(λ, log t).

• The work of the verifier is bounded by α? · L · poly(λ, |M,x|, log t).

By Corollary 4.6, it holds that there exists an updatable RAM delegation scheme with local
opening based on LWE where α? ∈ poly(λ, log t). Therefore, by combining Theorem 5.1 with
Corollary 4.6, we get the following corollary.

Corollary 5.2. Assuming the hardness of LWE, there exists a SPARG for LU .

We prove Theorem 5.1 by showing completeness in Lemma 5.3, soundness in Lemma 5.4, prover
efficiency in Lemma 5.8, and succinctness in Lemma 5.9.

Lemma 5.3 (Completeness). For every λ ∈ N and (M,x, y, L, t) ∈ LU where M has access to
n ≤ 2λ words in memory and t ≤ 2λ, it holds that

Pr

[
pp← G(1λ)
(y, π)← P(crs, (M,x,L, t))

: V(pp, (M,x, y, L, t), π) = 1

]
= 1.

Proof. V accepts if and only if conditions 3a, 3b, 3c, and 3d hold. Conditions 3a and 3c hold by
the completeness, updatability, and local completeness properties of the RAM delegation scheme.
Conditions 3b and 3d follow by inspection. �

Lemma 5.4 (Soundness). For any non-uniform PPT algorithm A = {Aλ}λ∈N and polynomial T ,
there exists a negligible function negl such that for every λ ∈ N, it holds that

Pr

[
pp← G(1λ)
((M,x, y, L), π)← Aλ(pp)

:
V(crs, (M,x, y, L, t), π) = 1
∧ (M,x, y, L, t) 6∈ LU

]
≤ negl(λ)

where t = T (λ).
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SPARG (G,P,V) for LU given an updatable delegation scheme with local opening (Del.S,
Del.D,Del.P,Del.V,Del.Update,Del.Open,Del.VerOpen):

• G(1λ):

1. (crs, dk)← Del.S(1λ).

2. Output pp = (crs, dk).

• P(1λ, pp, (M,x,L, t)):

1. Let cf0 be the initial configuration for M(x), which includes the (empty) local
state and M,x. Let (rt0, tree0) = Del.D(dk, cf0).

2. Compute γ as in the parameters paragraph. Initialize T := t to be the number
of steps remaining in the computation.

3. For i = 1, 2, . . ., repeat the following until T = 0:
(a) Calculate the number of steps ki to compute in this iteration. If T >

γ log T , set ki = bT/γc, and otherwise set ki = T .

(b) Compute ki steps of M starting with configuration cfi−1. Let cfi be the
resulting configuration.

(c) In parallel to Step 3b, compute (rti, treei, wi)← Del.Update(dk, ki, treei−1).

(d) Without waiting for Step 3c to halt (but after Step 3b), spawn a process
that continues to the next iteration with T = T − ki.

(e) After Steps 3b and 3c complete, spawn a parallel thread to compute τi ←
Del.P(crs, (M, cfi−1, cfi, ki), wi).

4. Let (y, st, πy) = Del.Open(dk, [L], treem), where m is the number of iterations
of the loop above.

5. Let ~rt = (rt1, . . . , rtm), ~τ = (τ1, . . . , τm), and ~k = (k1, . . . , km). Output (y, π)
where π = (~rt, ~τ ,~k, st, πy).

• V(1λ, pp, (M,x, y, L, t), π):

1. Parse π = (~rt, ~τ ,~k, st, πy).

2. Let cf0 be the initial configuration of M(x) and compute rt0 as Del.D(dk, cf0).

3. Output 1 if and only if the following hold, and 0 otherwise:
(a) Del.V(crs, (rti−1, rti, ki), τi) accepts for all i ∈ [m].

(b) ki is as defined above for each i ∈ [m], and t ≤ 2λ.

(c) Del.VerOpen(dk, rtm, [L], y, st, πy) = 1.

(d) st is a halting state, and |y| ≤ L.

Figure 2: SPARG for LU .

Proof. Assume for contradiction that there exists a non-uniform PPT adversary A = {Aλ}λ∈N,
polynomial T , and polynomial q such that Aλ breaks the soundness of the SPARG construction
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for a T (λ)-time computation with probability 1/q(λ) for infinitely many λ ∈ N, that is

Pr

[
(crs, dk)← G(1λ)
((M,x, y, L), π)← Aλ((crs, dk))

:
V(pp, (M,x, y, L, t), π) = 1
∧ (M,x, y, L, t) 6∈ LU

]
≥ 1

q(λ)
. (5.1)

For every such λ ∈ N, we will construct an adversary Bλ either against the local soundness or
soundness of the underlying RAM delegation scheme. On input (crs, dk), the algorithm Bλ does
the following.

1. Run Aλ((crs, dk)) to get ((M,x, y, L), π) and let t = T (λ). Parse π = (~rt, ~τ ,~k, st, πy). Let m
be the number of values in each of the vectors given by Aλ, and let rt0 be the digest given by
Del.D for the initial configuration of M(x).

2. ComputeM(x) for t steps by starting at the initial configuration cf0 forM(x). Let cf1, . . . , cfm
be the configurations computed at the indices corresponding to ~k, that is, cfi corresponds to
the configuration after

∑i
j=1 kj steps.

3. Compute the corresponding digests by letting (rt0, tree0) = Del.D(dk, cf0) and (rti, treei, ∗) =
Del.Update(dk, ki, treei−1) for i ∈ [m].

4. If rtm = rtm, then output (rtm, [L], (y, st, πy), (y, st, πy)) against the local soundness of the
delegation scheme, where (y, st, πy) = Del.Open(dk, treem, [L]).

5. Otherwise, let i? ∈ [m] be the smallest index where rti? 6= rti? . Output (cfi?−1, cfi? , rti?−1,
rti? , τi?) against the soundness of the delegation scheme.

To analyze the success of Bλ, we will show that whenever Aλ succeeds, the values output
by Bλ contradict either local soundness or the soundness of the underlying delegation scheme.
Specifically, when rtm = rtm, we show that Bλ breaks local soundness by outputting in Step 4, and
when rtm 6= rtm, then there exists an i? ∈ [m] which causes Bλ to output in 5 and break soundness.

More formally, we complete the proof through a sequence of claims below. We first show in
Claim 5.5 that Bλ runs in polynomial time, and thus it suffices to show that the values output by
Bλ give a contradiction. To show this, let winA denote the event in Equation 5.1. By Equation 5.1,

1

q(λ)
≤ Pr [winA ∧ rtm = rtm] + Pr [winA ∧ rtm 6= rtm] .

We then show in Claim 5.6 that Pr [winA ∧ rtm = rtm] is bounded above by the probability that Bλ
breaks local soundness. This is therefore bounded by a negligible function negl, and so

Pr [winA ∧ rtm 6= rtm] ≥ 1

q(λ)
− negl(λ) ≥ 1

2q(λ)

for infinitely many λ ∈ N. We then show in Claim 5.7 that the probability that Bλ breaks soundness
by outputting in Step 5 is at least 1/p(λ) · Pr [winA ∧ rtm 6= rtm] for a polynomial p depending on
Aλ. Combining this with the above, this implies that Bλ breaks soundness with probability at least
1/(2p(λ)q(λ)) which gives a contradiction. We proceed to show the claims.

Claim 5.5. There exists a polynomial pB such that Bλ runs in time pB(λ) for all λ ∈ N.

Proof. We show that Bλ can be implemented as a polynomial-time RAM machine. We have that
Bλ (1) runs Aλ, (2) computes M(x) for t steps, (3) compute the m digests using Del.Update, and

27



then (4) computes its output. We note that m and |M,x| are polynomially bounded as the output
length of Aλ is linear in these values, and t is polynomial by assumption.

We have that (1) runs in polynomial time and (2) takes time t. For (3), computing the initial
digest and then the sequential calls to Del.Update can be done in time |M,x| · poly(λ) + t · poly(λ)
by the updatability of the delegation scheme. For (4), computing the output requires looking
through m digests and outputting the corresponding configurations. For Bλ to be able to output
the configurations, we note that even though they may be as large as n = 2λ, the machine M
can only access t positions in memory, and so the non-accessed positions remain as 0’s. Thus, the
intermediate configurations can be represented with O(t · λ) bits rather than relying on n. Putting
everything together, we have that Bλ runs in polynomial time. �

Claim 5.6. When Aλ succeeds and rtm = rtm, then Bλ outputs values in Step 4 that violate the
local soundness of the delegation scheme. Formally,

Pr [winA ∧ rtm = rtm]

≤ Pr

 (crs, dk)← Del.S(1λ)
(rtm, [L], (y, st, πy), (y, st, πy))← Bλ(crs, dk)

:
Del.VerOpen(dk, rtm, [L], y, st, π) = 1
Del.VerOpen(dk, rtm, [L], y, st, π) = 1
(st, y) 6= (st, y)


where the first probability is over the randomness of Del.S and Aλ.

Proof. Suppose Aλ succeeds and rtm = rtm. In this case, Bλ outputs (rtm, [L], (y, st, πy), (y, st, πy))
in Step 4. Since V accepts, then Del.VerOpen(dk, rtm, [L], y, st, πy) = 1.

We claim that Del.VerOpen(dk, rtm, [L], y, st, πy) = 1 as well. To see this, note that (rtm, treem) =
Del.D(dk, cfm) by updatability, and therefore (y, st, πy) = Del.Open(dk, treem, [L]) by local com-
pleteness, which gives the above. Lastly, as rtm = rtm, both openings are accepting for the same
digest.

It remains to show that (st, y) 6= (st, y), i.e., the openings correspond to two different values. It
suffices to show that when st = st then y 6= y. When st = st and Aλ succeeds, we have that (1) st is
a halting state, since this is checked by V, and (2) (M,x, y, L, t) 6∈ LU . Together, these imply that
M(x) indeed halts in t steps with output y 6= y, which gives a contradiction. Therefore, whenever
Aλ succeeds and Bλ outputs in Step 4, the values output by Bλ contradict the local soundness of
the delegation scheme. �

Claim 5.7. There exists a polynomial-time computable function K with K(λ) ≤ T (λ) for all λ,
and a polynomial p, such that for k = K(λ),

1

p(λ)
· Pr [winA ∧ rtm 6= rtm]

≤ Pr

 (crs, dk)← Del.S(1λ)

(cfi?−1, cfi? , rti?−1, rti? , τi?)← Bλ(crs, dk)
:

Del.V(crs, (rti?−1, rti? , k), τi) = 1

(cfi?−1, cfi? , k) ∈ LU
(rti?−1, ∗) = Del.D(dk, cfi?−1)

(rti? , ∗) 6= Del.D(dk, cfi?)

 .
Proof. Let i? ∈ [m] be the smallest index with rti? 6= rti? . We start by showing that the values
output by Bλ violate soundness for a ki?-time computation, where we recall that ki? is the number
of steps in statement i? given by Aλ. Relative to the output (cfi?−1, cfi? , rti?−1, rti? , τi?) given by
Bλ, it holds that:
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1. Del.V(crs, (rti?−1, rti? , ki?), τi) because rti?−1 = rti?−1 by definition of i?, and Del.V accepts
the ith proof given by Aλ when Aλ succeeds.

2. (cfi?−1, cfi? , ki?) ∈ LU , because this corresponds to the true computation of M(x) computed
by Bλ.

3. (rti?−1, ∗) = Del.D(dk, cfi?−1) by the updatability of the delegation scheme.

4. (rti? , ∗) 6= Del.D(dk, cfi?) by definition of i? and the updatability of the delegation scheme.

Therefore, the values given by Bλ contradict the soundness of the delegation scheme for a ki?-time
computation. To break the soundness of the delegation scheme, recall that we need to show the
existence of an adversary Bλ and a polynomial-time computable, polynomially-bounded function
K(λ) such that Bλ breaks the soundness for a computation with k = K(λ) steps, whereas above
we showed that Bλ succeeds by choosing k adaptively as ki? . We note that for any λ, there are
at most m possible values of ki? , because V checks that each ki? is set correctly. Since the output
of Aλ is linear in m, then m is bounded by a fixed polynomial p(λ) corresponding to the runtime
of Aλ. It follows that there exists an i ∈ [m] such that Bλ succeeds more than a 1/m ≥ 1/p(λ)
fraction of the time on ki, that is, Bλ breaks soundness for a ki-time computation with probability
at least 1/p(λ) · Pr [winA ∧ rtm 6= rtm]. This completes the claim by defining K(λ) to calculate the
value of ki based on λ and T (λ), and noting that K(λ) is polynomially bounded by T (λ). �

This completes the proof of Lemma 5.4. �

Lemma 5.8 (Prover Efficiency). There exist polynomials q1, q2 such that for any λ ∈ N and (M,
x,L, t) ∈ LU where M has access to n ≤ 2λ words in memory, and t ≤ 2λ, it holds that

depthP(1λ, (M,x,L, t)) ≤ t+ L+ (α?)2 · q(λ, |M,x|, log t)

with q2(λ) + α? log t processors.

Proof. Given a statement (M,x,L, t), the work of the prover consists of (1) initializing values for
the computation, (2) computing and proving each sub-computation, and (3) computing its output.

For initialization, this requires computing γ as well as the initial digest rt0. The initial config-
uration consists of the empty initial state of M as well as the input x, and so by the efficiency of
the underlying delegation scheme, (rt0, tree0) can be computed in time |M,x| ·poly(λ). Computing
the parameter γ = α? + 1 requires evaluating α(λ, t) which can be computed in time polynomial
in its input length. Putting these together, initialization takes time poly(λ, |M,x|, log t). For com-
puting its output, we have that the output y is of length L and so together, everything other than
computing and proving M(x) takes time L+ poly(λ, |M,x|, log t).

For computing and proving each sub-computation, we note that the number of proofs m com-
puted by P can be bounded by m ≤ γ log t, which follows directly from [EFKP20b, Claim 6.14].
Moreover, by the efficiency of Del.Update and the quasilinear overhead of Del.P, all proofs finish
within depth t + γ2 · (log t + 1) + β(λ) with 3β(λ) + m processors by [EFKP20b, Claim 6.15].
Since γ = α? + 1, β(λ) ∈ poly(λ), and m ≤ γ log t, it follows that all sub-proofs complete within
t+ (α?)2 · poly(λ, log t) with poly(λ) + α? log t processors. �
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Lemma 5.9 (Succinctness). There exist polynomials q1, q2 such that for any λ ∈ N, and pp in the
support of G(1λ), the following hold. For (M,x,L, t) ∈ LU where M has access to n ≤ 2λ words
in memory, t ≤ 2λ, and (y, π) in the support of P(1λ, (M,x,L, t)), it holds that the proof length is
bounded by

|π| ≤ α? · q1(λ, log t).

For any (M,x, y, L, t), π ∈ {0, 1}∗ where M has access to n ≤ 2λ words in memory and t ≤ 2λ, it
holds that

workV(1λ, (M,x, y, L, t), π) ≤ α? · L · q2(λ, |M,x|, log t).

Proof. We start with bounding the proof length. The proof π contains (~rt, ~τ ,~k, st). By the efficiency
of Del, we have that each digest in rt has length λ and each proof in τ has size poly(λ, log t).
Moreover, each integer in ~k is at most t, and so requires log t bits. As there are m ≤ γ log t =
(α? + 1) · log t of each of these in the proof, everything besides st requires α? · poly(λ, log t). As st
is a local RAM state that contains a constant number of words, it follows that the proof length is
at most α? · poly(λ, log t).

Next, to bound the verifier efficiency, we have that the verifier first parses the proof, which has
length α? · poly(λ, |M |, log t) as discussed above. It then computes cf0 and rt0, which can be com-
puted in time poly(λ, |M,x|). Then, it runs Del.V for each of the m sub-proofs, which can be done
in time poly(λ, |M |, log t) by the succinctness of Del. It also checks Del.VerOpen(dk, rtm, [L], y, πy),
which runs in polynomial time in its inputs, and hence in time poly(λ, L). Lastly, it does consis-
tency checks, which take time |L| · poly(λ, log t) to check st, |y|, and t. It also checks that each
ki is correct, which requires computing γ = α(λ, t) + 1, and then, starting with T = t, iteratively
checking for each i if the number of steps remaining is greater than γ log T , and if so calculating
bT/γc. These can all be computed in polynomial time in their input length, adding a total of
m · poly(log λ, log t) work. Putting everything together and using the fact that m ≤ γ log t and
γ = α? + 1, V runs in time α? · L · poly(λ, |M,x|, log t). �

6 SPARGs for Parallel Computations

In this section, we give a SPARG construction for parallel RAM computations. Specifically, for a
computation that takes time t with p processors, we show a SPARG where the prover runs in time
proportional to the parallel time t when using p processors, rather than running in time proportional
to the total work t · p (see Definition A.7 for a formal definition).

At a high level, we will be modifying the SPARG from Section 5 as follows. Recall that the
SPARG prover runs the computation of M(x) by viewing it as a sequence of m consecutive sub-
computations. For each sub-computation, it runs Del.Update to form a witness wi that Del.P can
use to prove correctness of that sub-computation. Recall that when instantiating the updatable
delegation scheme via Section 4, the witness wi simply consists of updates to a Merkle tree corre-
sponding to the computation, and the prover Del.P uses these updates to form the proof, without
needing access to the tree or computation in memory.

To extend this to the parallel setting, we first note that the hash tree of [EFKP20b] (which we
are already using to instantiate our construction) allows for parallel updates, and so Del.Update
can perform p updates to the hash tree simultaneously with minimal overhead, and then set wi to
be the hash tree openings to the parallel updates. However, a challenge arises in that if we modify
Del.P to instead prove the correctness of t parallel updates, rather than proving correctness of t · p
sequential updates, the running time of Del.P grows polynomially in p, which we want to avoid.
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This is due to the fact that the underlying scheme depends on the time to verify a single step of
computation, which requires checking all p parallel updates at each step.

To fix this, we will show that it suffices for Del.P to first “sequentialize” the updates given in
wi—that is, transform t parallel updates into t·p sequential ones. We formalize this as a property of
the hash tree in Section 6.1, and in particular show that it can be done in time poly(λ, log p) with p
processors. We then show in Section 6.2 that when instantiating our updatable delegation scheme
with a hash tree that allows for sequentializing updates, it can be made to satisfy quasi-linear
parallel efficiency, meaning that the prover uses p processors and runs in time t + poly(λ, log(t ·
p)). Finally, in Section 6.3, we show that when instantiating our SPARG construction with this
updatable delegation scheme, it gives a SPARG for parallel computations.

6.1 Sequentializable Hash Trees

In this section, we show that parallel updates in the hash tree construction due to [EFKP20b] can
be transformed into sequential ones, with overhead essentially independent of the parallelism. We
start by defining this property.

Definition 6.1 (Sequentializable Hash Trees). A concurrently updatable hash function (H.Gen,
H.Hash,H.Open,H.Update,H.VerOpen,H.VerUpd) with β-parallel efficiency is sequentializable using
an algorithm H.Sequentialize with the following syntax:

• (~rt, ~π) = H.Sequentialize(pp, tree, S, V, τ): A deterministic algorithm that takes as input public
parameters pp, a hash tree tree, an ordered set S ⊆ [n], a tuple V of words in {0, 1}λ, and a
proof τ , and outputs a vector ~rt of |S| digests and a vector ~π of |S| proofs.

We require the following properties.

• Correctness. For any λ, n ∈ N, string D ∈ {0, 1,⊥}n, pp in the support of H.Gen(1λ, n),
ordered set S ⊆ [n], and tuple V of words in {0, 1}λ, compute

1. (tree, rt0) = H.Hash(pp, D)

2. (rt, τ) = H.Update(pp, tree, S, V )

3. (~rt, ~π) = H.Sequentialize(pp, tree, S, V, τ)

Then, it holds that

rt|S| = rt and H.VerUpd(pp, rti−1, `i, vi, rti, πi) = 1

for each i ∈ [|S|], where `i, vi, rti, and πi are the ith values in S, V , ~rt, and ~π, respectively.

• Efficiency. H.Sequentialize(pp, tree, S, V, τ) can be computed in time β(λ) · poly(log |S|, log n)
with |S| processors.

We note that the inputs to H.Sequentialize can be given as pointers to memory to enable the above
efficiency.

We achieve the above definition by showing that the concurrently updatable hash function
construction due to [EFKP20b] can be made sequentializable. Henceforth, we refer to this as the
EFKP hash function. We prove the following lemma.

Lemma 6.2. Assuming the existence of collision-resistant hash function families, there exists a
concurrently updatable hash function that is sequentializable.

To prove the lemma, we start with some preliminaries, following [EFKP20b].
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Binary Trees. We discuss complete binary trees with n leaves. We refer to each node as having
a level, where the leaves are level 0 and the root is level log n− 1. For a node at level i, its children
are the two adjacent nodes at level i− 1, and its parent is the adjacent node at level i+ 1.

Each node in a binary tree is denoted with a label, defined as follows. The root is denoted by
the empty string ε. All other nodes are labeled recursively. For a node whose parent has label `,
we label its left child as `||0 and its right child as `||1. We note that with this notation, leaves are
labeled with strings in {0, 1}n.

Definition 6.3 (Ancestor and Dangling Nodes). For a complete binary tree and a set of leaves S,
we define the following sets:

• ancestors(S) is the set of nodes that are ancestors of any node in S, including those in S.

• dangling(S) is the set of nodes that are siblings of nodes in ancestors(S), but themselves are
not in ancestors(S).

For a single node `, we simply write ancestors(`) and dangling(`) to denote the corresponding sets
relative to {`}.

We are now ready to prove the lemma.

Proof of Lemma 6.2. Let H = (H.Gen,H.Hash,H.Open,H.Update,H.VerOpen,H.VerUpd) be the hash
tree construction given by EFKP. Fix a hash tree tree in memory, a set of nodes S, and tuple V
of words, and let (rt, τ) be the update given by H.Update(pp, tree, S, V ). Recall that τ consists of a
value for each node in S before the update, as well as values for each node in dangling(S).

Let |S| = p. The algorithm H.Sequentialize(pp, S, V, τ) will use p processors ρ1, . . . , ρp, each with
2 log n words of allocated memory. At a high level, each processor ρi will compute an authentication
path corresponding to updating only the ith node `i in S, while pretending that the i−1 first nodes
were already updated. It will do so by forming lists Ai and Bi, level by level, of values for the
ancestor and dangling nodes for `i after the ith update. For each level of the tree, all processors
will find the necessary values in parallel. This will result in an algorithm that takes parallel time
proportional to the height of the tree, but not the number of processors. Next, we give the formal
algorithm.

H.Sequentialize(pp, S, V, τ):

1. Use τ to form a partial Merkle tree T in memory corresponding to the values of all nodes
in ancestors(S) ∪ dangling(S) before any updates. Specifically, using the values given in τ for
S ∪ dangling(S), iteratively hash each pair of siblings to form the partial Merkle tree.

2. Sort S in lexicographic order and let the sorted set be S = (`1, . . . , `p). Sort V and the same
way, so that for each i, the ith value corresponds to `i.

3. Each processor ρi initializes empty lists Ai and Bi, and writes the value of `i from V to Ai.

4. For each level j of the tree, starting from the leaves, each processor ρi does the following:

(a) Find step. Let `sib,i be the node in dangling(`i) at level j.

i. Check to see if `sib,i would have already been updated before the ith update (mean-
ing, if it is an ancestor of some `k ∈ S with k < i). Specifically, if `sib,i is a left child,
find the rightmost node `k in S with `sib,i ∈ ancestors(`k).

ii. If such a node `k is found, let vsib,i be the last value in the list Ak.
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iii. Otherwise, let vsib,i be the value of `sib,i in T .

iv. Write vsib,i to Bi.

(b) Hash step. Hash the most recent values in Ai and Bi together (with the left node’s
value first) and add the resulting value to Ai.

5. Each processor then sets its output πi to Bi, and rti to the last value in Ai.

To complete the proof, it remains to analyze the correctness and efficiency of H.Sequentialize.
We show correctness in Claim 6.4 and efficiency in Claim 6.5 below.

Claim 6.4. The algorithm H.Sequentialize satisfies correctness. That is, for (~rt, ~π)← H.Sequentialize(pp,
tree, S, V, τ), it holds that

rt|S| = rt and H.VerUpd(pp, rti−1, `i, vi, rti, πi)

for each i ∈ [|S|], where vi is the value in V corresponding to node `i.

Proof. Let Ai and Bi be the list of values for nodes in ancestors(`i) and dangling(`i), respectively,
formed by processor ρi during the algorithm. We will show that if we had performed the p updates
sequentially using p calls to H.Update, rather than updating all of S together, then the values in Ai
are exactly those that would have been written to ancestors(`i) by the ith update, and the values
in Bi are identical to those that would have been computed for the proof of the ith update. By
update completeness, this will give the claim.

For any level j ∈ [log n− 1], let Ai[j] and Bi[j] denote the jth value in Ai and Bi, respectively.
We will say that a value Ai[j] or Bi[j] is correct if it is equal to the value of the corresponding node
at level j after the jth update, when performing the updates sequentially as described above. We
will show by induction on j that after the jth iteration of the loop, the most recent values in Ai
and Bi are correct for all processors i.

For the base cases, it suffices to show that Ai and the partial tree T are initialized correctly. For
initializing Ai, the first value in Ai (corresponding to the value of `i after the update) is set to be
the value given by V , which by definition is the updated value of `i. For the partial tree T , recall
that T corresponds to the tree defined only on nodes in ancestors(S) ∪ dangling(S), and is formed
by starting with the values for nodes in S ∪ dangling(S) before the updates, and then using these
to compute the values for the rest of the nodes. We observe that for any node in this tree not in
S∪dangling(S), both of its children must also be in T , and thus the values for S∪dangling(S) suffice
to fill in the values for the remaining nodes. Since the remaining nodes’ values are calculated by
hashing their children’s values, the tree T contains the correct values for ancestors(S)∪dangling(S)
before the update.

Next, suppose that the values added to Ai and Bi in iteration j − 1 of the loop are correct for
all i. We will show that the values added to Ai and Bi in the jth iteration of the loop are correct.
It will be helpful to note that after iteration j − 1, Ai contains j values (one for each ancestor in
the first j levels), and Bi contains j − 1 values, so we want to show that Ai[j + 1] and Bi[j] are
correct. For Ai, we have that Ai[j + 1] is set to the hash of Ai[j] and Bi[j]. Thus, it suffices to
show that Bi[j] is correct.

For Bi, recall that at this point, we would like to add the value for the node at level j in
dangling(`i), denoted `sib,i. We would like to find the value for this node just prior to the ith
update, as it is not changed by the ith update. Since `sib,i ∈ dangling(`i), it is either in dangling(S),
or is an ancestor of some node in S, and these two sets are mutually exclusive. We therefore have
the following cases:
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• Case 1: `sib,i ∈ dangling(S). In this case, we take its value from T , which corresponds to
its value before any update by the base case. Note that nodes in dangling(S) are not updated
when updating nodes in S, and thus this is the desired value.

• Case 2: `sib,i ∈ ancestors(S) and is a right child. In this case, every node in S for which
`sib,i is an ancestor is to the right of `i—this is because `sib,i is not an ancestor of `i itself.
Therefore, the value of `sib,i would not have been changed by any update prior to the ith
update, so the correct value is the value of `sib,i before any update. The algorithm finds this
value in T , which is correct by our base case.

• Case 3: `sib,i ∈ ancestors(S) and is a left child. Finally, in this case, the value of `sib,i is
updated by some update prior to the ith update. It is possible that it is updated more than
once. Therefore, the correct value for `sib,i is its value after the last time it was updated,
which corresponds to the rightmost node in S that has `sib,i as an ancestor. The algorithm
finds this node `k, and then sets the value for `sib,i to be the most recent value in Ak. Since
all processors work in sync level by level, this is the value for the ancestor of `k at level j
after the kth update, which is therefore correct.

Therefore, Bi[j] and hence Ai[j + 1] are set correctly in the jth iteration, which gives the claim. �

Claim 6.5. Suppose that a single hash can be computed in time β(λ). Then, H.Sequentialize(pp, S,
V, τ) is an algorithm in the CREW model that runs in time β(λ)·poly(log p, log n) with p processors.

Proof. We analyze the efficiency of H.Sequentialize step by step, starting with forming the partial
Merkle tree T in Step 1 on nodes in ancestors(S)∪ dangling(S). Since this tree is on ancestors(S)∪
dangling(S), it contains at most 2p nodes at each level—ancestors(S) contains at most p nodes at
each level, and each of those can have at most one sibling in dangling(S). Therefore, this step can
be done using p processors first by copying the O(p log n) values for S ∪ dangling(S) to the right
place in memory in time O(log n), and then, at each level, using the processors to do the (at most) p
hashes concurrently. This can be done in the CREW model by assigning processors to hashes based
on the processors’ indices. Letting β = β(λ) denote the time to perform a single hash, it follows
that this step can be done in time O(β · log n) with p processors. For the rest of the algorithm, we
assume that we can access a value in this tree in time O(log n) given the node’s label (by using the
label to “traverse” the tree).

Next, in Step 2, we sort S (and V ). This can be done in time O(log |S|) = O(log p) with
p processors using a parallel sorting algorithm in the CREW model (such as that of [Col88]).
Initializing the lists Ai and Bi in Step 3 can be then done in constant time (as V is sorted, so the
ith value can be directly accessed). We note that for the remainder of the algorithm, processor ρi
only writes to Ai and Bi, and so no processors attempt to write concurrently to the same location.

Next, we look at the loop in Step 4. At each level of the tree, ρi finds a value for `sib,i in
Step 4a, and then performs a hash in step 4b. The hash takes time β, so it remains to bound
the runtime of the find step. First, ρi searches S for a descendant of `sib,i. Since S is sorted,
this can be done using a binary search for the leftmost and rightmost descendants of `sib,i, and
returning the rightmost node found in this range. Therefore, this takes time O(log |S|) = O(log p).
If no such node is found, ρi retrieves the value for that node from T , which takes time O(log n)
by the discussion above. Therefore, the find step can be done in time O(log p+ log n). Since each
processor does the find step in parallel, and there are a total of log n levels, overall the loop takes
time O(log n · (β + log p+ log n)) with p processors.
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Since each processor computes its output throughout the algorithm, Step 5 takes constant
time. Therefore, putting everything together, the algorithm H.Sequentialize runs in time β ·
poly(log p, log n) with p processors, giving the claim. �

This completes the proof of Lemma 6.2.

6.2 Parallelizable Delegation

In this section, we show that the delegation scheme from Corollary 4.6 can be made depth preserving
for parallel computations. Specifically, consider delegating a computation that can be run in parallel
time t when using p processors. We show that when instantiating the updatable delegation scheme
with a sequentializable hash tree, we obtain an updatable scheme where the prover runs in parallel
time t · poly(λ, log(t · p)) when using p processors.

Syntactically, when considering parallel computations, we note that the number of processors p
is included in the statement. Completeness, collision resistance, and local opening are unchanged
from the sequential case. Soundness and succinctness naturally extend to consider computations
with total work t · p rather than t. The formal definition is given in Definition A.6. Next, we
formalize the required prover efficiency.

Definition 6.6 (Parallel Prover Efficiency for Delegation). For functions α and ρ, an updat-
able PRAM delegation scheme for Ldel

par satisfies (α, ρ)-prover efficiency if for all λ ∈ N, keys

(crs, dk) in the support of Del.S(1λ), statement (cf, cf ′, t, p) ∈ Ldel
par using n ≤ 2λ memory with

t, p ≤ 2λ, (rt, tree) = Del.D(dk, cf), and (rt′, tree′, w) = Del.Update(dk, t, p, tree), it holds that
Del.P(crs, (cf, cf ′, t, p), w) runs in time α(λ, t, p) with ρ(λ, t, p) processors.

When α(λ, t, p) ∈ t · poly(λ, log(t · p)) and ρ(λ, t, p) ∈ p · poly(λ, log(t · p)), we say that the
delegation scheme is depth-preserving.

We also extend the efficiency of Del.Update to take into account parallel updates.

Definition 6.7 (Parallel Update Efficiency). A β-updatable PRAM delegation scheme for Ldel
par has

the following efficiency for Del.Update. For any λ ∈ N, statement (cf, cf ′, t, p) ∈ Ldel
par, keys (crs, dk)

in the support of Del.S(1λ), (rt, tree) = Del.D(dk, cf), it holds that Del.Update(dk, t, p, tree) runs in
time t+β(λ) with p·β(λ) processors. When β(λ) ∈ poly(λ), we simply say the scheme is updatable.

Using these definitions, we can state the main result of this section.

Theorem 6.8. Assuming the hardness of LWE, there exists a publicly verifiable, succinct, and
updatable PRAM delegation scheme for Ldel

par with local opening that is depth-preserving. The con-
struction is in the CREW model.

We prove this result in two steps. First, we analyze the parallel efficiency of the prover Del.P
from the delegation scheme in Corollary 4.6, and show that Del.P can prove sequential computations
on T steps in parallel time (T/p) · poly(λ, log T ) with p processors for any p, when given a witness
consisting of the hash tree updates corresponding to the computation. Then, we show that by
instantiating the above delegation scheme with a sequantializable hash tree, we can obtain a scheme
for parallel computations. Specifically, consider computations with parallel time t on p processors.
After running these computations to obtain t hash tree updates each to p words in memory, we
will use the sequentializability of the hash tree to transform these into T = t · p updates, each to
a single word. We will then run Del.P above using p processors, and show that this results in the
desired efficiency.

35



Parallel efficiency of Del.P. We start by analyzing the parallel efficiency of the delegation
scheme given in Corollary 4.6, when proving sequential computations. Recall that to prove a
statement (cf, cf ′, T ), the prover Del.P takes as input a witness w consisting of T hash tree updates,
each updating a single word in memory. It then uses these to run the prover algorithm from the
CJJ construction. We recall from Section 4.2 that the prover does the following:

1. Commit to the sequence of T updates, each of length ` ∈ poly(λ). The specific commitment
computes ` copies of a Merkle-tree style commitment, each in time T · ` · poly(λ) to a string
of length T · `.

2. Create local openings in the commitment for each of the T updates. This requires opening `
bits for each of the T updates. Each opening (to a single bit) takes time ` ·poly(λ, log(T ·`)) ∈
poly(λ, log T ).

3. Use a BARG for the circuit Cstep to prove the correctness of the T updates. Internally, the
BARG construction does the following:

(a) Computes a PCP for each of the T statements, each taking time poly(λ, |Cstep|).
(b) Commits columnwise to the PCPs, creating poly(λ, |Cstep|) commitments to T bits each.

(c) Applies a correlation-intractable hash to C and the commitment, and then samples PCP
queries. Together, these can be done in time poly(λ, log T, |Cstep|).

(d) Opens the query locations in the corresponding commitments. This requires open-
ing T values in poly(λ, log |Cstep|) commitments, each of which can be done in time
poly(λ, log T ) time. Together, this takes time T · poly(λ, log T, log |Cstep|).

(e) Recurses on a BARG for T/2 instances with a circuit of size poly(λ, log T, log |Cstep|),
for a total of log T recursions.

We observe that this can be improved by using parallelism. Specifically, suppose Del.P has p
processors. Then, we can obtain the following efficiency:

1. Each of the ` commitments to T · ` bits can be computed in time (T · `/p) · poly(λ). Since
` ∈ poly(λ), this results in parallel time (T/p) ·poly(λ) with p processors for the commitment.

2. The local openings in the commitment can be similarly parallelized, so that we can open the
required T · ` bits in time (T · `/p) · poly(λ, log T ) ∈ (T/p) · poly(λ, log T ).

3. We can parallelize the BARG as follows:

(a) The PCPs can be computed in parallel, thereby taking time (T/p) · poly(λ, |Cstep|).
(b) For each column of T bits, the commitment can be computed in time (T/p) · poly(λ).

Therefore, committing to the columns will take (T/p) · poly(λ, |Cstep|) time.

(c) Computing the correlation-intractable hash and sampling PCP queries can be done in
poly(λ, log T, |Cstep|) time as before.

(d) The commitment openings can be computed in parallel, since each bit can be opened
independently. Therefore, this can be done in time (T/p) · poly(λ, log T, log |Cstep|).

(e) We can then recurse on T/2 instances, on a circuit of size poly(λ, log T, log |Cstep|),
similarly parallelizing the recursive steps.

Therefore, the BARG can be computed in time (T/p) ·poly(λ, log T, |Cstep|) with p processors.

36



Finally, we note that when proving sequential computations, Cstep is the circuit that verifies a single
step of computation, in which case |Cstep| ∈ poly(λ, log T ). Putting everything together, it follows
that Del.P tuns in time

(T/p) · poly(λ, log T )

with p processors.

Depth-preserving delegation. Let Del be the delegation scheme from Corollary 4.6 and let H
be a sequentializable, concurrently updatable hash tree (which, by definition, allows for parallel
updates). We will show that by instantiating Del with H and modifying the Del.Update and Del.P
algorithms, this gives a delegation scheme for parallel computations. The modified algorithms are
as follows:

• Del.Updatepar(dk, t, p, tree): Run Del.Update(dk, t, tree) to update the hash tree for t steps, but
use p processors to perform concurrent updates in parallel. The resulting witness w thereby
consists of t updates each to at most p words in memory.

• Del.Ppar(crs, (cf, cf
′, t, p), w):

1. Parse w as a sequence of t parallel updates. For each update, use H.Sequentialize to create
at most p sequential updates. Let w′ be the resulting sequence of T ≤ t · p updates.

2. Output π ← Del.P(crs, (cf, cf ′, T ), w′).

We will show that this results in a scheme satisfying the statement of Theorem 6.8.

Proof of Theorem 6.8. It suffices to show completeness, soundness, succinctness, local opening, up-
datability, and prover efficiency. Soundness and local opening follow directly from the corresponding
properties of Del. Completeness follows from the sequentializability of H and completeness of Del.
Succinctness follows from that of Del, and in particular gives a scheme where proof length and
verifier efficiency depend polynomially on log(t · p).

For updatability, we note that the functionality of Del.Updatepar follows from that of H (just as in
the case of Del.Update). For the efficiency of Del.Updatepar, we have that Del.Updatepar(dk, t, p, tree)
runs in time t + poly(λ) with p · poly(λ) processors, by the parallel efficiency of H, as required.
Moreover, concurrent updates can be pipelined to get the desired efficiency, by the parallel efficiency
of H.

To show that the prover is depth preserving, we recall that by the sequentializability of H, it
holds that H.Sequentialize runs in time β(λ) ·poly(log p, log n) with p processors. As β(λ) ∈ poly(λ),
n ≤ 2λ, and Del.Ppar runs H.Sequentialize t times, this takes time t · poly(λ, log p). Then, by
the discussion above, running Del.P on a T -time statement with T ≤ t · p can be done in time
(T/p) · poly(λ, log T ) ≤ t · poly(λ, log(t · p)) with p processors. Putting everything together, this
shows that Del.Ppar is depth-preserving, which gives Theorem 6.8.

6.3 SPARG Construction for Parallel Computations

In this section, we give our construction of SPARGs for parallel RAM computations.

Theorem 6.9. Let Del be a publicly verifiable, succinct, and updatable delegation scheme for Ldel
par

with local opening that is depth preserving. Then, there exists a SPARG for LUpar. Specifically,

for all λ ∈ N and (M,x, y, L, t, p) ∈ LUpar where M has access to n ≤ 2λ words in memory and

t ≤ 2λ, the following hold. Let (α, ρ) be the prover efficiency of Del.P, and let α? = α(λ, t, p)/t
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be the multiplicative overhead of Del.P with respect to the number of depth of computation and
ρ? = ρ(λ, t, p). Then:

• The depth of the prover is bounded by t + L + (α?)2 · poly(λ, |M,x|, log(t · p)) when using
(p+ ρ?) · α? · poly(λ, log t) processors.

• The proof size is bounded by α? · poly(λ, log(t · p)).

• The work of the verifier is bounded by α? · L · poly(λ, |M,x|, log(t · p)).

The construction is in the CREW model.

By combining Theorem 6.9 with Theorem 6.8, we obtain the following corollary.

Corollary 6.10. Assuming the hardness of LWE, there exists a SPARG for LUpar.

Proof of Theorem 6.9. The theorem follows by instantiating the SPARG (G,P,V) in Figure 5 with
a delegation scheme Del.P for PRAM that is depth preserving. Completeness, soundness, and
succinctness follow similarly to the sequential case, given by Theorem 5.1. It suffices to show
prover efficiency.

Let (α, ρ) be the prover efficiency of Del.P and let α? = α(λ, t, p)/t and ρ? = ρ(λ, t, p). We
showed in Lemma 5.8 that the prover depth can be split into initializing values for the computation,
computing and proving each sub-computation, and computing its output. It follows from our
analysis that everything other than computing and proving each sub-computation takes time L+
poly(λ, |M,x|, log(t · p)) with a single processor.

For computing and proving the output, it follows directly from [EFKP20b, Claims 6.14 and
6.15] that P computes m ≤ γ log t proofs, and all proofs complete within depth t+ γ2(log t+ 1) +
β(λ). Since γ = α? + 1 and β(λ) ∈ poly(λ), it follows that all sub-proofs complete within depth
t+ (α?)2 · poly(λ, log t).

For the number of processors, we have that P runs the computation using p processors. In
parallel to running the computation, P runs Del.Update. We note that by the parallel efficiency of
the hash tree, all of the calls to Del.Update can be done using a total of p · β(λ) processors (exactly
as done in [EFKP20b]). Finally, for each sub-computation, P runs Del.P, and therefore require ρ?

processors for each of the m sub-proofs. Putting everything together, P requires p+p ·β(λ)+ρ? ·m
processors. As β ∈ poly(λ) and there are a total of m ≤ γ log t = (α? + 1) · log t sub-computations,
it follows that the prover uses (p+ ρ?) · α? · poly(λ, log t) processors.

7 Time-Independent SPARGs

In this section, we show how to construct non-interactive SPARGs that don’t depend on an a priori
given time bound t. We refer to such a SPARG as being time-independent. The main distinction
is that the prover doesn’t take as input the time t of the computation M(x), which we provide the
syntax for below.

Definition 7.1 (Time-Independent SPARG). We say that a SPARG given by the algorithms
(G,P,V) is time-independent if the prover P has the following modified syntax, and all proper-
ties hold with respect to such a prover:

• (y, t, π)← P(crs, (M,x,L)): A probabilistic algorithm that on input a common reference string
crs, a statement (M,x,L), and a witness w, outputs a value y, a time t, and a proof π.
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Our construction is black-box from any time-tight, updatable RAM delegation scheme (with
local opening) that takes as input the time bound t for the computation. At a high level, a time-
tight RAM delegation scheme is one where the update algorithm also output the proof π, while still
only incurring an additive poly(λ, log t) overhead while using at most poly(λ, log t) processors. We
note that our construction of a non-interactive SPARG in Section 5 actually implies a time-tight
updatable RAM delegation scheme.

We use this as a building block in contrast to just a non-interactive SPARG in order to prove
statements corresponding to intermediate configurations of the RAM machine (as we do in our main
SPARG construction), which may be large, so we instead prove things relative to the corresponding
digests. We formalize a time-tight updatable RAM delegation scheme in Definition 7.2.

Definition 7.2 (Time-tight Updatable RAM Delegation). A time-tight updatable RAM delega-
tion scheme with local opening consists of algorithms (Del.S,Del.D,Del.UpdateP,Del.V,Del.Open,
Del.VerOpen), where Del.S, Del.D, Del.V, Del.Open, Del.VerOpen have the same syntax as an up-
datable RAM delegation scheme with local opening, and Del.UpdateP has the following syntax

• (rt′, tree′, π) = Del.UpdateP(crs, t, tree): The update algorithm takes as input a common ref-
erence string crs, an integer t, and a value tree, and outputs a digest rt′, a value tree′ and a
proof π.

We require that all properties of an updatable RAM delegation scheme with local opening hold
where the outputs of Del.Update and Del.P are replaced by Del.UpdateP, and Del.UpdateP satisfies
the efficiency and updatability property of Del.Update for t ≤ 2λ.

We next describe our construction of a time-independent, non-interactive SPARG (G,P,V)
given a time-tight updatable RAM delegation scheme (Del.S,Del.D,Del.UpdateP,Del.V,Del.Open,
Del.VerOpen). Let M be a RAM machine with input x. We assume that the computation time t
of M(x) is bounded by 2λ where λ is the security parameter. For any λ ∈ N, let crs, dk be any
output of a RAM delegation setup algorithm Del.S(1λ). For any i ∈ N, we denote by cfi the RAM
configuration for the computation M(x) after i steps, and (rti, treei) = Del.D(dk, cfi). For any
a < b ∈ [0, 2λ], we use π(a,b) to refer to a non-interactive proof of the statement (cfa, cfb, (b − a))
with respect to crs (where the prover only knows cfa via the corresponding memory treea at the
start), which will be verified given crs and (rta, rtb, (b− a)).

We next provide a high level overview of our construction, with a formal description provided
in Figure 3. Suppose that M(x) halts with an output after t steps. We will construct a sequence
of m ≤ λ valid proofs π(0,a1), π(a1,a2), . . . , π(am−1,t) for a1 < a2 < . . . < am−1 without knowing the
running time t of M(x) in advance.

Initially, the prover prepares λ distinct blocks of memory each starting with configuration cf0.
With each block of memory, the prover starts a fresh updatable time-tight delegation protocol
using Del.UpdateP to compute π(0,2i) for all i ∈ [0, λ− 1], all in parallel. Additionally, we continue
performing updates of the form π((j−1)·2i,j·2i) in sequence for all i ∈ [0, λ − 1] and j ≥ 2 using the

ith block of memory. This ensures we have a proof π(a,b) for every interval of size 2i starting at any
time step which is a multiple of 2i. So, we define the intervals a0 = 0, a1, . . . , am−1, t to correspond
to the binary representation of t, so that each interval (ai−1, ai) that we need will be computed.

Once the computation halts at time t, the prover will wait for a proof corresponding to π(am−1,t)

to finish for some initial step am−1 ∈ N, and the prover can halt all other currently running
update threads at this time. This final proof output by the prover is the sequence of m proofs
π(0,a1), π(a1,a2), . . . , π(am−1,t) that eventually finished at configuration cft corresponding to the output
of the computation. These proofs correspond to the ones in the binary representation of the time
bound t, so the total number of proofs m is at most λ.
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The P and V algorithm for our non-interactive SPARG for LU given a time-tight updat-
able RAM delegation protocol (Del.S,Del.D,Del.UpdateP,Del.V,Del.Open,Del.VerOpen).

• P(1λ, pp, (M,x,L)):

1. Let cf0 be the initial configuration and start computing M(x) in λ parallel
threads with different blocks of memory. Label each block of memory by a
unique index i ∈ [0, λ− 1]. Let cfi be the RAM configuration after i steps and
(rti, treei) = Del.D(dk, cfi).

2. In parallel for each i ∈ [0, λ − 1] and for each j ≥ 1 such that j · 2i ≤ 2λ,
compute (rtj·2i , treej·2i , π((j−1)·2i,j·2i)) ← Del.UpdateP(crs, 2i, tree0) in the ith
block of memory.

3. Once M(x) halts, set t to be the number of steps that it took to halt. Let
s = (sλ−1, . . . , s0) ∈ {0, 1}λ be the binary representation of t such that si = 1
corresponds to the 2i component of t for i ∈ [0, λ− 1]. For i ∈ [λ], define ti to
be the sum of the i most significant bits of t, so ti =

∑λ−1
j=λ−i sj · 2j and note

that tλ = t. Let a0 = 0 and a1, . . . , am be the distinct, positive ti values in
increasing order, so m ≤ λ and am = t. Set τi = π(ai−1,ai) for i ∈ [m] once
they have all been computed, and halt all other proofs and computation.

4. Let y be the output of M and let st be the local state of M both given in the
final configuration cft. Let ~rt = (rta1 , . . . , rtam) and ~τ = (τ1, . . . , τm). Output
(y, t, π) where π = (~rt, ~τ , st).

• V(1λ, pp, (M,x, y, L, t), π):

1. Parse π = ((rt1, . . . , rtm), (τ1, . . . , τm), st) and compute rt0 = Del.D(dk, cf0)
where cf0 is the initial configuration of M . Given t, compute a0, . . . , am as P
does and set ki = ai − ai−1 for all i ∈ [m].

2. Output 1 if and only if the following hold, and 0 otherwise:
(a) Del.V(crs, (rti−1, rti, ki), τi) accepts for all i ∈ [m].

(b) Del.VerOpen(dk, rtm, [L], y, st, πy) = 1.

(c) st is a halting state, and |y| ≤ L.

Figure 3: SPARG for LU .

Theorem 7.3. Suppose there exists a time-tight, updatable RAM delegation scheme. Then, there
exists a time-independent, non-interactive SPARG for LU .

Before proving the theorem, we note that our construction of a non-interactive SPARG in
Section 5 actually gives a time-tight, updatable RAM delegation scheme. So, we get the following
corollary based on Corollary 5.2.

Corollary 7.4. Assuming the hardness of LWE, there exists a time-independent, non-interactive
SPARG.

We proceed to prove the main theorem of this section.

Proof of Theorem 7.3. We will prove that (G,P,V) of Figure 3 is a time-independent, non-interactive
SPARG for LU assuming (Del.S,Del.D,Del.UpdateP,Del.V,Del.Open,Del.VerOpen) is a time-tight,
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updatable RAM delegation scheme. Completeness is straightforward by construction, and sound-
ness follows from the proof of Lemma 5.4. For succinctness, the verifier needs to check m RAM
delegation proofs, where m corresponds to the number of ones in the binary representation of the
time bound t. As t ≤ 2λ, this implies that m ≤ λ. Thus, succinctness follows from the proof of
Lemma 5.9.

Next, we argue that the prover satisfies optimal prover depth. Let β ∈ poly(λ) be the polynomial
guaranteed to exist by the updatability property of the underlying time-tight RAM delegation
scheme. So, for any update consisting of T sequential steps, the underlying delegation scheme
requires depth T + β(λ) while using β(λ) processors to compute the updates as well as the proof
π. Additionally, for any two back to back updates of t1 + t2 steps, the second update finishes at
time t1 + t2 + β.

We first show that the depth of P is bounded by t+q1(λ) for a polynomial q1. After t time steps,
M(x) will halt by definition. Let a0, a1, . . . , am be the intervals specified for the prover P in Figure 3
where the gaps between them are ki = ai − ai−1 for all i ∈ [m]. After t steps have completed, M
will halt and then the prover needs to prepare its output and identify the correct set of proofs. The
main bottleneck for the prover is waiting for the RAM delegation proofs τi = π(ai−1,ai) to finish for
all i ∈ [m]. By the updatability property of the underlying RAM delegation, each of the proofs τi
will finish computing their output by time ai + β(λ) in the protocol, so they will all finish by time
t + β(λ). Computing all other parts of the output can be done in poly(λ) time, independent of t,
so the total depth of the prover is t+ q1(λ) for some fixed polynomial q1.

We now argue that there exists a polynomial q2 such that at any point in time during P’s
computation, at most q2(λ) processors are being used. Let T < t + q1(λ) be an arbitrary number
of steps into the prover’s computation. We will bound the number of processors being used during
step T . Note that each delegation proof uses β(λ) processors by assumption, so it suffices to bound
the number of proofs being computed at any given time. We split the proofs into two groups: (1)
proofs π(a,b) where b ≤ T and (2) proofs π(a,b) where b > T .

• For group (1), we show that there are at most λ · β(λ) proofs. Above, we argued that all
proofs π(a,b) finish by time b + β(λ). This implies that all proofs π(a,b) where b < T − β(λ)
have already been completed. However, there are at most λ proofs for each b ∈ N, so there
are at most λ · β(λ) proofs running from group (1), as claimed.

• For group (2), we claim there are at most λ proofs. Each block of memory i ∈ [0, λ − 1]
consists of proof covering the intervals (j − 1) · 2i to j · 2i for j ≥ 1. So at time T , the
only group (2) proof currently being computed will be the interval (a, b) that contains T .
Any earlier interval is not a group (2) proof by definition, and no later proofs will have been
started at time T . So there are at most λ group (2) proofs, as required.

Putting the above observations together, we conclude that there are at most λ · β(λ) + λ proofs
being computed at any point in time, which implies that P uses at most q2(λ) = (λ ·β(λ)+λ) ·β(λ)
processors, as required.

Time-Independent Non-interactive and Interactive SPARKs. We conclude this section
by noting that the exact same construction works to construct non-interactive SPARKs for NP
(satisfying an argument of knowledge property instead of simply soundness) when starting with
a delegation scheme for NP satisfying an appropriate argument of knowledge property. By the
work of [EFKP20b], this would imply time-independent non-interactive SPARKs for NP from any
SNARK for NP.
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In contrast to non-interactive SPARKs, we do know how to construct interactive SPARKs for
NP simply from collision-resistant hash functions. However, the time-independent construction
does not work generically if the underlying delegation scheme is interactive. The interactivity
would cause our construction to have at least t rounds of interaction, so it would not be succinct.
We leave it as an open question to construct time-independent SPARKs for NP from standard
assumptions (namely, without starting from SNARKs for NP).

8 Application to Verifiable Delay Functions

In this section, we show that SPARGs for P and any sequential function imply a VDF. We note
that a sequential function is a minimal assumption as VDFs directly imply sequential functions.
We use the following building blocks and parameters.

• A sequential function SF = (SF.Gen,SF.Sample, SF.Eval). Let pSF, qSF be the polynomials from
the honest evaluation property of SF such that SF.Eval(1λ, ·, ·, t) runs in time t+ pSF(λ, log t)
with qSF(λ, log t) processors. Let `SF be the polynomial such that the output length is bounded
by `SF(λ, log t).

• A SPARG (G,P,V) for any L ∈ LUpar containing SF.Eval.

Construction. Our VDF construction VDF = (VDF.Gen,VDF.Sample,VDF.Eval,VDF.Verify) is
as follows.

• pp← VDF.Gen(1λ):

1. Sample crs← G(1λ) and k ← SF.Gen(1λ).

2. Output pp = (crs, k).

• x← VDF.Sample(1λ, pp):

1. Sample and output x← SF.Sample(1λ, k).

• (y, π)← VDF.Eval(1λ, pp, x, t):

1. Recall that pSF, qSF, `SF are the polynomials denoting the efficiency of VDF.Eval. Let
statement = (SF.Eval, (1λ, k, x, t), `SF(λ, log t), t+ pSF(λ, log t), qSF(λ, log t)).

2. Compute and output (y, π)← P(1λ, crs, statement).

• b← VDF.Verify(1λ, pp, x, t, (y, π)):

1. Let statement′ = (SF.Eval, (1λ, k, x, t), y, `SF(λ, log t), t + pSF(λ, log t), qSF(λ, log t)) (note
that statement′ differs from statement used by VDF.Eval as it contains the output y).

2. Output b← V(1λ, crs, statement′, π).

Theorem 8.1. Assuming the existence of a SPARG for LUpar and a sequential function, there exists
a VDF.

By combining this with Corollary 6.10, we obtain the following.

Corollary 8.2. Assuming the hardness of LWE and a sequential function, there exists a VDF.

42



Proof of Theorem 8.1. We prove completeness, sequentiality, honest evaluation, soundness, and
discuss the efficiency of our algorithms. Completeness follows directly from the completeness of the
SPARG. Sequentiality follows directly from the sequentiality of SF.

Before proving honest evaluation and soundness, we note that the first output of VDF.Eval can
be computed as VDF.Eval1(1

λ, pp, x, t) = SF.Eval(1λ, k, x, t). This follows from the completeness of
(G,P,V), and will be useful below.

Honest Evaluation. Fix any λ, t ∈ N, pp = (crs, k) in the support of VDF.Gen(1λ), and x
in the support of VDF.Sample(1λ, pp). By the honest evaluation property of SF, it holds that
SF.Eval(1λ, k, x, t) can be computed in time t+pSF(λ, log t) with qSF(λ, log t) processors. Moreover,
the output length is bounded by `SF(λ, log t). Putting these together, it follows that P on input
statement = (SF.Eval, (1λ, k, x, t), `SF(λ, log t), t+ pSF(λ, log t), qSF(λ, log t)) runs in depth

t+ pSF(λ, log t) + poly(λ, |SF.Eval, 1λ, k, x, t)|, λ, log((t+ pSF(λ, log t)) · qSF(λ, log t)))

∈ t+ poly(λ, |(Mλ,t, k, x)| , log t)

with poly(λ, log((t + pSF(λ, log t)) · qSF(λ, log t))) ∈ poly(λ, log t) processors. Since k and x are
sampled by polynomial-time algorithms, it holds that |k, x| ∈ poly(λ). Moreover, we can assume
that SF.Eval is represented as a Turing machine with constant size. It follows that VDF.Eval can
be computed in depth t+ p′(λ, log t) with q′(λ, log t) processors for fixed polynomials p′, q′.

Soundness. Suppose for contradiction that there exists a non-uniform PPT algorithm A = {Aλ}
and polynomials T, q such that for infinitely many λ ∈ N, it holds that

Pr

 pp← VDF.Gen(1λ)
(x, y′, π′)← Aλ(pp)
y = VDF.Eval1(1

λ, pp, x, t)
:

VDF.Verify(1λ, pp, x, t, (y′, π′)) = 1
∧ y 6= y′

 ≥ 1/q(λ)

where t = T (λ).
We construct an adversary P? = {P?λ}λ∈N against the soundness of the SPARG. For each λ ∈ N,

the algorithm P?λ(crs) has Aλ and pSF, qSF, `SF, T hardcoded and does the following:

1. Sample k ← SF.Gen(1λ) and let pp = (crs, k).

2. Run (x, y′, π′)← Aλ(pp).

3. Output (SF.Eval, (1λ, k, x, t), y′, `′), π′), where `′ = `SF(λ, log t′) for t′ = t + pSF(λ, log t) and
t = T (λ).

Note that since SF.Gen and Aλ are PPT algorithms, P?λ runs in time poly(λ).
To analyze the success of P?λ, we will show that P?λ breaks the soundness of (G,P,V) on a

statement that takes time T ′(λ) with P ′(λ) processors, where T ′(λ) = T (λ) + pSF(λ, log T (λ)) and
P (λ) = qSF(λ, log T (λ)). We start by expanding the probability above based on our construction.
By definition of P?, the fact that VDF.Verify simply runs V, and because VDF.Eval1 evaluates to
SF.Eval, the above inequality implies that

Pr

 crs← G(1λ)
(SF.Eval, (1λ, k, x, t), y′, `′), π′)← P?(crs)
y = SF.Eval(1λ, k, x, t)

:
V(1λ, crs, (SF.Eval, (1λ, k, x, t), y′, `′, t′, p′), π′) = 1
∧ y 6= y′


≥ 1/p(λ),
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where t′ = T ′(λ), p′ = P ′(λ), and `′ = `SF(λ, log t′). Finally, as SF.Eval is deterministic, the output
y is unique, and so y′ 6= y implies that (SF.Eval, (1λ, k, x, t), y′, `′, t′, p′) 6∈ LUpar. Therefore, the above
implies that

Pr

 crs← G(1λ)
(SF.Eval, (1λ, k, x, t), y′, `′), π′)← P?(crs)
y = SF.Eval(1λ, k, x, t)

:
V(1λ, crs, (SF.Eval, (1λ, k, x, t), y′, `′, t′, p′), π′) = 1
∧ (SF.Eval, (1λ, k, x, t), y′, `′, t′, p′) 6∈ LUpar


≥ 1/p(λ)

in contradiction to the soundness of the SPARG.

Efficiency. Lastly, we discuss the efficiency of our construction. We have that VDF.Gen and
VDF.Sample are polynomial-time algorithms, since G, SF.Gen, and SF.Sample can be run in polyno-
mial time. The efficiency of VDF.Eval was discussed above. For VDF.Verify, the running time
depends on the time to form statement′ and run V. By the succinctness of the SPARG, V
runs in time poly(λ, |SF.Eval, 1λ, k, x, t|, `SF(λ, log t), log((t + pSF(λ, log t)) · (qSF(λ, log t)))). Since
|SF.Eval, 1λ, k, x, t| is polynomially bounded, overall this takes time poly(λ, log t), which is polyno-
mial in its input length, as desired.
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[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their
cumulative memory complexity. In EUROCRYPT (3), volume 10212 of Lecture Notes
in Computer Science, pages 3–32, 2017.
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[DGMV20] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. Tight
verifiable delay functions. In SCN, volume 12238 of Lecture Notes in Computer Science,
pages 65–84. Springer, 2020.

[DGN03] Cynthia Dwork, Andrew V. Goldberg, and Moni Naor. On memory-bound functions
for fighting spam. In CRYPTO, volume 2729 of Lecture Notes in Computer Science,
pages 426–444. Springer, 2003.

[DLP18] Thaddeus Dryja, Quanquan C. Liu, and Sunoo Park. Static-memory-hard functions,
and modeling the cost of space vs. time. In TCC (1), volume 11239 of Lecture Notes
in Computer Science, pages 33–66. Springer, 2018.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages 37–54. Springer,
2005.

[EFKP20a] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous verifi-
able delay functions. In EUROCRYPT (3), volume 12107 of Lecture Notes in Computer
Science, pages 125–154. Springer, 2020.

[EFKP20b] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Sparks: Succinct
parallelizable arguments of knowledge. In EUROCRYPT (1), volume 12105 of Lecture
Notes in Computer Science, pages 707–737. Springer, 2020.

[Eth] Ethereum foundation. https://www.ethereum.org/. Accessed: 2019-05-17.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In CRYPTO, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986.

46

https://chia.net/
https://www.ethereum.org/


[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27:1–27:64, 2015.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, pages 99–108. ACM, 2011.

[HR18] Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal
time and space overhead. In FOCS, pages 124–135. IEEE Computer Society, 2018.
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A Additional Preliminaries

A.1 Concurrently Updatable Hash Functions

In this section, we recall the definition of concurrently updatable hash functions due to [EFKP20b].
Their construction is defined for the following natural notion.

Definition A.1 (Partial String). For any string s ∈ ({0, 1}λ∪{⊥})∗ of words, the partial string D
representing s is defined as follows. D is given by tuple (n, I, A), where n is the number of words
(or ⊥ elements) in s, I ⊆ [n] is the set of non-⊥ locations in s, and A ∈ {0, 1}|I| is the assignment
to those indices. We let Di denote the ith word in s.

A concurrently updatable hash function is a tuple of algorithms (H.Gen,H.Hash,H.Open,H.Update,
H.VerOpen,H.VerUpd) with the following syntax.

• pp← H.Gen(1λ, n): A PPT algorithm that on input the security parameter λ in unary and an
integer n, outputs public parameters pp.

• (tree, digest) = H.Hash(pp, D): A deterministic algorithm that on input public parameters pp
and a partial string D, outputs a pointer tree to a location in memory and a string digest.

• (V, π) = H.Open(pp, tree, S): A read-only deterministic algorithm that on input public param-
eters pp, a pointer tree, and an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], outputs a
tuple V = (v1, . . . , vp) of values vi ∈ {0, 1}λ ∪ {⊥}, and a proof π.

• (digest, τ) = H.Update(pp, tree, S, V ): A deterministic algorithm that on input public parame-
ters pp, a pointer tree, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], and a tuple
V = (v1, . . . , vp) of words vi ∈ {0, 1}λ, outputs a digest digest and a proof τ .

• b = H.VerOpen(pp, digest, S, V, π): A deterministic algorithm that on input public parameters
pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], a tuple V = (v1, . . . , vp)
of values vi ∈ {0, 1}λ ∪ {⊥}, and a proof π, outputs a bit b.

• b = H.VerUpd(pp, digest, S, V, digest′, τ): A deterministic algorithm that on input public param-
eters pp, a digest digest, an ordered set S = (`1, . . . , `p) of locations `i ∈ [n], a tuple
V = (v1, . . . , vp) of words vi ∈ {0, 1}λ, a digest digest′, and a proof τ , outputs a bit b.

We note that when S is a single location ` and V is a single word v, to simplify notation we
let H.Open, H.Update, H.VerOpen, and H.VerUpd take ` and v as input rather than the singleton
ordered set (`) and tuple (v). We require the following completeness, soundness, and efficiency
properties.

Definition A.2 (Completeness). Let λ, n ∈ N with n ≤ 2λ, pp be in the support of H.Gen(1λ, n),
D = (n, I, A) be a partial string, and m ≥ 0. For any ordered sets S(i) ⊆ [n] and tuples V (i) ∈
({0, 1}λ)|S(i)| for i ∈ [m], do the following:

1. Compute (tree, digest(0)) = H.Hash(pp, D).
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2. For i = 1, . . . ,m, compute (digest(i), τ (i)) = H.Update(pp, tree, S(i), V (i)).

Let D′ be the partial string resulting from writing each word in V (i) to D at the corresponding
location in S(i) for i = 1, . . . ,m. Then, the following hold for any p ∈ N and ordered set S =
(`1, . . . , `p) of locations in [n]:

• Open Completeness. Let (V, π) = H.Open(pp, tree, S) where V = (v1, . . . , vp). Then,

H.VerOpen(pp, digest(m), S, V, π) = 1 ∧ D′`i = vi ∀i ∈ [p].

• Update Completeness. For any tuple V ∈ ({0, 1}λ)p, let (digest, τ) = H.Update(pp, tree, S, V ).
It holds that

H.VerUpd(pp, digest(m), S, V, digest, τ) = 1.

Definition A.3 (Soundness). For all non-uniform PPT adversaries A = {Aλ}λ∈N, there exists a
negligible function negl such that for all λ ∈ N, it holds that for all with n ≤ 2λ,

Pr


H.VerOpen(pp, digest(0), S(0), V (0), π(0)) = 1 ∧
∀i ∈ [m] : H.VerUpd(pp, digest(i−1), S(i), V (i), digest(i), τ (i)) = 1 ∧
H.VerOpen(pp, digest(m), S, V, π) = 1 ∧
∃` ∈ S ∩ S(0) : vprev 6= vfinal

 ≤ negl(λ),

the probability is over the choice of pp ← H.Gen(1λ, n) and (m,
{

(digest(i), S(i), V (i), τ (i))
}
i∈[m]

,

digest(0), S(0), V (0), π(0), S, V, π)← Aλ(pp), and vprev and vfinal are defined as follows:

• vprev is the value in V (i) at the index of ` in S(i), where i ∈ {0, . . . ,m} is the largest index
with ` ∈ S(i).

• vfinal is the value in V at the index of ` in S.

Definition A.4 (Parallel Efficiency). Let β : N → N. We say that a concurrently updatable hash
function satisfies β-parallel efficiency if the following hold for all λ, n ∈ N with n ≤ 2λ, pp in the
support of H.Gen(1λ, n), and ordered sets S ⊆ [n]:

• The algorithms H.Open, H.Update, H.VerOpen and H.VerUpd when given public parameters
pp and locations S can each be computed with |S| · β(λ) work, which can be decoupled into
depth β(λ) with |S| · β(λ) processors.

• Computing H.Hash(pp, D) for any partial string D = (n, I, A) can be done with |I| ·β(λ) work,
which can be decoupled into depth β(λ) with |I| · β(λ) processors.

• For any pointer tree, and tuple V ∈ ({0, 1}λ)|S|, define (V ′, π, digest, τ) as follows:

– (V ′, π) = H.Open(pp, tree, S)

– (digest, τ) = H.Update(pp, tree, S, V )

There exists an algorithm OpenUpdate(pp, tree, S, V ) which outputs (V ′, π, digest, τ), such that
k sequential calls to OpenUpdate, each on at most pmax locations, can be computed with pmax ·
β(λ) work, which can be decoupled into depth (k−1)+β(λ) using at most pmax·β(λ) processors.

When β is a polynomial, we say the scheme satisfies parallel efficiency.

We recall the following theorem from [EFKP20b] regarding the existence of a concurrently
updatable hash function.

Theorem A.5 ([EFKP20b]). Assuming the existence of collision-resistant hash function families,
there exists a concurrently updatable hash function.
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A.2 Succinct Arguments for Parallel Computations

In this section, we extend the notions of RAM delegation (Definition 3.5) and SPARGs (Defini-
tion 3.6) to the setting of parallel computations.

Definition A.6 (RAM Delegation). A publicly verifiable, succinct RAM Delegation Scheme for
Ldel

par is a tuple of probabilistic algorithms (Del.S,Del.D,Del.P,Del.V) with the following syntax:

• (crs, dk)← Del.S(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs and a digest key dk. We assume without loss of generality that crs contains
dk.

• rt = Del.D(dk, cf): A deterministic algorithm that on input a digest key dk and a RAM config-
uration cf outputs a digest rt.

• π ← Del.P(crs, (cf, cf ′, t, p)): A probabilistic algorithm that on input a common reference string
crs, and a statement (cf, cf ′, t, p), outputs a proof π.

• b← Del.V(crs, (rt, rt′, t, p), π): A PPT algorithm that on input a a common reference string crs,
common reference string crs, statement (rt, rt′, t, p), and a proof π, outputs a bit b indicating
whether to accept or reject.

We require the following properties:

• Completeness: For every λ ∈ N and (cf, cf ′, t, p) ∈ Ldel
par with t, n ≤ 2λ where n is the memory

size of the configurations, it holds

Pr


(crs, dk)← Del.S(1λ)
rt = Del.D(dk, cf)
rt′ = Del.D(dk, cf ′)
π ← Del.P(crs, (cf, cf ′, t, p))

: V(crs, (rt, rt′, t, p), π) = 1

 = 1.

• Soundness: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N, polynomial P ,
polynomial-time computable function T , and polynomial T such that T (λ) ≤ T (λ) for all
λ ∈ N, there exists a negligible function negl such that for every λ ∈ N, it holds that

Pr

 (crs, dk)← Del.S(1λ)
(cf, cf ′, rt, rt′, π)← Aλ(crs, dk)

:

V(crs, (rt, rt′, t, p), π) = 1
∧ (cf, cf ′, t, p) ∈ Ldel

par

∧ rt = Del.D(dk, cf)
∧ rt′ 6= Del.D(dk, cf ′)

 ≤ negl(λ),

where t = T (λ) and p = P (λ).

• Collision resistance: For any non-uniform polynomial-time algorithm A = {Aλ}λ∈N, there
exists a negligible function negl such that for every λ ∈ N, it holds that

Pr

[
(crs, dk)← Del.S(1λ)
(cf, cf ′)← Aλ(crs, dk)

:
cf 6= cf ′

∧ Del.D(dk, cf) = Del.D(dk, cf ′)

]
≤ negl(λ).

• Succinctness: There exist polynomials q1, q2, q3 such that for any λ ∈ N, (crs, dk) in the support
of Del.S(1λ), (cf, cf ′, t, p) ∈ Ldel

par, and proof π in the support of P(crs, (cf, cf ′, t, p)), it holds
that
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• |Del.V(crs, (rt, rt′, t, p), π)| ≤ q1(λ, log(t · p)) and

• |π| ≤ q2(λ, log(t · p)).
• Del.D(dk, cf) is computable in time |cf| · q3(λ) and has output length length λ.

Definition A.7 (Non-interactive SPARGs for P). A Non-interactive Succinct Parallelizable Ar-
gument for a language L ⊆ LU is a tuple of probabilistic algorithms (G,P,V) with the following
syntax:

• crs ← G(1λ): A PPT algorithm that on input a security parameter λ outputs a common
reference string crs.

• (y, π) ← P(crs, (M,x,L, t, p)): A probabilistic algorithm that on input a common reference
string crs, and a statement (M,x,L, t, p), outputs a value y and a proof π.

• b← V(crs, (M,x, y, L, t, p), π): A PPT algorithm that on input a common reference string crs,
a statement (M,x, y, L, t, p), and a proof π, outputs a bit b indicating whether to accept or
reject.

We require the following properties:

• Completeness: For every λ ∈ N and (M,x, y, L, t, p) ∈ L where M has access to n ≤ 2λ words
in memory and t ≤ 2λ,

Pr

 crs← G(1λ)
(y, π)← P(crs, (M,x,L, t, p))
b← V(crs, (M,x, y, L, t, p), π)

: b = 1

 = 1.

• Soundness for P: For all non-uniform polynomial-time provers P? = {P?λ}λ∈N and polynomi-
als T, P , there is a negligible function negl such that for every λ ∈ N, it holds that

Pr

[
crs← G(1λ)
((M,x, y, L), π)← P?λ(crs)

:
V(crs, (M,x, y, L, t, p), π) = 1
∧ (M,x, y, L, t, p) 6∈ L

]
≤ negl(λ),

where t = T (λ) and p = P (λ).

• Succinctness: There exist polynomials q1, q2 such that for any λ ∈ N, crs in the support of
G(1λ), (M,x,L, t, p) ∈ L where M uses n ≤ 2λ words in memory, t, p ≤ 2λ, and (y, π) in the
support of P(crs, (M,x,L, t, p)), it holds that

• workV(crs, (M,x, y, L, t, p), π) ≤ q1(λ, |(M,x)|, L, log(t · p)),
• |y| ≤ L, and

• |π| ≤ q2(λ, L, log(t · p)).

• Optimal prover depth: There exists polynomials q1 and q2 such that for all λ ∈ N and (M,
x, y, L, t, p) ∈ L where M has access to n ≤ 2λ words in memory and t, p ≤ 2λ, it holds that

depthP(crs, (M,x,L, t, p)) = t+ q1(λ, |(M,x)|, L, log(t · p))

and the total number of processors used by P is in p · q2(λ, log(t · p)).

If the above holds for L = LU , we say that (G,P,V) is a non-interactive SPARG for polynomial-time
PRAM computation.
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