
Practical Statistically-Sound Proofs of Exponentiation

in any Group

Charlotte Ho�mann1, Pavel Hubá£ek2, Chethan Kamath3, Karen Klein4, and

Krzysztof Pietrzak1

1Institute of Science and Technology Austria,

{charlotte.hoffmann,pietrzak}@ist.ac.at
2Charles University, Faculty of Mathematics and Physics,

hubacek@iuuk.mff.cuni.cz
3Tel Aviv University, ckamath@protonmail.com

4ETH Zurich, karen.klein@inf.ethz.ch

Abstract

For a group G of unknown order, a Proof of Exponentiation (PoE) allows a prover

to convince a veri�er that a tuple (y, x, q, T) ∈ G2 × N2 satis�es y = xq
T
. PoEs

have recently found exciting applications in constructions of veri�able delay functions

and succinct arguments of knowledge. The current PoEs that are practical in terms of

proof-size only provide restricted soundness guarantees: Wesolowski's protocol (Journal

of Cryptology 2020) is only computationally-sound (i.e., it is an argument), whereas

Pietrzak's protocol (ITCS 2019) is statistically-sound only in groups that come with the

promise of not having any small subgroups. On the other hand, the only statistically-

sound PoE in arbitrary groups of unknown order is due to Block et al. (CRYPTO 2021),

and it can be seen as an elaborate parallel repetition of Pietrzak's PoE. Therefore, to

achieve λ bits of security, say λ = 80, the number of repetitions required � and hence

the (multiplicative) overhead incurred in proof-size � is as large as λ.
In this work, we propose a statistically-sound PoE for arbitrary groups for the case

where the exponent q is the product of all primes up to some bound B. For such a

structured exponent, we show that it su�ces to run only λ/ log(B) parallel instances
of Pietrzak's PoE. This reduces the concrete proof-size compared to Block et al. by

an order of magnitude. Furthermore, we show that in the known applications where

PoEs are used as a building block such structured exponents are viable. Finally, we

also discuss batching of our PoE, showing that many proofs (for the same G and q but

di�erent x and T) can be batched by adding only a single element to the proof per

additional statement.

1

1 Introduction

In a Proof of Exponentiation (PoE) in a group G, a prover P aims at convincing a veri�er
V that a tuple (y, x, q, T) ∈ G2 × N2 satis�es y = xqT , where we refer to q as the exponent
and T as the time parameter. That is, it is a proof or argument system for the language

LG :=
{
(y, x, q, T) ∈ G2 × N2 : y = x2T over G

}
. (1)

Note that if the order of G, denoted ord(G), is easily computable, then V can e�ciently
compute xqT on its own by (i) computing the intermediate value e = qT modulo ord(G) and
(ii) computing xe using a single exponentiation in G. Therefore, the language is non-trivial
only if it is hard to compute ord(G). Such groups are referred to as groups of unknown order.
The two concrete groups of unknown order that are presently used are RSA groups [RSA78]
and class groups [BW88].1 PoEs in such groups of unknown order have found applications as
building blocks for constructing veri�able delay functions (VDFs) [Pie19, Wes20] and succinct
non-interactive arguments of knowledge (SNARKs) [BHR+21]. Since both applications are
non-interactive in nature, the PoE itself must be non-interactive � the usual approach is to
build a public-coin, interactive PoE and then make it non-interactive using the Fiat-Shamir
transform [FS86]. In both applications, the PoE is loosely employed in the following setting.

1. P and V get some (x, q, T) as part of the protocol and P then computes y := xqT by
exponentiating to exponent q sequentially2 T times:

x→ xq → xq2 → xq3 → . . .→ xqT . (2)

2. P sends (y, π) to V, where π is a proof for the (true) statement y
?
= xqT computed

using the non-interactive PoE.3

Ideally, we want the cost incurred by P to compute π in the second step to be marginal
compared to the T exponentiations it makes in Equation (2) to compute y in the �rst place.

Importance of statistical soundness. A PoE is said to be statistically-sound if even
a computationally-unbounded cheating prover P̃ cannot convince V of a false statement

ỹ
?
= xqT . Such a strong soundness guarantee is useful in its applications. For instance,

in [BHR+21], where PoE is used to construct a SNARK, the underlying PoE must be
statistically-sound so that the statistical knowledge-soundness of the SNARK can be argued.
In the context of VDFs, statistical soundness ensures some security even when the group
order is somehow revealed, e.g., in the following use-case.

1The RSA group, Z×
N , is the (multiplicative) group of units modulo N , where N = p1p2 is the product

of two large, randomly-sampled primes p1 and p2. The de�nition of a class group is technical and requires
some algebraic number theory � we refer the readers to [BW88].

2In VDFs, it is an explicit �sequentiality assumption� that y = xqT cannot be computed faster (i.e., with
fewer sequential computational steps) than as described above, even when using massive parallelism.

3In order to disambiguate from equality over G, we use �y
?
= xqT � throughout the paper to refer to the

statement �y = xqT holds over G�, which may or may not be true.

2

� Chia is a secure, permissionless blockchain [CP19], built using VDFs and proofs of
space [DFKP15]. In particular, it uses a PoE-based VDF instantiated in class groups,
which is sampled freshly every 10 minutes. It relies on both security properties of this
VDF, i.e., (i) sequentiality, which (loosely-speaking) requires it to be hard to compute
the output y := xqT faster than in Equation (2); and (ii) soundness, which, as for PoE,
requires it to be hard to generate proofs for a wrong output ỹ ̸= xqT . However, the
reliance on these two security properties is to di�erent degrees, as we explain next. An
attacker that occasionally learns the group order and, therefore, is able to compute
the output fast only has a short-term impact on the security. On the other hand, an
attacker that consistently breaks soundness is devastating since it potentially leads to
double-spending.4 Therefore, if the VDF used is statistically-sound then, even in the
worst case where the attacker learns the group order,5 it will only be able to compute
the correct output fast but will still not be able to lie about its value.

In other scenarios, where the group order is supposed to be known by some parties, using
statistically-sound PoEs allows for a much more e�cient setup. An example follows.

� The RandRunner protocol [SJH+21] uses VDF to construct randomness beacons [Rab83].
Every party participating in the protocol realizing the beacon will sample two safe
primes6, which de�nes a �safe� RSA group where Pietrzak's PoE is guaranteed to
have statistical soundness (see discussion below). The fact that these parties know
the factorization is actually a feature, as they are occasionally required to use it as a
trapdoor to quickly compute and broadcast a VDF output and the PoE certifying its
correctness. To prevent cheating, each party must provide a zero-knowledge proof that
their modulus is indeed the product of two safe primes. If one, instead, uses PoEs with
statistical soundness in arbitrary groups, the protocol can be instantiated in any RSA
group. Thus, the expensive zero-knowledge proof can be avoided (at the cost of larger
PoEs for the individual proofs, of course).

A similar scenario comes up in the fair multiparty coin-�ipping protocol of Freitag et
al. [FKPS21]. This methodology might also be useful for (non-interactive) timed commitments
and encryption [BN00, KLX20].

Prior works and their instantiation. The existing PoE protocols and their relevant
properties � namely, soundness and proof-size � are given in Table 1. These protocols
are all public-coin, and their non-interactive counterparts obtained by applying the Fiat-
Shamir transform can be shown to be sound in the random-oracle model.7 The PoE in

4A minor nuisance would be the need to roll back the blockchain once a �awed proof was added and
recognized. But an attacker that can forge proofs controls the randomness and, thus, can do things like
attaching a pre-computed chain to the current one in order to do a double-spending attack with only little
resources.

5This can happen, e.g., if the trusted setup failed or the class group sampled turned out weak.
6A prime p is safe if (p− 1)/2 is also prime.
7This follows by existing results [PS00, BCS16] for a statistically-sound protocol � in fact, the resulting

non-interactive protocol is, itself, statistically-sound. However, for computationally-sound protocols, this

3

PoE soundness proof-size

[Pie19]
statistical in G without low-order elements

log(T)
computational in G with low-order elements (low-order assumption)

[Wes20] computational (adaptive root assumption) 1

[BHR+21] statistical in any G λ log(T)

Table 1: Comparison of existing PoEs. Towards proof-size, we count the number of group
elements sent by the prover � this corresponds to the size of the non-interactive proof obtained
by Fiat-Shamir transform; λ ∈ N in the �nal cell denotes the statistical security parameter.

[BHR+21] is statistically-sound in arbitrary groups and therefore can be instantiated in both
RSA groups and class groups. On the other hand, the soundness of [Pie19] and [Wes20]
is computational and relies on new hardness assumptions called low-order assumption and,
the stronger, adaptive root assumption, respectively [BBF18]. Therefore, these PoEs must
be instantiated in groups where the respective assumption is believed to hold. An example
of a group where both assumptions are believed to hold is Z×N/{±1}, the (cyclic) group
obtained by quotienting the RSA group [BBF18]. Moreover, in groups where there is a
syntactic guarantee that no elements of low order exist, the low-order assumption would hold
unconditionally and, thus, the [Pie19] PoE enjoys statistical soundness when instantiated
there. An example of such a group is provided in [Pie19]: if the primes that de�ne the RSA
group Z×N are safe primes then the subgroup of quadratic residues of Z×N has no low-order
elements.

For the setting of class groups, on the other hand, our understanding of the low-order
and adaptive root assumptions is still only developing: for example, [BKSW20] showed how
to break the low-order assumption in class groups for some classes of prime numbers and
these are, therefore, not suitable to instantiate [Pie19] and [Wes20]. However, class groups
do have one major advantage over RSA groups in that they do not require a trusted set-up,
i.e., the set-up is �transparent': the group can be sampled obliviously in the sense that a
random string speci�es a group without revealing the order of the group. Compare this with
the RSA group, where the only known way to generate the group is to �rst sample primes
p1 and p2 and then output the modulus N = p1p2 � but this means the sampler knows the
factorization and, thus, the group order (p1− 1)(p2− 1). For such �non-transparent� groups
to be used in VDFs or SNARKs, one must either employ some trusted party to sample
N and then delete p1 and p2, or sample N using expensive multiparty computation (see,
e.g., [FLOP18, CCD+20] and the references therein). Thus, it is unclear how to practically
instantiate the PoEs from [Pie19, Wes20] if the application requires a transparent set-up.

needs a proof: see, e.g., [BBF18].

4

1.1 Our Contribution

From the preceding discussion, one may conclude that the PoE of Block et al. [BHR+21] is
the only reasonable option when we need statistical guarantees and want to avoid trusted
set-ups. However, it su�ers from the drawback that its proof-size is large, λ log(T) to be
precise. In this work, we present an e�cient PoE that enjoys statistical soundness in all
groups, but only for exponent q that is of a special structured form � for our basic protocol,
q is set as the product of all primes less than some bound B ∈ N. However, the size of our
proof is

λ log(T)/ log(B),

which is smaller than in [BHR+21] by a (multiplicative) factor of log(B). It is, however,
not possible to choose B to be arbitrarily large in our protocol as this would adversely
a�ect the veri�er's (computational) complexity. An illustration of how the proof-size and
veri�er-complexity of our protocol change with B can be found in Figure 1. In our most
basic protocol, the veri�er's complexity when B = 521 is roughly the same as in [BHR+21]
(Figure 1.(b)). For this B, we get the proof for each of the log(T) rounds down from λ = 80
to 9 = ⌈80/ log(B)⌉ group elements (Figure 1.(a)). In practice, this means, e.g., that for a
time parameter T = 232 and instantiation in a group with elements of size 2048 bits, the
proof-size drops from 655KB to 74KB.

Finally, for the application to VDFs and SNARKs, we argue that our special choice
of exponent q does not really matter. In the construction of SNARK in [BHR+21], it is
possible to use any q as long as it is su�ciently large.8 As for VDFs, one typically just sets
the exponent q = 2, and exponentiation, therefore, is tantamount to squaring. For a more
general q, one adjusts the time parameter accordingly, as explained next. For an arbitrary
q, one can use the square-and-multiply algorithm, so each exponentiation induces ⌊log(q)⌋
(not just one) sequential squarings with some multiplications in-between. Note that if q was
a power of 2 (which it is not in our case), say 2k, the initial exponentiation would be of the
form x(2k)T , so one would set the time parameter to T = T ′/k in order to get a challenge
that takes time T ′ to compute. Similarly, for our choice of q, one sets the time parameter to
T = ⌈T ′/ log(q)⌉ to get a challenge that takes sequential time T ′ to compute.

1.2 Technical Overview

In Section 1.2.1, we describe a basic version of our protocol where the veri�er's running
time is not optimal. However, this allows us to introduce the core ideas behind our PoE.
We explain how to improve the veri�er's e�ciency in Section 1.2.2. We refer the readers to
Sections 2 and 3, respectively, for the technical details.

8Note that our structured exponent q is always even. However, many results in [BHR+21] are stated only
for odd values of q. In Appendix B, we show that such restriction is not necessary and that their results, in
fact, hold for all values q.

5

(a)

(b)

Figure 1: For 80-bit security, (a) the number of (group) elements sent by the prover per
round and (b) the number of (group) multiplications carried out by veri�er, also per round,
plotted for di�erent values of the bound B. The dotted blue line, the solid orange curve,
and the dashed green line represent, respectively, [BHR+21], our protocol, and [Pie19]. In
Figure 3 we dissect the solid orange curve in (b).

1.2.1 Basic Protocol and Proof Idea

Our starting point is Pietrzak's PoE, in particular, an observation on the �ne-grained nature
of its soundness which we exploit in our protocol. Therefore, we start with its high-level
description.

Pietrzak's PoE and its soundness. The protocol in [Pie19] is recursive in the time
parameter T and involves log(T) rounds of interaction. To prove a (true) statement `y = xqT ',

the (honest) prover P, in the �rst round, sends the �midpoint� µ := xqT/2
to the veri�er V.

This results in two intermediate statements

µ
?
= xqT/2

and y
?
= µqT/2

, (3)

but relative to half the original time parameter T . Next, V sends a random challenge r to
P, and they merge these two intermediate statements into a new statement

y′
?
= (x′)q

T/2

, where x′ := xr · µ and y′ := µr · y.

6

The above steps constitute the �halving� sub-protocol, which is repeated log(T) times,
halving the time parameter each time, until P and V arrive at a (base) statement for T = 1.
At this point, V can e�ciently check the correctness on its own by performing a single
exponentiation.

To explain our observation, it su�ces to focus on the �rst round of the protocol (but it
applies also to later rounds). Assume that a cheating prover P̃ tries to cheat with a (false)

statement ỹ
?
= xqT that is �α-false�, by which we mean ỹ = y · α for some α ∈ G \ {±1} and

y := xqT . The soundness of the halving sub-protocol depends on the order of α in G, denoted
ord(α). For simplicity, let's restrict our attention throughout this section to the case where
ord(α) is a prime power pe, for a prime p ∈ N and an exponent e ∈ N � the case of prime
power already captures all interesting aspects. Our observation is that if ord(α) = pe for the
original statement then the new statement is still false with probability 1 − 1/pe (over the
choice of r). In other words, the soundness error of this round is 1/pe. More generally, if
ord(α) = pe for the original statement then for any d ≤ e, P and V derive a new statement
that is α′-false with probability 1 − 1/pd, where ord(α′) = pe

′
for e′ ≥ e − d. We formalise

this observation in Lemma 1.

Dealing with low-order elements by parallel repetition. Note that the above analysis
also explains why Pietrzak's PoE is unsound when the group contains low-order elements:
when, e.g., a statement is α-false for α such that ord(α) = 2, the soundness guaranteed is
only 1/2. To generate a cheating proof, it su�ces to �nd such an α (see [BBF18] for details
of the attack) and, hence, the necessity of low-order assumption. The PoE of Block et al.
[BHR+21] gets around this issue essentially by direct ampli�cation of the weak soundness,
i.e., by running λ-many instances of the PoE in parallel, where λ is the security parameter.
We provide an overview of their protocol next.

As in Pietrzak's PoE, the protocol in [BHR+21] is recursive in the time parameter T and
involves log(T) rounds of interaction. At the start of the protocol, P and V have a tuple of

λ (possibly identical) statements of the form y
?
= xqT , with the same exponent q and time

parameter T . In the �rst round, for each statement y
?
= xqT in the tuple, P sends the midpoint

µ to V, which results in two intermediate statements as in Equation (3). Altogether, there
are 2λ intermediate statements at this point. Next, V sends a random challenge (S1, . . . ,Sλ)
to P, using which the intermediate statements are randomly merged into λ new statements,

each of the form y
?
= xqT/2

. To be precise, the challenge Si determines a subset of the
intermediate statements, which are multiplied to obtain the i-th new statement. The above
steps constitute the halving sub-protocol for [BHR+21] repeated log(T) times, halving the
time parameter T each time, until P and V arrive at a statement for T = 1. At this point,
V can e�ciently check the correctness on its own by performing λ exponentiations.

To see why elements of low order do not a�ect soundness of the halving sub-protocol any
more, suppose that one of the original statements is α-false with, say, ord(α) = 2 (which is
the worst case). Just like in [Pie19], we now have the guarantee that at least one of the 2λ
intermediate statements is also false. [BHR+21] show that merging using the �random subset
product� technique described above guarantees that each new statement is individually false

7

with probability at least 1/2 and, by independence of choice of Sis, at least one of the
new statements is false with probability 1 − 2−λ. Thus, a false statement is in some sense
�propagated� till the end, at which point it gets detected by V.

Reducing the number of repetitions using structured exponents. Our basic protocol
is similar to [BHR+21], except for two modi�cations: (i) we set q to be the product of all
primes (strictly) less than some bound B; and (ii) we repeat only ρ = λ/ log(B) times in
parallel. To see why such a structured q helps reduce the number of repetitions from λ to ρ
(while maintaining statistical soundness), we have to appeal to our above observation on the
security of the PoE from [Pie19] and apply it to the setting of [BHR+21]. Suppose, again,
that one of the original λ statements at the start of the protocol is α-false. There are three
cases to be considered.

1. If ord(α) has a �large� prime divisor p > B then we apply our observation to infer
that each new statement is α-false with probability (1 − 1/p), and the independence
of merging now implies a soundness error p−ρ ≤ B−ρ. Since ρ = λ/ log(B), we get
soundness error 2−λ as [BHR+21].

2. Otherwise, ord(α) only has a �small� prime divisor p < B and suppose that ord(α) = pe.

(a) If the exponent e of the prime power pe is �large� � to be precise e > C, where
C := log(T) log(B) � then we can apply our observation again. There are log(T)
rounds and, by an averaging argument, there must exist a round i such that the
prime power drops by at least log(B). However, by our observation, even for p = 2
this can only happen with probability at most 2− log(B) = 1/B. Now, it can be
similarly argued that the probability that there exists at least one false statement
in the next round is 1−B−ρ, and we get the same soundness error as in Item 1.

(b) Otherwise, the exponent e of the prime power pe is �small�, i.e., e ≤ C. To handle
this case, we modify the protocol so that the statement that (honest) P and V

start with is
yq

−C ?
= xqT−C

instead of y
?
= xqT , and then make V compute the �nal exponentiations yq

−C → y
on its own. To see why this helps with soundness, assume that P̃ tries to cheat with

an α-false statement ỹ
?
= xqT−C

in the modi�ed protocol, i.e., ỹ = xqT−C ·α. Since
ord(α) = pe divides qC , we have αqC = 1 and, therefore, V's �nal exponentiation
leads to outright rejection:

ỹq
C

= (xqT−C · α)qC = xqT · αqC = xqT ̸= y.

To summarise our approach, the modi�cation in Item 2b forces a cheating prover to cheat
with α-false statements that are �far from being true� in the sense that ord(α) has a divisor
that is either a large prime or a prime power with large exponent. Moreover, it is possible to
catch cheating with such statements building on existing techniques (Items 1 and 2a), aided

8

by a �ne-grained analysis. In Section 2, we extend the above analysis to accommodate αs of
arbitrary order (Theorem 1).

1.2.2 Improving Veri�er's Complexity

The basic protocol that we just outlined in Section 1.2.2 decreases the number of parallel
repetitions, and, thus, the proof-size in the non-interactive case, by a factor log(B). But
the veri�er has to carry out some extra work as it must compute the �nal exponentiation
yq

−C → y on its own. This can be quite expensive, especially if we batch many proofs
together. In the same group and for the same T , both protocols of Pietrzak and Block et al.
can handle many PoEs basically at the price of a single PoE plus a small additive complexity
overhead for each proof (this is, in fact, exploited in the SNARKs from [BHR+21]). In this
work, we show that such batching works even for di�erent values of T . Though, one problem
for our new PoE is that, while this batching works also for the �rst phase of our protocol,
the �nal exponentiation of the veri�er cannot be trivially batched and, thus, it must be
performed for each statement individually.

We thus further improve the protocol in two ways getting mostly rid of the extra cost for
the �nal exponentiation. The �rst improvement leverages the observation that, by setting q
to be not just the product of all primes (strictly) less than B but taking each prime p with
power log(B)/ log(p), we can already decrease the exponent C for the �nal exponentiation
from log(T) log(B) to log(T). The second improvement comes from the observation that
the �nal exponentiation yq

−C → y can be replaced by just another PoE and, using our
batching, this statement itself can be just batched together with the original statement.
As the exponent (C = log(T) with the �rst improvement) is much smaller than T , the �nal
exponentiation now only needs log(C) = log log(T) rounds. Iterating this idea log∗(T) times,
which is at most

5 = log∗(22
22

2

) = log∗(265536)

in practice, we get the number of exponentiations down to 1 with a modest increase (from
ρ · log(T) to ρ · (log(T) + log∗(T)) group elements) in proof-size. This batching argument
only works so conveniently for T of a special form, basically powers of 2: T in the (relevant)
range 217 < T < 265536 should be of the form T = 2t + 216 + 24 + 22 + 1. For general T
the veri�er's cost grows with basically the Hamming weight of log(T). In Appendix B.3 we
analyse the gain in e�ciency of the polynomial commitment in [BHR+21] when we use this
improved version of our PoE as a building block instead of the PoE proposed in [BHR+21].

1.3 Related Work

PoE, SNARGs and VDFs. Veri�able Delay Function (VDF), as a cryptographic primitive,
was �rst formalised in [BBBF18]. In addition to de�ning its security requirements, [BBBF18]
provided theoretical constructions based on incrementally-veri�able computation [Val08].
Loosely speaking, they used repeated (structured) hashing as their delay function and then
relied on succinct non-interactive arguments (SNARGs) to enable e�cient veri�ability of

9

the result of the repeated hashing. As explained in Section 1, (non-interactive) PoE are
closely related to VDFs: the practical VDFs of Pietrzak [Pie19] and Wesolowski [Wes20] use
repeated squaring in a group of unknown order as their delay function and use a PoE on top
to enable e�cient, public veri�ability of the result of the repeated squaring. The di�erence
between [Pie19] and [Wes20] lies in the way the PoE is implemented: an overview and
comparison of these PoE protocols can be found in [BBF18]. Moreover, there is evidence
that to construct VDFs over groups, the reliance on the group order being unknown is
inherent [RSS20, MSW20], which lends even more importance to PoE protocols from the
perspective of e�cient VDFs. Finally, PoE have recently been used as a crucial building
block in constructing space-e�cient general-purpose succinct non-interactive arguments of
knowledge (SNARKs) [BFS20, BHR+21, AGL+22], thus establishing a converse relationship.

Additional work related to VDFs. VDFs have also been proposed in other algebraic
settings: e.g., the constructions in [FMPS19, CSHT21, Sha19] are based on supersingular
isogenies with the motivation to achieve (some notion of) post-quantum security.9 In addition
to the basic VDFs, re�ned variants of VDFs have also been explored. For a �continuous�
VDF [EFKP20], it should be possible (loosely speaking) to take a proof and iterate it to
produce a proof for the next iteration of the delay function (instead of having to recompute
the proof for the new value from scratch). A �tight� VDF [DGMV20] necessitates that the
amount of work that is required to generate a proof to be �comparable� to that required to
just compute the function. Finally, we point out that existence of VDFs has implications
in complexity theory, in particular to the existence of average-case hardness in complexity
classes of total search problems such as PPAD [EFKP20, LV20, CHK+19].

Timed-release cryptography. VDFs fall under the umbrella of timed-release cryptographic
primitives [May94]. The �rst of such objects were time-lock puzzles (TLP) [RSW96] and
timed commitments [BN00]. A TLP can be regarded as a delay function that also allows
e�cient sampling of its output (via a trapdoor). The TLP from [RSW96] uses repeated
squaring in RSA group as the delay function, while the output can be e�ciently determined
using the factorisation of the modulus as trapdoor. Constructions of TLP are scarce � the
only other known construction is from [BGJ+16] and it relies on obfuscation-like assumptions.
Prior to VDFs the notion of proofs of sequential work (PoSW) was introduced by Mahmoody,
Moran an Vadhan [MMV13]. Like in a VDF, in a PoSW a prover on input some challenge x
and time parameter T must perform an (inherently sequential) computation of Θ(T) steps
and provide an e�ciently veri�able proof. VDFs are a stronger notion than PoSW as in
the latter the proof only certi�es that a sequential computation was done, while in a VDF
has an additional � for many applications crucial � �uniqueness� property, it certi�es that
some particular value is the correct output of a deterministic sequential computation (note
that the proofs themselves need not be unique). Unlike TLPs, PoSWs can be constructed
from random oracles [MMV11]. The construction from [MMV13] is based on random oracle

9Note that the delay functions in the RSA group and class groups of imaginary quadratic �eld lose their
sequentiality property in the quantum setting since the order of these groups can be e�ciently computed.

10

but is not really practical as the prover needs not just T time but also linear in T space to
compute the PoSW. A construction using just log(T) space was given in [CP18], constructions
with extra properties like being that �reversible� [AKK+19] or �incremental� [DLM19] were
recently proposed. Existing PoSW are quantum secure [BLZ21], while as mentioned above,
for VDFs post-quantum security is largely open. Before practical VDFs were found, the
sloth function of Lenstra and Wesolowski [LW17] was the closest we had to a unique PoSW.
The reason sloth was not a unique PoSW was that veri�cation took time linear in the time
to compute the output, but veri�cation is faster by a constant around 1000 (leveraging the
di�erence of squaring and taking roots in groups of known order) and can be parallelized.

Repeated squaring. The use of repeated squaring (a special case of repeated exponentiation)
in a group of unknown order as an inherently sequential operation can be traced back to
[RSW96, CLSY93]. In the algebraic setting of RSA group, there is evidence that speeding
up repeated squaring is tantamount to factoring [KLX20, RS20]. Further support for the
sequential hardness of the problem was given in [WW20] and [vBS21]. In [FK22] Freitag
and Komargodski give a lower bound for the veri�er's complexity in interactive proofs for
repeated squaring in the generic group model.

Batch veri�cation. The idea of using batching to reduce the amortized cost per operation
has been explored for a host of cryptographic primitives such as, e.g., key agreement [BY93],
signatures [MN96], and public-key encryption [Fia97]. Closer to the topic of this paper,
the problem of batching the veri�cation of multiple exponentiations in arbitrary groups
(not necessary of unknown order) was studied in [BGR98]. They make a heavy use of the
random subset and random exponents technique (as pointed out in [Rot21]), which we also
do. Building on [BGR98], Rotem [Rot21] recently explored batch-veri�cation of VDFs: as
mentioned in Section 3, Rotem focused on the veri�cation of statements with the same time
parameter, whereas our batching does not have this restriction. We refer the reader to
[Rot21] for further related work on batching.

2 Basic Protocol

Block et al. [BHR+21] constructed a statistically-sound PoE in any group of unknown order
using the PoE from [Pie19] as starting point (which was described in Section 1.2.1). To
achieve λ bits of security, their construction requires a multiplicative factor of λ in proof-size
compared to [Pie19]. Below, we �rst explain the PoE from [BHR+21] in a bit more detail
(than in Section 1.2.1), and then we explain how our protocol reduces this overhead. For
now we just focus on improving the proof-size, but the veri�er complexity of our protocol
will increase, especially in settings where we batch many proofs � later, in Section 3, we will
show how to get down the veri�er's complexity.

11

Statistical PoE from [BHR+21]. To interactively prove the statement y
?
= xqT , the

prover P and veri�er V �rst make λ copies of the statement.10 In every round of the protocol,
the original statements are reduced to �smaller� statements by reducing the exponent qTi to
qTi+1 := qTi/2 as follows. The i-th round starts with a set of λ statements

{yi
?
= xqTi

i }i∈[1,λ].

Then, P sends λ many �midpoints�

{µi := xqTi/2

i }i∈[1,λ]

resulting in 2λ intermediate statements of the form

{vi
?
= uqTi/2

i }i∈[1,2λ].

To avoid a blow-up in the number of statements, V sends a random subset S ⊆ [1, 2λ] to
P and, then, P and V use S to recombine these 2λ intermediate statements into one using
subset-product:

Πi∈Svi
?
= Πi∈Su

qTi/2

i .

To ensure soundness, it is required to perform λmany of such recombinations using independent
subsets S1, . . . ,Sλ, and the round ends with λmany new smaller statements. We next explain
why the recombination step must be performed λ many times. Suppose only one of the 2λ
intermediate statements is false before the recombination step (which is the worst case).
Then, with probability 1/2, the false statement is not among the selected statements in the
random subset used during the recombination step, and the resulting new statement is true.
If all new statements are true, then the veri�er falsely outputs accept at the end of the
protocol and, therefore, the veri�er must perform λ many independent recombinations to
ensure λ bit security.

Our protocol. We give a formal description of our protocol in Figure 2 � for ease of
presentation, we assume that T = 2t + C for some t ∈ N.11 Moreover, since the exponent
q is �xed throughout the protocol, we drop it and use the short-hand (x, y, T) to denote

the statement y
?
= xqT . Its soundness is then proved in Section 2.1. Below, we give a high-

level overview, slightly more detailed than in Section 1.2.1. We start by listing the major
di�erences between our protocol and [BHR+21].

1. Instead of sampling a subset S ⊆ [1, 2λ] to construct a new statement using subset-
product, we take each intermediate statement to a random exponent in {0, 1, . . . , 2κ−
1}, where κ is some small integer, and then multiply them together: see Equation (5).

10Note that the protocol works also when the starting statements are di�erent as long as the exponent q
and time parameter T match. This is the case for our protocol too.

11The case where T − C is not a power of 2 can be handled by a standard approach similar to [Pie19,
Section 3.1].

12

2. We set
q :=

∏
prime p<B

p, (4)

where B is some �xed bound, which can be chosen depending on the application of the
PoE.

3. We de�ne a constant C such that the prover gives a proof for the statement y′
?
= xqT−C

(i.e., a qC-th root of the original statement) and the veri�er computes the �nal check
(y′)q

C
= y itself.

The above changes allow us to reduce the number of repetitions from λ to ρ := λ/ log(B)
(for λ bits security). At a �rst glance, it could seem like the �rst change is su�cient to
avoid the need for λ independent recombinations since the probability that a false statement
is part of a new statement is not 1/2 any more but seemingly 1/2κ. Unfortunately, it is
not the case that taking κ-bit exponents for the recombination step achieves such a drastic
improvement in the bound on the probability of accepting a false statement. Note that the
process of raising a false statement to some exponent can also result in a true statement.

This is indeed very likely if a false statement y
?
= xqT is �close� to the true one in the sense

that y is the correct value multiplied by a low-order element α. If, e.g., this element α is of
order two and the statement is raised to an even exponent, say two, the resulting statement

(yα)2
?
= (xqT)2 will be true. This observation underlies an attack on [Pie19] that was �rst

described12 in [BBF18] and it is also the reason why [Pie19] is statistically-sound only in
groups that have no elements of small order.

To circumvent the above attack using low-order elements, we introduce the second and

third change in the protocol: instead of the original statement y
?
= xqT , the (honest) prover

only proves the (smaller) modi�ed statement y′
?
= xqT−C

, where y′ := xqT−C
, and the veri�er

checks whether y = (y′)q
C
by itself as the �nal step. Moreover, to ensure that all the low

orders are covered, we de�ne q to be the product of all small prime numbers up to a certain
bound B as in Equation (4). Now, a cheating prover that tries to cheat on an original
statement by proving a false modi�ed statement13 will get caught in the �nal exponentiation
as long as the false modi�ed statement is �close� to the true one, where �close� means that
the correct value can be multiplied by an element α whose order only has small prime divisors
(prime numbers less than B) and the prime divisors have small exponents (integers up to

C). To see this, observe that if the modi�ed statement is y′α
?
= xqT−C

(which is false), the
�nal exponentiation with qC leads to rejection since

(αy′)q
C

= 1 · (xqT−C

)q
C

= xqT ̸= y,

where αqC = 1 holds inG because of our assumption that it has low order. The above changes
allow us to restrict to cheating provers that try to convince the veri�er of statements that are

12The observation that random batching can be attacked using low-order elements was already made in
[BP00].

13If the (cheating) prover does not cheat on the modi�ed statement, the veri�er will anyway catch it during
the �nal exponentiation.

13

�far from true�, i.e., where the correct value is multiplied by an element whose order either
has a large prime divisor or a divisor which is a small prime number with a large exponent.
However, in this case the probability that the protocol ends with only true statements and
the veri�er wrongly accepts at the end of the protocol is less than log(T) ·2−λ for parameters
C = log(T) log(B) and ρ = λ/ log(B), where ρ takes the role of λ in [BHR+21], i.e., it is
basically the number of parallel repetitions of Pietrzak's protocol.

2.1 Soundness

We show that our protocol is statistically-sound for arbitrary groups of unknown order. In
particular, soundness holds against cheating provers that can compute group elements of
small order.

Theorem 1. Let B be any prime number such that q :=
∏

prime p<B p and ρ ∈ N be the
number of repetitions per round. If we set C = log(T) log(B) and let κ→∞, the veri�er V
will output accept on a false statement (x, y, T = 2t + C) with probability at most t/Bρ.

A parameter of our PoE is the bit-size κ of each random element sampled by the veri�er.
In the statement of Theorem 1, we consider the limit case with κ approaching in�nity for
the sake of readability. Note that if r is sampled from a randomness space of size 2κ we have
Pr [p divides r] = 1/p + 1/2κ. In the limit case κ → ∞, the probability is 1/p. In practice,
κ needs to be chosen carefully such that the protocol is still e�cient but the probability of
the above event is close enough to 1/p. We discuss this point further in Section 2.2. Before
proving Theorem 1, we analyse in Lemma 1 how the order of a group element precisely
a�ects soundness; next we give provide an overview.

Fine-grained soundness. Let xqT−C
= y′ but a cheating prover P̃ claims that xqT−C

= y′α.
In the execution of the protocol, P̃ �rst sends a midpoint µ, which results in two intermediate
statements. Note that no matter what the value of µ is, one of the two statements will be
false, so for now let's assume that P̃ sends a correct midpoint µ = xq(T−C)/2

. Therefore the
intermediate statements are

µ
?
= xq(T−C)/2

, and y′α
?
= µq(T−C)/2

,

and in particular, the second statement is α-wrong. In the protocol, we copy each statement
ρ many times, raise each copy to a random exponent rk and then multiply the 2ρ statements
together. This results in a new statement that is true whenever

αr1αr2 . . . αrρ = αr1+r2+···+rρ = 1.

This is the case when r1 + r2 + · · · + rρ ≡ 0 mod ord(α), which happens with probability
1/ ord(α) if we assume that the randomness space is large enough (see Section 2.2 for
discussion on the size of the randomness). This means that whenever ord(α) is large, it
is unlikely that the statement is transformed into a true statement after a single round.

14

Parameters: (determined in the analysis)

1. bound B ∈ N, which de�nes the exponent q :=
∏

prime p<B p

2. constant for exponentiation C ∈ N

3. number of parallel repetitions ρ ∈ N

4. size of individual random coin κ ∈ N

Statement: y
?
= xqT in LG

Protocol: For ease of presentation, we assume that T = 2t + C. The protocol consists
of t rounds described in Item 2 below.

1. The prover P sends y′ = xqT−C
to the veri�er V, de�ning the initial ρ statements

{(x0,j, y0,j, T0)}j∈[1,ρ], where T0 := T −C and, for j ∈ [1, ρ], x0,j := x and y0,j := y′.

2. In round i ∈ [1, t], P and V engage in the following halving sub-protocol:

(a) Let {(xi−1,j, yi−1,j, Ti−1 = 2t−i+1)}j∈[1,ρ] be the statement from round i− 1.

(b) P sends V the midpoints
{
µi,j := xqTi−1/2

i−1,j

}
j∈[1,ρ]

, which de�nes 2ρ intermediate

statements

{(xi−1,j, µi,j, Ti := Ti−1/2)}j∈[1,ρ] and {(µi,j, yi−1,j, Ti)}j∈[1,ρ],

which we denote {(ui,k, vi,k, Ti)}k∈[1,2ρ].

(c) V sends a random challenge {ri,j,k}j∈[1,ρ],k∈[1,2ρ] to P, where ri,j,k ← {0, 1}κ

independently for all j ∈ [1, ρ] and k ∈ [1, 2ρ].

(d) P and V set {(xi,j, yi,j, Ti)}j∈[1,ρ] as the statement for the next round, where

xi,j :=
∏

k∈[1,2ρ]

u
ri,j,k
i,k and yi,j :=

∏
k∈[1,2ρ]

v
ri,j,k
i,k , (5)

and proceed to the next round.

3. V accepts if and only if xq
t,j = yt,j and (y′)q

C
= y for all j ∈ [1, ρ].

Figure 2: Our basic Proof of Exponentiation.

15

However, the order of the element that makes the statement false can also decrease round
by round until the statement is transformed into a true one. To prove this intuition, we use
the following well-known fact about order of group elements. A proof can be found in any
standard textbook on group theory (e.g., [DF03, Proposition 5]).

Proposition 1. Let G be a group, α ∈ G a group element and m a positive integer. It holds
that

ord(αm) =
ord(α)

gcd(ord(α),m)
.

By Proposition 1 we get that ord(αr1+r2+···+rρ) < ord(α) whenever r1 + r2 + · · ·+ rρ ≡ 0
mod d, where d is a divisor of ord(α). If the order decreases in all of the ρ many new
statements obtained this way, a cheating prover has a better chance to end up with a true
statement in one of the following rounds. We want to bound the probability that after some
round of the protocol all of the statements are true. To this end we need the following lemma
which bounds the probability that recombining a set of m > ρ statements, where at least
one statement is false, gives ρ true statements. In the proof of Theorem 1 we always have
m = 2ρ. Later in Section 3 we show how to prove many statements simultaneously so we
will use the lemma with di�erent values m.

Lemma 1. Let {(xi, yi, T)}i∈[1,m] be a set of m statements such that at least one of the
statements is α-false for some α ∈ G. Let {(x̃j, ỹj, T)}j∈[1,ρ] be a set of ρ statements de�ned
as

x̃j :=
∏

i∈[1,m]

x
rj,i
i and ỹj :=

∏
i∈[1,m]

y
rj,i
i

with independently sampled rj,i ← Z2κ uniformly at random for all i ∈ [1,m] and j ∈ [1, ρ].
Let B be any prime number. If we let κ → ∞, the new statements satisfy the following
properties with probability at least 1− (1/B)ρ:

1. If for some prime p ≥ B we have p | ord(α), at least one of the statements {(x̃j, ỹj, T)}j∈[1,ρ]
is α̃-false and p | ord(α̃).

2. If for some prime p < B and some integer e ≥ log(B) we have pe | ord(α), at least one
of the statements {(x̃j, ỹj, T)}j∈[1,ρ] is α̃-false and pe−log(B)+1 | ord(α̃).

Proof. Since we want to lower bound the probabilities of the above events, it is su�cient
to consider the case where ord(α) has a single prime divisor. So, we assume ord(α) = pe

for some prime p and integer e. Using α, we can express the statements {(xi, yi, T)}i∈[1,m]

equivalently in the form {(xi, hiα
ai , T)}i∈[1,m], where xqT

i = hi are the correct values for all
i ∈ [1,m], ai ∈ Z and at least one of the ai = 1. A new statement (x̃j, ỹj, T) is computed as

x̃j :=
∏

i∈[1,m]

x
rj,i
i and ỹj :=

∏
i∈[1,m]

(hiα
ai)rj,i .

16

Let α̃ :=
∏

i∈[1,m] α
ai·rj,i . By Proposition 1, the order of α̃ is

pe

gcd(pe,
∑m

i=1 airj,i)
= pe−s

for some s ∈ {0, 1, . . . , e}. The probability that s ≥ k for any k ∈ {0, 1, . . . , e} is

Pr[s ≥ k] = Pr

[
m∑
i=1

airj,i ≡ 0 mod pk

]
=

1

pk
.

To prove the �rst claim of the lemma, we set e = 1 and p = B: the probability that
the new statement is true is the probability that s = 1, which is 1/B and, therefore, the
probability that all of the ρ new statements are true is 1/Bρ.

We prove the second claim of the lemma by setting e ≥ log(B) and observing that the
probability of s ≥ log(B) is 1/plog(B) ≤ 1/2log(B) = 1/B � the probability that this is the
case for all ρ statements is at most 1/Bρ.

Proof of Theorem 1. Assume that the correct value in Step 2 of the protocol is y′ := xqT−C

but a cheating prover P̃ claims that y′α
?
= xqT−C

(i.e., makes a statement that is α-false).
Notice that in the case where ord(α) | qC we have that (y′α)q

C
= (y′)q

C
= y and, hence,

the veri�er V ends up rejecting after Step 3 of the protocol. It follows that if P̃ wants to
convince V that the result is not y, then it needs to choose an element α such that ord(α)
does not divide qC . In this case, P̃ wins if all of the ρ statements are true after t rounds
of the protocol. From the discussion above, we know that the best option for P̃ is either
picking an element of order 2C+1 or an element of order p, where p is the smallest prime not
dividing qC . We analyse the two cases separately.

Case 1: Let ord(α) = p. Assume that in round i of the protocol we have ρ many statements

{(xi−1,j, yi−1,jα
ai−1,j , Ti−1)}j∈[1,ρ] (6)

where ai−1,j ∈ Z for all j ∈ [1, ρ]. If ai−1,j ≡ 0 mod p, the statement is true. Otherwise
it is false and, by Proposition 1 and the primality of p, we know that αai−1,j has order
p. We assume that at least one of the ai−1,j is not divisible by p and we bound the
probability that all of the statements are true in round i+ 1.

In Step 2 of the protocol, P̃ sends midpoints µi,j which results in 2ρ statements

{(xi−1,j, µi,j, Ti = Ti/2)}j∈[1,ρ] and {(µi,j, yi−1,jα
ai−1,j , Ti)}j∈[1,ρ], (7)

which we denote by {
(ui,k, vi,kα

bi,k , Ti)
}
k∈[1,2ρ]. (8)

Note that at least one of the bi,k is non-zero modulo p, no matter which elements µi,j

the prover sends. Hence, the assumption of Lemma 1 is satis�ed, so the probability
that all of the statements in round i+1 are true is at most 1/Bρ. By the union bound,
we get that the probability that all statements are true after t rounds is t/Bρ.

17

Case 2: Let ord(α) = 2C+1 where C = tℓ for some ℓ ≥ log(B). In order to end up with
a true statement after t rounds, P̃ has to decrease the order of the false element by a
factor of 2ℓ on average per round. In particular (by an averaging argument) there has
to be one round where the order decreases by at least 2ℓ.

Assume that in round i of the protocol we have ρ statements given in Equation (6).
Without loss of generality, let αai−1,1 have the largest order of all αai−1,j . The prover
sends midpoints µi,j which results in 2ρ statements given in Equation (7) which we
then denote as in Equation (8). We note that no matter the value of midpoint P̃ sends,
the order of the element that makes one of the two statements

µi,1
?
= xqTi

i−1,1 and yi−1,1α
ai−1,1 ?

= µqTi
i,1

false is at least ord(αai−1,1). To see this, assume that µi,1 is the correct midpoint but
P̃ sends µi,1β for some group element β. Then the second statement becomes

yi−1,1α
ai−1,1β−q

Ti ?
= µqTi

i,1 ,

which is γ-false for γ := αai−1,1β−q
Ti . Since αai−1,1 = γβqTi we have that ord(αai−1,1)

divides lcm(ord(γ), ord(βqTi)). It follows that ord(αai−1,1) divides either ord(γ) or
ord(βqTi) (and hence ord(β)) because the order of αai−1,1 is a power of 2.

By Lemma 1, we get that the probability that none of the statements in round i+1 is
α̃-false, where α̃ is some element with order divisible by ord(αai−1,1)/2ℓ−1, is at most
1/Bρ. By the union bound, we conclude that P̃ wins after t rounds with probability
at most t/Bρ.

Cases 1 and 2 together yield Theorem 1.

Corollary 1. For C := t log(B) the Fiat-Shamir transform of our PoE yields a sound non-
interactive protocol in the random-oracle model.

Proof. As we have seen above, a cheating prover is able to convince the veri�er of a false
statement only if there is one round where at least one of the following two events happens
depending on which attack is chosen:

� an α-false statement where ord(α) has a prime divisor of size at least B is transformed
into a true one or

� the order of the false element decreases by at least 2C/t.

We know that the probability that the output of a random oracle results in such an event is
(1/B)ρ since, by our choice of C, we have

1/2ρC/t = (1/B)ρ.

By a union bound, the probability that a cheating prover that makes up to Q queries to the
random oracle will �nd such a query is at most Q · (1/B)ρ.

18

Figure 3: Number of multiplications of the veri�er in one round for 80-bit security depending
on the bound B. The orange solid curve is the total veri�er's complexity for one round, the
blue dotted graph is the cost of the interactive part of the protocol and the green dashed
graph is the cost of the �nal exponentiation divided by the number of rounds (i.e., we
amortize the cost of the �nal exponentiation over the number of rounds).

2.2 E�ciency

In this section, we analyse the e�ciency of the Fiat-Shamir transform of our PoE for proving

a statement of the form y
?
= xqT with T = 2t + C.

Randomness space. In order to keep the cost of exponentiation with random coins low,
we need to make the size of the randomness space as small as possible while ensuring that
divisibility by B is almost uniformly distributed. For concreteness, we use log(B)+5 random
bits. Then it holds for any prime p > B and c ∈ Zp that

Pr
r←Z

2⌈log(B)⌉+5

[r = c mod p] <
1

B
+

1

B · 25
≈ 1.03

B
.

Veri�er's e�ciency. The work for the veri�er consists of two parts: 1) the interactive
part, which is dominated by t ·4ρ2 exponentiations (with exponents of size log(B)+5) and ρ
exponentiations with q, and 2) the �nal exponentiation with qC . Each exponentiation with a
z-bit exponent via the square-and-multiply algorithm costs about 1.5z multiplications (i.e.,
z plus the Hamming weight of the exponent), so the small exponentiations have complexity
6tρ2(log(B) + 5). Additionally, the veri�er performs 2tρ2 multiplications to recombine the
statements. The exponentiation with qC takes C · log(q) multiplications. If we set C =
t · log(B), the total of multiplications performed by the veri�er is approximately

t · ((6 log(B) + 32)ρ2 + log(B) · log(q)) + ρ log(q) ≈ t log(B)(6ρ2 + 2B) + 2ρB,

where we use the upper bound q ≤ 4B of Erd®s [Erd32]. As an example, consider an
implementation where t = 32, B = 521, and ρ = ⌈80/ log(521)⌉=9. Then we have log(q) ≈
703, so the cost for the veri�er is around 426000 multiplications.

In Figure 3, we plot the complexity of the veri�er in a single round of the interactive
protocol for di�erent values of B. Additionally, we consider the curves for the veri�er's

19

complexity of only the interaction with the prover and only the �nal exponentiation separately.
Observe that, for B < 227, the total complexity decreases as B increases due to the fact
that the number of repetitions λ/ log(B) decreases faster than the increasing cost of the �nal
exponentiation with qC (the latter increases linearly with B). Beyond B = 227, it is the
other way round and, thus, the total cost increases. Note that B = 227 implies q ≈ 2287. If
an application requires either a value q that is much larger than this or PoEs for multiple
statements (e.g., in [BHR+21], where λ many PoEs are needed in each round), then the �nal
exponentiation of the veri�er becomes too expensive. We present two modi�cations of the
protocol that improve this complexity signi�cantly: In Appendix A, we show how to replace
C = log(T) log(B) with C = log(T) by slightly modifying how we set q. In Section 3, we
show how to compute the last step interactively without increasing the number of rounds.

Prover's e�ciency. The prover needs to compute xqT and the midpoints µi,j. Computing

xqT takes log(q)·T multiplications. If the prover stores the value xqT/2
during that computation,

then computing the midpoints takes another ρ · log(q) · (T/4+T/8+ . . .+1) ≈ ρ · log(q) ·T/2
multiplications. This number can be signi�cantly reduced by storing a few more elements
during the computation of xqT similarly to [Pie19, Section 6.2]. For su�ciently large values
of T , the cost for computing the proof can be made small compared to the cost of the T
exponentiations required to compute the output and, moreover, the computation of the proof
can be easily be parallelized. For this reason we mostly ignore the prover's complexity in
the comparisons.

Communication complexity. The communication complexity from the prover to the
veri�er is of interest as it equals the proof-size after using the Fiat-Shamir heuristic. In each
of the t rounds, our prover sends ρ many midpoints which are of size logN . If logN = 2048,
t = 32, and ρ = 9 then the communication complexity is approximately 219 bits.

Comparison with alternative PoEs. In Table 2, we compare our protocol with the
proofs of exponentiation from [Pie19], [BHR+21], and [Wes20]. We list the proof-size and
veri�er's complexity. Prover's complexity is omitted since the main computation for the
prover in all the protocols is dominated by the same factor, i.e., the cost of T sequential
exponentiations to compute the output.

We observe that [Wes20] is the most e�cient PoE regarding veri�er's complexity and
proof-size. However, it is not statistically-sound. [Pie19] introduces only a minor increase
in overhead, but it has the drawback that it is only statistically-sound in groups with no
low-order elements other than the identity. The PoE from [BHR+21] and our PoE are
both statistically-sound in all groups, while the proof-size of our PoE improves by a factor
of log(B) upon [BHR+21] and we compare the communication complexity per round for
di�erent values of B in Figure 1.(a).

The veri�er's e�ciency of our PoE depends on the choice of the bound B which also
determines the size of q. In Figure 1.(b), we compare the number of multiplications per
round for the veri�er in both protocols for di�erent choices of B. Additionally to the work

20

PoE statistically-sound Veri�er's complexity |π|
Our PoE yes (6(λ

log(B)
)2 + 2B) log(B) log(T) + 2λ

log(B)
λ

log(B)
log(T)

[BHR+21] yes 2λ2 log(T) + 2λ log(q) λ log(T)

[Pie19] in some G 3λ log(T) log(T)

[Wes20] no log(T) + 3λ 1

Table 2: Comparison of di�erent PoEs. Veri�er's complexity is measured in the number of
multiplications and proof-size |π| in the number of group elements. By λ, we denote the
statistical security parameter. [Pie19] is statistically-sound only in groups without elements
of small order.

in each round, the veri�er computes λ many exponentiations with q in the last round of
[BHR+21] and ρ many exponentiations with q in the last round of our interactive protocol.
We see that the veri�er's complexity improves for B ∈ (59, 499), which corresponds to
q ∈ (271, 2685).

It is important to note that this is the veri�er's complexity for proving a single statement.
The PoE in [BHR+21] achieves the same veri�er's e�ciency for proving λ many di�erent
statements with the same exponent simultaneously. Our protocol incurs additional log(T) log(q)
multiplications for every new statement, since the veri�er has to compute the �nal exponentiation
individually for every statement. In Section 3, we give a batching protocol that reduces
the cost of the �nal exponentiation to log(q), which enables us to prove arbitrarily many
statements simultaneously without signi�cantly increasing the proof-size and veri�er's complexity.

3 Reducing (Veri�er's) Complexity by Batching

In this section, we show how to prove arbitrary many statements simultaneously without
increasing the number of rounds. This batching protocol serves two purposes:

1. E�ciently proving multiple independent statements. This is needed for example in the
polynomial commitment scheme of [BHR+21], where in each round λ many statements
need to be proven;

2. Reducing the veri�er's complexity of the �nal exponentiation with qC in our basic
protocol. Instead of performing the computation locally, the veri�er can request an
additional PoE for the statement (y′)q

C
= y and verify it simultaneously with the

original PoE. While now we need to do a �nal exponentiation for the new statement,
the exponent drops from log(T) to log log(T).

In [Rot21] Rotem gives a batching technique for arbitrary PoEs, where the statements have
the same exponent. We describe a batching technique for our PoE, where the statements
can have di�erent exponents. Furthermore, the protocol can be easily adapted to the PoEs
in [Pie19] and [BHR+21].

21

3.1 The Protocol

Assume the prover wants to prove two statements in the same group G:

h1
?
= gq

2t+C1

1 and h2
?
= gq

2s+C2

2 .

The statements can either be independent or one of them is the statement from the �nal
veri�er exponentiation of the other. The two statements can be proven simultaneously as
follows. First the prover sends the statements

h′1
?
= gq

2t

1 and h′2
?
= gq

2s

2 .

We can assume that t = ℓ + s for some ℓ ∈ N. Begin with the proof of the �rst statement.
After executing the protocol for ℓ− 1 rounds and the prover sending midpoints in round ℓ,
we have 2ρ statements {

vj
?
= uq2

s

j

}
j∈[2ρ]

.

The prover makes this 2ρ + 1 statements by adding h′2
?
= gq

2s

2 to them. Next the veri�er
sends ρ · (2ρ + 1) random coins and both parties create ρ new statements similarly to the
original protocol. Then they proceed with the PoE protocol. Note that this process neither
reduces soundness of the proof of the �rst statement nor of the second statement since by
Lemma 1 we only need one of the statements that are being combined to be false. In the
end the veri�er checks if h1 = (h′1)

qC1 and h2 = (h′2)
qC2 . This process can be extended to

arbitrary-many statements of the form hi
?
= gq

2r+Ci

i with the protocol given in Figure 4. Note
that in Step 4 we do not specify whether the veri�er checks hi = (h′i)

qCi by carrying out the
computation locally or by appending it to the statements. This depends on the size of C
and on the application.

Remark 1. In the case where the exponents of q are not powers of 2, one can simply

divide a statement of the form y
?
= xqS for S ∈ N into smaller statements as follows. Let

(s0, s1, . . . , sm) be the binary representation of S. Then we have

xqS = xq
∑

sk·2k

= x
∏

qsk·2k

= y.

This gives at most m + 1 smaller statements y1
?
= xqs0 and yi+1

?
= yq

si·2
i

i for i ∈ [1,m]
where ym+1 = y. Again these statements can be proven simultaneously with the batching
protocol.

The theorem below follows immediately from the description of the batching protocol
and Remark 1.

Theorem 2. For any m ∈ N the statements {(gi, hi, Si + Ci)}i∈[1,m] can be proven in at most
1+maxi log(Si) rounds where additionally to one execution of the PoE protocol the following
computations need to be performed:

22

Parameters: Same as in Figure 2

Statements:
{
hi

?
= gq

2ti+Ci

i

}
i∈[1,m]

in LG with and t1 > t2 > . . . > tm ∈ N
Protocol:

1. The prover sends h′i := gq
2ti

i for all i ∈ [1,m] to the veri�er.

2. Execute Step 2 of the PoE protocol for (g1, h
′
1, 2

t1) for t1 − t2 − 1 rounds.

3. In round i ∈ [1,m− 1] of the batching protocol we have ρ statements of the form
{(xj, yj, 2

ti+1+1)}j∈[1,ρ]:

(a) The prover sends ρ midpoints {µj}j∈[1,ρ], which results in 2ρ statements

{(uk, vk, 2
ti+1)}k∈[1,2ρ]

(b) The prover and veri�er append (gj+1, h
′
j+1, 2

ti+1) to the statements resulting
in 2ρ+ 1 statements of the form {(ũk, ṽk, 2

ti+1)}k∈[1,2ρ+1].

(c) The veri�er sends the random challenge {rj,k}j∈[1,ρ],k∈[1,2ρ+1], where rj,k ∈
{0, 1}κ.

(d) They both set {(x̃j, ỹj, 2
ti+1)}j∈[1,ρ] as the statement for the next execution of

the PoE protocol, where

x̃j :=
∏

k∈[1,2ρ+1]

ũ
rj,k
k and ỹj :=

∏
k∈[1,2ρ+1]

ṽ
rj,k
k

(e) If i < m− 1: Execute Step 2 of the PoE protocol for ti+1 − ti+2 − 1 rounds.
Else: Execute Step 2 of the PoE protocol for tm rounds until the statements
are of the form

{
(x∗j , y

∗
j , 1)

}
j∈[1,ρ].

4. At the end of m − 1 rounds, the veri�er accepts if and only if (x∗j)
q = y∗j for all

j ∈ [1, ρ] and (h′i)
qCi = hi for all i ∈ [1,m].

Figure 4: Batching protocol for PoE.

23

1. P and V perform

2ρ
m∑
i=1

h(Si)

additional exponentiations with exponents of size log(B) + 5. Here h(Si) denotes the
hamming weight of Si;

2. V performs m − 1 additional exponentiations with exponents qCi for i ∈ [1,m] \
{argmaxi Si};

and the communication complexity increases by m− 1 group elements.

Soundness of the protocol follows immediately from Lemma 1 and Theorem 1 since in the
statement of Lemma 1 we consider a set of arbitrary many statements of the form (xi, yi, T)
in any round. This means that the proof of Theorem 1 also holds when new statements are
added during the execution of the protocol.

Theorem 3. Let B be any prime number such that q :=
∏

prime p<B p and ρ ∈ N be the
number of repetitions per round. If we set C = log(T) log(B) and let κ→∞, the veri�er V
will output accept on statement {(gi, hi, 2

ti + Ci)}i∈[1,m], where t1 ≥ t2 ≥ . . . ≥ tm and at
least one statements is false, with probability at most t1/B

ρ.

3.2 Improving Veri�er's E�ciency

In this section we analyse how the batching protocol reduces the number of multiplications

for verifying a statement of the form y
?
= xqT . In Appendix B.3 we analyse the gain in

e�ciency of the polynomial commitment in [BHR+21] when we use this improved version of
our PoE as a building block instead of the PoE proposed in [BHR+21].

The �rst prover message is the value y′ = xqT−C
, where C ≥ log(T). The key idea is

that the veri�er does not carry out the last exponentiation with qC but the prover gives
an interactive proof of the statement (y′)q

C
= y (a �smaller� PoE). This reduces the �nal

exponentiation to (y′′)q
C′

= y, where y′′ is the �rst prover message in the smaller PoE and
C ′ ≥ log(C) is much smaller than C. This statement can again be proven interactively by
an even smaller PoE. In fact, this trick can be applied recursively until the veri�er only has
to perform a single exponentiation with q in the �nal step. We make two assumptions in
this section:

1. We have q =
∏

prime p<B p⌈log(B)/ log(p)⌉ such that the constant C in the PoE protocol
is lower bounded only by log(T) and not log(T) log(B). This is the trick we discuss
in Appendix A. This assumption is needed to reduce the exponent from qC to q and
should be adopted in practice if one wants to make use of the recursion.

2. Instead of setting C to exactly log(T), we set C = 22
22

+ 22
2
+ 22 + 1, which will

always be larger than log(T) in practice. This assumption is mainly for the ease of
presentation and need not be adopted in practice.

24

Reducing the exponent from qC to qlog(C). We know that exponentiation with qC takes
C log(q) multiplications. In order to reduce this cost for the veri�er, we slightly modify the
protocol in the following way: Instead of the veri�er performing the last exponentiation
locally, the veri�er and the prover run the batching protocol with statements

{(x, y, T = T0 + C), (y′, y, C = S0 + C ′)},

where C ′ = log(C). This modi�cation introduces 3ρ·h(S0)(log(B)+5) additional multiplications
during the interactive part of the protocol (by Theorem 2) but reduces the complexity of the
�nal exponentiation to

C ′ log(q) = log(C) log(q) ≈ log log(T) log(q).

By our special choice of C we have h(S0) = 1 so we can ignore it in the remainder of the
section

Applying the recursion. As we have seen, the exponent qC can be reduced to qC
′
. Now,

the veri�er can either perform the �nal exponentiation with qC
′
or apply the above procedure

recursively until the veri�er only has to do a single exponentiation with q in the �nal step.
We denote the number of recursions needed until the exponent is reduced to q by log∗(C).
We have that the entire recursion adds at most 3 log∗(C)ρ · (log(B) + 5) multiplications
during the interactive part of the protocol but reduces the work of the �nal exponentiation
from log(T) log(q) to log(q).

In Section 2.2 we saw that the veri�er's complexity without any batching is

log(T) · ((6 log(B) + 32)ρ2 + log(q)) + ρ log(q).

Our batching protocol reduces the number of multiplications for verifying the proof of a
single statement to approximately

log(T)(6 log(B) + 32)ρ2 + 3 log∗(C)ρ · (log(B) + 5) + (ρ+ 1) log(q)

and increases the proof-size to log∗(C) + ρ log(T) group elements.

Proving multiple statements. With this optimization of the cost of verifying a single
statement we can now compute the complexity of verifying m statements with our improved
protocol. Each additional statement that either has exponent qT or a smaller power of q
adds log(q) multiplications to compute the �nal exponentiation, 3 log∗(C)ρ · (log(B) + 5)
multiplications during the interactive part and increases the proof-size by at most log∗(C)
elements. We conclude that m many statements can be proven with veri�er's complexity

log(T)(6 log(B) + 32)ρ2 + 3m log∗(C)ρ · (log(B) + 5) + (ρ+m) log(q)

and communication complexity m log∗(C) + ρ log(T).

25

Acknowledgements

We would like to thank the authors of [BHR+21] for clarifying several questions we had
regarding their results. Pavel Hubá£ek was supported by the Grant Agency of the Czech
Republic under the grant agreement no. 19-27871X and by the Charles University project
UNCE/SCI/004. Chethan Kamath is supported by Azrieli International Postdoctoral Fellowship
and ISF grants 484/18 and 1789/19. Karen Klein was supported in part by ERC CoG grant
724307 and conducted part of this work at Institute of Science and Technology Austria.

References

[AGL+22] Arasu Arun, Chaya Ganesh, Satya Lokam, Tushar Mopuri, and Sriram Sridhar.
Dew: Transparent constant-sized zkSNARKs. Cryptology ePrint Archive, Paper
2022/419, 2022. https://eprint.iacr.org/2022/419. 10

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and
Michael Walter. Reversible proofs of sequential work. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II,
volume 11477 of Lecture Notes in Computer Science, pages 277�291. Springer,
2019. 11

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Veri�able delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991
of Lecture Notes in Computer Science, pages 757�788. Springer, 2018. 9

[BBF18] D. Boneh, Benedikt Bünz, and Ben Fisch. A survey of two veri�able delay
functions. IACR Cryptol. ePrint Arch., 2018:712, 2018. 4, 7, 10, 13

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In TCC (B2), volume 9986 of Lecture Notes in Computer Science, pages
31�60, 2016. 3

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from
DARK compilers. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer
Science, pages 677�706. Springer, 2020. 10, 34, 36

26

https://eprint.iacr.org/2022/419

[BGJ+16] Nir Bitansky, Sha� Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-lock puzzles from randomized
encodings. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 345�356. ACM, 2016. 10

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch veri�cation for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in
Cryptology - EUROCRYPT '98, International Conference on the Theory and
Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4,
1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages
236�250. Springer, 1998. 11

[BHR+21] Alexander R. Block, Justin Holmgren, Alon Rosen, Ron D. Rothblum, and
Pratik Soni. Time- and space-e�cient arguments from groups of unknown
order. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO
2021, Virtual Event, August 16-20, 2021, Proceedings, Part IV, volume 12828
of Lecture Notes in Computer Science, pages 123�152. Springer, 2021. 2, 4, 5, 6,
7, 8, 9, 10, 11, 12, 14, 20, 21, 24, 26, 33, 34, 35, 36, 37, 38

[BKSW20] Karim Belabas, Thorsten Kleinjung, Antonio Sanso, and Benjamin Wesolowski.
A note on the low order assumption in class group of an imaginary quadratic
number �elds. Cryptology ePrint Archive, Paper 2020/1310, 2020. https:

//eprint.iacr.org/2020/1310. 4

[BLZ21] Jeremiah Blocki, Seunghoon Lee, and Samson Zhou. On the security of proofs
of sequential work in a post-quantum world. In Stefano Tessaro, editor,
2nd Conference on Information-Theoretic Cryptography, ITC 2021, July 23-
26, 2021, Virtual Conference, volume 199 of LIPIcs, pages 22:1�22:27. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 11

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings,
volume 1880 of Lecture Notes in Computer Science, pages 236�254. Springer,
2000. 3, 10

[BP00] Colin Boyd and Chris Pavlovski. Attacking and repairing batch veri�cation
schemes. In Proceedings of the 6th International Conference on the Theory and
Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT '00, page 58�71, Berlin, Heidelberg, 2000. Springer-Verlag. 13

[BW88] Johannes Buchmann and Hugh C. Williams. A key-exchange system based on
imaginary quadratic �elds. J. Cryptol., 1(2):107�118, 1988. 2

27

https://eprint.iacr.org/2020/1310
https://eprint.iacr.org/2020/1310

[BY93] Michael J. Beller and Yacov Yacobi. Batch Di�e-Hellman key agreement systems
and their application to portable communications. In Rainer A. Rueppel,
editor, Advances in Cryptology � EUROCRYPT' 92, pages 208�220, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg. 11

[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler
Rose�eld, and Abhi Shelat. Multiparty generation of an RSA modulus. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III,
volume 12172 of Lecture Notes in Computer Science, pages 64�93. Springer,
2020. 4

[CHK+19] Arka Rai Choudhuri, Pavel Hubá£ek, Chethan Kamath, Krzysztof Pietrzak,
Alon Rosen, and Guy N. Rothblum. PPAD-hardness via iterated squaring
modulo a composite. Cryptology ePrint Archive, Report 2019/667, 2019.
https://ia.cr/2019/667. 10

[CLSY93] J. . Cai, R. J. Lipton, R. Sedgewick, and A. C. . Yao. Towards uncheatable
benchmarks. In [1993] Proceedings of the Eigth Annual Structure in Complexity
Theory Conference, pages 2�11, May 1993. 11

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential work. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer Science,
pages 451�467. Springer, 2018. 11

[CP19] Bram Cohen and Krzysztof Pietrzak. The Chia network blockchain. Technical
report, 2019. https://www.chia.net/assets/ChiaGreenPaper.pdf, Accessed:
2022-07-29. 3

[CSHT21] Jorge Chavez-Saab, Francisco Rodríguez Henríquez, and Mehdi Tibouchi.
Veri�able isogeny walks: Towards an isogeny-based postquantum VDF.
Cryptology ePrint Archive, Report 2021/1289, 2021. https://ia.cr/2021/

1289. 10

[DF03] David S. Dummit and Richard M. Foote. Abstract Algebra. John Wiley and
Sons, 3rd edition, 2003. 16

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In CRYPTO (2), volume 9216 of Lecture Notes
in Computer Science, pages 585�605. Springer, 2015. 3

28

https://ia.cr/2019/667
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://ia.cr/2021/1289
https://ia.cr/2021/1289

[DGMV20] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan.
Tight veri�able delay functions. In Clemente Galdi and Vladimir Kolesnikov,
editors, Security and Cryptography for Networks - 12th International Conference,
SCN 2020, Amal�, Italy, September 14-16, 2020, Proceedings, volume 12238 of
Lecture Notes in Computer Science, pages 65�84. Springer, 2020. 10

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremental proofs
of sequential work. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part II, volume 11477 of Lecture Notes in
Computer Science, pages 292�323. Springer, 2019. 11

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
veri�able delay functions. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 125�154. Springer, 2020. 10

[Erd32] Paul Erd®s. Beweis eines satzes von Tschebyschef (on a proof of a theorem of
Chebyshev, in german). Acta Litt. Sci. Szeged, 5:194�198, 01 1932. 19

[Fia97] Amos Fiat. Batch RSA. J. Cryptol., 10(2):75�88, 1997. 11

[FK22] Cody Freitag and Ilan Komargodski. The cost of statistical security in interactive
proofs for repeated squaring. Cryptology ePrint Archive, Paper 2022/766, 2022.
https://eprint.iacr.org/2022/766. 11

[FKPS21] Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable
time-lock puzzles and applications. In Kobbi Nissim and Brent Waters, editors,
Theory of Cryptography - 19th International Conference, TCC 2021, Raleigh,
NC, USA, November 8-11, 2021, Proceedings, Part III, volume 13044 of Lecture
Notes in Computer Science, pages 447�479. Springer, 2021. 3

[FLOP18] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas.
Fast distributed RSA key generation for semi-honest and malicious adversaries.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II, volume 10992
of Lecture Notes in Computer Science, pages 331�361. Springer, 2018. 4

[FMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Veri�able
delay functions from supersingular isogenies and pairings. In Steven D. Galbraith
and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT 2019 - 25th

29

https://eprint.iacr.org/2022/766

International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I,
volume 11921 of Lecture Notes in Computer Science, pages 248�277. Springer,
2019. 10

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identi�cation and signature problems. In CRYPTO, 1986. 2

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles
and timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in
Computer Science, pages 390�413. Springer, 2020. 3, 11

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe, editor,
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science, pages 177�194. Springer, 2010. 33

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-Shamir for repeated squaring
with applications to PPAD-hardness and VDFs. In Daniele Micciancio and
Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture
Notes in Computer Science, pages 632�651. Springer, 2020. 10

[LW17] Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness
with sloth, unicorn, and trx. Int. J. Appl. Cryptogr., 3(4):330�343, 2017. 11

[May94] Timothy C. May. Timed-release crypto, 1994. 10

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in
the random oracle model. In Phillip Rogaway, editor, Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 39�50. Springer, 2011. 10

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly veri�able
proofs of sequential work. In Robert D. Kleinberg, editor, Innovations in
Theoretical Computer Science, ITCS '13, Berkeley, CA, USA, January 9-12,
2013, pages 373�388. ACM, 2013. 10

[MN96] David M'Raïhi and David Naccache. Batch exponentiation: A fast DLP-based
signature generation strategy. In Li Gong and Jacques Stearn, editors, CCS

30

'96, Proceedings of the 3rd ACM Conference on Computer and Communications
Security, New Delhi, India, March 14-16, 1996, pages 58�61. ACM, 1996. 11

[MSW20] Mohammad Mahmoody, Caleb Smith, and David J. Wu. Can veri�able delay
functions be based on random oracles? In ICALP, volume 168 of LIPIcs, pages
83:1�83:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. 10

[Pie19] Krzysztof Pietrzak. Simple veri�able delay functions. In Avrim Blum, editor,
10th Innovations in Theoretical Computer Science Conference, ITCS 2019,
January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages
60:1�60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 2, 4, 6, 7,
8, 10, 11, 12, 13, 20, 21, 33, 34

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Cryptol., 13(3):361�396, 2000. 3

[Rab83] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci.,
27(2):256�267, 1983. 3

[Rot21] Lior Rotem. Simple and e�cient batch veri�cation techniques for veri�able delay
functions. In Kobbi Nissim and Brent Waters, editors, Theory of Cryptography -
19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11,
2021, Proceedings, Part III, volume 13044 of Lecture Notes in Computer Science,
pages 382�414. Springer, 2021. 11, 21

[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is
equivalent to factoring: Sharp thresholds for all generic-ring delay functions.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III,
volume 12172 of Lecture Notes in Computer Science, pages 481�509. Springer,
2020. 11

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120�126,
1978. 2

[RSS20] Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions require
hidden-order groups. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May
10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes in Computer
Science, pages 155�180. Springer, 2020. 10

31

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, USA, 1996. 10, 11

[Sha19] Barak Shani. A note on isogeny-based hybrid veri�able delay functions.
Cryptology ePrint Archive, Report 2019/205, 2019. https://ia.cr/2019/205.
10

[SJH+21] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and
Edgar R. Weippl. Randrunner: Distributed randomness from trapdoor VDFs
with strong uniqueness. In 28th Annual Network and Distributed System Security
Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet Society,
2021. 3

[Val08] Paul Valiant. Incrementally veri�able computation or proofs of knowledge imply
time/space e�ciency. In Ran Canetti, editor, Theory of Cryptography, Fifth
Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008, volume 4948 of Lecture Notes in Computer Science, pages 1�18. Springer,
2008. 9

[vBS21] Aron van Baarsen and Marc Stevens. On time-lock cryptographic assumptions
in abelian hidden-order groups. In Advances in Cryptology � ASIACRYPT 2021:
27th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6�10, 2021, Proceedings, Part II,
page 367�397, Berlin, Heidelberg, 2021. Springer-Verlag. 11

[Wes20] B. Wesolowski. E�cient veri�able delay functions. J. Cryptol., 33:2113�2147,
2020. 2, 4, 10, 20, 21

[WW20] Benjamin Wesolowski and Ryan Williams. Lower bounds for the depth of
modular squaring. Cryptology ePrint Archive, Report 2020/1461, 2020. https:
//ia.cr/2020/1461. 11

A Improving Veri�er's e�ciency

In Figure 1.(b) we see that for large values of B and q the veri�er's complexity increases
because the �nal computation (y′)q

C
becomes expensive. The cost of this computation is

C · log(q), where so far we have set C = t log(B). We can reduce this number to C =
t log(B)/2 by setting q to

q = 22 · 32 ·
∏

3<p<B

p. (9)

It is straightforward to check that this does not a�ect our soundness bound, but it has a
notable e�ect on veri�er's e�ciency as shown in Figure 5.

32

https://ia.cr/2019/205
https://ia.cr/2020/1461
https://ia.cr/2020/1461

Figure 5: Number of multiplications of the veri�er in one round for 80-bit security depending
on the bound B. The solid blue line represents the number of multiplications in [BHR+21],
the dotted orange curve represents the complexity of our protocol with C = t log(B), the
solid red curve is the complexity in our protocol with C = t log(B)/2 and the solid green
line represents the veri�er's complexity in [Pie19].

This approach can be generalized to setting C = t log(B)/k for any integer k ≤ log(B).
To ensure soundness we need to modify q as follows: Let m be the largest prime number
such that m < 2k. Then we set

q = 2k · 3⌈k/ log(3)⌉ · 5⌈k/ log(5)⌉ · · ·m⌈k/ log(m)⌉ ·
∏

m<p<B

p.

In particular, the choice of q that optimizes veri�er's e�ciency for large values of B is

q =
∏
p<B

p⌈log(B)/ log(p)⌉

for which we can set C = t. The cost for the veri�er with this parameters is shown in
Figure 6. We conclude that the veri�er's complexity of our scheme improves upon [BHR+21]
for values of B from 59 up to 2749, which corresponds to values of q between approximately
271 and 2400·log(2749) ≈ 23167.

B Application in Polynomial Commitments

In this section, we discuss the application of our protocol to the polynomial commitment
scheme in [BHR+21]. In particular we show in Section B.2 that one can choose the parameter
q to be even and in Section B.3 we analyse the gain in e�ciency when we use our PoE as a
building block instead of the one proposed in [BHR+21].

A polynomial commitment scheme [KZG10] allows one party � the committer � to commit
to a (low-degree) polynomial P . Another party � the veri�er � can later ask the committer
for an evaluation y = P (x) along with a proof that helps it (e�ciently) verify that the
evaluation is consistent with the initial commitment c. There are two main properties
that the polynomial commitment must satisfy: correctness and binding. Loosely speaking,

33

Figure 6: Number of multiplications of the veri�er in one round for 80-bit security depending
on the bound B. The dotted blue line represents the number of multiplications in [BHR+21],
the solid orange curve is the complexity of our protocol with C = t and q as above and the
dashed green line is veri�er's complexity in [Pie19] (which is 240 multiplications).

a polynomial commitment scheme is correct if the (honest) committer can convince the
veri�er of the value y = P (x) of the polynomial on any point x on its domain, whereas it
is (computationally) binding if no (computationally-bounded) cheating prover can convince
the veri�er of a wrong evaluation y′ ̸= P (x). Since [BHR+21, BFS20] use their polynomial
commitment scheme to build an argument of knowledge, they require the stronger property
called knowledge soundness instead of just binding � i.e., the committer must know a
polynomial P (x) such that y = P (x) and c is a commitment to P (x) (formalised via an
extractor). The ideas above can be naturally extended to multilinear polynomials.

B.1 [BHR+21] Polynomial Commitments

The time- and space-e�cient (zero-knowledge) argument of knowledge from [BHR+21] is
built on top of a time- and space-e�cient (multilinear) polynomial commitment scheme. We
�rst provide an overview of this polynomial commitment scheme, and then highlight the key
properties that it should satisfy.

Commitment. To commit to a degree-n multilinear polynomial P : Fn → F over a �nite
�eld F of order p, the committer evaluates P over the Boolean hypercube {0, 1}n to obtain
a sequence of �eld elements (z0, . . . , zN−1) ∈ FN , where N := 2n. This sequence is then
interpreted as a sequence of digits Z base (large-enough) q ∈ N of an integer z ∈ Z � z is
said to be the integer encoding of the polynomial P (see Algorithm 1). The commitment,
�nally, is obtained by computing the exponent c = gz, where g is a random element in
a group of unknown order (e.g., RSA group or class groups of imaginary quadratic �eld).
[BHR+21] show how to carry this out using time Õ(2n) and space poly(n) given multi-pass
streaming access to the evaluations of P on the Boolean hypercube.

Evaluation. Let P : Fn → F be a degree-n multilinear polynomial with integer encoding
z and, for b ∈ {0, 1}, let Pb : Fn−1 → F be de�ned as P (b, ·). Once committed to c = gz,

34

to prove in a veri�er-e�cient manner that P (ζ) = γ for some (ζ = (ζ1, ζ2, . . . , ζn), γ) ∈
Fn×F, the committer and the veri�er proceed interactively. In the �rst round the committer
computes, for b ∈ {0, 1}, cb := gzb , where zb ∈ Z is the integer encoding of Pb and γb :=
Pb(ζ2, . . . , ζn). It sends (c0, c1, γ0, γ1) to the veri�er. The veri�er checks whether

1. γ = ζ1γ1+(1−ζ1)γ0 (which should hold since P (ζ) = ζ1P1(ζ2, . . . , ζn)+(1−ζ1)P0(ζ2, . . . , ζn));
and

2. c0(c1)
qN/2

= gz0+qN/2z1 = gz = c.

Note that the second equality in Item 2 relies on the homomorphic property of the integer
encoding and, in turn, the commitment. Since checking c0(c1)

qN/2
= c involves computing

(c1)
qN/2

which can be expensive to the veri�er, a PoE is employed to prove c0/c = (c1)
qN/2

.
Now, note that checking the validity of P (ζ) = γ has been reduced to checking the validity of
two degree-n− 1 expressions Pb(ζ2, . . . , ζn) = γb. Since recursing on both expressions is too
expensive, the committer and veri�er fold them into a single statement via random linear
combination: the veri�er sends a random α ∈ F and the new statement is P (ζ ′) = γ′ with
commitment c′ = c0c

α
1 , where ζ

′ := (ζ2, . . . , ζn) and γ′ = γ0+αγ1. The knowledge soundness
(and hence binding) of the commitment scheme is relies on the hidden order assumption in
groups of unknown order.

Requirements from the PoE. Note that the use of the PoE in the [BHR+21] polynomial
commitment is more or less black-box. However, there are two important criteria that it
should satisfy.

1. Firstly, the PoE has to satisfy statistical soundness so that the knowledge soundness
of the polynomial commitment built upon it can be argued ([BHR+21, Lemma 6.4]).14

Our PoE satis�es statistical soundness.

2. Secondly, the exponent q used in the PoE protocol is borrowed from the polynomial
commitment. In order for the polynomial commitment to satisfy its homomorphic
properties, [BHR+21] set it to be a large, odd integer � in particular, they require q ≫
p · 2npoly(λ). This requirement that q be large, as we saw in Section 2 is advantageous
for our PoE. On the other hand, the requirement that q be odd is in con�ict with our
trick of choosing an even q as in Equation (4). However, we show in the next section
that the requirement that q be odd is not necessary in [BHR+21].

B.2 Polynomial Commitments with Structured Base

Recall that the exponent q in the PoE protocol [BHR+21] is borrowed from the polynomial
commitment scheme built upon it. We �rst observe that none of the claims pertaining to

14To be precise, it su�ces for the soundness of the PoE to be based on a hardness assumption that is at

most as strong as the hardness assumption that is used for showing the binding or knowledge soundness of
the polynomial commitment.

35

the integer encoding (Encq,Decq) in the polynomial commitment of [BHR+21] and its use
in extraction rely on the exponent q being odd. In fact, the assumption in [BHR+21] that
q be odd is an artefact of [BFS20] (as con�rmed in a personal communication with the
authors of [BHR+21]). We show in Lemmas 2 and 3 that the properties of the encoder and
decoder that are necessary for the polynomial commitment of [BHR+21] to work also hold
for even � and hence arbitrary � q. This allows us to use structured exponents of the form
required in Section 2 (e.g., q as in Equation (4)). We �rst describe (for self-containment) the
integer encoding from [BHR+21] in Algorithm 1 and then prove that they are consistent over
Z(q/2) for any q ∈ N (Lemma 2). We then prove that the homomorphic properties of the
decoding algorithm holds for all q (Lemma 3). Since the rest of the proofs pertaining to the
polynomial commitment are una�ected by the change in exponent, [BHR+21, Theorem 4.2]
can be proven also based on our PoE.

Algorithm 1 Integer encoding from [BHR+21, BFS20].

Common parameters:

1. Base q ∈ N
2. Degree n ∈ N with N := 2n

1: procedure Enc(Z)
2: Parse Z =: z0, . . . , zN−1 ∈ Z(q/2)N
3: return v :=

∑
b∈{0,1}n q

bzb
4: end procedure

5: procedure Dec(v)
6: for k ∈ [0, N] do
7: Sk−1 := v mod qk

8: if Sk−1 > qk/2 then Sk−1 := Sk−1 − qk end if
9: Sk := v mod qk+1

10: if Sk > qk+1/2 then Sk := Sk − qk+1 end if
11: end for
12: return Z := (z0, . . . , zN−1)
13: end procedure

Lemma 2 (Bijectivity of encoder for all q, restatement of [BHR+21, Fact 5.1] and [BFS20,
Fact 1]). Let q,N ∈ N with q ≥ 2. For any v ∈ Z(qN/2), there exists a unique sequence
z ∈ Z(q/2)N such that v = Encq(z). Furthermore, z = Decq(v).

Proof. The proof follows by inspection of that from [BHR+21]. That is, we argue that:

1. the domain and range have the same size; and

2. the composition of decoding and encoding functions is identity.

36

Since, Z(B) := {x ∈ Z : −B ≤ x < B}, it follows that
∣∣Z(qN/2)∣∣ =

∣∣Z(q/2)N ∣∣ = qN . To
show Item 2, we proceed by induction on the elements of a sequence Z := z0, . . . , zN−1 ∈
Z(q/2)N .

Base case. To see that the decoder correctly recovers the �rst element z0 from Enc(Z), we
note that its �rst iteration (i.e., k = 0) is simply the modulo operation base q followed
by a conditional shift by q/2. By taking the encoding function Enc(Z) modulo q,
note that the higher powers of q disappear and only z0 mod q remains. The correct
representative from [q/2, q/2) is then recovered by the conditional shift.

Induction hypothesis. Assume that the �rst k elements z0, . . . , zk−1 have been correctly
recovered. In particular, this implies the sequence S−1, S0, . . . , Sk has been correctly
computed.

Induction. To see that the decoder correctly recovers zk+1, we take Enc(Z) modulo qk+1.
Since Sk has been correctly computed, and since zk+1q

k + Sk = v = Sk+1 mod qk+1,
it follows from the description of the decoder (i.e., zk+1 := (Sk+1 − Sk)/q

k) that it
recovers the correct representative of zk+1 after the conditional shift.

Lemma 3 (Homomorphism of decoder for all q, restatement of [BHR+21, Claim 5.2]). Let
q,N ∈ N with q ≥ 2. Also let ℓ ∈ N and B1, B2 ≥ 1 be such that B1 ·B2 ≤ q/(2ℓ). Then, for
every a1, . . . , aℓ ∈ Z(B1), and integers z1, . . . , zℓ ∈ Z(qN/2) such that Decq(zi) ∈ Z(B2)

N ,

Decq

 ∑
i∈[1,ℓ]

ai · zi

 =
∑
i∈[1,ℓ]

ai · Decq(zi) (10)

Sketch. Once Lemma 2 has been reproved for even q, the argument is the same as in[BHR+21].
That is, one argues that:

1. Encoding of LHS and RHS in Equation (10) are equal; and

2. Encoding of LHS and RHS in Equation (10) are in ZN
q .

B.3 E�ciency

In this section we analyse the improvement in e�ciency of the polynomial commitment
scheme in [BHR+21] using our PoE, the batching protocol and the optimization in Appendix A.
In the polynomial commitment scheme the PoE protocol is used to prove statements of the

form xq2
n−k−1

i = yi for every i ∈ [λ] and every k ∈ {0, 1, . . . , n− 1}.

37

Communication complexity. In [BHR+21] the communication complexity of proving λ
many statements with the same exponent is λ(n− k− 1) group elements. This gives a total
PoE proof-size of

λ
n−1∑
k=0

(n− k − 1) =
λ

2
(n− 1)n.

As we have seen in Section 3.2, in our PoE the cost of proving λn statements, in which
the largest exponent is qn−1, is

λn log∗(n− 1) +
λ

log(B)
(n− 1).

We conclude that we decrease the proof-size of the polynomial commitment by a factor of
approximately n/(2 log∗(n−1)). This number can be increased to n/2 at the cost of a higher
veri�er complexity. More generally, the number of recursive steps explained in Section 3.2
can be used to choose a trade-o� between proof-size and veri�er e�ciency.

Veri�er's e�ciency. In [BHR+21] the veri�er's complexity of proving λ many statements
with the same exponent is 2λ2(n − k − 1) + λ log(q) multiplications. This gives a total
veri�er's complexity of

2λ2

n−1∑
k=0

((n− k − 1) + λ log(q)) = (λ log(q) + 2λ2(n− 1))n.

As we have seen in Section 3.2, in our PoE the cost of verifying λn statements, in which
the largest exponent is qn−1, is

(n− 1)(6 log(B) + 32)ρ2 +3λn log∗(C)ρ · (log(B) + 5) + (ρ+ λn) log(q) ≈ 15λ2n+ λn log(q).

Since in practice we have n ≈ 32, we conclude that the veri�er's e�ciency of the
polynomial commitment scheme implemented with our PoE is comparable to that in [BHR+21].

38

	Introduction
	Our Contribution
	Technical Overview
	Basic Protocol and Proof Idea
	Improving Verifier's Complexity

	Related Work

	Basic Protocol
	Soundness
	Efficiency

	Reducing (Verifier's) Complexity by Batching
	The Protocol
	Improving Verifier's Efficiency

	Improving Verifier's efficiency
	Application in Polynomial Commitments
	C:BHRRS21 Polynomial Commitments
	Polynomial Commitments with Structured Base
	Efficiency

