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Abstract. Isogeny-based cryptography is one of the candidates for post-
quantum cryptography. SIDH is a compact and efficient isogeny-based
key exchange, and SIKE, which is the SIDH-based key encapsulation
mechanism, remains the NIST PQC Round 4. However, by the brilliant
attack provided by Castryck and Decru, the original SIDH is broken
in polynomial time (with heuristics). To break the original SIDH, there
are three important pieces of information in the public key: information
about the endomorphism ring of a starting curve, some image points
under a cyclic hidden isogeny, and the degree of the isogeny.
In this paper, we proposed the new isogeny-based scheme named masked-
degree SIDH. This scheme is the variant of SIDH that masks most in-
formation about degrees of hidden isogenies, and the first trial against
Castryck–Decru attack. The main idea to cover degrees is to use many
primes to compute isogenies that allow the degree to be more flexible.
Though the size of the prime p for this scheme is slightly larger than
that of SIDH, this scheme resists current attacks using degrees of isoge-
nies like the attack of Castryck and Decru. The most effective attack for
masked-degree SIDH has Õ(p1/(8 log2 (log2 p))) time complexity with clas-
sical computers and Õ(p1/(16 log2 (log2 p))) time complexity with quantum
computers in our analysis.
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1 Introduction

Because Shor found the quantum algorithm to solve Prime Factorization and
Discrete Logarithm Problem in [Sho94], we need some investigations for post-
quantum cryptography. Isogeny-based cryptography is considered one of the can-
didates for post-quantum cryptography, and the compactness of isogeny-based
cryptosystems is received a high evaluation.

SIDH is an isogeny-based Diffie-Hellman type key exchange scheme proposed
in [JDF11]. SIDH has supported the world of isogeny-based cryptography for
about 12 years due to its compactness and efficiency. However, Castryck and
Decru proposed the breakthrough attack for SIDH in 2022 [CD22]. This attack
breaks the original SIDH in polynomial time (with heuristics). The main vul-
nerability of SIDH is the following three points:

1. The structure of the endomorphism ring of a starting elliptic curve is re-
vealed.
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2. Public key needs the image of a subgroup of the starting curve under the
hidden cyclic isogeny.

3. The degree of the hidden isogeny is fixed.

The attack of Castryck and Decru uses these pieces of information. Moreover,
there are some other attacks for SIDH using these informations (e.g., the torsion
point attack [Pet17]).

In this paper, we propose the novel SIDH variation that resists the attack of
Castryck and Decru. The main idea to resist this attack is to hide the degree of
a secret isogeny. In other words, we try to eliminate the third weak point. To
realize this idea, we refer to another isogeny-based key exchange named CSIDH
[CLM+18] in which the degrees of isogenies are not revealed. The reason why
CSIDH successes covering the information of degrees is that one uses many
primes to compute isogenies in CSIDH. To be more precise, in the CSIDH set-
ting, one uses primes ℓ1, . . . , ℓn, and computes an isogeny of degree ℓe11 · · · ℓenn .
Therefore, degrees of isogenies in CSIDH are flexible, while in the SIDH setting,
one uses only one prime ℓ, and the degree of the isogeny must be a power of ℓ.
From this idea, we take the prime p that has the form

p = ℓ
eA,1

A,1 ℓ
eB,1

B,1 ℓ
eA,2

A,2 ℓ
eB,2

B,2 · · · ℓeA,t

A,t ℓ
eB,t

B,t − 1.

Here, ℓA,1, . . . , ℓA,t are primes for Alice, and ℓB,1, . . . , ℓB,t are primes for Bob.
Using this type of prime, we construct the new isogeny-based scheme named
masked-degree SIDH. This scheme can hide degrees of target isogenies sacrificing
compactness.

Moreover, we analyze the security of masked-degree SIDH. In our analysis,
the most effective attack for masked-degree SIDH is the brute force approach to
find the degree of the hidden isogeny, and its complexity is Õ(p1/(8 log2 (log2 p))) via
classical computers and Õ(p1/(16 log2 (log2 p))) via quantum computers. According
to our analysis, the size of parameters and public keys of masked-degree SIDH
is extremely huge. See Table 1 for the precise sizes of public keys.

2 Preliminaries

2.1 Elliptic curves and isogenies

In this subsection, we introduce some mathematical concepts and facts corre-
sponding to isogeny-based cryptography. Refer to [Sil09] for the detailed expla-
nation.

Let k be a field, and E a genus-1 curve. A pair of E and a point OE in
E(k) is called an elliptic curve over k. An elliptic curve has an abelian group
structure such that the identity is OE . We often represent an elliptic curve by
a genus-1 curve. Denote the n-torsion group of E by E[n]. If n is coprime to
the characteristic of k, then there is a group isomorphism E[n] ∼= (Z/nZ)2. The
j-invariant is an invariant for isomorphism classes of elliptic curves. For two
elliptic curves E0 and E1 over k, it holds that j(E0) = j(E1) if and only if
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E0
∼= E1 over the algebraic closure of k. Let p be a prime, and k a finite field

of characteristic p. If an elliptic curve E satisfies #E(k) ≡ 1 (mod p), then E
is called supersingular. A supersingular elliptic curve over k is isomorphic to a
curve over Fp2 .

A surjective morphism between two elliptic curves that is also a group mor-
phism is called an isogeny. For an isogeny ϕ : E → E′, there is the isogeny
ϕ̂ : E′ → E such that ϕ̂◦ϕ = [deg ϕ] in E and ϕ◦ ϕ̂ = [deg ϕ] in E′. We call ϕ̂ the
dual isogeny of ϕ. If an isogeny is separable as a morphism of curves, then the
isogeny is called separable. For any finite subgroup G of E, there is a separable
isogeny outgoing from E whose kernel is G. A cyclic isogeny is an isogeny whose
kernel is a cyclic group. If there are two separable isogenies ϕ : E → E1 and
ψ : E → E2 with kerϕ = kerψ, then it holds that E1

∼= E2 over the algebraic
closure of k. A representative of an isomorphism class of E1 is denoted by E/G.
From a smooth-order subgroup G of E, there is an efficient formula to compute
a separable isogeny ϕ : E → E/G with kerϕ = G [Vél71]. Let n be an integer
coprime to the characteristic of p. The n-Weil pairing en is the non-degenerate
pairing en : E[n] × E[n] → µn, where µn is the group of n-th roots of unity in
the algebraic closure of k. It holds that en(ϕ(P ), ϕ(Q)) = en(P,Q)deg ϕ for an
isogeny ϕ.

2.2 SIDH

SIDH is a Diffie-Hellman key exchange scheme that uses pieces of information
of torsion points for completing a (pseudo) commutative diagram:

(E0, PA, QA, PB , QB)

��

// (EA, ϕA(PB), ϕA(QB))

��
(EB , ϕB(PA), ϕB(QA)) // EAB

∼= EBA

The precise scheme is as follows:

Public parameter: Let E0 be the elliptic curve of j-invariant 1728. Set a prime
p as p = 2eA3eB −1. Let PA and QA (resp. PB and QB) be points generating
E0[2

eA ] ∼= (Z/2eAZ)2 (resp. E0[3
eB ] ∼= (Z/3eBZ)2).

Public key (Alice): Alice first generates a random value kA ∈ (Z/2eAZ)× as
her secret key. Let RA = PA + kAQA. Alice computes an isogeny ϕA : E0 →
EA := E0/〈RA〉 and image points ϕA(PB), ϕA(QB). Alice sends to Bob EA

and these image points as a public key.
Public key (Bob): Bob first generates a random value kB ∈ (Z/3eBZ)× as

his secret key. Let RB = PB + kBQB . Bob computes an isogeny ϕB : E0 →
EB := E0/〈RB〉 and image points ϕA(PB), ϕA(QB). Bob sends to Alice EB

and these image points as a public key. Let kB be his secret key.
Shared key: LetR′

A = ϕB(PA)+kAϕB(QA), and letR′
B = ϕA(PB)+kBϕA(QB).

Alice computes EAB := EB/〈R′
A〉, and Bob computes an isogeny EBA :=

EA/〈R′
B〉. The value j(EAB) = j(EBA) is the shared key.
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2.3 Castryck–Decru attack

In this subsection, we briefly explain Castryck–Decru attack for SIDH.
Some notations in this subsection come from the previous subsection. The

core of their attack is to determine, from given κ and public information of SIDH,
whether there is an isogeny ϕ′ of degree 3eB−b with ϕB = ϕ′ ◦ κ or not, where κ
is an isogeny of degree 3b outgoing from E0. If the determination successes with
high probability, we can reveal the secret isogeny ϕB as follows:

1. Compute all isogenies of degree 3b outgoing from E0 for some b.
2. Find an isogeny κ : E0 → E1 of degree 3b such that there is an isogeny ϕ′ of

degree 3eB−b such that ϕB = ϕ′ ◦ κ.
3. If deg ϕ′ is not 1, then set the target isogeny to ϕ′, and repeat 1 and 2.
4. If deg ϕ′ is 1, then ϕB can be revealed from all κ’s.

The problem is how to judge the existence of ϕ′. The key is Kani’s the-
orem [Kan97, Theorem 2.6]. Before explaining this theorem, we define some
important mathematical concepts. Let C and E be elliptic curves, ψ : C → E a
separable isogeny, and H1,H2 subgroups of kerψ such that H1 ∩ H2 = {OC},
#H1 ·#H2 = degψ, and #H1+#H2 = N . We call the set (ψ,H1,H2) an isogeny
diamond configuration of order N between C and E. An anti-isometry with re-
spect to the N -Weil pairing is a map ι : E[N ] → C[N ] such that eN (ι(R), ι(S)) =
eN (R,S)−1 for all R,S ∈ C[N ]. Let ω be the (N,N)-isogeny outgoing from C×E
whose kernel is 〈(R, ι(R)), (S, ι(S))〉, where {R,S} is a generator of C[N ]. If the
codomain 2-dimension variety of ω is a product of two elliptic curves, we call ι a
reducible anti-isometry. Kani’s theorem claims that for an isogeny diamond con-
figuration (ψ,H1,H2) of order N between C and E, there is a unique reducible
anti-isometry ι : C[N ] → E[N ] such that

ι

(
#H1

d
R1 +

#H2

d
R2

)
= ψ′(R2 −R1) for all Ri ∈ [N/d]−1Hi (i = 1, 2),

where d = gcd (#H1,#H2), and ψ
′ is an isogeny such that ψ = ψ′ ◦ [d].

The way to judge the existence of ϕ′ when E0 is the curve of j-invariant 1728
is as follows:

1. Set c = 2eA−a − 3eB−b such that c is positive, and only has prime factors
congruent to 1 mod 4.

2. Compute an isogeny γ : E1 → C of degree c by using the construction of the
endomorphism ring of E0.

3. Compute Pc = γ(κ(2aPA)) and Qc = γ(κ(2aQA)).
4. Compute the (2eA−a, 2eA−a)-isogeny outgoing from C ×EB whose kernel is

〈(Pc, 2
aϕB(PA)), (Qc, 2

aϕB(QA))〉.
5. If the codomain of the above (2eA−a, 2eA−a)-isogeny is a product of two

elliptic curves, there is an isogeny ψ′ of degree 3eB−b such that ϕB = ψ′ ◦ κ.

We now explain why the above method guarantees the existence of ψ′. If there
is ψ′ of degree 3eB−b such that ϕB = ψ′ ◦ κ, there is an isogeny diamond
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configuration (ψ′ ◦ γ̂, H1(:= ker γ̂),H2(:= γ̂(kerψ′))) of order 2eA−a such that
#H1 = 2eA−a − 3eB−b and #H2 = 3eB−b. Therefore, from Kani’s theorem, the
isogeny ψ′ ◦ γ̂ corresponds to a reducible anti-isometry, and the codomain of the
(2eA−a, 2eA−a)-isogeny is a product of two elliptic curves. On the contrary, if ψ′

does not exist, then heuristically the codomain of the (2eA−a, 2eA−a)-isogeny is
not a product of two elliptic curves with a high probability because the ratio of
products of two supersingular elliptic curves is negligible in Jacobian varieties of
superspecial curves.

3 Construction of masked-degree SIDH

In this section, we explain the construction of masked-degree SIDH.
The heart of hiding degrees of isogenies is to expand the space of degrees via

many primes. The main difference between masked-degree SIDH and the original
SIDH is that in masked-degree SIDH, we set p as

p = ℓ
eA,1

A,1 ℓ
eB,1

B,1 ℓ
eA,2

A,2 ℓ
eB,2

B,2 · · · ℓeA,t

A,t ℓ
eB,t

B,t − 1,

and consider a
∏t

i=1 ℓ
e′A,i

A,i -isogeny for random e′A,i’s (resp. a
∏t

i=1 ℓ
e′B,i

B,i -isogeny
for random e′B,i’s) instead of a 2eA-isogeny (resp. a 3eB -isogeny). Here, some
astute readers may notice that this construction is not sufficient to let degrees
of isogenies hidden. We may find the degrees of isogenies by using Weil pairings
and image points P ′, Q′ in the public key. To avoid this, it is enough to take a
random integer α ∈ (Z/

∏t
i=1 ℓ

eB,i

B,i Z)× and compute αP ′, αQ′. Note that since

deg [α] is square, we may know
∏t

i=1 ℓ
e′A,i

A,i is square or non-square in mod ℓ
eB,i

B,i

for all i = 1, . . . , t via the Weil pairing. The precise scheme of masked-degree
SIDH is as follows:

Public parameter: Let E0 be the elliptic curve of j-invariant 1728. Set a prime
p as

p = ℓ
eA,1

A,1 ℓ
eB,1

B,1 ℓ
eA,2

A,2 ℓ
eB,2

B,2 · · · ℓeA,t

A,t ℓ
eB,t

B,t − 1,

where ℓA,1 = 2, and ℓA,2, . . . , ℓA,t, ℓB,1, . . . , ℓB,t are distinct odd primes.

Let PA and QA (resp. PB and QB) be points generating E0[
∏t

i=1 ℓ
eA,i

A,i ]
∼=

(Z/
∏t

i=1 ℓ
eA,i

A,i Z)2 (resp. E0[
∏t

i=1 ℓ
eB,i

B,i ]
∼= (Z/

∏t
i=1 ℓ

eB,i

B,i Z)2).
Public key (Alice): Alice first generates the following three randoms as her

secret key:

(e′A,1, . . . , e
′
A,t) ∈ {0, 1, . . . , eA,1} × · · · × {0, 1, . . . , eA,t},

α ∈ (Z/
t∏

i=1

ℓ
eB,i

B,i Z)
×, kA ∈ (Z/

t∏
i=1

ℓ
eA,i

A,i Z)
×.

LetRA = (
∏t

i=1 ℓ
e′A,i

A,i )(PA+kAQA). Alice computes an isogeny [α]◦ϕA : E0 →
EA := E0/〈RA〉 and image points αϕA(PB), αϕA(QB). Alice sends to Bob
EA and these image points as a public key.
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Public key (Bob): Bob first generates the following three randoms as his se-
cret key:

(e′B,1, . . . , e
′
B,t) ∈ {0, 1, . . . , eB,1} × · · · × {0, 1, . . . , eB,t},

β ∈ (Z/
t∏

i=1

ℓ
eA,i

A,i Z)
×, kB ∈ (Z/

t∏
i=1

ℓ
eB,i

B,i Z)
×.

Let RB = (
∏t

i=1 ℓ
e′B,i

B,i )(PB+kBQB). Bob computes an isogeny [β]◦ϕB : E0 →
EB := E0/〈RB〉 and image points βϕA(PB), βϕA(QB). Bob sends to Alice
EB and these image points as a public key.

Shared key: Let R′
A = (

∏t
i=1 ℓ

e′A,i

A,i )(ϕB(PA) + kAϕB(QA)), and let R′
B =

(
∏t

i=1 ℓ
e′B,i

B,i )(ϕA(PB) + kBϕA(QB)). Alice computes EAB := EB/〈R′
A〉, and

Bob computes an isogeny EBA := EA/〈R′
B〉. The value j(EAB) = j(EBA)

is the shared key.

Theorem 1. Masked-degree SIDH is correct.

Proof. It is easy to check that ker (ϕ′A ◦ ϕB) = ker (ϕ′B ◦ ϕA) = 〈RA, RB〉. There-
fore, it holds that EAB

∼= EBA. ut

4 Security analysis

In this section, we discuss the security of masked-degree SIDH.

4.1 Attacks for masked-degree SIDH

Solution to general Isogeny Problem. There are some studies about solving
algorithms for Isogeny Problem. Using classical computers, Delfs and Galbraith
proposed the algorithm for solving Isogeny Problem in Õ(p1/2) [DG16]. Biasse,
Jao, and Sankar provided the quantum algorithm with the complexity Õ(p1/4)
[BJS14]. These attacks can be adapted to masked-degree SIDH.

Meet in the middle attack. Meet in the middle attack was a basic attack for
the original SIDH that computes all possible isogenies outgoing from E0 and EA

and finds the collision of these isogenies. In the setting of SIDH, the degree of
the target isogeny is 2eA ; hence, we only need to consider computing 2-isogenies
in eA,i/2 steps. Although the degree of the secret isogeny is not revealed in the
setting of masked-degree SIDH, this attack can be adapted to masked-degree
SIDH because we know the upper bound of degrees. The difference of the attack
between the masked case and the original case is that we need to check all

elliptic curves of degree
∏t

i=1 ℓ
e′A,i

A,i in the masked case, where e′A,i is a value



Masked-degree SIDH 7

in {0, . . . , beA,i/2c}. Therefore, the number of candidates for a middle curve is
about

t∏
i=1

⌊eA,i/2⌋∑
ji=0

ℓ
⌊eA,i/2⌋−ji
A,i =

t∏
i=1

ℓ
⌊eA,i/2⌋+1
A,i − 1

ℓA,i − 1
≈

t∏
i=1

ℓ
⌊eA,i/2⌋
A,i ≈ p

1
4

Therefore, the complexity of this attack is Õ(p1/4) via classical computers. For
quantum computers, there is a famous algorithm named Craw finding algorithm
[Tan09]. By using this algorithm, the complexity is Õ(p1/6).

Brute force approach to find the degree of the isogeny. To attack
masked-degree SIDH, it is a natural approach to identify the degree of the secret
isogeny because of Castryck–Decru attack. The complexity of the brute force ap-
proach relies on the size of the space of degrees, that is

∏t
i=1 eA,i and

∏t
i=1 eB,i.

As noted in Section 3, the Weil pairing leaks the squareness of the degree modulo∏t
i=1 ℓ

e′A,i

A,i or
∏t

i=1 ℓ
e′B,i

B,i . Moreover, a little bit more information of the secret key

of Bob is leaked because the cardinality of (Z/2eZ)×/((Z/2eZ)×)2 is 4 for e ≥ 3,
while that of (Z/ℓeZ)×/((Z/ℓeZ)×)2 is 2 for an odd prime ℓ. Therefore, the Weil
pairing reduces the space of secret degrees to at most 1/2t+1. Hence, the size of
the space of all degrees must be about 2λ+t+1 in classical security (resp. 22λ+t+1

in quantum security by Grover algorithm [Gro96]). We estimate the size of the
prime p under this situation. We analyze the complexity in the classical world
because the complexity with quantum computers is easily derived from that
with classical computers. It is clear that the size of the space of degrees depends
on parameters that constitute p (i.e., t and eA,1, . . . , eA,t, eB,1, . . . , eB,t). There-
fore, in this paper, we assume some properties of these parameters to make
the analysis clear. First, assume that eA,1 = · · · = eA,t = eB,1 = · · · = eB,t,
and denote this value by e0. Second, fix t = λ/2. By Prime number theorem,
the ℓA,i’s and ℓB,i’s are estimated to satisfy

∏t
i=1(ℓA,i/ log ℓA,i) ≈ (2t)t and∏t

i=1(ℓB,i/ log ℓB,i) ≈ (2t)t. From the assumption of the size of the space of the
degrees, it holds that (e0 + 1)t ≈ 2λ+t+1. Therefore, we have

log2 p = e0

t∑
i=1

(log2 ℓA,i + log2 ℓB,i) ≈ 2e0t(log2 t+ 1) ≈ 2
λ
t +2t(log2 t+ 1).

As we suppose that t = λ/2, it holds that log2 p ≈ 8λ log2 λ. Hence, the prime p
satisfies p ≈ 28λ log2 λ, and the complexity of the brute force attack on the degree
of the isogeny is Õ(p1/(8 log2 (log2 p))) via classical computers. The complexity with
quantum computers is Õ(p1/(16 log2 (log2 p))).

Castryck–Decru attack. If we know the degree of the target isogeny, Castryck–
Decru attack may be able to be adapted to masked-degree SIDH. However, it
seems to be hard to find the degree of the target isogeny as in the above sub-
section. Here, we discuss Castryck–Decru attack without information about the
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target degree. The important part of their attack is to construct an expected
isogeny diamond configuration (ψ′ ◦ γ̂, ker γ̂, γ̂(kerψ′)) of order N , where N is an
integer dividing the order of PA, QA. This provides an expected reducible anti-
isometry ι : C[N ] → EB [N ] that is given by PA, QA and ϕB(PA), ϕB(QA), and
we can compute a proper (N,N)-isogeny to check whether ι is reducible. How-
ever, if it is hard to decide the degree of ψ′, then it is also hard to take integers c
and N such that N = c+degψ′ and N divides the order of PA, QA. This means
that it is hard to compute an expected reducible anti-isometry ι : C[N ] → EB [N ].
Although they mentioned more flexible conditions about c and N in [CD22], we
cannot adapt the attack to masked-degree SIDH because we need to know c and
N . Therefore, we think the current Castryck–Decru attack cannot be adapted
to masked-degree SIDH without information about the degree of the hidden
isogeny.

Isogeny Problem vs Isogeny Problem with image points. In this subsec-
tion, we discuss the relationship between Isogeny Problem and Isogeny Problem
with Image Points. These problems are defined as follows:

Problem 2 (Isogeny Problem). Let p be a prime, and E1 and E2 supersingular
elliptic curves over Fp2 . Compute a separable isogeny ϕ : E1 → E2.

Problem 3 (Isogeny Problem with Image Points). Let p be a prime, and E1 and
E2 supersingular elliptic curves. Let N be a smooth integer such that E1[N ] ⊂
E1(Fp2) and E2[N ] ⊂ E2(Fp2), and let P1, Q1 ∈ E1[N ] and P2, Q2 ∈ E2[N ]
be points such that Pi, Qi generate Ei[N ] for i = 1, 2 and there is a separable
isogeny ϕ(P1) = P2 and ϕ(Q1) = Q2. Compute a separable isogeny between E1

and E2.

Isogeny Problem with Image Points is an important problem for the security
of masked-degree SIDH. It is clear that if Isogeny Problem is solved, then Isogeny
Problem with Image Points is also solved. On the contrary, the following theorem
holds:

Theorem 4. Let p be a prime, and N a smooth integer such that E[N ] ⊂ E(Fp2)
for a supersingular elliptic curve E. Then Isogeny Problem is reduced to Isogeny
Problem with Image Points.

Proof. The main strategy for the reduction is as follows:

1. Generate random points P1, Q1 ∈ E1[N ] and P2, Q2 ∈ E2[N ] such that
Pi, Qi generate Ei[N ] for i = 1, 2.

2. Solve Isogeny Problem with Image Points for (E1, E2, P1, P2, Q1, Q2), and
get a separable isogeny between E1 and E2.

This strategy does not seem to work because there is no guarantee of the ex-
istence of a separable isogeny ϕ such that ϕ(P1) = P2 and ϕ(Q1) = Q2. Let
ϕ′ : E1 → E2 be a separable isogeny such that deg ϕ′ is coprime to N . Note that
ϕ′(P1) and ϕ

′(Q1) generate E2[N ]. The following claim guarantees the existence
of a separable isogeny ϕ:
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Claim. There is a separable endomorphism of E2 such that ϕ′(P1) 7→ P2 and
ϕ′(Q1) 7→ Q2.

Proof of Claim. Let O be an endomorphism ring of E2. Since O is a maximal
order of a quaternion algebra, there is a Z-basis {α1, α2, α3, α4} of O. By using
a generator of E2[N ], we can represent α1|E2[N ], . . . , α4|E2[N ] as 2× 2-matrices.
Therefore, there is a Z/NZ-module homomorphism

Φ : (Z/NZ)4 −→ M2(Z/NZ)
(n1, n2, n3, n4) 7−→ n1α1|E2[N ] + · · ·+ n4α4|E2[N ]

,

where M2(Z/NZ) is the Z/NZ-module of 2× 2-matrices over Z/NZ. If a point
(n′1, n

′
2, n

′
3, n

′
4) is in the kernel of Φ, then the kernel of n′1α1+ · · ·+n′4α4 contains

E2[N ]. Therefore, there is an endomorphism ψ with n′1α1+ · · ·+n′4α4 = ψ ◦ [N ].
As {α1, . . . , α4} is a basis, we have N | n′1, . . . , n′

4. This means that n′1, . . . , n
′
4

are zero, and Φ is injective. Since #(Z/NZ)4 = #M2(Z/NZ) = N4, the homo-
morphism Φ is the isomorphism. Hence, there is an endomorphism γ such that
γ(ϕ′(P1)) = P2 and γ(ϕ′(Q1)) = Q2. From [Sil09, Proof of Corollary 5.5], at
least one of γ and [N ] + γ is separable. This completes the proof of Claim. ■

From the above claim, there is a separable isogeny ϕ such that ϕ(P1) = P2

and ϕ(Q1) = Q2. Therefore, Isogeny Problem can be reduced to Isogeny Problem
with Image Points. ut

As above discussions, Isogeny Problem with Image Points is equivalent to
Isogeny Problem; however, masked-degree SIDH can be attacked in sub-exponential
time. It is because we know the upper bound of the degree of the target isogeny
in the setting of masked-degree SIDH.

4.2 Parameter for masked-degree SIDH

In this subsection, we discuss the size of the proper parameter of masked-degree
SIDH under NIST security levels.

From Subsection 4.1, the most effective attack for masked-degree SIDH is
brute force approach to find the degree of the isogeny; the complexity of this
attack is Õ(p1/(8 log2 (log2 p))) via classical computers and Õ(p1/(16 log2 (log2 p))) via

quantum computers. The size of p is about log2 p ≈ 2
λ
t +2t(log2 t+1) in classical

security. We now consider the size of t which makes the size of p as small as
possible. Let f(t) = 2

λ
t +2t(log2 t + 1). Considering the minimum value of f(t),

we get a proper t. By using computers, we have t = 74 for λ = 128, t = 112 for

λ = 192, and t = 151 for λ = 256. Since e0 ≈ 2
λ+1
t +1 − 1, we can also estimate

e0.

Under this estimation, we propose three primes: p6806, p11191, and p15747.
The prime p6806 is a 6806-bit prime such that

p6806 = 26 · ℓ61 · · · ℓ6142ℓ143 · · · ℓ148 − 1,
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where ℓ1, . . . , ℓ147 are the smallest distinct odd primes, and ℓ148 = 4903. The
prime p11191 is a 11191-bit prime such that

p11191 = 26 · ℓ61 · · · ℓ6214ℓ215 · · · ℓ224 − 1,

where ℓ1, . . . , ℓ223 are the smallest distinct odd primes, and ℓ224 = 4099. The
prime p15747 is a 15747-bit prime such that

p15747 = 26 · ℓ61 · · · ℓ6284ℓ285 · · · ℓ302 − 1,

where ℓ1, . . . , ℓ301 are the smallest distinct odd primes, and ℓ302 = 11257. These
primes correspond to NIST security levels 1, 3, and 5, respectively. The size
of the public key of masked-degree SIDH is 6 times the bit length of p. In
[CJL+17], there is a method to compress the size of the public key of SIDH that
can also be adapted to masked-degree SIDH. By this method, Alice’s public key
is in Fp2 × Z/2Z × (Z/

∏t
i=1 ℓ

eB,i

B,i Z)3, and Bob’s public key is in Fp2 × Z/2Z ×
(Z/

∏t
i=1 ℓ

eA,i

A,i Z)3. We summarize the sizes of the public keys of masked-degree
SIDH under these security levels in Table 1. Here, we let 2, ℓ2, ℓ4, . . . be Alice’s
primes (i.e., ℓA,1, . . . , ℓA,t), and ℓ1, ℓ3, . . . Bob’s primes (i.e., ℓB,1, . . . , ℓB,t). As
shown in this table, masked-degree SIDH needs extremely huge size parameters.

Table 1. Key sizes of masked-degree SIDH in NIST security levels

λ NIST p public key compressed pk (Alice) compressed pk (Bob)

128 level 1 6,806 bit 5,105 byte 2,984 byte 2,973 byte

192 level 3 11,191 bit 8,394 byte 4,902 byte 4,892 byte

256 level 5 15,747 bit 11,811 byte 6,896 byte 6,884 byte

5 Conclusion

In this paper, we proposed the new isogeny-based scheme, masked-degree SIDH.
This is the first trial to revive SIDH that was broken by Castryck–Decru attack.
The base idea to resist their attack is to cover the degree of the secret isogeny.
To get rid of the information about degrees, we use many primes to compute
isogenies and extend the space of the degrees of the target isogenies.

Moreover, we analyzed the security of masked-degree SIDH. By hiding the
degrees, it seems hard to adapt Castryck–Decru attack to masked-degree SIDH
directly. The most efficient attack for masked-degree SIDH in our analysis is the
brute force approach to find the degree of the isogeny. The time complexity of this
attack is Õ(p1/(8 log2 (log2 p))) with classical computers and Õ(p1/(16 log2 (log2 p)))
with quantum computers. Although this is a sub-exponential time, the actual
size of parameters of masked-degree SIDH adapted to NIST security levels is
extraordinarily large (Table 1).
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