
An extended abstract of this paper appears in the proceedings of the 29th International Conference on Selected
Areas in Cryptography, SAC 2022. This is the full version.

PERKS: Persistent and Distributed Key Acquisition for Secure
Storage from Passwords∗

Gareth T. Davies1 ID Jeroen Pijnenburg2

1Bergische Universität Wuppertal, Wuppertal, Germany
2Royal Holloway, University of London, Egham, United Kingdom

August 6, 2022

Abstract
We investigate how users of instant messaging (IM) services can acquire strong encryption keys

to back up their messages and media with strong cryptographic guarantees. Many IM users regu-
larly change their devices and use multiple devices simultaneously, ruling out any long-term secret
storage. Extending the end-to-end encryption guarantees from just message communication to also
incorporate backups has so far required either some trust in an IM or outsourced storage provider,
or use of costly third-party encryption tools with unclear security guarantees. Recent works have
proposed solutions for password-protected key material, however all require one or more servers to
generate and/or store per-user information, inevitably invoking a cost to the users.

We define distributed key acquisition (DKA) as the primitive for the task at hand, where a user
interacts with one or more servers to acquire a strong cryptographic key, and both user and server
store as little as possible. We present a construction framework that we call PERKS—Password-based
Establishment of Random Keys for Storage—providing efficient, modular and simple protocols that
utilize Oblivious Pseudorandom Functions (OPRFs) in a distributed manner with minimal storage
by the user (just the password) and servers (a single global key for all users). Along the way
we introduce a formal treatment of DKA, and provide proofs of security for our constructions in
their various flavours. Our approach enables key rotation by the OPRF servers, and for this we
incorporate updatable encryption. Finally, we show how our constructions fit neatly with recent
research on encrypted outsourced storage to provide strong security guarantees for the outsourced
ciphertexts.

∗Gareth T. Davies has been supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme, grant agreement 802823.

1

https://orcid.org/0000-0002-5935-5725

Contents
1 Introduction 2

1.1 Problem Statement . 3
1.2 Contributions . 3
1.3 Related Primitives and Existing Literature . 4
1.4 WhatsApp Encrypted Backup Rollout . 4

2 Preliminaries 5
2.1 Notation and Security Games . 5
2.2 Secret Sharing Schemes . 5
2.3 OPRFs and their Variants . 6
2.4 OPRF Literature . 6
2.5 Oblivious Pseudorandom Functions: Syntax . 7
2.6 Oblivious Pseudorandom Functions: Security Notions . 8

3 DKA and Security Models 10
3.1 Distributed Key Acquisition . 10
3.2 A Unified Security Notion for DKA . 10

4 Constructions 12
4.1 Generic Construction . 12
4.2 n out of n setting . 13
4.3 t out of n setting . 13
4.4 Security Proofs . 14
4.5 Use of Existing OPRFs in PERKS . 23

5 Using PERKS as a Storage System 23

6 Discussion 24

A OPRF Definition Relations 29
A.1 Comparison between Mechanics of PRIV-1 and POPRIV-1 29
A.2 PRIV-x and POPRIV-x are Equivalent . 30

1 Introduction
Passwords are ubiquitous as authentication tokens and yet constructing schemes based on passwords is
notoriously difficult to get right. Users regularly re-use and/or forget their passwords, application servers
store passwords incorrectly, and more and more physical and technical tools are needed to prevent attacks
and misuse. We consider the general problem of converting a human-memorable password into a single
cryptographic secret, with minimal storage and communication requirements.

As a motivating case study, consider instant messaging (IM) applications: it is at present not clear
what keying material should be used to encrypt messages and files that are stored on the user’s device,
and/or backed up to an external backup service or cloud storage provider (CSP)1. It is not clear what
security properties are obtainable in the scenario where a user defends against potential loss of their
device by backing up messages, never mind in each of the many other possible variations of the message
storage scenario (long-term on-device encryption, temporary backup for ‘device changeover’, backup for
immediate local deletion). Our solutions are targeted at this main scenario—where a user acquires a
new phone and wants to recover their backed-up data using only their password—but with applications
to the others2. In this setting a user may interact with their IM service, a CSP that stores messages

1In commercial settings there may exist on-premise file/backup storage, but in our more general case the entity storing
the ciphertexts is regarded as external.

2We do not explicitly consider the scenario where the user has two devices in their possession and wishes to locally
transfer messages and/or media from one device to another without the help of outsourced storage, as our approach would
be overkill.

2

and media, and potentially other services that contribute to keying material: the user would prefer not
to (fully) trust all of these services (or their device) and additionally would like to draw entropy from
each of these services in deriving a(n initial) key for data encryption. We refer to all of these n entities,
potentially including the IM and outsourced storage providers, as key-contributing servers. Our key tool
is an oblivious PRF (OPRF): a user, holding a secret input x, engages in a protocol with a server, holding
a key sk, where at the end of the protocol the user learns F(sk, x) for some keyed pseudorandom function
F and the server learns nothing.

A number of primitives exist in the literature that attempt to solve this problem and provide secure
and distributed key generation, however all require the storage of user-specific information with the key
servers. This is infeasible at the multi-billion-user scale required for modern IM applications, and would
most likely result in this feature becoming a costly paid service. In particular, securely storing this per-
user key material would often be done using a hardware security module (HSM), introducing significant
key management challenges and financial costs. Further, many schemes require the user to generate the
high-entropy secret in the first place and then securely distribute it, imposing a trust requirement on the
client device and its randomness generation. We summarize these primitives in Sec. 1.3.

1.1 Problem Statement
There are at present (at least) three major stumbling blocks for deployment of encrypted backup systems
for IM services:

• Storage Cost. Using existing techniques for OPRF-based password hardening would invoke per-
user data to be stored at each of the key-contributing servers. For this reason it is necessary to
minimize the storage burden for every entity in the system.

• Key Longevity. For the system to function, it is essential that over a long period of time the
key acquisition interaction is ‘long lived’, in the sense that the key production operation must be
deterministic and any secret values given as input to the operation (by user or server) must not
change.

• Trust Distribution. In the IM setting it is by now industry standard to expect end-to-end-
encryption (E2EE) of messages, ensuring that the storage server cannot decrypt sent content.
With this in mind, it would appear risky to rely on the IM provider to act as a single key-
contributing server, or to use only the IM server and cloud storage provider. It is thus desirable
to introduce additional parties to the picture, and distribute the trust such that the user has fine-
grained control of what they are able to do if they learn/believe that one or more of these parties
has become compromised.

In our work we aim to overcome all of these challenges simultaneously, supplementing our proposals
with rigorous security analyses.

The concept of key longevity is at odds with modern approaches to forward security that involve
(regular) key rotation, and so any operation that does support key rotation must also enable the user to
update their ciphertexts when this rotation occurs, which is a considerable technical challenge. In Sec. 5
we describe how key rotation can be done securely and efficiently within our framework.

1.2 Contributions
We design a novel formal framework for outsourced (and on-device) storage that allows a user to generate
and store a cryptographic key with the aid of n key-contributing servers, with the constraints discussed
already. We call the required primitive distributed key acquisition (DKA) and describe its syntax and
security properties. We introduce a correctness game and two key indistinguishability games for DKA.
We explain how a DKA scheme can be used in conjunction with encryption and key rotation to neatly
solve the IM backup problem.

We provide two concrete constructions for DKA using OPRFs in a framework that we call PERKS
(Password-based Establishment of Random Keys for Storage): the n out of n setting for when the user
expects the key-contributing servers to be available for the lifetime of the system, and a threshold t out
of n scheme based on secret sharing that tolerates n− t servers being unavailable or compromised. Even

3

in the event that n− t + 1 (or more, even all n) servers are corrupted by the same entity, all is not lost:
this adversary must still perform an offline attack to recover the key. Our constructions are extremely
simple but the analysis is certainly not: we introduce appropriate security properties for user and server
privacy in our setting, and prove that our schemes—when instantiated using a variety of existing OPRFs
with different features—meet the corresponding properties.

1.3 Related Primitives and Existing Literature
The existing primitive that is most closely related to our setting is (t,n) password-protected secret
sharing (PPSS): a user that is already in possession of some secret value distributes it among n servers
such that reconstruction is possible using only the password and interaction with t + 1 honest servers.
Bagherzandi et al. [BJSL11] gave the first formal treatment and a scheme where the user needs to
store/trust one or more public keys. Later schemes gave security in the presence of related passwords
via the UC framework [CLN12], and in the setting where servers learn nothing in the reconstruction
phase [CLLN14] (by sending out an encryption of a randomized quotient of the password and not the
password itself).

Jarecki, Kiayias and Krawczyk [JKK14] gave threshold PPSS (and threshold PAKE) with optimal
round complexity, but with the same setup assumptions as the prior papers. In [JKKX16] the same
authors and Xu gained improved efficiency compared to previous work, and in essence these savings
come from foregoing some heavy duty tools required to achieve the UC verifiability property of the
OPRF. The same authors then presented TOPPSS [JKKX17] using a Threshold OPRF, where the
secret sharing is performed on the level of the OPRF key, so derivation of the single OPRF output for a
given input is an interactive protocol with t + 1 of the n servers. Abdalla et al. [ACNP16] defined robust
PPSS, where a robust secret sharing scheme is used to detect cheating servers, also foregoing the need
for a verifiable OPRF.

Password-Hardened Encryption (PHE) was introduced by Lai et al. [LER+18] and uses an oblivious
external party for key derivation to protect against offline brute-force attacks on a ciphertext encrypted
under just the password. Recognizing the single point of failure, Lai et al. introduced threshold PHE
in [BEL+20]. The scheme requires a trusted third party to distribute all secret keys during initialization.

Other primitives exist that use a distributed OPRF service (i.e. the server stores, for each user, a
sharing of an OPRF secret key) to derive a cryptographic secret, including Baum et al. [BFH+20] who
use the OPRF to get a signature key pair for distributed single sign-on, and Das et al. [DHL22] who use
a similar trick to obtain a signature key pair, then per-file encryption keys are created by computing a
so-called extended POPRF for a second private input, namely a randomized hash of the file.

1.4 WhatsApp Encrypted Backup Rollout
In September 2021, WhatsApp announced [Wha21] that they would soon begin beta testing of an en-
crypted chat and media backup service that uses HSMs and the envelope part of the OPAQUE proto-
col [JKX18] in a manner that is conceptually similar to a (1, 1)-PPSS. In this subsection we discuss their
system based on the details in the WhatsApp whitepaper and NCC Group’s technical report [NG21] and
explain the differences with our work.

OPAQUE is an asymmetric password-authenticated key exchange protocol that is a compiler of three
components: an oblivious PRF to turn the user’s password x into a strong secret value y, an ‘envelope’
mechanism whereby the user encrypts their AKE key material under y using symmetric encryption,
and an AKE protocol. WhatsApp’s approach uses the OPRF and a modified version of the envelope
mechanism, but since no key exchange needs to occur the AKE component is dropped completely. In the
WhatsApp system, at the point of registration (first ever backup), a client device generates a random
256-bit key k and then stores this as an encrypted record (envelope) in a ‘HSM-based Backup Key Vault’
so that it can later retrieve this key using only their password (PIN or passphrase): the HSM acts
as the OPRF server and derives a per-user secret key skuid from a single master secret and uid when
called. The envelope in the WhatsApp system is PK.Encpk.HSM(SK.Ency(k)), a public-key encryption of
an encryption of k under the OPRF output value y. Later on when a user comes online to retrieve the
contents of their envelope it is not apparent if this is sent encrypted under some user public key, and it
would appear that this PKE scheme is not for protecting the channel, but rather so that the envelopes
can be stored outside of the HSM. These envelopes are stored in an integrity-protected manner using a

4

Merkle tree. No security analysis of the system has been provided for the WhatsApp approach, and the
only analysis available is the report by NCC Group [NG21] that does not discuss any formal security
requirements for the system.

Intuitively, the WhatsApp approach relies on the tamper-resistant properties of the HSM to make
sure that the OPRF key sk (that is used to derive skuid) is not leaked to any party. If this key is leaked,
then an offline adversary can attempt to recover the file encryption key that is contained within the
registration envelope. Our approach avoids assuming a HSM on the server side, and instead distributes
the trust among a number of servers. An adversary in possession of a stolen client device needs to guess
the correct password while avoiding WhatsApp’s rate-limiting mechanisms, and thus performing this
type of online attack is similar in our system.

Further, the WhatsApp system requires that the client device generates the user file encryption key k
using ‘a built-in cryptographically secure pseudorandom number generator’, however as already stated,
this is of no use if the device’s randomness generation is already compromised during registration.

2 Preliminaries
2.1 Notation and Security Games
We specify scheme algorithms and security games in pseudocode. In such code we write ‘var ← exp’ for
evaluating expression exp and assigning the result to variable var . Here, expression exp may comprise
the invocation of algorithms. If var is a set variable and exp evaluates to a set, we write var ∪← exp
shorthand for var ← var ∪ exp. Similarly, if var is an integer variable and exp evaluates to an integer,
we write var +← exp shorthand for var ← var + exp. Associative arrays implement the ‘dictionary’ data
structure: Once the instruction A[·]← exp initialized all items of array A to the default value exp, with
A[idx]← exp and var ← A[idx] individual items indexed by expression idx can be updated or extracted.
For a vector ~v we denote with size(~v) the number of defined elements, i.e. elements that are not ⊥, which
may be less than the length of ~v. Many algorithms take as input a security parameter λ, however for
visual clarity we omit this wherever possible (further, this implicit representation is possible because we
do not build any primitives from computational assumptions nor present any equational relationships
that depend directly on λ).

Security games are parameterized by an adversary, and consist of a main game body plus zero or more
oracle specifications. The adversary is allowed to call any oracle specified in the game at any time. The
execution of a game starts with the main game body and terminates when a ‘Stop with exp’ instruction
is reached, where the value of expression exp is taken as the outcome of the game. If the outcome of
a game G is Boolean, we write Pr[G(A)] for the probability that an execution of G with adversary A
results in 1. We define macros for specific game-ending instructions: We write ‘Win’ for ‘Stop with 1’
and ‘Lose’ for ‘Stop with 0’, and for a condition C we write ‘Require C’ for ‘If ¬C: Lose’ and ‘Reward C’
for ‘If C: Win’. We finally draw attention to an important detail of our algorithm and game notation:
algorithms are allowed to abort. Here, by abort we mean the case where an algorithm does not generate
output according to its syntax specification, but outputs some error indicator instead, e.g. outputs ⊥.
We have prefaced algorithms that may abort with the ‘Try’ statement. If an oracle calls an algorithm
that aborts, the oracle also immediately aborts.

2.2 Secret Sharing Schemes
We now define a secret sharing scheme SSS, that allows an entity to share some secret value k among
n parties, such that any t of the shares enable reconstruction of k, while any set of t − 1 shares reveals
nothing about k. The exposition here is adapted from Boneh and Shoup [BS20].

A secret sharing scheme SSS = (SecShare,SecCombine) over a finite set S1 consists of two algorithms.
Sharing algorithm SecShare(k, t,n) is probabilistic, taking as input k ∈ S1 for 0 ≤ t ≤ n and returning
shares ~α = {α1, . . . , αn} ∈ Sn

2 . Reconstruction algorithm SecCombine(~α′) is deterministic, taking as
input ~α′ = {α′1, . . . , α′t} ∈ St

2 and returning the reconstructed secret k.
Correctness asks that for every secret k ∈ S1, every set of n shares ~α output by SecShare(k, t,n), and

every subset {α′1, . . . , α′t} = ~α′ ⊆ ~α of size t, then SecCombine(~α′) = k.

5

Definition 2.1 (SSS Security). A secret sharing scheme (SecShare,SecCombine) over S1 is secure if
for every k, k ′ ∈ S1, and every subset ~α′ ∈ St−1

2 , the distribution SecShare(k, t,n)[~α′] is identical to the
distribution SecShare(k ′, t,n)[~α′].

The most well known secret sharing scheme is due to Shamir [Sha79] using polynomial interpolation
and is suitable for our purposes. The scheme is fully specified elsewhere [Sha79,BS20] and we refer to
these sources for details. For the purposes of this paper, it is sufficient to know that Shamir’s scheme is
over S1 = Fq with prime power q > n, where shares are elements of S2 = F2

q. We choose S1 such that it
matches our key space K, for example S1 = F2256 if we have a 256-bit key space.

2.3 OPRFs and their Variants
In the remaining subsections we describe some of the properties of oblivious PRFs in the literature and
explain how they can be used in our protocols. OPRFs can be verifiable or not, and independently,
partially oblivious or not, meaning there are four categories of OPRF that we consider.

Verifiability. Verifiable OPRFs (VOPRFs) require the server to commit to the secret key that it uses,
and allow the user to verify that the correct operation was performed by the server with this committed
key (in a way that does not reveal the key to the user). Syntactically, the server includes a proof in rep
that the user can verify using a server public key pk.

Note that verifiability does not guarantee that a server uses the same key over multiple protocol runs.
In order to check key consistency, the user is forced to store pk, and this value must be deterministically
generated (this is the case for DH-based OPRFs where pk = gsk). However, this storage need not be
local: all users use the same pk so it is sufficient for this value to be published somewhere.

Partial Obliviousness. In many applications for OPRFs the server needs to partition the input space
to reduce the impact of active attacks, and this is often done by choosing a different key for each user
identity uid. In practice this could be done by applying some key derivation function to uid and sk
before the protocol is run (see below for a short discussion of this approach). Partially-oblivious PRFs
(POPRFs) contain a (plaintext) input t that provides automated partitioning, thus the server only needs
one key for all users.

2.4 OPRF Literature
For a thorough treatment of OPRFs, see the SoK by Casacuberta et al. [CHL22]; here we summarize the
most important literature for our approach. Oblivious PRFs were first formally defined by Freedman et
al. [FIPR05]. A vast array of applications has arisen for OPRFs, including oblivious transfer and pri-
vate set intersection [JL09], secure deduplication in cloud storage [KBR13], password-authenticated key
exchange [JKX18], Cloudflare’s anonymous authentication mechanism Privacy Pass [DGS+18], checking
compromised credentials [TPY+19,LPA+19] and Meta’s ‘de-identified telemetry’ scheme [HIJ+21].

The 2HashDH scheme by Jarecki et al. [JKK14] (detailed in Fig. 2) is very efficient and has been
suggested for use in TLS 1.3 with OPAQUE as password-based authentication, and is subject to a
standardization effort [DFHSW22,BKLW22,SKFB21].

There exist generic constructions of OPRFs from MPC techniques and homomorphic encryption that
do not fit into the syntax in Sec. 2.5 since the communication does not follow a two-message pattern
with the user sending the first message, see Section 2.4 of Casacuberta et al. [CHL22] for a summary.
These constructions are generally useful for gaining properties that are not useful in our setting such as
input batching [KKRT16] for amortized efficiency gains.

POPRFs. To our knowledge, the only two (explicit) POPRFs are those by Everspaugh et al. [ECS+15a]
and Tyagi et al. [TCR+22], both of which are detailed in Fig. 2. The former requires a pairing which could
be a hurdle in some practical applications, and the latter cannot support key rotation in a straightforward
way.

Three works [JKR18, Leh19,DHL22] obtain partial-obliviousness for 2HashDH in a generic way by
applying a PRF to the server key and public input and using that value as the per-user key. In our
generic construction in Fig. 6 we use a similar idea to turn any of the two non-PO, DH-based schemes

6

User Serverx

t F.Req req

st

pk F.Finalize

y

skF.BlindEv

rep

Figure 1: OPRF operation diagram. Public input t is only present in POPRFs and verification public
key pk is only present in VOPRFs.

in Fig. 2 into partially-oblivious variants, with the additional benefit of efficient computation of per-user
public keys in the verifiable setting.

The approach in the (unpublished) work of JKR18 [JKR18] actually works for any OPRF, and they
present a non-updatable construction using 2HashDH and an updatable construction that uses HashDH,
which is H2(H1(x)sk): this is not an OPRF since a user can use one interaction to obtain multiple
evaluations.

Post-quantum OPRFs. Boneh et al. [BKW20] gave two constructions of OPRFs from isogenies: a
VOPRF from SIDH [JD11] with a ‘one-more’ assumption and an OPRF from CSIDH [CLM+18]. A year
later, Basso et al. [BKM+21] showed that the first construction’s assumption does not hold and gave
attacks on that OPRF; the second CSIDH-based scheme is unaffected by this work.

From lattices, Albrecht et al. [ADDS21] demonstrated that it is possible to build round-optimal (two
messages in the online phase) VOPRFs from the Banerjee and Peikert PRF [BP14], but their protocols
require large parameters and computation-heavy ZK proofs.

Kolesnikov et al. [KKRT16] sought to build multiple concurrent OPRF operations in a generic way
from oblivious transfer (OT). OT can be built from post-quantum assumptions [PVW08, DvMN08],
however the PRF functionality requires 5 communication rounds and is only ‘relaxed’ (as defined by
Freedman et al. [FIPR05]). Note that these special purpose OPRFs, where more than two rounds are
required, do not fit the syntax in Sec. 2.5.

Seres et al. [SHB21] have proposed an OPRF based on a version of the Legendre symbol problem
and linked this hardness to multivariate quadratic equation systems.

2.5 Oblivious Pseudorandom Functions: Syntax
Following Everspaugh et al. [ECS+15a] and Tyagi et al. [TCR+22] we define OPRFs as a tuple F =
(F.KG,F.Req,F.BlindEv,F.Finalize,F.Ev). The syntax captures two optional properties of OPRFs, namely
partial obliviousness (user provides as input a public value in addition to its secret input, known as
POPRFs) and verifiability (user is convinced that server has evaluated for a particular key, where the
user learns a public commitment/representation of this key, known as VOPRFs), which both are useful
but not essential in our constructions later on. In Sec. 2.3 we provide an overview of the prior work
and how existing OPRF constructions can fit into our approach, with and without these additional
properties. In Fig. 1 we depict the operation of a (P)OPRF with optional verifiability. Note that prior
work including that of Tyagi et al. [TCR+22] has a parameter generation algorithm that passes some
public parameters to all other algorithms. We choose to omit this detail for visual clarity.

F.KG generates a key pair (pk, sk) (or just sk for non-verifiable OPRFs), taking as input a security
parameter. To form a request, the user runs F.Req(t, x) with secret input x (and in POPRFs, public
input t) and outputs a request req and a local state st. The server then runs F.BlindEv(sk, t, req) and
outputs a response rep. The user finishes by running F.Finalize(pk, rep, st), either outputting the function
evaluation y, or ⊥ if it does not accept the outcome. The unblinded evaluation algorithm F.Ev(sk, t, x)
outputs y or ⊥. The server should not learn (anything about) the secret input x even after multiple
interactions where x was provided as input, and the user should not learn (anything about) sk.

In Fig. 2 we detail the operation of three well-known OPRF protocols, all of which are reliant on
Diffie-Hellman-like assumptions. In our constructions, the key-contributing servers will hold an OPRF

7

secret key sk that they use for all users. User separation will either be done by employing a partially
oblivious PRF with t = uid, or by deriving a per-user key in each protocol invocation. We will always
use the password as the user’s secret input, so hereon x = pw.

2.6 Oblivious Pseudorandom Functions: Security Notions
For correctness we require that honest OPRF evaluations consistently produce the same output when
provided with equal inputs. We formalize this requirement in the correctness game in Fig. 3.

The privacy games capture that a server cannot glean any information about users’ private inputs,
nor link transcripts of requests/responses to OPRF output values, even with knowledge of the OPRF
secret key. Our security notions are based on the security models of Tyagi et al. [TCR+22]. Their user
privacy notion has two flavours:

• POPRIV-1 essentially models an honest but curious server and so does not require verifiability. In
the game the adversary has a transcript-generation oracle that provides the entire transcript.

• POPRIV-2 models a malicious server by allowing the adversary to separately engage with oracles
for OPRF request generation and OPRF output generation (in our notation denoted Challenge
and Finalize respectively).

Additionally they gave a pseudorandomness game for server privacy where an adversary interacts with
a (blinded) evaluation oracle and tries to distinguish genuine operation from operation with a random
function.

Our PRIV-x games are adapted from the POPRIV-x games of Tyagi et al. [TCR+22]; in App. A we
detail the differences: in short, PRIV-1 is a simplification of POPRIV-1 but with equivalent security,
while PRIV-2 and POPRIV-2 are identical. We remark we only return the request req and not the
response rep nor the final output value y in PRIV-1. It should be obvious that the adversary can
compute rep on its own because it holds the secret key to evaluate F.BlindEv, and in fact it can run this
operation with arbitrary secret keys. Further, the adversary can run F.Ev on the values it has sent to
Challenge using secret keys of its choosing, thus completing a full transcript. In PRIV-2 we do have
a Finalize oracle, as the adversary is allowed to submit arbitrary responses and the correctness game
makes no statement about this case. In App. A.2 we show that PRIV-1 and POPRIV-1 are equivalent.
Furthermore, the F.Req algorithm no longer takes a public key as input and is thus independent of the
server. Instead, the F.Finalize algorithm, which uses the public key to verify the response, now takes in
the public key directly, rather than it being passed via request state.

Definition 2.2 (PRIV-x Security). The advantage of an adversary A in the PRIV-x security experiments
defined in Fig. 3 for x ∈ {1, 2} and OPRF F is

AdvPRIV-x
F (A) :=

∣∣Pr
[
GPRIV-x1

F (A) = 1
]
− Pr

[
GPRIV-x0

F (A) = 1
]∣∣.

Our PRNGb game is in essence the POPRF game in [TCR+22] for verifiable POPRFs, but extended
to our multi-server setting: the oracles now return vectors instead of single elements. The game is
parameterized by a simulator S and creates an environment for an adversary to interact with n OPRF
servers via an oracle for function evaluation (Ev) and in modelling malicious clients a blinded evaluation
oracle (BlindEv). Initially the game creates 2n server key pairs (or just secret keys for OPRFs that are
not verifiable): in the b = 0 case the real function is used with one of the secret keys, and in the b = 1 case
a random function is used and the simulator is tasked with providing appropriate responses but given

Name POPRF? Assumption F.Ev(sk, t, x) req rep
2HashDH [JKK14] 7 OM-Gap-DH H2(x,H1(x)sk) H1(x)r H1(x)r·sk

Pythia [ECS+15a] 3 OM-BCDH e(H3(t),H1(x))sk H1(x)r, t e(H3(t),H1(x)r)sk

3HashSDHI [TCR+22] 3 OM-Gap-SDHI H2(t, x,H1(x)
1

H3(t)+sk) H1(x)r, t H1(x)
r

H3(t)+sk

Figure 2: Comparison of selected (partially) oblivious PRFs from the literature. Hash functions Hi are
labelled for comparison purposes, but when used in protocols the domains and ranges will be different.

8

Game CORR(A, n)
00 Q[·]← ∅
01 For i ∈ [1 ..n]:
02 (pki, ski)←$ F.KG
03 A(~pk, ~sk)
04 Lose

Oracle Protocol(t, x)
05 (req, st)← F.Req(t, x)
06 For i ∈ [1 ..n]:
07 repi ← F.BlindEv(ski, t, req)
08 yi ← F.Finalize(pki, repi, st)
09 Q[t, x] ∪← {~y}
10 Reward |Q[t, x]| > 1
11 Return (~y, req, ~rep)

Game PRIV-2b(A)
12 i← 0
13 ST[·]← ⊥
14 b′ ← A()
15 Stop with b′

Oracle Challenge(t, x0, x1)
16 i

+← 1
17 (req0, st0)← F.Req(t, x0)
18 (req1, st1)← F.Req(t, x1)
19 ST[i]← (st0, st1)
20 Return (i, reqb, req1−b)

Oracle Finalize(j,pk, rep, rep′)
21 Require j ∈ [1 .. i]
22 (st0, st1)← ST[j]
23 yb ← F.Finalize(pk, rep, stb)
24 y1−b ← F.Finalize(pk, rep′, st1−b)
25 If y0 = ⊥ or y1 = ⊥:
26 Return (⊥,⊥)
27 Return (y0, y1)

Game PRIV-1b(A)
28 b′ ← A()
29 Stop with b′

Oracle Challenge(t, x0, x1)
30 (req0, st0)← F.Req(t, x0)
31 (req1, st1)← F.Req(t, x1)
32 Return (reqb, req1−b)

Game PRNGb(A, n)
33 BE[·]← 0; RE[·]← 0
34 For i ∈ [1 ..n]:
35 (pki0, ski0)←$ F.KG
36 (pki1, ski1)←$ F.KG
37 Gi ←$ {g | g : U × I → O}
38 b′ ← A(~pkb)
39 Stop with b′

Oracle Ev(t, x)
40 For i ∈ [1 ..n]:
41 y0 ← F.Ev(ski0, t, x)
42 y1 ← Gi(t, x)
43 Return ~yb
Oracle BlindEv(t, req)
44 BE[t] +← 1
45 For i ∈ [1 ..n]:
46 repi0 ← F.BlindEv(ski0, t, req)
47 repi1 ← S.BlindEv(ski1, t, req)
48 Return ~repb
Oracle H(x)
49 h0 ← RO(x)
50 h1 ← S.Ev(x)
51 Return hb
S-Oracle RestrictedEv(t, x)
52 Require RE[t] < BE[t]
53 RE[t] +← 1
54 ~y← Ev(t, x)
55 Return ~y

Figure 3: OPRF Games for the multiple servers setting. For the meaning of instructions Stop with,
Lose, Reward, and Require see Sec. 2.

the other secret key. The Ev oracle returns either the output of the F.Ev algorithm or a random function.
The adversary also has access to the BlindEv oracle, which either returns the output of the F.BlindEv
algorithm or the response generated by the simulator S.BlindEv. Queries to oracle H are either answered
by a random oracle query or simulated by S.Ev. Crucially, to maintain consistency between Ev and
BlindEv queries, the simulator can obtain Ev outputs via its own S-Oracle RestrictedEv. However, the
simulator is restricted: the number of queries to RestrictedEv is bounded by the number of adversary
queries to BlindEv, specific for each public input. This ensures that the adversary cannot compute
more POPRF evaluations than the number of oracle queries it made. Moreover, restricting per public
input means that querying with public input t1 cannot help the adversary compute the evaluation for
another public input t2 6= t1. For a more detailed description of (the single server version of) this game,
see Section 3 of [TCR+22]: there are many subtleties regarding the simulator and limited evaluation
however these are not required for our purposes, since we only build from secure (P)OPRFs.

Definition 2.3 (PRNG Security). The advantage of an adversary A in the PRNG security experiments

9

defined in Fig. 3 for OPRF F is

AdvPRNG
F,S (A,n) :=

∣∣Pr
[
GPRNG1

F,S (A,n) = 1
]
− Pr

[
GPRNG0

F,S (A,n) = 1
]∣∣.

3 DKA and Security Models
In this section we formally define the syntax of a distributed key acquisition scheme and define security
via two games for key indistinguishability. The weaker KIND-1 security game effectively models an
honest but curious adversary as it may call oracles for honest protocol executions for a user to learn its
requests and responses. In the KIND-2 security game the adversary is in complete control of the servers
and may choose arbitrarily how to respond to user requests.

3.1 Distributed Key Acquisition
A distributed key acquisition scheme is an interactive protocol between parties, where the parties can
either be users or servers. Let S be a set of n servers that are (initially) available to users. Let uid ∈ UID
be a user identity that (initially) has a password pw ∈ D in some dictionary D.

The system is initialized by gen(n) which assigns a key pair to each server Si ∈ S, and public keys
are then distributed to users. A user initializes itself in the system and acquires a key k and possibly
some setup values ~SV by running init(uid, pw, ~pk,S). We remark that ~SV is not secret, so it can be
stored alongside the backed up data. The init procedure sends out a request req to each server, who will
run server.op(ski, uid, req) to respond. An individual user’s interaction with the system is defined by a
threshold t ∈ [1 .. n] which is the number of servers that are required to be honest and available in order
for the user to reconstruct their secret. Later, a user can acquire the OPRF output values ~y by running
acquire(uid, pw, ~pk,S) and recover their key by subsequently running recover(~y,C, ~SV). Syntactically
this takes as input all OPRF output values, but some may not be set, i.e. yi may be ⊥ if server Si did
not respond. With C, the set of chosen servers, a user indicates which OPRF output values to use for the
key recovery. We assume that passwords are selected uniformly at random from the set D throughout
the rest of this paper. However, similarly to the game-based PAKE literature, it is possible to cast the
choosing of passwords according to (the min-entropy of) some distribution Dist [BCP04,BP13].

3.2 A Unified Security Notion for DKA
We first describe the correctness game for DKA schemes depicted in Fig. 4. The correctness game
initializes the secret and public keys for all servers and initializes several game variables to keep track of
the game state. The adversary controls the honest executions of the protocol via its oracles Init, Acquire
and Recover. It has complete control over the inputs, specifying which user identity uid, password pw
and public keys ~pk to use in Init and Acquire, and the set of chosen servers C (for reconstruction) and
setup values ~SV in the Recover oracle. The counter r is a game variable to associate the Recover query
with the corresponding Acquire query. This gives the adversary more freedom as we do not require these
oracles to be used in succession. Via the Corrupt oracle the adversary is allowed to corrupt up to t− 1
servers. Recall that the oracle immediately aborts if a procedure prefaced by ‘Try’ aborts. In particular,
a correct construction can abort if it is fed garbage input (i.e. an empty set of chosen servers) as otherwise
the adversary would trigger the ‘Reward’ line that wins the correctness game. The adversary wins the
correctness game if it manages to create two different keys for a set of user id, password and setup values.

Next, we describe the security games for DKA schemes, KIND-x for x ∈ {1, 2}, provided in Fig. 5,
which ultimately capture key indistinguishability: The task of the adversary is to distinguish real keys
generated by the protocol from random. We remark that this implies other security properties such
as privacy of the user’s password: if the adversary learns (information about) a user’s password it can
compute the real key and compare this to the real or random key from the Challenge oracle to gain
an advantage. Similarly to PRIV-x, the KIND-x game comes in two flavors: x = 1 corresponds to an
adversary that may compromise servers but will subsequently follow the protocol honestly, and x = 2
which allows arbitrary server behaviour and thus intuitively security in this setting will require verifiable
responses from the servers.

Initially, the game assigns passwords to all users in the user identity space UID. An adversary can
observe network traffic for executions of the protocol via its oracles Init and Acquire, and it specifies the

10

Game CORR(A, t,n)
00 K[·]← ∅
01 CRED[·]← ⊥
02 Y[·]← ⊥
03 CO← ∅
04 r ← 0
05 (~sk, ~pk)← gen(n)
06 S← init(~sk)
07 A(~pk)
08 Lose

Oracle Init(uid, pw, ~pk)
09 Try: (k, ~SV)← init(uid, pw, ~pk,S)
10 K[pw, uid, ~SV] ∪← {k}
11 (req, ~rep)← Transcript(S)
12 Return (k, req, ~rep, ~SV)

Oracle Acquire(uid, pw, ~pk)
13 r +← 1
14 CRED[r]← (uid, pw)
15 Y[r]← acquire(uid, pw, ~pk,S)
16 (req, ~rep)← Transcript(S)
17 Return (req, ~rep, r)

Oracle Corrupt(i)
18 CO ∪← {i}
19 Require |CO| < t
20 Return ski
Oracle Recover(r ,C, ~SV)
21 (uid, pw)← CRED[r]
22 ~y← Y[r]
23 Try: k ← recover(~y,C, ~SV)
24 K[pw, uid, ~SV] ∪← {k}
25 Reward |K[pw, uid, ~SV]| > 1
26 Return k

Figure 4: Correctness game for DKA with algorithms gen, init, acquire and recover. Transcript is a
special game procedure that records network requests sent by the DKA algorithms. For the meaning of
instructions Lose, Reward, and Require see Sec. 2.

user identity for these protocol runs. In the KIND-1 game for honest executions of the protocol, this is
modelled by providing the adversary a transcript of the network requests to the servers S, handled by
the game. For the KIND-2 game, the network requests are sent to the adversary directly, so the game
does not need to record the transcript. The adversary may respond in any way it likes, in particular it
may respond honestly. To aid the adversary in responding honestly without requiring it to corrupt a
server, it can query the BlindEv oracle, which will return the honest response rep. Effectively, in the
KIND-2 game the adversary becomes an active man-in-the-middle between the Init and Acquire oracles
(representing the user) and the BlindEv oracle (representing the server).

We split the key reconstruction procedure into two processes to model the online communication
(Acquire) between the user and the servers, and the key calculation done locally (Recover) by a user
based on the servers it chooses to utilize and the public setup values. We allow the adversary to specify
these setup values ~SV since the system’s security should not rely on them being secret nor authentic. To
model online attacks, i.e. login attempts for specific users, the adversary can call Reveal with a purported
password and user identity, and if this guess is correct it receives the file encryption key for that user; if
incorrect it receives nothing (this mimics the subsequent inability to decrypt files).

Definition 3.1 (KIND-x Security). The advantage of an adversary A in the KIND-x games defined in
Fig. 5 for x ∈ {1, 2} and distributed key acquisition scheme DKA is

AdvKIND-x
DKA (A) :=

∣∣∣Pr
[
GKIND-x1

DKA (A) = 1
]
− Pr

[
GKIND-x0

DKA (A) = 1
]∣∣∣.

As is natural in the password setting, it is necessary to consider the fact that passwords could be
guessable and a successful guess that occurs before any rate-limiting has kicked in will result in an
adversary compromising a particular user. The advantage statement needs to take into account the
following generic attack, where the queries are all for a single user identity uid: the adversary runs
Init, then makes q queries to Reveal for randomly chosen passwords in the password space, then queries
Challenge. If any of the Reveal queries returned something other than ⊥, then a user key was set for
that user identity, and if this value is equal to the key provided by Challenge then the adversary outputs
0, and if it’s different it outputs 1 (if it received ⊥ for all Reveal queries then it just guesses). As a result,
we regard a DKA scheme as being secure if

AdvKIND-x
DKA (A) ≤ O

(
q
|D|

)
+ δ,

where q is the number of queries made by the adversary to the Reveal oracle in the course of the
experiment, |D| is the size of the password dictionary and δ is some negligible function in the security
parameter λ.

11

Game KIND-1b(A, t,n)
00 K[·]← ×; r ← 0
01 PW[·]← ⊥; Y[·]← ⊥
02 For uid ∈ UID:
03 PW[uid]←$ D
04 CH← ∅; CO← ∅
05 (~sk, ~pk)← gen(n)
06 S← init(~sk)
07 b′ ← A(~pk)
08 Stop with b′

Oracle Init(uid, ~pk)
09 pw ← PW[uid]
10 Try:
11 (k, ~SV)← init(uid, pw, ~pk,S)
12 K[pw, uid]← k
13 (req, ~rep)← Transcript(S)
14 Return (req, ~rep, ~SV)

Oracle Acquire(uid, ~pk)
15 r +← 1
16 pw ← PW[uid]
17 Y[r]← acquire(uid, pw, ~pk,S)
18 (req, ~rep)← Transcript(S)
19 Return (req, ~rep, r)

Oracle Recover(r ,C, ~SV)
20 ~y← Y[r]
21 Try:
22 k ← recover(~y,C, ~SV)
23 K[pw, uid]← k
24 Return

Oracle Reveal(pw′, uid)
25 k ← K[pw′, uid]
26 Return k

Oracle Challenge(uid)
27 pw ← PW[uid]
28 Require K[pw, uid] 6= ×
29 Require uid /∈ CH
30 CH ∪← {uid}
31 k0 ← K[pw, uid]
32 k1 ←$ K
33 Return kb
Oracle Corrupt(i)
34 CO ∪← {i}
35 Require |CO| < t
36 Return ski

Game KIND-2b(A, t,n)
37 K[·]← ×; r ← 0
38 PW[·]← ⊥ Y[·]← ⊥
39 For uid ∈ UID:
40 PW[uid]←$ D
41 CH← ∅; CO← ∅
42 (~sk, ~pk)← gen(n)
43 b′ ← A(~pk)
44 Stop with b′

Oracle BlindEv(i, uid, req)
45 repi ← server.op(ski, uid, req)
46 Return repi
Oracle Init(uid, ~pk)
47 pw ← PW[uid]
48 Try:
49 (k, ~SV)← init(uid, pw, ~pk,A)
50 K[pw, uid]← k
51 Return ~SV

Oracle Acquire(uid, ~pk)
52 r +← 1
53 pw ← PW[uid]
54 Y[r]← acquire(uid, pw, ~pk,A)
55 Return r

Figure 5: Key indistinguishability games for DKA with algorithms gen, init, acquire, recover and server.op.
The oracles in the middle column are equal for both games and hence only displayed once. Transcript is
a special game procedure that records network requests sent by the DKA algorithms. Assuming × /∈ K,
we encode uninitialized keys with ×. For the meaning of instructions Stop with and Require see Sec. 2.

4 Constructions
In this section we present two schemes and prove their security in the models from Sec. 3. Our construc-
tions are parameterized by an Oblivious PRF F = (F.KG,F.Req,F.BlindEv,F.Finalize,F.Ev) and follow a
generic blueprint, this blueprint is portrayed in Fig. 6.

4.1 Generic Construction
There are four possibilities for OPRFs: verifiable or non-verifiable, and partially-oblivious or regular.
In order to handle both partially-oblivious and regular oblivious PRFs, we desire that each server can
derive a per-user key on the fly, see the Cli.SKG and Cli.PKG algorithms in Fig. 6. If the OPRF is
partially oblivious then the auxiliary input uid creates domain separation in the key used by the OPRF
server, and so the per-user key pair is just the single key pair created by F.KG, for all users. To work
with verifiable (regular) OPRFs such that the servers are not required to store per-user data, we need
the OPRF secret key sk to be a group element with public key gsk for some generator g. Then, the
server simply multiplies in the group its own OPRF secret key with a hash of the user’s identity to
create the secret key component, and raises its own public key to the hash value to get the public key
component; this public key component is provided to the user. If a verifiable OPRF is being used and
it does not have this method of operation, and this includes all OPRFs built from non-DH assumptions,
then another mechanism is required. For non-verifiable (non-DH) OPRFs, the server simply needs some
way of generating per-user secret keys using its master secret key and the user’s identity, e.g. a key
derivation function.

The init algorithm allows the user to compute a random key using its password pw and a set of servers
S that can be reconstructed later using pw and (a subset of) S. It creates an OPRF request and awaits
the response for each server. We have used the ‘Await’ keyword in Fig. 6 to indicate this computation

12

Proc gen(n)
00 For i ∈ [1 ..n]:
01 (ski,pki)← F.KG
02 Return ~sk, ~pk

Proc Cli.SKG(ski, uid)
03• cski ← ski · HCli.KG(uid)
04◦ cski ← ski
05 Return cski
Proc Cli.PKG(pki, uid)
06• cpki ← pkHCli.KG(uid)

i

07◦ cpki ← pki
08 Return cpki
Proc server.op(ski, uid, req)
09 cski ← Cli.SKG(ski, uid)
10 repi ← F.BlindEv(cski, uid, req)
11 Return repi

Proc init(uid, pw, ~pk,S)
12 (req, st)← F.Req(uid, pw)
13 For i ∈ [1 .. n]:
14 Await repi ← server.op(Si, uid, req)
15 cpki ← Cli.PKG(pki, uid)
16 yi ← F.Finalize(cpki, repi, st)
17 Try: (k, ~SV)← setup(~y)
18 Return k, ~SV

Proc acquire(uid, pw, ~pk,S)
19 (req, st)← F.Req(uid, pw)
20 For i ∈ [1 .. n]:
21 Await repi ← server.op(Si, uid, req)
22 cpki ← Cli.PKG(pki, uid)
23 yi ← F.Finalize(cpki, repi, st)
24 Return ~y

Proc recover(~y,C, ~SV)
25 For i ∈ [1 .. n] \ C: yi ← ⊥
26 Try: k ← reconstruct(~y, ~SV)
27 Return k

Figure 6: PERKS, a generic DKA protocol construction. The lines marked with • are executed iff a
standard OPRF is used as building block. The lines marked with ◦ are executed iff a POPRF is used
as building block. Procedures setup and reconstruct are as in Fig. 7 for the n out of n setting and as in
Fig. 8 for the t out of n setting. In a slight abuse of notation, we specify server.op on the user side with
a server Si as input, who will use its secret key ski to evaluate the procedure.

is not done locally. Computing the OPRF responses is done by server.op, which is a wrapper of the
OPRF’s blind evaluation function using the per-user key. The responses are finalized by init to obtain
the OPRF output values, which are used by setup to compute the key and potentially some setup values.
The setup algorithm is setting specific and will be discussed later.

The reconstruction of the key is similar, but split in two algorithms acquire and recover. This allows
the user to choose which subset of servers C to use, after seeing the OPRF outputs (some servers may
not respond). Indeed, this modularization allows any choice function from the OPRF output space to
the power set of S. The OPRF output values are computed by acquire, to be used subsequently by
the local reconstruct algorithm inside recover to recompute the key. Similarly to setup, the reconstruct
algorithm is setting specific.

We remark that the scheme stops working (in the sense that the user cannot decrypt their files) if
one of the servers chosen for recover is not consistent with its responses. If the OPRF is verifiable, then
the user can identify which server has replied inconsistently and exclude it from the servers chosen for
recover, so it is recommended to use verifiable OPRFs when available. Alternatively, assuming the set of
servers is small, the user could proceed by trying different subsets and rerunning recover until successful.
In Sec. 4.5 we discuss how existing OPRF schemes from the literature can be used in PERKS.

4.2 n out of n setting
In Fig. 7 we provide the construction for the setting where all n key servers are required for key
(re)production. The setup values ~SV are effectively ignored in this setting, they are only present in
the construction to be syntactically correct. The user derives their key as the XOR of the OPRF output
values. The construction allows a user to generate a key even if it cannot produce randomness itself, and
as long as at least one of the n servers is not malicious, the key produced will be pseudorandom.

4.3 t out of n setting
We now demonstrate how to use secret sharing to derive a key using only a subset of the active servers.
In addition to OPRF F, the protocol uses a secret sharing scheme SSS = (SecShare,SecCombine). The

13

Proc setup(~y)
00 Assert size(~y) = n
01 k ← y1 ⊕ . . .⊕ yn
02 Return (k,⊥)

Proc reconstruct(~y, ~SV)
03 Assert size(~y) = n
04 k ← y1 ⊕ . . .⊕ yn
05 Return k

Figure 7: Construction for n out of n setting.

Proc setup(~y)
00 Assert size(~y) = n
01 k ←$ K
02 ~α← SecShare(k, t,n)
03 ~SV← ~α+ ~y
04 Return k, ~SV

Proc reconstruct(~z, ~SV)
05 Assert size(~z) = t
06 S = ∅
07 For each zi 6= ⊥:
08 αi ← ~SVi − zi
09 ~α′ ∪← {αi}
10 k ← SecCombine(~α′)
11 return k

Figure 8: Construction for t out of n setting.

user will locally run setup to acquire a vector of values, that can be stored alongside its ciphertexts at the
storage server, where each entry is an OPRF output summed with a secret sharing of the user’s key. This
idea was used by Everspaugh et al. [ECS+15a] in the threshold version of their OPRF system. Later,
the user can rederive the file encryption key by interacting with at least t servers. If reconstruction (or
file decryption) fails, the user can retry with a different subset of servers. If F is verifiable then the user
can identify if a server has not responded correctly, and omit that result from the reconstruct phase.

Conceptually this scheme is quite different to the n out of n scheme in Sec. 4.2. The file encryption
key k is generated randomly by the user of the system, rather than as a function of the user password
and the OPRF keys of the servers. This does not necessarily imply it has to be sampled on the device
though. Indeed, we can bootstrap the procedure by first running an n′ out of n′ scheme for t ≤ n′ ≤ n
with an initially trusted subset of the servers to generate the random key k, and for most applications it
would be prudent to do so.

4.4 Security Proofs
We first provide the theorems and proofs for KIND-1 security and subsequently for KIND-2, reducing the
security of our construction to the PRIV-1 and PRIV-2, respectively, security of the underlying OPRF
and the PRNG security of the underlying OPRF. While the t out of n case is a generalization of the n
out of n, we still provide a proof for the special n out of n case as it is more instructive, and the proof
is easily adaptable to the generic t out of n case.

Theorem 4.1. Let PERKS be an n-out-of-n DKA scheme built using OPRF F according to Fig. 6
and Fig. 7. For any adversary A against the KIND-1 security of PERKS, there exist adversaries B and
C against the PRIV-1 and PRNG security of F respectively, such that

AdvKIND-1
PERKS (A,n,n) ≤ n ·

(
2 ·AdvPRIV-1

F (B) + AdvPRNG
F (C, 1) + q

|D|

)
.

Proof Intuition. We will show a reduction from the KIND-1 to KIND′-1, where the server that may
not be corrupted is fixed at the start of the game. Subsequently we will bound the KIND′-1 advantage
using a sequence of game hops, starting with the b = 0 side where a real key is returned to the adversary
and ending with the b = 1 side (random key). To provide a reduction to PRNG security we need to
embed the PRNG challenge in one of the servers, which means that we will not be able to answer Corrupt
queries for that index. To do this, we pick the server in the KIND′-1 game that may not be corrupted.
The reduction from KIND-1 to KIND′-1 invokes a loss of 1

n . Then, for the majority of this proof we will
calculate the advantage of an adversary attempting to distinguish in which game it is playing, to bound
the advantage of the KIND′-1 game.

14

Proof. In game KIND′-1, the environment is identical to KIND-1 except that it picks a random index
j out of all n servers at the start of the game and the adversary loses if it calls Corrupt on index j.
We simulate KIND-1 by simply forwarding all oracle queries to KIND′-1. Given that the adversary may
corrupt up to (n−1) servers in the course of its execution and the index j in KIND′-1 is picked uniformly
at random independently of the adversary, the probability that server j will be corrupted is bounded by
1− 1

n . Thus, with probability at least 1
n , game KIND′-1 will not abort and the simulation succeeds, as

the games are identical in this case. As a result,

AdvKIND-1
PERKS (A) ≤ n ·AdvKIND′-1

PERKS (A).

We proceed to bound AdvKIND′-1
PERKS (A) using a sequence of gamesGi, and define εi = Pr

[
GGi

PERKS(A) = 1
]
.

Game G0 is the b = 0 side, i.e. with the key returned in the Challenge query being the key computed in
the protocol (if it exists) of the KIND′-1 game, and consequently ε0 = Pr

[
GKIND′-10

PERKS (A) = 1
]
.

In game G1, the environment is identical to G0 except that for every user identity uid, the challenger
will create two passwords: one will be used in Init, Acquire and Recover queries, and the other in
Challenge and Reveal queries. Note that Reveal returns ⊥ for any password that is not the selected
password.

Intuitively, an adversary that can distinguish these games can infer information about the password
or key from the req, rep values it sees from interacting with Init, Acquire and Recover, so it notices when
a different password has been used in the Reveal and Challenge queries. From such an adversary we
build a reduction with similar advantage against PRIV-1 of the underlying OPRF F.

The reduction B is detailed in Fig. 9. B plays the PRIV-1b game and simulates the KIND′-10 game
(G0) or its two-password version (G1) to A. Let b′ be the output bit of A, i.e. its indication of which
game Gb′ that A believes it is playing. To create the simulation, B selects pw0, pw1 for each uid and
generates OPRF key pairs for each of the n key servers. When A calls Init or Acquire for some uid, the
reduction will look up the two passwords pw0, pw1 associated with that user identity and call its own
Challenge(uid, pw0, pw1) oracle and receive (reqb, req1−b). B then uses secret keys for each OPRF server
to produce repi values for reqb. Moreover, B computes OPRF outputs yi for pw0 and the user key k,
to be used for Reveal and Challenge queries. Importantly, we already want to remark here that B will
simulate G0 if it is playing the PRIV-10 game (because the req, rep and k are all consistent with pw0)
and B will simulate G1 if it is playing the PRIV-11 game (because k is derived from pw0 and req and
rep are derived from pw1).

Acquire queries are handled similarly to Init queries, with the difference being that the OPRF output
values yi are simply stored by B in array Y indexed by reconstruct counter r, instead of being used to
compute the key immediately. For Recover queries, the input given by the adversary is (r ,C, ~SV), and
recall that in the n-out-of-n construction the ~SV are ignored and key reconstruction will fail if the chosen
server set C is anything other than the full set of servers, i.e. C = (S1, . . . ,Sn). This means the only
interesting input is r , but the adversary has no control over the (deterministic) operations involved that
will reconstruct the user key for password pw0 for the uid corresponding with reconstruct counter r .

For queries to Reveal of the form (pw′, uid), the reduction simply returns K[pw′, uid]. This will either
be × if no value has been set or potentially user key k if pw′ = pw0 and K[pw0, uid] has already been
set. For Challenge(uid) queries, B checks if the uid has been queried before, and if not it will return k.
To answer a Corrupt query, B needs to check if the query is allowed and abort otherwise, but A would
lose anyway as this would be an illegal oracle query in both games.

As we remarked above, if B is playing PRIV-10, it will provide req, rep and k values to A that are
consistent with each other (and consistent with password pw0), and thus this is a perfect simulation of
G0. If B is playing PRIV-11, then pw0 governs Challenge and Reveal queries, while pw1 governs Init and
Reconstruct queries and thus this is a perfect simulation of G1.

It is left to argue that A’s success in distinguishing these games carries over to an advantage for
B. Intuitively, a win for A implies some way of linking (req, ~rep) tuples to the user keys output by the
protocol in the G0 case, or noticing the absence of such a link in the G1 case (to see this, consider n = 1
and a protocol where k = pw and (req, ~rep) information theoretically hide pw and k: an adversary has
no way of distinguishing G0 from G1). This implies that A gains some information from its (req, ~rep)
values: if b′ = 0 then A believes that its oracles are all running the same password, and thus (reqb, ~rep)
is linked to k, so B outputs 0; if b′ = 1 then A thinks its oracles have been separated, and B outputs 1.

15

To conclude, any advantage for A directly corresponds to the advantage for the reduction B:

ε0 − ε1 ≤ AdvPRIV-1
F (B).

Reduction B playing PRIV-1b
00 K[·]← ⊥; PW[·]← ⊥; Y[·]← ⊥
01 For uid ∈ UID:
02 pw0, pw1 ←$ D
03 PW[uid]← pw0, pw1
04 CH← ∅; CO← ∅
05 r ← 0
06 For i ∈ [1 ..n]:
07 (ski,pki)← F.KG
08 b′ ← A(~pk)
09 Return b′

Oracle Init(uid, ~pk)
10 pw0, pw1 ← PW[uid]
11 call ChallengeB(uid, pw0, pw1)
12 receive (reqb, req1−b)
13 For i ∈ [1 ..n]:
14 cski ← DKA.Cli.SKG(ski, uid)
15 repi ← F.BlindEv(cski, uid, reqb)
16 yi ← F.Ev(cski, uid, pw0)
17 Try: (k, ~SV)← setup(~y)
18 K[pw0, uid]← k
19 Return (reqb, ~rep, ~SV)

Oracle Corrupt(i)
20 Require i 6= j
21 CO ∪← {i}
22 Return ski

Oracle Acquire(uid, ~pk)
23 r +← 1
24 pw0, pw1 ← PW[uid]
25 call ChallengeB(uid, pw0, pw1)
26 receive (reqb, req1−b)
27 For i ∈ [1 ..n]:
28 cski ← DKA.Cli.SKG(ski, uid)
29 repi ← F.BlindEv(cski, uid, reqb)
30 yi ← F.Ev(cski, uid, pw0)
31 Y[r]← (y1, . . . , yn)
32 Return (reqb, ~rep, r)

Oracle Recover(r ,C, ~SV)
33 ~y← Y[r]
34 Try: k ← DKA.recover(~y,C, ~SV)
35 K[pw0, uid]← k
36 Return

Oracle ChallengeA(uid)
37 Require uid /∈ CH
38 pw0, pw1 ← PW[uid]
39 CH ∪← {uid}
40 k ← K[pw0, uid]
41 Return k

Oracle Reveal(pw′, uid)
42 k ← K[pw′, uid]
43 Return k

Figure 9: Reduction B for the proof of Theorem 4.1 and Theorem 4.2. Procedures setup and reconstruct
as in Fig. 7 for Thm. 4.1 and as in Fig. 8 for Thm. 4.2.

In game G2, the environment is identical to G1 except that the Reveal and Challenge oracles return
a random element of the key space. For interactions with Sj , the reduction will replace the function
F.Ev(skj , ·, ·) by a random function of the same domain and range, where blinded evaluation queries are
simulated. Recall Sj is the randomly picked server that the adversary may not corrupt. This invokes a
reduction C to the PRNG security of OPRF F. We show that we can use an adversaryA that distinguishes
between G1 and G2 to win the PRNG game with the same advantage, i.e.:

ε1 − ε2 ≤ AdvPRNG
F (C, 1).

Let C play the PRNG game and simulate the KIND′-1 game (more specifically, either G1 or G2) to
A. The reduction is detailed in Fig. 10.

The reduction C receives a public key for its own PRNGb(C, 1) game, and then chooses two passwords
for each user: pw0 for Reveal and Challenge queries, and pw1 for Init and Reconstruct queries. It is
with the uncorrupted server Sj ’s interactions that C will embed its own queries. For any query to Init or
Reconstruct, the reduction C needs to call its own Ev oracle with pw0 to receive the session key share yj
that will be set for future Challenge and Reveal queries, and its own BlindEv oracle with pw1 to acquire
repj that the adversary A expects to receive. Note that the user key is only set for pw0.

To answer a Corrupt query, C needs to check if the query is allowed and abort otherwise, but A would
lose anyway as this would be an illegal oracle query in both games. For Reveal queries on (pw′, uid), the
reduction simply returns K[pw′, uid]. This will either be × if no value has been set or potentially k if
pw′ = pw0 and K[pw0, uid] has already been set. For Challenge(uid) queries, C first checks if the uid has

16

been queried before, and if not it will return k. Eventually, C outputs to its own challenger whatever A
outputs.

In the event that C is playing PRNG0, the responses to its own queries will be the real F, and thus
this perfectly simulates game G1 for A. If C is playing PRNG1 then req and the rep values lie in the
correct space but for some other randomly chosen function, and the key share for server Sj is an output
of this random function, so the user key returned in Challenge is an output of a random function XORed
with ‘genuine’ key shares, which is equivalent to choosing a random element of the key space. Thus this
is a perfect simulation of G2 for A.

Reduction C playing PRNGb(C, 1)
00 receive pkj
01 K[·]← ⊥
02 PW[·]← ⊥
03 For uid ∈ UID:
04 pw0, pw1 ←$ D
05 PW[uid]← pw0, pw1
06 CH← ∅; CO← ∅
07 For i ∈ [1 .. n] \ {j}:
08 (ski,pki)← F.KG
09 b′ ← A(~pk)
10 Return b′

Oracle Corrupt(i)
11 Require i 6= j
12 CO ∪← {i}
13 Return ski
Oracle Init(uid, ~pk)
14 pw0, pw1 ← PW[uid]
15 call Ev(uid, pw0)
16 receive y
17 yj ← y
18 (req, st)← F.Req(uid, pw1)
19 call BlindEv(uid, req)
20 receive rep
21 repj ← rep
22 For i ∈ [1 .. n] \ {j}:
23 cski ← DKA.Cli.SKG(ski, uid)
24 repi ← F.BlindEv(cski, uid, req)
25 yi ← F.Ev(cski, uid, pw0)
26 Try: (k, ~SV)← setup(~y)
27 K[pw0, uid]← k
28 Return (req, ~rep, ~SV)

Oracle Acquire(uid, ~pk)
29 r +← 1
30 pw0, pw1 ← PW[uid]
31 call Ev(uid, pw0)
32 receive y
33 yi ← y
34 (req, st)← F.Req(uid, pw1)
35 call BlindEv(uid, req)
36 receive rep
37 repi ← rep
38 For i ∈ [1 .. n] \ {j}:
39 cski ← DKA.Cli.SKG(ski, uid)
40 repi ← F.BlindEv(cski, uid, req)
41 yi ← F.Ev(cski, uid, pw0)
42 Y[r]← (y1, . . . , yn)
43 Return (req, ~rep, r)

Oracle Recover(r ,C, ~SV)
44 ~y← Y[r]
45 Try: k ← DKA.recover(~y,C, ~SV)
46 K[pw0, uid]← k
47 Return

Oracle Reveal(pw′, uid)
48 k ← K[pw′, uid]
49 Return k

Oracle ChallengeA(uid)
50 Require uid /∈ CH
51 pw0, pw1 ← PW[uid]
52 CH ∪← {uid}
53 k ← K[pw0, uid]
54 Return k

Figure 10: Reduction C for the proof of Theorem 4.1. Procedures setup and reconstruct as in Fig. 7.

In game G2 the Reveal and Challenge queries return a random element of the key space. Thus in G3
we make a change to the Reveal oracle to use the key derived from pw0 again. In all games up until this
point the Reveal and Challenge oracles have been consistent with each other, but in G3 they are not.
Note that the adversary can only notice a difference between G2 and G3 if it queries Reveal on pw0, as
Reveal returns ⊥ for all other passwords and the other oracles are identical. We remark that in both
games Init and Reconstruct use pw1 and Challenge simply samples a random key from the key space, so
no information about pw0 can be leaked from the oracle queries. Hence, the best any adversary can do
is query the Reveal oracle for a randomly guessed password.

ε2 − ε3 ≤
q
|D|

.

In game G4 we re-merge queries such that for a given user identity uid, queries to Init, Reconstruct
and Reveal are all associated with a single password. In a very similar manner to the hop between G0

17

and G1, this invokes a PRIV-1 term. The reduction itself is almost identical to reduction B in Fig. 9,
except that line 40 is replaced by selection of a random key from the key space.

ε3 − ε4 ≤ AdvPRIV-1
F (B).

Game G4 is the b = 1 side, i.e. with the key returned in the Challenge query being a randomly chosen
key, of the KIND′-1 game. Consequently ε4 = Pr

[
GKIND′-11

PERKS (A)
]
.

Collecting the terms results in the claimed bound, since

AdvKIND-1
PERKS (A) ≤ n ·AdvKIND-1′

PERKS (A), and

AdvKIND′-1
PERKS (A) =

∣∣Pr
[
GKIND′-11

PERKS (A)
]
− Pr

[
GKIND′-10

PERKS (A)
]∣∣ = |ε4 − ε0|

= |ε0 − ε1 + ε1 − ε2 + ε2 − ε3 + ε3 − ε4|

≤ AdvPRIV-1
F (B) + AdvPRNG

F (C, 1) + q
|D|

+ AdvPRIV-1
F (B).

Theorem 4.2. Let PERKS be an t-out-of-n DKA scheme built using OPRF F according to Fig. 6
and Fig. 8 for t such that 1 ≤ t ≤ n. For any adversary A against the KIND-1 security of PERKS,
there exist adversaries B and C against the PRIV-1 and PRNG security of F respectively, such that

AdvKIND-1
PERKS (A, t,n) ≤

(
n

t− 1

)
·
(

2 ·AdvPRIV-1
F (B) + AdvPRNG

F (C,n− t + 1) + q
|D|

)
.

Proof Sketch. We remark Theorem 4.1 is the special case t = n of this theorem and the game hops
are very similar to that proof. For brevity we only provide the modifications to the proof here rather
than duplicating the proof in its entirety. We also believe that only highlighting the steps where the
proof needs to be generalized increases clarity.

For the first step, the success probability of the simulation now depends on t, as the reduction needs
to select n − t + 1 uncorrupted servers. We denote this set of indices of uncorrupted servers with J . A
lower bound for the success probability is provided by the number of ways to select (t − 1) servers out
of (t− 1) servers divided by the number of ways to select (t− 1) servers out of n servers:

1(n
t−1
) .

Note that for t = n we obtain the lower bound 1
n from Theorem 4.1.

The reduction B in Fig. 9 from the indistinguishability between G0 and G1 to the PRIV-1 game is
the same as in Theorem 4.1 with the trivial modification that it uses the t out of n setup and reconstruct
procedures from Fig. 8 instead of the procedures from Fig. 7. We apply the same modification to the
reduction C from the indistinguishability between G1 and G2 to the PRNG game. Moreover, the special
case i = j, where j is the index of the uncorrupted server in reduction C is now generalized to i ∈ J ,
where J is the set of indices of uncorrupted servers. For completeness we provide the updated reduction
in Fig. 11, but intuitively nothing novel happens in the reduction.

We need to argue replacing XOR in the setup and reconstruct procedures with a key sharing scheme
also simulates G2, i.e. the selected key is a random element from the key space. It is clear the adversary
can have at most (t − 1) ‘genuine’ key shares because (n − t + 1) servers return a random element. By
the security of the secret sharing scheme, with (t− 1) key shares, any k ∈ K can still be reconstructed.
Thus, if key share st ∈ K is a random element of the key space, then so is the reconstructed key. It is
clear this holds as st is the XOR of ~SVt and yt, where yt is a random element of K.

There is no modification to the hop from G2 to G3. The final hop from G3 to G4 is again the same
as in in Theorem 4.1 with the trivial modification that it uses the t out of n setup and reconstruct
procedures from Fig. 8. Collecting the terms yields the claimed result.

We now provide the theorems and proofs for KIND-2 security. For completeness we provide the
modified reductions but as the modifications are trivial the descriptions will be brief. The theorems

18

Reduction C playing PRNGb(C,n− t + 1)
00 receive ~pk

′

01 K[·]← ⊥; PW[·]← ⊥
02 For uid ∈ UID:
03 pw0, pw1 ←$ D
04 PW[uid]← pw0, pw1
05 CH← ∅; CO← ∅
06 For i ∈ J :
07 pki ← pk′σ(i)
08 For i ∈ [1 .. n] \ J :
09 (ski,pki)← F.KG
10 b′ ← A(~pk)
11 Return b′

Oracle Init(uid, ~pk)
12 pw0, pw1 ← PW[uid]
13 (req, st)← F.Req(uid, pw1)
14 For i ∈ J :
15 call Evσ(i)(uid, pw0)
16 receive yi
17 call BlindEvσ(i)(uid, req)
18 receive repi
19 For i ∈ [1 .. n] \ J :
20 cski ← DKA.Cli.SKG(ski, uid)
21 repi ← F.BlindEv(cski, uid, req)
22 yi ← F.Ev(cski, uid, pw0)
23 Try: (k, ~SV)← setup(~y)
24 K[pw0, uid]← k
25 Return (req, ~rep, ~SV)

Oracle Reveal(pw′, uid)
26 k ← K[pw′, uid]
27 Return k

Oracle Acquire(uid, ~pk)
28 r +← 1
29 pw0, pw1 ← PW[uid]
30 (req, st)← F.Req(uid, pw1)
31 For i ∈ J :
32 call Evσ(i)(uid, pw0)
33 receive yi
34 call BlindEvσ(i)(uid, req)
35 receive repi
36 For i ∈ [1 ..n] \ J :
37 cski ← DKA.Cli.SKG(ski, uid)
38 repi ← F.BlindEv(cski, uid, req)
39 yi ← F.Ev(cski, uid, pw0)
40 Y[r]← (y1, . . . , yn)
41 Return (req, ~rep, r)

Oracle Recover(r ,C, ~SV)
42 ~y← Y[r]
43 Try: k ← DKA.recover(~y,C, ~SV)
44 K[pw0, uid]← k
45 Return

Oracle ChallengeA(uid)
46 Require uid /∈ CH
47 pw0, pw1 ← PW[uid]
48 CH ∪← {uid}
49 k ← K[pw0, uid]
50 Return k

Oracle Corrupt(i)
51 Require i /∈ J
52 CO ∪← {i}
53 Return ski

Figure 11: Reduction C for the proof of Theorem 4.2. Procedures setup and reconstruct as in Fig. 8. J
is a set of t indices that may not be corrupted. σ is a bijection of the uncorrupted indices in the KIND
game to the indices in the underlying PRNG game.

bound the advantage by AdvPRIV-2
F (B) (instead of PRIV-1) and in the proof we only need to adapt the

reductions to use the F.finalize procedure and the Finalize oracle in the PRIV-2 game to compute the
OPRF output value (instead of using the F.ev procedure and the Ev oracle), since the response may now
be maliciously formed.

Theorem 4.3. Let PERKS be an n-out-of-n DKA scheme built using OPRF F according to Fig. 6
and Fig. 7. For any adversary A against the KIND-2 security of PERKS, there exist adversaries B and
C against the PRIV-2 and PRNG security of F respectively, such that

AdvKIND-2
PERKS (A,n,n) ≤ n ·

(
2 ·AdvPRIV-2

F (B) + AdvPRNG
F (C) + q

|D|

)
.

Proof Sketch. The proof goes analogously to the proof of Theorem 4.1. We need to adapt the
reductions as they cannot assume functionality and simply call the F.ev procedure or the Ev oracle,
since the rep values may now be maliciously formed. Therefore, the reductions now use the F.finalize
procedure and the Finalize oracle in the PRIV-2 game to compute the OPRF output value y (or receive
⊥). The modifications are trivial but for completeness we provide the updated reductions here. The
reduction B is detailed in Fig. 12 and reduction C is detailed in Fig. 13.

Theorem 4.4. Let PERKS be an t-out-of-n DKA scheme built using OPRF F according to Fig. 6
and Fig. 8 for t such that 1 ≤ t ≤ n. For any adversary A against the KIND-2 security of PERKS,

19

there exist adversaries B and C against the PRIV-2 and PRNG security of F respectively, such that

AdvKIND-2
PERKS (A, t,n) ≤

(
n

t− 1

)
·
(

2 ·AdvPRIV-2
F (B) + AdvPRNG

F (C,n− t + 1) + q
|D|

)
.

Proof Sketch. This proof effectively applies both the adaptations made in Theorem 4.2 and Theo-
rem 4.3. The reduction C is detailed in Fig. 14. Reduction B is the same as in Theorem 4.3 with the
trivial modification that it uses the t out of n setup and reconstruct procedures from Fig. 8 instead of
the procedures from Fig. 7.

Reduction B playing PRIV-2b
00 K[·]← ⊥; PW[·]← ⊥; Y[·]← ⊥
01 For uid ∈ UID:
02 pw0, pw1 ←$ D
03 PW[uid]← pw0, pw1
04 CH← ∅; CO← ∅
05 r ← 0
06 For i ∈ [1 ..n]:
07 (ski,pki)← F.KG
08 b′ ← A(~pk)
09 Return b′

Oracle Init(uid, ~pk)
10 pw0, pw1 ← PW[uid]
11 call ChallengeB(uid, pw0, pw1)
12 receive (j, reqb, req1−b)
13 For i ∈ [1 ..n]:
14 Await repib ← A.server.opi(uid, reqb)
15 Await repi1−b ← A.server.opi(uid, req1−b)
16 cpki ← DKA.Cli.PKG(pki, uid)
17 call FinalizeB(j, cpki, repib, repi1−b)
18 receive (yi0, yi1)
19 Try: (k, ~SV)← setup(~y0)
20 K[pw0, uid]← k
21 Return ~SV

Oracle ChallengeA(uid)
22 Require uid /∈ CH
23 pw0, pw1 ← PW[uid]
24 CH ∪← {uid}
25 k ← K[pw0, uid]
26 Return k

Oracle Acquire(uid, ~pk)
27 r +← 1
28 pw0, pw1 ← PW[uid]
29 call ChallengeB(uid, pw0, pw1)
30 receive (j, reqb, req1−b)
31 For i ∈ [1 .. n]:
32 Await repib ← A.server.opi(uid, reqb)
33 Await repi1−b ← A.server.opi(uid, req1−b)
34 cpki ← DKA.Cli.PKG(pki, uid)
35 call FinalizeB(j, cpki, repib, repi1−b)
36 receive (yi0, yi1)
37 Y[r]← (y1

0, . . . , yn
0)

38 Return r

Oracle Recover(r ,C, ~SV)
39 ~y← Y[r]
40 Try: k ← DKA.recover(~y,C, ~SV)
41 K[pw0, uid]← k
42 Return

Oracle BlindEv(i, uid, req)
43 repi ← DKA.server.op(ski, uid, req)
44 Return repi
Oracle Reveal(pw′, uid)
45 k ← K[pw′, uid]
46 Return k

Oracle Corrupt(i)
47 Require i 6= j
48 CO ∪← {i}
49 Return ski

Figure 12: Reduction B for the proof of Theorem 4.3 and Theorem 4.4. Procedures setup and reconstruct
as in Fig. 7 for Thm. 4.3 and as in Fig. 8 for Thm. 4.4.

20

Reduction C playing PRNGb(C, 1)
00 receive pkj
01 K[·]← ⊥; PW[·]← ⊥
02 For uid ∈ UID:
03 pw0, pw1 ←$ D
04 PW[uid]← pw0, pw1
05 CH← ∅; CO← ∅
06 For i ∈ [1 ..n] \ {j}:
07 (ski,pki)← F.KG
08 b′ ← A(~pk)
09 Return b′

Oracle Init(uid, ~pk)
10 pw0, pw1 ← PW[uid]
11 (req, st)← F.Req(uid, pw1)
12 For i ∈ [1 ..n]:
13 Await repi ← A.server.opi(uid, req)
14 If i 6= j:
15 cski ← DKA.Cli.SKG(ski, uid)
16 yi ← F.Ev(cski, uid, pw0)
17 Else:
18 call Ev(uid, pw0)
19 receive yi
20 cpki ← DKA.Cli.PKG(pki, uid)
21 y′i ← F.Finalize(cpki, repi, st)
22 If y′i = ⊥:
23 yi ← ⊥
24 Try: (k, ~SV)← setup(~y)
25 K[pw0, uid]← k
26 Return ~SV

Oracle ChallengeA(uid)
27 Require uid /∈ CH
28 pw0, pw1 ← PW[uid]
29 CH ∪← {uid}
30 k ← K[pw0, uid]
31 Return k

Oracle Reveal(pw′, uid)
32 k ← K[pw′, uid]
33 Return k

Oracle Acquire(uid, ~pk)
34 r +← 1
35 pw0, pw1 ← PW[uid]
36 (req, st)← F.Req(uid, pw1)
37 For i ∈ [1 .. n]:
38 Await repi ← A.server.opi(uid, req)
39 If i 6= j:
40 cski ← DKA.Cli.SKG(ski, uid)
41 yi ← F.Ev(cski, uid, pw0)
42 Else:
43 call Ev(uid, pw0)
44 receive yi
45 cpki ← DKA.Cli.PKG(pki, uid)
46 y′i ← F.Finalize(cpki, repi, st)
47 If y′i = ⊥:
48 yi ← ⊥
49 Y[r]← (y1, . . . , yn)
50 Return (req, ~rep, r)

Oracle Recover(r ,C, ~SV)
51 ~y← Y[r]
52 Try: k ← DKA.recover(~y,C, ~SV)
53 K[pw0, uid]← k
54 Return

Oracle BlindEv(i, uid, req)
55 If i 6= j:
56 rep← DKA.server.op(ski, uid, req)
57 Else:
58 call BlindEv(uid, req)
59 receive rep
60 Return rep

Oracle Corrupt(i)
61 Require i 6= j
62 CO ∪← {i}
63 Return ski

Figure 13: Reduction C for the proof of Theorem 4.3. Procedures setup and reconstruct as in Fig. 7.

21

Reduction C playing PRNGb(C,n− t + 1)
00 receive ~pk

′

01 K[·]← ⊥; PW[·]← ⊥
02 For uid ∈ UID:
03 pw0, pw1 ←$ D
04 PW[uid]← pw0, pw1
05 CH← ∅; CO← ∅
06 For i ∈ J :
07 pki ← pk′σ(i)
08 For i ∈ [1 .. n] \ J :
09 (ski,pki)← F.KG
10 b′ ← A(~pk)
11 Return b′

Oracle Init(uid, ~pk)
12 pw0, pw1 ← PW[uid]
13 (req, st)← F.Req(uid, pw1)
14 For i ∈ [1 .. n]:
15 Await repi ← A.server.opi(uid, req)
16 If i ∈ J :
17 call Evσ(i)(uid, pw0)
18 receive yi
19 If i /∈ J :
20 cski ← DKA.Cli.SKG(ski, uid)
21 yi ← F.Ev(cski, uid, pw0)
22 cpki ← DKA.Cli.PKG(pki, uid)
23 y′i ← F.Finalize(cpki, repi, st)
24 If y′i = ⊥:
25 yi ← ⊥
26 Try: (k, ~SV)← setup(~y)
27 K[pw0, uid]← k
28 Return ~SV

Oracle ChallengeA(uid)
29 Require uid /∈ CH
30 pw0, pw1 ← PW[uid]
31 CH ∪← {uid}
32 k ← K[pw0, uid]
33 Return k

Oracle Acquire(uid, ~pk)
34 r +← 1
35 pw0, pw1 ← PW[uid]
36 (req, st)← F.Req(uid, pw1)
37 For i ∈ [1 ..n]:
38 Await repi ← A.server.opi(uid, req)
39 If i ∈ J :
40 call Evσ(i)(uid, pw0)
41 receive yi
42 If i /∈ J :
43 cski ← DKA.Cli.SKG(ski, uid)
44 yi ← F.Ev(cski, uid, pw0)
45 cpki ← DKA.Cli.PKG(pki, uid)
46 y′i ← F.Finalize(cpki, repi, st)
47 If y′i = ⊥:
48 yi ← ⊥
49 Y[r]← (y1, . . . , yn)
50 Return (req, ~rep, r)

Oracle Recover(r ,C, ~SV)
51 ~y← Y[r]
52 Try: k ← DKA.recover(~y,C, ~SV)
53 K[pw0, uid]← k
54 Return

Oracle BlindEv(i, uid, req)
55 If i ∈ J :
56 call BlindEvσ(i)(uid, req)
57 receive rep
58 Else:
59 rep← DKA.server.op(ski, uid, req)
60 Return rep

Oracle Reveal(pw′, uid)
61 k ← K[pw′, uid]
62 Return k

Oracle Corrupt(i)
63 Require i /∈ J
64 CO ∪← {i}
65 Return ski

Figure 14: Reduction C for the proof of Theorem 4.4. Procedures setup and reconstruct as in Fig. 8. J
is a set of t indices that may not be corrupted. σ is a bijection of the uncorrupted indices in the KIND
game to the indices in the underlying PRNG game.

22

4.5 Use of Existing OPRFs in PERKS
As we have mentioned in Sec. 4, the DH-based VOPRFs in Fig. 2 allow the server to store one master
key and compute private and public keys for users on the fly using uid: this operation is specified in
Fig. 6. Remember that for non-verifiable OPRFs there is no public key and thus on-the-fly computation
of per-user key material just needs to run a key derivation function from the server’s (single) master key
sk and uid to the same space as sk.

For non-DH VOPRFs, the DH group trick is not directly applicable, so either a similar trick using
the structure of the public and secret keys needs to be found, or the server needs to store per-user key
material. We regard finding such tricks in post-quantum VOPRFs as future work. The CSIDH-based
scheme of Boneh et al. [BKW20] is not defined as a VOPRF, however this would appear to be a good
candidate for a VOPRF that could fit with our DH trick.

For key rotation, the Pythia OPRF has no ‘outer hash’ (that destroys algebraic structure) and so is
eligible for simple key rotation. Note that the aforementioned HashDH scheme can provide key rotation
but only if the user stores inner hash values, but this is undesirable in our setting and modeling security
for this case is not trivial.

This invokes a tradeoff: the Pythia OPRF provides key rotation at a computational cost (due to the
pairing operation), while 2HashDH and 3HashSDHI are fast but without key rotation. As a result, the
system designer needs to judge if the ‘user initiated’ key rotation methods in Sec. 5 are viable for the
system’s users, and if so 2HashDH or 3HashSDHI can be used.

Note that each of the three OPRFs in Fig. 2 are proven secure in different models, and our theorems
relate to the security games of the 3HashSDHI scheme. Thus it remains to formally prove that the other
two schemes do in fact meet POPRIV-x and PRNG security, or by showing that the proven security
properties of the other schemes—VOPRF UC functionality for 2HashDH, and one-more unpredictability
and one-more PRF for Pythia—are at least as strong as POPRIV-x and PRNG.

5 Using PERKS as a Storage System
We now explain why our approach is well-suited to derivation of a backup key for outsourced storage
systems, and particularly for instant messaging. Then, we describe how our construction can be used
to build a feature rich file system for cloud storage, incorporating recent work analyzing security of
symmetric encryption schemes where a user encrypts ‘to themself’, deduplication, and efficient key
rotation.

Instant messaging apps are generally free to download and use, and users are often unwilling to pay
for additional features. This leaves very little room for maneuver when designing a secure backup service:
users must use an internal solution like WhatsApp’s (see Sec. 1.4), where the protocol is potentially strong
but not open source. A service such as the one we propose needs to be extremely efficient in terms of
bandwidth and storage to possibly be offered as a free service: this is why we aim to only use the most
efficient OPRFs, and enforce minimal user and server storage. In particular, we envision OPRF services
with multiple other roles in addition to PERKS, hence our system does not require the OPRF servers to
be given a particular (share of a) key, as is done in many prior works [JKKX17,JKR19,BFH+20].

The constructions defined in Sec. 4 allow a user to derive a single symmetric key from a password.
It remains to select a symmetric encryption primitive for encryption, a decision that is informed by the
desired functionality and security properties.

Note that in the case of long-term encrypted backup, if a user’s device is compromised and they wish
to change their encryption key, they may still wish to recover messages stored under the old key (i.e. even
if they believe that an adversary is already in possession of those messages). From this perspective, the
user may wish to recover their messages after they have already chosen a new password for use with new
messages, creating an overlap in the epochs of the system: this is a departure from the regular theoretical
approach to key rotation via updatable encryption and we discuss this further below.

Encrypt-to-Self. Pijnenburg and Poettering [PP20] recently demonstrated that integrity protection
can still be obtained in the event of user key corruption: if the user stores short file (ciphertext) hashes
then even if the user knows that their key is corrupted they can check ciphertext integrity when down-
loading files and discard any where the hash does not match a local entry. In the same paper, the authors

23

demonstrated a method to compute these hashes during encryption, to avoid making two passes over
plaintext data.

Deduplication. If the user expects to upload some files many times, for example by backing up
an entire disk periodically, and wants to avoid storing multiple copies of files then they can employ
deduplication techniques such as convergent encryption [SGLM08,BKR13]. File key derivation for a file
F could be for example kF ← H(k||F) for some cryptographic hash function H.

Key Rotation. If the user wishes to rotate their file encryption key in PERKS then there are three
possibilities:

1. Use an OPRF service that has automated key rotation, e.g. by using the Pythia OPRF [ECS+15a].
Note that for the n out of n construction, just one OPRF server updating its ski value results
in a change in file encryption key. If this is used, then the server will provide ‘tokens’ that work
similarly to updatable encryption (UE) update tokens: unblinded values provided under the old
key can be efficiently modified to unblinded values under the new key, without the need to call the
OPRF service under all the old inputs.

2. Use a different password. This will result in new OPRF output values for all OPRF servers. (Note
that another credential modification technique is possible via an OPRF service that supports
tweaks, i.e. different uid input values for the same user: this will result in different OPRF output
values for the OPRF servers offering this.)

3. (t out of n construction only) Choose a new key k, essentially running setup again. This results
in a new key share vector ~α but the yi values are unchanged so the user needs to publish a new
public vector ~SV.

In all of these cases, the user can avoid downloading, decrypting, reencrypting and reuploading all of
their files every time they update their file encryption key by utilizing updatable encryption [BLMR13,
EPRS17,LT18,KLR19,BDGJ20,BEKS20], where the user can send a short update token to the cipher-
text storage server (CSP) with which the underlying key for the ciphertexts can be rotated efficiently,
without leaking information to the CSP. However the challenge is providing availability of key material
in consecutive epochs. In the efficient (ciphertext-independent) UE schemes just mentioned, the update
token calculation requires knowledge of an old key and a new key at the beginning of the new epoch. For
user-initiated actions (items 2 and 3) this is trivial: the user runs the protocol to get their old key, then
runs the protocol again using their new inputs, calculates the token, sends that to the file storage server
and then deletes both keys locally. In the OPRF server key rotation setting (item 1) care is required: if
a new epoch begins while the user does not have a local copy of the file encryption key available then
the user would be locked out of access to their ciphertexts. To solve this issue the OPRF services could
make a transition period available to users, where access is given to the OPRF functionality for the old
and the new OPRF keys.

6 Discussion
We now discuss some of the design choices made in this work, the relationship with existing literature
and some suggestions for future research.

The security definitions presented in this work are predominantly game-based rather than simulation-
based, with the exception of the PRNG that is inherited from the work of Tyagi et al. [TCR+22]
and adapted to our multi-server setting. Many papers in the literature present OPRF security in the
universal composability framework [Can01] which reflects the fact that OPRFs are regularly composed
with other primitives and are used in highly concurrent scenarios. We avoided using the UC model for
our formalization of KIND-x due to the inherent requirement in the UC framework for the parties to
agree on a session identifier sid before an instance of the protocol begins. It is of course trivial to agree
on sid either via an additional round of communication or using counters stored at each party, however
both of these options are extremely undesirable in the scenario that we consider. We consider it valuable
future work to define a UC functionality that captures key acquisition with the same properties as our
KIND-x games, with the additional benefit of composability.

24

At USENIX ’15, Everspaugh et al. [ECS+15a] (ECSJR) presented the first definition of partially-
oblivious OPRFs (POPRFs) and a candidate construction using pairings (more details in Sec. 2.5).
Their motivating setting was a user engaging in password-based authentication with some web server,
where instead of the web server storing password hashes, it would instead interact with ‘a Pythia service’
that hardened the user’s password using a POPRF and a random per-user value as the OPRF public
input t. In their approach, if an adversary gains access to the OPRF key then a pre-computed password
database is of no use since the web server’s stored values are functions of the key, the password and
the random ‘salt’ t. This means that the Pythia service can detect online attacks and use rate limiting
without learning the user password, and the web server never needs to learn the OPRF key. As we
have stated, our threshold construction is essentially using the same idea as theirs, and the pairing-based
POPRF presented by ECSJR is a candidate for use within PERKS. Our approach is for a different
problem, namely a user interacting with multiple OPRF servers, and our security goals are therefore
quite different. ECSJR used one-more unpredictability and one-more pseudorandomness as properties
of the POPRF but do not consider any formal security properties for the use cases that motivated
their paper, whereas in our case we needed to create KIND-x as a security definition that captures
the indistinguishability of the keys used by the user in the eventual application. An interesting future
research topic would be to categorize the security definitions for (P)OPRFs, to ascertain the ‘correct’
expectations of security. To provide a brief summary of the difficulties in comparing notions, Tyagi et al.
explicitly referred to the ECSJR one-more pseudorandomness property as “non-standard” and advertise
their own notions as avoiding the need for the ECSJR approach, while ECSJR provide a very brief sketch
(in the ePrint version [ECS+15b] only) of the difficulty in proving their own POPRF UC secure (there
is no outer hash because they seek key rotation, and this makes a UC proof nigh on impossible because
the simulator can never see the necessary RO queries), followed by an unproven Claim that adding an
extra outer hash gives a UC-secure VOPRF.

Our results in the threshold setting, namely Theorems 4.2 and 4.4, are not tight and lose a factor
of
(n

t−1
)
. It would of course be desirable to avoid this, using a proof technique that does not involve

guessing the set of uncorrupted servers.
Finally, we remark that our approach defines an OPRF interaction as being two messages, namely

a blinded representation of the password from the user to the server and then an application of the
OPRF secret key to this blinded value in response. It is known how to construct (V)OPRFs with post-
quantum security in this (round-optimal) manner [ADDS21] (see Sec. 2.4 for more details on existing P-
and V-OPRF constructions), however it is still unclear if efficient constructions are feasible, and such
constructions may not follow the two-message syntax that we use. In the event that relatively efficient
verifiable OPRFs with post-quantum security can be constructed using some other syntax then firstly
this would be a significant breakthrough, and further it would be necessary to adapt our formalism.

References
[ACNP16] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval. Robust password-

protected secret sharing. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K. Katsikas,
and Catherine A. Meadows, editors, ESORICS 2016, Part II, volume 9879 of LNCS, pages
61–79. Springer, Heidelberg, September 2016.

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal verifi-
able oblivious pseudorandom functions from ideal lattices. In Juan Garay, editor, PKC 2021,
Part II, volume 12711 of LNCS, pages 261–289. Springer, Heidelberg, May 2021.

[BCP04] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results on
encrypted key exchange. In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004,
volume 2947 of LNCS, pages 145–158. Springer, Heidelberg, March 2004.

[BDGJ20] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao Jiang. Fast and secure updatable
encryption. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 464–493. Springer, Heidelberg, August 2020.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice Shih. Improving speed and se-
curity in updatable encryption schemes. In Shiho Moriai and Huaxiong Wang, editors,

25

ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 559–589. Springer, Heidelberg,
December 2020.

[BEL+20] Julian Brost, Christoph Egger, Russell W. F. Lai, Fritz Schmid, Dominique Schröder, and
Markus Zoppelt. Threshold password-hardened encryption services. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 409–424. ACM
Press, November 2020.

[BFH+20] Carsten Baum, Tore Kasper Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai.
PESTO: proactively secure distributed single sign-on, or how to trust a hacked server. In
Lujo Bauer and Frank Stajano, editors, IEEE EuroS&P 2020, pages 587–606. IEEE, 2020.

[BJSL11] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-protected
secret sharing. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS
2011, pages 433–444. ACM Press, October 2011.

[BKLW22] Daniel Bourdrez, Dr. Hugo Krawczyk, Kevin Lewi, and Christopher A. Wood. The
OPAQUE Asymmetric PAKE Protocol. Internet-Draft draft-irtf-cfrg-opaque-08, Internet
Engineering Task Force, March 2022. Work in Progress.

[BKM+21] Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and Antonio Sanso.
Cryptanalysis of an oblivious PRF from supersingular isogenies. In Mehdi Tibouchi and
Huaxiong Wang, editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 160–184.
Springer, Heidelberg, December 2021.

[BKR13] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption
and secure deduplication. In Thomas Johansson and Phong Q. Nguyen, editors, EURO-
CRYPT 2013, volume 7881 of LNCS, pages 296–312. Springer, Heidelberg, May 2013.

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions from
isogenies. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part II, volume
12492 of LNCS, pages 520–550. Springer, Heidelberg, December 2020.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key ho-
momorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg, Au-
gust 2013.

[BP13] Fabrice Benhamouda and David Pointcheval. Verifier-based password-authenticated key
exchange: New models and constructions. Cryptology ePrint Archive, Report 2013/833,
2013. https://eprint.iacr.org/2013/833.

[BP14] Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudorandom
functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 353–370. Springer, Heidelberg, August 2014.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography, 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[CHL22] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseudorandom func-
tions. In David Evans and Carmela Troncoso, editors, IEEE EuroS&P 2022. IEEE, 2022.

[CLLN14] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven. Memento: How
to reconstruct your secrets from a single password in a hostile environment. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pages
256–275. Springer, Heidelberg, August 2014.

26

https://eprint.iacr.org/2013/833

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH:
An efficient post-quantum commutative group action. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427.
Springer, Heidelberg, December 2018.

[CLN12] Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet universally compos-
able two-server password-authenticated secret sharing. In Ting Yu, George Danezis, and
Virgil D. Gligor, editors, ACM CCS 2012, pages 525–536. ACM Press, October 2012.

[DFHSW22] Alex Davidson, Armando Faz-Hernández, Nick Sullivan, and Christopher A. Wood. Obliv-
ious Pseudorandom Functions (OPRFs) using Prime-Order Groups. Internet-Draft draft-
irtf-cfrg-voprf-09, Internet Engineering Task Force, February 2022. Work in Progress.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda.
Privacy pass: Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, July
2018.

[DHL22] Poulami Das, Julia Hesse, and Anja Lehmann. DPaSE: Distributed password-authenticated
symmetric-key encryption, or how to get many keys from one password. In Yuji Suga,
Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors, ASIACCS 22, pages 682–696.
ACM Press, May / June 2022.

[DvMN08] Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson C. A. Nascimento.
Oblivious transfer based on the McEliece assumptions. In Reihaneh Safavi-Naini, editor,
ICITS 08, volume 5155 of LNCS, pages 107–117. Springer, Heidelberg, August 2008.

[ECS+15a] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart.
The pythia PRF service. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security
2015, pages 547–562. USENIX Association, August 2015.

[ECS+15b] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart.
The Pythia PRF service. Cryptology ePrint Archive, Report 2015/644, 2015. https:
//eprint.iacr.org/2015/644.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart, and Samuel Scott. Key
rotation for authenticated encryption. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 98–129. Springer, Heidelberg,
August 2017.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS,
pages 303–324. Springer, Heidelberg, February 2005.

[HIJ+21] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-Kuei Lee, Zu-
tian Luo, Payman Mohassel, Ananth Raghunathan, Shaahid Shaikh, Yen-Chieh Sung, and
Albert Zhang. DIT: Deidentified authenticated telemetry at scale. Blog post, Meta, April
2021.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th Interna-
tional Workshop, PQCrypto 2011, pages 19–34. Springer, Heidelberg, November / December
2011.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 233–253.
Springer, Heidelberg, December 2014.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient and
composable password-protected secret sharing (or: How to protect your bitcoin wallet on-
line). In Michael Backes, editor, IEEE European Symposium on Security and Privacy,
EuroS&P 2016, pages 276–291. IEEE, 2016.

27

https://eprint.iacr.org/2015/644
https://eprint.iacr.org/2015/644

[JKKX17] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-minimal
password-protected secret sharing based on threshold OPRF. In Dieter Gollmann, Atsuko
Miyaji, and Hiroaki Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58.
Springer, Heidelberg, July 2017.

[JKR18] Stanislaw Jarecki, Hugo Krawczyk, and Jason Resch. Threshold partially-oblivious PRFs
with applications to key management. Cryptology ePrint Archive, Report 2018/733, 2018.
https://eprint.iacr.org/2018/733.

[JKR19] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Updatable oblivious key manage-
ment for storage systems. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 379–393. ACM Press, November 2019.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE pro-
tocol secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486. Springer,
Heidelberg, April / May 2018.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with ap-
plications to adaptive OT and secure computation of set intersection. In Omer Reingold,
editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer, Heidelberg, March 2009.

[KBR13] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. DupLESS: Server-aided encryp-
tion for deduplicated storage. In Samuel T. King, editor, USENIX Security 2013, pages
179–194. USENIX Association, August 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016, pages 818–829. ACM Press, October 2016.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure updatable encryption
with integrity protection. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 68–99. Springer, Heidelberg, May 2019.

[Leh19] Anja Lehmann. ScrambleDB: Oblivious (chameleon) pseudonymization-as-a-service.
PoPETs, 2019(3):289–309, July 2019.

[LER+18] Russell W. F. Lai, Christoph Egger, Manuel Reinert, Sherman S. M. Chow, Matteo Maf-
fei, and Dominique Schröder. Simple password-hardened encryption services. In William
Enck and Adrienne Porter Felt, editors, USENIX Security 2018, pages 1405–1421. USENIX
Association, August 2018.

[LPA+19] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and Thomas Ristenpart.
Protocols for checking compromised credentials. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 1387–1403. ACM
Press, November 2019.

[LT18] Anja Lehmann and Björn Tackmann. Updatable encryption with post-compromise security.
In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 685–716. Springer, Heidelberg, April / May 2018.

[NG21] NCC-Group. End-to-end encrypted backups security assessment: Whatsapp (ver-
sion 1.2). https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_Group_
WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf, 27th October 2021.

[PP20] Jeroen Pijnenburg and Bertram Poettering. Encrypt-to-self: Securely outsourcing storage.
In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors, ESORICS 2020,
Part I, volume 12308 of LNCS, pages 635–654. Springer, Heidelberg, September 2020.

28

https://eprint.iacr.org/2018/733
https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_Group_WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf
https://research.nccgroup.com/wp-content/uploads/2021/10/NCC_Group_WhatsApp_E001000M_Report_2021-10-27_v1.2.pdf

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[SGLM08] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long, and Ethan L. Miller. Secure data
deduplication. In Yongdae Kim and William Yurcik, editors, StorageSS 2008, pages 1–10.
ACM, 2008.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing
Machinery, 22(11):612–613, November 1979.

[SHB21] István András Seres, Máté Horváth, and Péter Burcsi. The legendre pseudorandom function
as a multivariate quadratic cryptosystem: Security and applications. Cryptology ePrint
Archive, Report 2021/182, 2021. https://eprint.iacr.org/2021/182.

[SKFB21] Nick Sullivan, Dr. Hugo Krawczyk, Owen Friel, and Richard Barnes. OPAQUE with TLS
1.3. Internet-Draft draft-sullivan-tls-opaque-01, Internet Engineering Task Force, February
2021. Work in Progress.

[TCR+22] Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tessaro, and Christo-
pher A. Wood. A fast and simple partially oblivious PRF, with applications. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276
of LNCS, pages 674–705. Springer, Heidelberg, May / June 2022.

[TPY+19] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kelley,
Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh, and Elie
Bursztein. Protecting accounts from credential stuffing with password breach alerting. In
Nadia Heninger and Patrick Traynor, editors, USENIX Security 2019, pages 1556–1571.
USENIX Association, August 2019.

[Wha21] WhatsApp. Security of end-to-end encrypted backups. https://www.whatsapp.
com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf, 10th Septem-
ber 2021.

A OPRF Definition Relations
A.1 Comparison between Mechanics of PRIV-1 and POPRIV-1
We now summarize the differences between the POPRIV-1 game of Tyagi et al. [TCR+22] given in our
notation in Fig. 15 and our PRIV-1 notion given in Fig. 3 (recall that our PRIV-2 game is identical to
the POPRIV-2 game).

Game POPRIV-1b(A)
00 (pk, sk)←$ F.KG
01 b′ ← A(pk, sk)
02 Stop with b′

Oracle TRANS(uid, x0, x1)
03 (req0, st0)← F.Req(t, x0)
04 (req1, st1)← F.Req(t, x1)
05 rep0 ← F.BlindEv(sk, t, req0)
06 rep1 ← F.BlindEv(sk, t, req1)
07 y0 ← F.Finalize(pk, rep0, st0)
08 y1 ← F.Finalize(pk, rep1, st1)
09 τ ← (reqb, repb, y0)
10 τ ← (req1−b, rep1−b, y1)
11 Return (τ, τ ′)

Figure 15: POPRIV-1 security game [TCR+22].

In the POPRIV-1 game the adversary receives an OPRF key pair and access to a transcript oracle
TRANS that runs the server side of the OPRF functionality using inputs (uid, x0, x1) given by the
adversary, and returns the request and response values in random order. In our PRIV-1 game the

29

https://eprint.iacr.org/2021/182
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

adversary is not given a key pair but has access to a challenge oracle Challenge with the same inputs
(uid, x0, x1), but only receives (reqb, req1−b). Our observation is that the adversary can act as the server,
i.e. running the deterministic process F.BlindEv, for arbitrary key pairs. Recall that we give public key
pk as an input to F.Finalize rather than embedding it in the state value st as done by [TCR+22].

A.2 PRIV-x and POPRIV-x are Equivalent
We now show the equivalence of our multi-server PRIV-x games and the single-server POPRIV-x games
introduced by Tyagi et al. [TCR+22]. As stated earlier, our PRIV-2 game is identical to the POPRIV-2
game of Tyagi et al., and so we focus on showing PRIV-1⇔ POPRIV-1.
Theorem A.1. Let F be an oblivious pseudorandom function. For any adversary A against the PRIV-1
security of F, there exists an adversary B against the POPRIV-1 security of F, such that

AdvPRIV-1
F (A) ≤ AdvPOPRIV-1

F (B).

Proof. The direct reduction is detailed in Fig. 16. B runs A, and needs to respond to A’s calls to
Challenge. Note that A’s calls to Challenge give (uid, x0, x1) as input, and A expects (reqb, req1−b) in
response, when it is playing PRIV-1b. B’s own oracle TRANSB provides a more detailed response, and
so B simply takes the reqb, req1−b that it receives and forwards this to A.

Let b be the challenge bit in the experiment that B is playing, and let b′ be the bit that is output
by A. B receives (reqb, repb, y0, req1−b, rep1−b, y1) from its own call to TRANSB, and thus providing
(reqb, req1−b) to A simulates A’s expected environment.
B perfectly simulates PRIV-1b for A, since the secret key vector is correctly distributed and the

responses that A receives to its oracles calls are exactly as it would expect. The advantage of A directly
corresponds to the advantage of B. This concludes the proof.

Reduction B playing POPRIV-1b
00 receive pk, sk
01 b′ ← A()
02 Return b′

Oracle ChallengeA(uid, x0, x1)
03 call TRANSB(uid, x0, x1)
04 receive (reqb, repb, y0, req1−b, rep1−b, y1)
05 Return (reqb, req1−b)

Figure 16: Reduction B for the proof of Thm. A.1.

Theorem A.2. Let F be an oblivious pseudorandom function. For any adversary A against the POPRIV-1
security of F, there exists an adversary B against the PRIV-1 security of F, such that

AdvPOPRIV-1
F (A) ≤ AdvPRIV-1

F (B).

Proof. The reduction is detailed in Fig. 17. In order to provide a sufficient response to A, the re-

Reduction B playing PRIV-1b
00 (pk, sk)← F.KG
01 b′ ← A(sk)
02 Return b′

Oracle TRANSA(uid, x0, x1)
03 call ChallengeB(uid, x0, x1)
04 receive (reqb, req1−b)
05 repb ← F.BlindEv(sk, uid, reqb)
06 rep1−b ← F.BlindEv(sk, uid, req1−b)
07 y0 ← F.Ev(sk, uid, x0)
08 y1 ← F.Ev(sk, uid, x1)
09 Return (reqb, repb, y0, req1−b, rep1−b, y1)

Figure 17: Reduction B for the proof of Thm. A.2.

duction B must use the values (reqb, req1−b) that it receives from TRANSA and perform F.BlindEv on
them to acquire (repb, rep1−b). Producing y0 and y1 is straightforward, since B can simply compute
the OPRF evaluation with skj and the input values x0 and x1. B combines the values into output
(reqb, repb, y0, req1−b, rep1−b, y1) and returns it to A. The reduction perfectly simulates the POPRIV-1b
environment for A. This concludes the proof.

30

	Introduction
	Problem Statement
	Contributions
	Related Primitives and Existing Literature
	WhatsApp Encrypted Backup Rollout

	Preliminaries
	Notation and Security Games
	Secret Sharing Schemes
	OPRFs and their Variants
	OPRF Literature
	Oblivious Pseudorandom Functions: Syntax
	Oblivious Pseudorandom Functions: Security Notions

	DKA and Security Models
	Distributed Key Acquisition
	A Unified Security Notion for DKA

	Constructions
	Generic Construction
	n out of n setting
	t out of n setting
	Security Proofs
	Use of Existing OPRFs in PERKS

	Using PERKS as a Storage System
	Discussion
	OPRF Definition Relations
	Comparison between Mechanics of blackPRIV-1 and blackPOPRIV-1
	blackPRIV-x and blackPOPRIV-x are Equivalent

