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Abstract. Ring signatures enable a user to sign messages on behalf
of an arbitrary set of users, called the ring. The anonymity property
guarantees that the signature does not reveal which member of the ring
signed the message. The notion of linkable ring signatures (LRS) is an
extension of the concept of ring signatures such that there is a public
way of determining whether two signatures have been produced by the
same signer. Lattice-based LRS is an important and active research line
since lattice-based cryptography has attracted more attention due to
its distinctive features, especially the quantum-resistant. However, all
the existing lattice-based LRS relied on random oracle heuristics, i.e., no
lattice-based LRS in the standard model has been introduced so far.

In this paper, we present a lattice-based LRS scheme in the standard
model. Toward our goal, we present a lattice basis extending algorithm
which is the key ingredient in our construction, that may be of indepen-
dent interest.

Keywords: Lattice-Based cryptography· Linkable ring signature ·
Standard model.

1 Introduction
Ring signatures, introduced by Rivest et al. [39], allow a signer to hide in a
ring of potential signers of which the user is a member, without revealing which
member actually produced the signature. However, the signer-anonymity may
be too strong in some scenarios. For example, regular ring signatures cannot
be used for anonymous e-voting since any double votes remain undetectable,
which means no one can find out whether any two signatures (with two votes)
are submitted by the same voter or not. Similar concerns should be aroused
in cryptocurrency where a double-spent payment should be discarded. Linkable
ring signatures (LRS) [28] provide the remedy to this problem by allowing the
public to detect any signer who has produced two or more signatures (i.e., votes,
payments). Thereafter, LRS has been studied extensively [46,3,9,42,41] especially
in recent years, driven by the rapid development of cryptocurrencies.

Another important line of research is constructing LRS schemes from lattices
[4,6,30,29,45,44,43], since lattice-based cryptography has attracted more atten-
tion due to its distinctive features, especially the quantum-resistant. However,
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these works have so far required the random oracle (ROM) model [5] (or sim-
ilar heuristics) for their security analysis. Katz (Sect. 6.2.1 of [25]) mentioned
that existing some negative results about the cryptographic systems that rely
on ROM. Canetti et al. [15] and Dodis et al. [19] showed that proof in ROM can
only serve as a heuristic argument, it may lead to insecure schemes when the
ROM is implemented in practical scenarios. Leurent and Nguyen [27] presented
the attacks extracting the secret keys on several hash-then-sign type signature
schemes (including the lattice-based signature [21]) and identity-based encryp-
tion schemes if the underlying hash functions are modeled as a random oracle.
Quantum Random Oracle Model (QROM) is a generalized notion of ROM [7].
Though the proof of security in QROM is stronger than one in the ROM, it does
not mean the security in the QROM implies standard-model security [20]. And
Grilo et al. [24] showed that the proofs in QROM lack conceptual simplicity and
tightness. Moreover, in some cryptosystems with advanced functionality, the ad-
verse effect caused by employing (Q)ROM or related heuristics will be enlarged
and unexpected. For instance, Chatterjee et al. [18] formalized the security mod-
els for ring signatures in quantum setting which tries to capture adversaries with
quantum access to the signer, but as pointed by [17] it performs in contrast to
ordinary signatures, since which is unclear if their models are as strong as the
standard security notion when restricted to the classical world. And recently,
Branco [13] present a novel ring signature in standard model, they explained
why their work cannot rely on ROM, and introduced the ramifications of relying
on ROM in their construction. Consequently, we can conclude that constructing
cryptosystems in standard model is more reassuring, especially for the crypto-
graphic primitives with advanced functionality such as linkable ring signatures.

1.1 Our Contribution

In this work, our main contribution is to present a lattice-based linkable ring
signature (LRS) scheme in the standard model (i.e. without resorting to ran-
dom oracles or common reference strings). Toward this goal, we present a new
lattice basis extending algorithm which is the key ingredient in our construc-
tion and is instrumental in the security proofs. By arming with appropriate
lattice techniques, we achieve our work without undermining the compactness.
In particular, our security models (Unforgeability, Anonymity, Linkability, and
Non-Slanderability) provide strong guarantees to capture the security require-
ments that practical scenarios imposed on LRS. At the same time, our work is
asymptotically efficient on signature size since it grows only linearly in the ring
size. In other words, our construction provides strong confidence on security in
threefold: provably secure without relying on random oracle model or any ran-
dom oracle heuristics, and instantiated from the well-studied standard lattice
assumptions (SIS and LWE) make our work being quantum-resistant, and sat-
isfies strong security notions without compensate the compactness. Supporting
by this confidence on security, our work is more reassuring to confront the un-
derlying challenges in practice. However, as for the majority of SIS/LWE-based
cryptographic constructions in the standard model, the public key and signa-
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ture sizes of our construction are still large for practical implementation. We do
not want to oversell our results, but take this as a stepping stone towards the
goal of practical LRS in standard model, as this is the first lattice-based LRS
scheme in the standard model. Therefore, it is certainly an important direction
for future research to improve the efficiency of our work to enable deployment
and implementation in practice.

1.2 Our Methods

In this section, we give the methods with respect to the construction and proofs.
It is instructive since our construction and proofs involved varied techniques and
primitives.

Compact Construction Without Relying Random Oracle. We first ex-
plain how to construct a compact LRS without relying on random oracle. In
LRS, the random oracle functions always are employed to hash the messages
and to build the key image1. A general method to remove the random oracle
in hashing the message is matching the message bit by public parameters, as
prior works [36,11,16]. But this method severely undermines the compactness
since it makes the scheme cumbersome and the size of public keys and signa-
tures enlarged quickly (that is quadratical in works [36,11]) with the number of
the ring member. In our construction, we employ the key-homomorphic evalu-
ation algorithm from [22,12,8] to process the message, which is inspired by the
standard signature scheme [10]. More specifically, the key-homomorphic evalua-
tion algorithm Eval(·, ·) takes as input a set of matrices and a fan-in-2 Boolean
NAND circuit C which is expressed as a PRF function in our setting. When a
user generates the key pair, there are a PRF key k = (k1, . . . , kk) is randomly se-
lected from {0, 1}k, k “PRF key matching” matrices {Bj}j∈[k] and two “message
matching” matrices (C0,C1) are randomly selected from Zn×m

q . When the user
issuing signatures for a message µ = (µ1, . . . , µm) ∈ {0, 1}m, it first computes
an evaluated matrix A

(i)
CPRF,µ

= Eval(CPRF, ({B(i)
j }j∈[k],C

(i)
µ1 , . . . ,C

(i)
µm)) ∈ Zn×m

q ,
then samples a preimage e(i) with respect to this evaluated matrix. Since the
signing algorithm only generates one evaluated matrix for each ring member,
our ring signature size does not enlarge redundantly with the number of users,
since it grows only linearly with the ring size.

Then we explain how to build the key image without relying on random ora-
cle. Our method is straightforward, that is we employ the verification key of a
one-time signature scheme as the key image. This one-time signature scheme
is proposed by Lyubashevsky and Micciancio [31], which is compact and prov-
ably secure in the standard model. Later we will explain how to overcome the
obstacles in the security proofs.

1 In linkable ring signatures, ‘key image’ is usually a parameter in the output signature
tuple. If two signature tuples have the same key image, we say these two signatures
are linked.
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A New Lattice Basis Extending Algorithm: Supporting Employing
Simulation Tool in Linkability and Non-Slanderability Proofs. We note
that the key image is one of the most important parameters for LRS, since it
undertakes the functionality and security. The undertook functionality is the
Link algorithm of LRS, on input two signature tuples, each of which contains a
key image (say I1 and I2, respectively), we say these two signature tuples are
linked when I1 = I2. Note that the key image is contained in the signature tuple,
so the key image must have the property of unforgeability, otherwise the secu-
rity is trivially broken. And note that the security notion of non-slanderability
is broken when the key image is forgeable since the adversary can arbitrarily
produce a signature and then link it to any signature that he saw. Moreover,
the key image can not be second-generated with respect to the same secret key,
because the security notion of linkability is broken when a user can generate one
more key image from the same key pair. Therefore, the key image undertakes
two security notions: linkability and non-slanderability. In order to be compe-
tent that, i.e., make the key image satisfy the properties of unforgeability and
second-generated, as aforementioned, we employ the inherent properties of one-
time signature to resolve that, namely, we employ the one-time verification key
of a one-time signature scheme [31] as the key image. But the barrier is how
to simulate that in proofs of linkability and non-slanderability when without re-
sorting to random oracle. Before explaining that, we first recall the definition of
linkability and non-slanderability, the key point for the adversary is to forge or
second-generate the key image rather than the whole signature tuple. Especially
in the model of linkability, only the public parameters pp is generated by the
challenger, and the remained parameters such as verification keys and signatures
are generated by the adversary. At the same time, pp are generated by a deter-
ministic algorithm since the randomness is public. Therefore, in this setting, we
can observe that it is hard to show a reduction since there are no extra param-
eters for embedding the hard instance into the simulation, and the adversary’s
ability of forging/second-generated the key image cannot be exploited to solve
the underlying hardness.

We resolve that by presenting a new lattice basis extending algorithm Basi-
sExtBindOVK. As prior lattice basis extending algorithms [16,33,2], the Basi-
sExtBindOVK is used in the scenario: For a lattice L with basis B, to delegate
a short basis as the key to a child, the parents employ this algorithm with in-
put (L,B) to create a new lattice L′ with a short basis B′. After the preimage
sampling with respect to each evaluated matrix A

(i)
CPRF,µ

, our signing algorithm
additionally sample a ‘check’ preimage echk by an extended basis that from the
BasisExtBindOVK. In this setting, once the preimage echk passes the validation
check, then the key image cannot be forged or seconded-generate unless the
underlying hardness assumption is broken. More specifically, in our proofs of
linkability and non-slanderability, we build the connection between the chal-
lenge instance Ain and the public matrix Acom in pp by the simulation tool
of SampleRwithBasis [2], then the underlying lattice problem SIS for the given
instance A is resolved by exploiting the adversary’s ability in linkability and
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non-slanderability. For a better illustration, below we explain some details. In
our setting, the key image is vkOTS := AcomTA, the matrix F inputed in Basi-
sExtBindOVK algorithm is constructed as F = [AcomTA | Acom + A], and the
basis of F is SF =

[ −R Im
TAR −TA

]
. Under this setting, there are two ways for the

adversary to attack the key image vkOTS := AcomTA: the adversary produces a
A∗

com ̸= Acom such that vk∗OTS = A∗
comTA, or produces a TA∗ ̸= TA such that

vk∗OTS = AcomTA∗ . Recall that both cases need to compute the basis SF such
that F · SF = 0, then by our construction on matrices F and SF, this equation
can be transformed to Acom ·R′ = 0 where R′ is transformed from SF. In our
parameters setting, the matrix R′ has a low Gram-Schmidt norm (cf. Section
4.3). Then the simulator can build a connection between Ain and Acom by the
simulation tool of SampleRwithBasis, the result is AinR̄ = Acom where R̄ is a
low-norm matrix. By Acom ·R′ = 0 and AinR̄ = Acom, we have Ain · (R̄R′) = 0,
and thus the underlying hardness assumption SIS is broken. This completes the
reduction.

Proofs Outline. Below we give the outlines of Unforgeability and Signer-
Anonymity proofs, as the Linkability and Non-Slanderable were given above.
We note that our security models provide strong guarantees to capture the se-
curity requirements that practical scenarios imposed on LRS. Particularly, all
security models allow the adversary to obtain the randomnesses used in Setup
phase, which implies the algorithm is public, and does not rely on a trusted setup
that may incur concerns on the existing of trapdoors hidden in the output pa-
rameters. On the security notion of unforgeability, our work achieves the strongly
unforgeable w.r.t. insider corruption, namely, it allows the adversary to corrupt
the signing keys of honest ring members and allows to query the signing oracle
with adversarially-chosen-ring. Since the Probing phase of security models of
Anonymity and Non-Slanderability is as same as the model of unforgeability, so
both models also support the attacks w.r.t. insider corruption and adversarially-
chosen-ring. Furthermore, the property of ‘strongly’ unforgeable of unforgeability
means the adversary is allowed to output a forgery signature with respect to a
queried ring and message.

Unforgeability Proof Outline. The barrier in the security proof of unforgeability
is how to simulate the signing oracle when the adversary queries on the index
i⋄ but the simulator does not have the corresponding signing key TA(i⋄) . More
specifically, the simulator first randomly picks one index i⋄ from [N ], then embed
the challenge instance A in the verification key of the i⋄-th ring member. But in
this setting, the simulator cannot response the correct signature with respect to
index i⋄ since he does not know the corresponding signing key. Our method for
resolving that is inspired by unforgeability proof of the standard signature work
[10], in which they employ the public basis of a gadget matrix G to respond
the signing query on index i⋄, and this public basis cannot be exploited by the
adversary to provide a valid forgery in challenge phase. Below we describe the
simulation details.
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In the Setup phase of the simulation, the simulator first embeds a randomly
picked PRF secret key k(i) = (k

(i)
1 , k

(i)
2 , . . . , k

(i)
k ) in each ring member’s verifica-

tion key. Particularly, it first picks a random index i⋄ from {1, . . . , N} and let
A(i⋄) = A i.e., embed the SIS problem instance into verification key. Then it
takes the A(i⋄) as input in SuperTrapGen algorithm, outputs (B(i⋄),TB(i⋄)). In
this way, it prepared the signing key of the ring member with index i⋄ which is
used to response the corrupting query in the corrupting oracle probing phase.
Secondly, for all the index i ∈ [N ] \ i⋄, it uses TrapGen algorithm to generate
(B(i),TB(i)) and then produce (A(i),TA(i)) by taking B(i) as input to Super-
TrapGen algorithm. Finally, for all the index i ∈ [N ], j ∈ [k], and d ∈ {0, 1},
it constructs the matrices A

(i)
d = A(i)R

(i)
A + dG, B(i)

j = A(i)R
(i)
j + k

(i)
j G, and

C
(i)
d = A(i)R

(i)
C + dG where all the R shape matrices are randomly chosen from

{1,−1}m×m and G is the gadget matrix. In this way, the reduction algorithm
can response the signing query of all the ring members. For the ring members
with index i ∈ [N ] \ i⋄, it responses the signature by the basis TA(i) . For the
ring member with index i⋄, it responds the signature by the gadget trapdoor
TG. For a valid forgery with respect to message µ∗, since d = PRF(k(i⋄),µ∗)
is unpredictable to the adversary, therefore, the reduction algorithm outputs a
valid SIS solution with essential probability 1/2.

Anonymity Proof Outline. We use two techniques to hide the identity of the
real signer, the lattice basis randomization algorithm BasisRand as above men-
tioned and the methodology of a group signature from Gordon et al. [23]. This
methodology mainly includes two lattice techniques, SuperTrapGen algorithm
and a NIWI proof system. Their NIWI proof system has to rely on ROM since
it is obtained by Fiat-Shamir transformation, but fortunately, which is resolved
by the recent works [37,14]. In our setting, every ring member holds a pair of
(A(i),TA

(i)) which is generated by SuperTrapGen(B(i)) such that AB⊤ = 0

where B(i) $←− Zn×m
q . In the signing phase, let s be the index of the signer in

the ring, the signer chooses a vector e(i)
$←− Zm for every ring member except

himself, then samples the e(s) from a specified Gaussian distribution by TA
(s).

Then the signer chooses x(i) $←− Zn
q for each ring member, and takes the e(i) as

the LWE error in computing z(i) = (x(i))⊤B(i) + e(i). In this way, the preim-
age e(s) that was sampled by the signer is hidden in the LWE ciphertext z(i)

and thus the signer-anonymity is preserved. Finally, the signer produces a NIWI
proof of well-formedness, namely, existing a ciphertext z(s) in the set {z(i)}i∈[N ]

encrypts a short vector e(s). Below we describe the simulation details.

The anonymity proof proceeds in a sequence of experiments E0, H0, H1, E1 such
that each experiment is indistinguishable from the one before it. The experiment
E0 (resp., E1) corresponds to the anonymity experiment (cf. Definition 1) with
b = 0 (resp., b = 1). Let (s∗0, s

∗
1) be the indexes that adversary provides in Chal-

lenge phase. The experiment H0 is as same as E0 except that we sample e
(s∗1)
0 by a

specified function rather than randomly select it from Zm
q . Suppose an adversary
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can distinguish E0 and H0 i.e., can distinguish the z(s
∗
1) = (s(s

∗
1))⊤B(s∗1) + e

(s∗1)
0

where e
(s∗1)
0 ← Zm

q from the z′(s
∗
1) = (s(s

∗
1))⊤B(s∗1)+e

′(s∗1)
0 where e

′(s∗1)
0 ← DZm,αq,

then we can construct a reduction algorithm to solve the LWE assumption. The
experiment H1 is as same as H0 except that we change the witness from s∗0’s
to s∗1’s. By the witness indistinguishability of the proof system, H0 and H1 are
indistinguishable. Finally, H1 is indistinguishable from E1 by exactly the same
argument used to show the indistinguishability of H0 and E0.

2 Definitions

In this section, we introduce the definitions of linkable ring signatures: syntax,
correctness, unforgeability, anonymity, linkability, and non-slanderability.

Definition 1 (Linkable Ring Signature). A linkable ring signature LRS con-
sists of the following algorithms:

– Setup(1n) → PP. This is a probabilistic algorithm. On input the security
parameter n, outputs the public parameter PP.

The public parameters PP are common parameters used by all ring members in
the system, for example, the message space M, the modulo, etc. To guarantee
the public has no concerns on the existing of trapdoors for PP, the randomness
used in Setup can be included in PP.
In the following, PP is implicit input parameter to every algorithm.

– KeyGen()→ (vk,sk). This is a probabilistic algorithm. The algorithm outputs
a verification key vk and a signing key sk.

Any ring member can run this algorithm to generate a pair of verification key
and signing key.

– Sign(sk, µ,R) → Σ. On input a signing key sk, a message µ ∈ M, and a
ring of verification keys R = (vk(1), . . . , vk(N))2. Assume that (1) the input
signing key sk and the corresponding verification key vk is a valid key pair
output by KeyGen and vk ∈ R, (2) the ring size |R| ≥ 2, (3) each verification
key in ring R is distinct. This algorithm outputs a signature Σ.

– Ver(R, µ,Σ) → 1/0. This is a deterministic algorithm. On input a ring of
verification keys R = (vk(1), . . . , vk(N)), a message µ ∈ M, and a signature
Σ, outputs 1 if the signature is valid, or 0 if the signature is invalid.

– Link(R0, µ0, Σ0,R1, µ1, Σ1) → 1/0. This is a deterministic algorithm. On
input two valid signature tuples (R0, µ0, Σ0) and (R1, µ1, Σ1), the algorithm
outputs 1 if the two signatures linked, or 0 if unlinked.

2 Below we regard the verification key ring as an ordered set, namely, it consists of a set
of verification keys, and when it is used in Sign and Ver algorithms, the verification
keys are ordered and each one has an index.
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Remark: Note that it is open on whether the Sign algorithm is probabilistic or
deterministic, which may depend on the concrete constructions.

Correctness. A LRS scheme is correct, if for all n ∈ N, any N = poly(n), any
PP ← Setup(1n) as implicit input parameter to every algorithm, any N pairs
(vk(1), sk(1)), . . . , (vk(N), sk(N)) ← KeyGen(), let R = (vk(1), . . . , vk(N)), it holds
that

– For any messages µ ∈M, and any s ∈ [N ], it holds that

Pr
[
Ver(R, µ, Sign(sk(s), µ,R)) = 1

]
= 1− negl(n)

– For any messages µ0, µ1 ∈ M, any N0, N1 = poly(n), any ring of well-
formed verification keys R0,R1 with ring size |R0| = N0, |R1| = N1 respec-
tively, and any vk(s0) ∈ R0, vk(s1) ∈ R1 for any s0 ∈ [N0], s1 ∈ [N1], let
Σ0 ← Sign(sk(s0), µ0,R0), Σ1 ← Sign(sk(s1), µ1,R1). It holds that

Pr
[
Link(R0, µ0, Σ0,R1, µ1, Σ1) = 1

]
= 1 if sk(s0) = sk(s1),

Pr
[
Link(R0, µ0, Σ0,R1, µ1, Σ1) = 0

]
≥ 1− negl(n) if sk(s0) ̸= sk(s1)

Unforgeability. A LRS scheme is strongly unforgeable w.r.t. insider corruption
(sUnfInsCor), if for any PPT forger A, it holds that A has at most negligible
advantage in the following experiment with a challenger C.

– Setup. C generates PP← Setup(1n; γst) and (vk(i), sk(i))← KeyGen(γ(i)
kg ) for

all i ∈ [N ], where N = poly(n) and (γst, γ
(i)
kg ) are the randomnesses used in

Setup and KeyGen, respectively. C sets S = (vk(1), . . . , vk(N)) and initializes
two empty sets L and C. Finally, C sends (PP, S, γst) to A.

Note that we give to A the randomness γst of the Setup algorithm, which implies
the algorithm is public, does not rely on a trusted setup that may incur concerns
on the existing of trapdoors hidden in the output parameters.

– Probing Phase. A can adaptively query the following oracles:

• Signing oracle OSign(·, ·, ·):
On input a message µ ∈ M, a ring of verification keys R and an index
s ∈ [N ] such that vk(s) ∈ R ∩ S, this oracle returns Σ ← Sign(sk(s), µ,R)
and adds the tuple (µ,R, Σ) to L.

• Corrupting oracle OCorrupt(·):
On input an index s ∈ [N ] such that vk(s) ∈ S, this oracle returns γ

(s)
kg

and adds vk(s) to C.

– Forge. A outputs a forgery (µ∗,R∗, Σ∗) and succeeds if (1) Ver(µ∗,R∗, Σ∗) =
1, (2) R∗ ⊆ S \ C, and (3) (µ∗,R∗, Σ∗) /∈ L.

Anonymity. A LRS scheme is signer-anonymity, if for any PPT adversary A,
it holds that A has at most negligible advantage in the following experiment with
a challenger C.
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– Setup. C generates PP ← Setup(1n; γst) and (vk(i), sk(i)) ← KeyGen(γ(i)
kg )

for all i ∈ [N ], where N = poly(n) and (γst, γ
(i)
kg ) are the randomness used

in Setup and KeyGen, respectively. C sets S = (vk(1), . . . , vk(N)). Finally, C
sends (PP, S, γst) to A.

– Probing Phase 1. As same as the probing phase of Unforgeability.

– Challenge. A outputs a message µ∗, a ring of verification keys R∗, and two
distinct indices s∗0, s

∗
1 ∈ [N ], such that

(1) vk(s
∗
0), vk(s

∗
1) ∈ S ∩ R∗ and

(2) none of OSign(·, ·, s∗0), OSign(·, ·, s∗1), OCorrupt(s∗0), OCorrupt(s∗1) was
queried. C chooses a random bit b ∈ {0, 1} and A is given the signature
Σ∗ ← Sign(sk(s

∗
b ), µ∗,R∗).

– Probing Phase 2. As same as the Probing Phase 1, but with the restric-
tion that none of OSign(·, ·, s∗0), OSign(·, ·, s∗1), OCorrupt(s∗0), OCorrupt(s∗1)
was queried.

– Guess. A outputs a guess b′. If b′ = b, C outputs 1, otherwise 0.

Linkability. A LRS scheme is signer-linkable, if for any PPT adversary A, it
holds that A has at most negligible advantage in the following experiment with a
challenger C.

– Setup. C generates PP ← Setup(1n; γst), where γst is the randomness used
in Setup. Finally, C sends (PP, γst) to A.

– Output Phase. A outputs l (l ≥ 2) (ring of well-formed verification keys,
messages, signature) tuples (R∗

i , µ
∗
i , Σ

∗
i ) where i ∈ [l].

A succeeds if (1) Ver(R∗
i , µ

∗
i , Σ

∗
i ) = 1 for i ∈ [l], (2) Link(R∗

i , µ
∗
i , Σ

∗
i ,R

∗
j , µ

∗
j , Σ

∗
j ) =

0 for any i, j ∈ [l] s.t. i ̸= j, and (3) | ∪i=1 R∗
i | < l.

Non-Slanderability. A LRS scheme is signer-non-slanderable, if for any PPT
adversary A, it holds that A has at most negligible advantage in the following
experiment with a challenger C.

– Setup. As same as the setup phase of Unforgeability.

– Probing Phase. As same as the probing phase of Unforgeability.

– Output Phase. A outputs two (ring of verification keys, message, signa-
ture) tuples (R∗, µ∗, Σ∗) and (R̂, µ̂, Σ̂).

Let L be the list that stores the query-answer tuples for OSign(·, ·, ·). A suc-
ceeds if (1) Ver(R∗, µ∗, Σ∗) = 1, (2) (R̂, µ̂, Σ̂) ∈ L where Σ̂ is replied from
OSign(µ̂, R̂, î) for some î ∈ [N ], (3) (R∗, µ∗, Σ∗) /∈ L, (4) vk(̂i) /∈ R∗, (5)
Link(R∗, µ∗, Σ∗, R̂, µ̂, Σ̂) = 1.
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3 Preliminaries

In this section, we first review the strongly unforgeable one-time signature in
Sect. 2, key-homomorphic evaluation algorithm in Sect. 3.2, non-interactive wit-
ness indistinguishable proof systems in Sect. 3.3, and some lattice-based back-
grounds.

Notation. We write [l] for a positive integer l to denote the set {1, . . . , l}. We
denote vectors as lower-case bold letters (e.g. x), and matrices by upper-case
bold letters (e.g. A). We say that a function in n is negligible, written negl(n), if
it vanishes faster than the inverse of any polynomial in n. We say probability p(n)
is overwhelming if 1−p(n) is negligible. We denote the horizontal concatenation
of two matrices A and B as A | B. We denote the vertical concatenation of
two matrices A and B as A;B. We denote {A(i)}i∈[l] or {Bj}j∈[l] as the set
that consists of l matrices. For a matrix A we denote some matrix norms: ∥A∥1
denotes the ℓ1-norm of A, ∥A∥ denotes the ℓ2-norm of the longest column of
A, ∥A∥∞ denotes the ℓ∞-norm of A, ∥Ã∥ denotes the result of applying Gram-
Schmidt orthogonalization to the columns of A.

3.1 Strongly Unforgeable One-Time Signature

Our construction will use the one-time signature with strong unforgeability as
a building block. A one-time signature scheme is a signature scheme that is
meant to be used to sign only a single message, and is only required to sat-
isfy unforgeability under properly restricted adversaries that receive only one
signature/message pair.

Syntax. To capture the practice better, we augment the usual formalization of a
general one-time signature scheme to cover the cases that users may share some
fixed public parameters.

Definition 2 (One-Time Signature Scheme). A one-time signature OTS
scheme consists of the following algorithms:

– Setup(1n) → PPOTS. On input the security parameter n, the algorithm out-
puts the system public parameter PPOTS.

The public parameters PPOTS are common parameters used by all participants in
the system, which may be just the security parameter, or include some additional
information such as the message space M, the modulo, etc. In the following,
PPOTS are implicit input parameters to every algorithm.

– KeyGen() → (vkOTS, skOTS). The algorithm outputs a verification key vkOTS
and a signing key skOTS.

– Sign(skOTS, µ)→ ΣOTS. On input a signing key skOTS and a message µ ∈M,
the algorithm outputs a signature ΣOTS.
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– Ver(vkOTS, µ,ΣOTS)→ 1/0. On input a verification key vkOTS, a message µ,
and a signature ΣOTS, the algorithm outputs 1 if the signature is valid, or 0
if the signature is invalid.

Remark: Note that it is open on whether the Sign algorithm is probabilistic or
deterministic, which may depend on the concrete constructions.

Correctness. An OTS scheme is correct, if for any n ∈ N, all messages µ ∈M,
any PPOTS ← Setup(1n) as implicit input parameter to every algorithm, and any
(vkOTS, skOTS)← KeyGen(), it holds that

Pr[Ver(vkOTS, µ, Sign(skOTS, µ)) = 1] = 1− negl(n),

Unforgeability. An OTS scheme is strongly unforgeable, if for any PPT forger
A, it holds that A has at most negligible advantage in the following experiment
with a challenger C.

– Setup. C generates PPOTS ← Setup(1n; γst) and (vkOTS, skOTS)← KeyGen(),
where γst is randomness used in Setup. Finally, C sends (PPOTS, vkOTS, γst)
to A.

– Probing Phase. A issues a query on message µ. C responses the query by
running ΣOTS ← Sign(skOTS, µ). Finally, C returns the signature ΣOTS to A.

– Forge. A outputs a forgery (µ∗, Σ∗
OTS). A succeeds if (µ∗, Σ∗

OTS) ̸= (µ,ΣOTS)
and Ver(vkOTS, µ

∗, Σ∗
OTS) = 1.

We employ the OTS scheme, asymptotically efficient and without random oracle,
that was presented by Lyubashevsky and Micciancio’s work [31] as our OTS
scheme. The scheme is parametrized by integers n,m, k, q, w, p and H = Zn×m

q ,
K = {K ∈ Zm×k

q : ∥K∥∞ ≤ p}, M ⊆ {µ ∈ {0, 1}k : ∥µ∥1 = w}, and S = {s ∈
Zm
q : ∥s∥∞ ≤ wp}.

Specifically, this OTS scheme is defined by the following procedures:

– Setup: A random and common matrix H ∈ H ⊆ Zn×m
q is chosen and can be

shared by all users. To guarantee the public has no concerns on the existing
of planted trapdoors in H, it could be demanded that H = XOF(s) where
XOF is some extendable output function [40] and s is a public seed. The
matrix H will be used as a hash function mapping (a subset of) Zm

q to Zn
q

and extended to matrices in Zm×k
q .

– Key Generation: A signing key K ∈ K is chosen uniformly at random, the
corresponding verification key K̂ = HK ∈ Zn×k

q .

– Signing: On input the signing key K and message µ ∈ M, the signing algo-
rithm outputs s = Kµ ∈ S.

– Verification: On input verification key K̂, message µ, and signature s, checks
if s ∈ S and Hs = K̂µ holds, return 1, otherwise return 0.
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The correctness and security of the OTS scheme is based on the following three
properties:

– Closure. Kµ ∈ S for all K ∈ K and µ ∈M.

– Collision Resistance. The function family {H : Zm
q → Zn

q | H ∈ H} is collision
resistant, it means that for any efficient adversary and any randomly chosen
H, outputs a collision (s ̸= s′,Hs = Hs′) with at most negligible probability.

– ( 1
2 )-Hiding. For any H ∈ H, K ∈ K, and µ ∈M, let

DH(K,m) = {K′ ∈ K : HK = HK′ ∧Kµ = K′µ}

be the set secret keys that are consistent with the verification key HK and µ-
signature Kµ associated with K. The scheme is ( 1

2 )-Hiding if for any H ∈ H,

Pr
K∈K

[
∀µ ̸= µ′, |DH(K,m) ∩ DAcom(K,m′)| ≤ 1

2
· |DAcom(K,m)|

]
≥ δ

where δ close to 1.

Lemma 1 ([31]). If the Closure property holds, then the OTS scheme is correct.

Lemma 2 ([31]). Let q ≥ 2wp
√
mnΩ(1). Then the function family {H : S →

Zn
q | H ∈ H} satisfies the Collision Resistance property based on the hardness of

the SISn,m,q,2wp problem.

Lemma 3 ([31]). Let p = ⌈ q
n/m2n/m−1

2 ⌉. Then the OTS scheme satisfies the
( 1
2 )-Hiding property.

Lemma 4 ([31]). If the Closure, Collision Resistance, and ( 1
2 )-Hiding properties

hold, then the OTS scheme is strongly unforgeable.

3.2 Key-Homomorphic Evaluation Algorithm

In our construction, we borrow the idea from the standard signature work
[10], that is employing the key-homomorphic evaluation algorithm Eval(·, ·) from
[22,12,8] to evaluate circuits of a PRF. In particular, they used the evaluation
algorithm of the work [12]. The inputs of Eval(·, ·) are C and a set of ℓ different
matrices {A(i)}i∈[ℓ], where C : {0, 1}ℓ → {0, 1} is a fan-in-2 Boolean NAND
circuit expression of some functions such as a PRF, and each A(i) = AR(i) +

b(i)G ∈ Zn×m
q corresponds to each input wire of C, and where A

$←− Zn×m
q ,

R(i) $←− {1,−1}m×m, b(i) ∈ {0, 1} and G ∈ Zn×m
q is the gadget matrix [33]. The

algorithm deterministically output a matrix AC = ARC + C(b(1), . . . , b(ℓ))G ∈
Zn×m
q . The following lemma stats that RC is short enough, which will be used

in the analyzation of our unforgeability proof.
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Lemma 5 ([10]). Let C : {0, 1}ℓ → {0, 1} be a NAND Boolean circuit which has
depth d = c log ℓ for some constant c. Let {A(i) = AR(i) + b(i)G ∈ Zn×m

q }i∈[ℓ]

be ℓ different matrices correspond to each input wire of C where A
$←− Zn×m

q ,
R(i) $←− {1,−1}m×m, b(i) ∈ {0, 1} and G ∈ Zn×m

q is the gadget matrix. There is
an efficient deterministic evaluation algorithm Eval(C, (A(1), . . . ,A(ℓ))) runs in
time poly(4d, ℓ, n, log q), the output of the algorithm is a matrix

AC = ARC + C(b(1), . . . , b(ℓ))G = Eval(C, (A(1), . . . ,A(ℓ)))

where C(b(1), . . . , b(ℓ)) is the output bit of C on the arguments (b(1), . . . , b(ℓ)) and
RC ∈ Zm×m is a low norm matrix has ∥RC∥ ≤ O(ℓ2c ·m3/2).

3.3 Non-Interactive Witness-Indistinguishable Proof Systems

We first review the NIWI proof system presented by Gordon et al. [23]. Let
B(1), . . . , B(l) ∈ Zn×m

q and z(1), . . . , z(l) ∈ Zn
q for some l = l(n), and fix some ε.

Define the gap language Lσ,ε = (LYES, LNO) as follows:

LYES =

{(
B(1), . . . ,B(l)

z(1), . . . , z(l)

)
| ∃s ∈ Zn

q and i ∈ [l] :
∥∥z(i) − (B(i))⊤s

∥∥ ≤ σ
√
m

}

LNO =

{(
B(1), . . . ,B(l)

z(1), . . . , z(l)

)
| ∀s ∈ Zn

q and i ∈ [l] :
∥∥z(i) − (B(i))⊤s

∥∥ > ε · σ
√
m

}
By the methodology of Gordon et al. [23], there is an interactive witness in-
distinguishable proof system for Lσ,ε when set ε ≥ O(

√
m/ logm) by using

the techniques of the work [35], then the resulting protocol can be made non-
interactive in the standard model by applying the Fiat-Shamir transformation
from the work [37]. We can summarize these observations as the following lemma.

Lemma 6. Let ε ≥ O(
√
m/ logm). There is an NIWI proof system for Lσ,ε in

the standard model.

3.4 Lattice Backgrounds

We will need the following lemma to bound the norm of a random matrix in
{1,−1}m×m.

Lemma 7 ([1]). Let R be a k×m matrix chosen at random from {1,−1}k×m.
Then there is a universal constant c such that Pr

[
∥R∥ > c

√
k +m

]
< e−(k+m).

Lattices and Gaussian Distributions. Let m ∈ Z be a positive integer and
Λ ⊂ Rm be an m-dimensional full-rank lattice formed by the set of all integral
combinations of m linearly independent basis vectors B = (b1, . . . ,bm) ⊂ Zm,
i.e., Λ = L(B) =

{
Bc =

∑m
i=1 cibi : c ∈ Zm

}
. For positive integers n, m,
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q, a matrix A ∈ Zn×m
q , and a vector y ∈ Zm

q , the m-dimensional integer lat-
tice Λ⊥

q (A) is defined as Λ⊥
q (A) = {x ∈ Zm : Ax = 0 (mod q)}. Λy

q (A)
is defined as Λy

q (A) = {x ∈ Zm : Ax = y (mod q)}. For a vector c ∈ Rm

and a positive parameter σ ∈ R, define ρσ,c(x) = exp(−π∥x − c∥/σ2) and
ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x). For any y ∈ Λ, define the discrete Gaussian distribu-

tion over Λ with center c and parameter σ as DΛ,σ,c(y) = ρσ,c(y)/ρσ,c(Λ). For
simplicity, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ, respectively.

The following Lemma bounds the length of a discrete Gaussian vector with a
sufficiently large Gaussian parameter.

Lemma 8 ([34]). For any lattice Λ of integer dimension m with basis B, c ∈
Rm and Gaussian parameter σ > ∥B̃∥ ·ω(

√
logm), we have Pr[∥x−c∥ > σ

√
m :

x← DΛ,σ,c] ≤ negl(n).

Micciancio and Goldwassser [32] showed that a full-rank set T in a lattice Λ can
be converted into a basis B with an equally low Gram-Schmidt norm.

Lemma 9 ([32]). Let Λ be an m-dimensional lattice. There is a deterministic
algorithm that, given an arbitrary basis of Λ and a full-rank set T in Λ, returns
a basis B of Λ such that ∥B̃∥ ≤ ∥T̃∥.

The following generalization of leftover hash lemma is needed for our security
proof.

Lemma 10 ([1]). Suppose that m > (n + 1) log q + ω(log n) and that q > 2
is prime. Let R be an m × k matrix chosen uniformly in {1,−1}m×k mod q
where k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly
in Zn×m

q and Zn×k
q respectively. Then, for all vectors v in Zm

q , the distribution
(A,AR,R⊤v) is statistically close to the distribution (A,B,R⊤v).

Definition 3 (SIS Assumption [21,34]). Let q and β be functions of n. An
instance of the SISq,β problem is a uniformly random matrix A

$←− Zn×m
q for any

desired m = poly(n). The goal is to find a nonzero integer vector x ∈ Zm such
that Ax = 0 (mod q) and ∥x∥ ≤ β. For β = poly(n), q ≥ β · ω(

√
n log n), no

(quantum) algorithm can solve SISq,β problem in polynomial time.

We use the LWE assumption proposed by Gordon et al. [23] and they proved
it is implied by the standard LWE assumption [38]. The main difference is the
error distribution χ choosing from different distribution. Gordon et al. consider
the discrete Gaussian distribution DZm,αq where αq = ω(

√
log q).

Definition 4 (LWE Assumption [38]). Let q,m be functions of n, q > 2,
χ be a discretized normal error distribution parameterized by some α ∈ (0, 1),
which is obtained by drawing x ∈ R from the Gaussian distribution of width α.
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Define the LWE distribution Aσ,χ as: Choose a vector a ← Zn
q and an error

e← χ, output (a,a⊤x+ e). Defines the Search-LWEq,n,m,χ as: Fix an x
$←− Zn

q ,
given at most m samples from Aσ,χ, work out s. Defines the Decision-LWEq,n,m,χ

as: For a uniformly chosen x
$←− Zn

q , given the oracle to be (1) Aσ,χ or (2) the
uniform distribution over Zn+1

q , decide which is the case with at most m oracle
calls. For q,m, α =poly(n) such that αq = ω(

√
log q), no (quantum) algorithm

can solve the (Search/Decision)-LWEq,n,m,χ in polynomial time.

Definition 5 (Pseudorandom Functions). For a security parameter n > 0,
let k = k(n), m = m(n) and c = c(n). A pseudorandom function PRF : {0, 1}k×
{0, 1}m → {0, 1}c is an efficiently computable, deterministic two-input function
where the first input, denoted by K, is the key. Let Ω be the set of all functions
that map ℓ bits strings to c bits strings. There is a negligible function negl(n)
such that: ∣∣Pr[APRF(K,·)(1n) = 1

]
− Pr

[
AF (·)(1n) = 1]

∣∣ ≤ negl(n)

where the probability is taken over a uniform choice of key K
$←− {0, 1}k and

F
$←− Ω, and the randomness of A.

Algorithms on Lattices. Our work will use the following lattice algorithms.

Lemma 11 (SuperTrapGen Algorithm [23]). Let n ≥ 1, q ≥ 2,m = O(n log q)
be integers. There is a probabilistic algorithm SuperTrapGen(1n, 1m, q,B) that
on input 1n, 1m, q, and a matrix B ∈ Zn×m

q whose columns generate Zn
q , this

algorithm outputs a matrix A ∈ Zn×m
q and a trapdoor matrix TA ⊂ Λ⊥

q (A) i.e.,
TA is a basis (full-rank subset) of Λ⊥

q (A) such that AB⊤ = 0 (mod q), and the
distribution of A is statistically close to the uniform distribution over Zn×m

q .
Moreover, it holds that ∥T̃A∥ = O(log n ·

√
mn log q) and ∥TA∥ = O(n log n

√
m ·

log q) with all but negligible probability in n.

Lemma 12 (SampleRwithBasis Algorithm [2]). Let q > 2 be a prime, m > n be
integers. There is a probabilistic algorithm SampleRwithBasis(A) which takes as
input a matrix A ∈ Zn×m

q whose columns generate Zn
q , then generates a matrix

B ∈ Zn×m
q and a basis SB of Λ⊥

q (B) by invoking trapdoor generation algorithm.
The algorithm outputs a Zq-invertible matrix R in Zm×m from a distribution
that is statistically close to Dm×m such that B = AR−1 (mod q).

Lemma 13 (BasisExt Algorithm [16]). For i = 1, 2, 3, let Ai be a matrix in
Zn×mi
q whose columns generate Zn

q and let A′ = [A1 | A2 | A3]. Let TA2 be
a basis of Λ⊥(TA2

). There is a deterministic algorithm BasisExt(TA2
,A′) that

outputs a basis TA′ for Λ⊥(A′) such that ∥T̃A′∥ = ∥T̃A2
∥.



16 Mingxing Hu and Zhen Liu

Lemma 14 (BasisRand Algorithm [16]). Let SA′ ∈ Zm′×m′ be an extended
basis of Λ⊥(A′) output by the BasisExt algorithm. There is a probabilistic al-
gorithm BasisRand(SA′ , σ) which takes as input a basis SA′ and a parameter
σ ≥ ∥S̃A′∥ · ω(

√
log m), outputs a basis SA′′ ∈ Zm′×m′ of Λ⊥(A′) which is

statistically independent with the original basis SA′ , and has ∥S̃A′′∥ ≤ σ ·
√
m′

holds with overwhelming probability.

The following lattice basis extension algorithm also needed for our security proof,
which presented by Agrawal, Boneh and Boyen [1], so we abbreviate that as
BasisExtABB algorithm.

Lemma 15 (BasisExtABB Algorithm [1]). Let q be a prime, n,m be integers
with m > n. There is a probabilistic algorithm BasisExtABB(A,B,R,TB) which
takes as input two matrices A,B ∈ Zn×m

q whose columns generate Zn
q , a matrix

R ∈ Zm×m, and a basis TB ∈ Λ⊥
q (B), outputs a full-rank matrix TF in Λ⊥

q (F)

such that ∥T̃F∥ < (∥R∥+ 1) · ∥T̃B∥ where F = [A | AR+B] ∈ Zn×2m
q .

Lemma 16 (SamplePre Algorithm [21]). Let q > 2, m > n be integers. There
is a probabilistic algorithm SamplePre(A,TA,u, σ) which takes as input a matrix
A ∈ Zn×m

q whose columns generate Zn
q , and a basis TA of Λ⊥

q (A), a vector
u ∈ Zn

q , and a Gaussian parameter σ ≥ ∥T̃A∥ · ω(
√
logm), outputs a vector

e ∈ Λu
q (A) sampled from a distribution which is statistically close to DΛu

q (A),σ.

Lemma 17 (SampleR Algorithm [2]). Let q > 2 be a prime, m > n be integers.
There is a probabilistic algorithm SampleR(1m) which outputs a Zq-invertible
matrix R in Zm×m from a distribution that is statistically close to Dm×m with
∥R̃∥ ≤ O(

√
mn log q) · ω(

√
logm).

Gadget Matrix. The “gadget matrix” G defined in [33]. We recall the following
one fact of G.

Lemma 18 ([33]). Let q be a prime, and n, m be integers with m = n log q.
There is a fixed full-rank matrix such that the lattice Λ⊥

q (G) has a publicly
known basis TG ∈ Zm×m with ∥T̃G∥ ≤

√
5.

4 Our Construction

In this section, we give the lattice basis extension algorithm BasisExtBindOVK
in Sect. 4.1, based on that we present the construction of LRS in Sect. 4.2, and
then we give the concrete parameters in Sect. 4.3.
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4.1 Lattice Basis Extending Algorithm

Algorithm: BasisExtBindOVK(A,TA,F)

Inputs: A matrix A whose columns generate Zn
q , a basis TA of Λ⊥

q (A), and a
matrix F =

[
AcomTA | Acom +A

]
∈ Zn×2m

q where Acom is a uniformly
random matrix in Zn×m

q .

Outputs: A basis TF of Λ⊥
q (F).

The BasisExtBindOVK algorithm runs as follows:

1. Sample R← SampleR(1m).

2. Let Im be a m×m identity matrix. Construct SF =
[ −R Im
TAR −TA

]
. Note that

F · SF = 0 (mod q).

3. Use Lemma 9 to convert SF into a basis TF of Λ⊥
q (F) with the same Gram-

Schmidt norm as SF.

Lemma 19. The matrix SF output by BasisExtBindOVK is full-rank and satisfy
∥S̃F∥ ≤ O(m2) · ω(

√
logm).

Proof. By Lemma 17, we know the matrix R is invertible. By Lemma 11, we
know the basis TA of Λ⊥

q (A) is full-rank. Therefore, the matrix SF is full-rank,
so we can convert SF into a basis TF of Λ⊥

q (F) by Lemma 9. By Lemma 17, we
know the Gram-Schmidt norm of R is bounded by O(

√
mn log q) · ω(

√
logm).

By Lemma 11, we know ∥T̃A∥ ≤ O(log n ·
√
mn log q). As analyzed in Sect. 4.3,

it requires to set m = O(n log q). Therefore, we have ∥S̃F∥ ≤ O(m2) ·ω(
√
logm).

4.2 Construction

Setup(1n)

1. On input a security parameter n, sets the parameters q,m, k, σ1, σ2, σ3 as
specified in Sect. 4.3 below.

2. Select a secure PRF : {0, 1}k × {0, 1}m → {0, 1}, express it as a NAND
Boolean circuit CPRF.

3. Sample Acom = XOF(s) where Acom ∈ Zn×m
q .

4. Output the public parameters PP = (q,m, k, σ1, σ2, σ3,PRF,Acom, s).

Note that including the seed s in PP and sample the Acom by the extendable
output function XOF [40] is to guarantee the public has no concerns on the
existing of planted trapdoors in Acom.
In the following, PP are implicit input parameters to every algorithm.

KeyGen()
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1. Select B
$←− Zn×m

q and generate (A,TA) ← SuperTrapGen(1n, 1m, q,B)
where A ∈ Zn×m

q and TA ∈ Zm×m.

2. Let skOTS := TA and vkOTS := AcomTA.

3. Select a PRF key k = (k1, k2, . . . , kk)
$←− {0, 1}k.

4. For j = 1 to k, select Bj
$←− Zn×m

q .

5. Select A0,A1,C0,C1
$←− Zn×m

q .

6. Output vk = (A, (A0,A1),B, {Bj}j∈[k], (C0,C1)) and sk = (TA,k, vkOTS).

In the rest of the construction, for a ring R = (vk(1), . . . , vk(N)), we implicitly
parse each verification key vk(i) = (A(i), (A

(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k], (C
(i)
0 ,C

(i)
1 )),

and the corresponding signing key sk(i) = (SA(i) ,k(i), vk(i)OTS).

Sign(sk,µ,R)

1. On input a signing key sk(s) where s ∈ [N ] is the index of the signer in the
ring R, a message µ = (µ1, . . . , µm) ∈ {0, 1}m, and a ring of verification keys
R.

2. Compute d = PRF(k(s),µ).

3. For i = 1 to N , compute A
(i)
CPRF,µ

= Eval(CPRF, ({B(i)
j }j∈[k],C

(i)
µ1 , . . . ,C

(i)
µm))

∈ Zn×m
q , set F

(i)
CPRF,µ,1−d =

[
A(i) | A(i)

1−d −A
(i)
CPRF,µ

]
∈ Zn×2m

q .

4. For i = 1 to N , select u(i) $←− Zn
q , compute e(i)1 ← SamplePre(A(s),TA(s) ,u(i), σ1).

5. For i = s, compute e
(s)
0 ← SamplePre(A(s),TA(s) , u′(s), σ1) where u′(s) =

(A
(s)
CPRF,µ

−A
(s)
1−d) · e

(s)
1 .

6. For i = s+ 1, . . . , N, 1, . . . , s− 1, uniformly choose e
(i)
0 ∈ Zm subject to the

condition that F
(i)
CPRF,µ,1−d · (e

(i)
0 ; e

(i)
1 ) = 0 (mod q).

7. For i = 1 to N , select x(i) $←− Zn
q , compute z(i) = (x(i))⊤B(i) + e

(i)
0 .

8. Use the witness {x(i), i}i∈[N ] to construct an NIWI proof π for the gap
language Lσ,ε as Sect. 3.3.

9. Compute the one-time signature s = TA(s)µ

10. For i = 1 to N , set F(i) =
[
AcomTA(s) | Acom +A(i)

]
∈ Zn×2m

q .

11. Compute TF(s) ← BasisExtBindOVK(A(s),TA(s) ,F(s)).

12. Compute TFchk ← BasisRand(BasisExt(TF(s) ,Fchk), σ2) where Fchk = [F(1) |
· · · | F(N)] ∈ Zn×2Nm

q .
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13. Sample echk ← SamplePre(Fchk,TFchk ,0, σ3).

14. Output the signature Σ = (s, vkOTS, echk, {e(i)1 , z(i)}i∈[N ], π).

Ver(R,µ, Σ)

1. On input a ring of verification keys R, a message µ, and a signature Σ.

2. Compute Fchk as in Sign algorithm. Check if ∥echk∥ ≤ σ3

√
2Nm and Fchk ·

echk = 0 (mod q) holds, otherwise return 0.

3. For i = 1 to N and d ∈ {0, 1}, compute F
(i)
CPRF,µ,d =

[
A(i) | A(i)

d −A
(i)
CPRF,µ

]
as Sign algorithm. Check if ∥e(i)1 ∥ ≤ σ1

√
m and F

(i)
CPRF,µ,d · (z(i); e

(i)
1 ) = 0

(mod q) holds for d = 0 or 1, otherwise return 0.

4. Check if s is well-formed and Acom · s = vkOTS · µ, otherwise return 0.

5. Check if the proof π is correct, return 1, otherwise return 0.

Link(R0,µ0, Σ0,R1,µ1, Σ1)

1. On input two valid signature tuples (R0,µ0, Σ0) and (R1,µ1, Σ1).

2. Let vkOTS,0 and vkOTS,1 be the one-time verification keys in Σ0 and Σ1,
respectively.

3. Check if vkOTS,0 = vkOTS,1 holds, return 1, otherwise return 0.

4.3 Correctness and Parameters

We now show the correctness. We first prove the OTS scheme satisfies the Closure
property. In our parameter setting below, it is required to set q = O(ℓ4c ·m4) ·
(ω(
√
logm))2 for some constant c where ℓ = k +m is the input length of PRF,

m = 6n1+τ where τ > 0 is a constant such that nτ > O(log n). To ensure the
OTS scheme is 1

2 -Hiding, it is required to set p = ⌈ q
n/m2n/m−1

2 ⌉ (see Lemma 3),
therefore, p < q. In this setting, it holds that ∥TA(s)∥∞ ≤ p since ∥TA(s)∥ =
O(n log n

√
m · log q) by Lemma 11. Therefore, TA(s) ∈ K and TA(s)µ ∈ S i.e.,

s ∈ S for all TA(s) ∈ K, and so the Closure property holds and s is well-formed.

By Lemma 16, each e
(i)
1 in Σ follows the distribution D

Λu(i)
q (A(s)),σ1

, then by

the construction of z(i) and Lemma 11, it holds that F
(i)
CPRF,µ,d · (z(i); e

(i)
1 ) = 0

(mod q) for d = 0 or 1. By Lemma 16, the echk in Σ follows the distribution
DΛ⊥

q (Fchk),σ3
, therefore, it holds that Fchk ·echk = 0 (mod q). By Lemma 8, e(i)1 ≤

σ
√
m and echk ≤ σ3

√
2Nm holds with overwhelming probability. Therefore, the

signature is accepted by the Ver algorithm with overwhelming probability.

For the correctness of Link, let Σ0 = (ΣOTS,0, vkOTS,0 = AcomTA(0) , . . . ) and
Σ1 = (ΣOTS,1, vkOTS,1 = AcomTA(1) , . . . ) be generated by sk0 = TA(0) and
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sk1 = TA(1) , respectively. In the case sk0 = sk1 i.e., TA(0) = TA(1) , the signer-
linkable proof in Sect. 5 shows that it is infeasible to change Acom to a A′

com such
that vkOTS,0 ̸= vkOTS,1 unless the underlying hardness assumption is broken,
therefore, vkOTS,0 = vkOTS,1 holds with overwhelming probability. In the case
sk0 ̸= sk1 i.e., TA(0) ̸= TA(1) , the signer-non-slanderable proof in Sect. 5 shows
that it is infeasible to compute a A′

com such that vkOTS,0 = vkOTS,1 unless the
underlying hardness assumption is broken, therefore, vkOTS,0 ̸= vkOTS,1 holds
with overwhelming probability.

We now explain the parameters choosing.

– Let n be the security parameter and k = k(n) be the secret key length of
PRF. To ensure that hard lattices with good short bases can be generated
by SuperTrapGen, we need to set m = 6n1+τ where τ > 0 is a constant such
that nτ > O(log n).

– To ensure that the distribution on the output of SamplePre statistically close
to the distribution DZm,σ1

and DZ2Nm,σ3
, we need to set the Gaussian pa-

rameter σ1 and σ3 sufficiently large that is σ1 = O(ℓ2c ·m3/2)·ω(
√
logm) and

σ3 = O(N1/2 ·m5/2) · ω(
√
logm), respectively (see the unforgeability proof

below). To ensure the distribution on the output of BasisRand statistically in-
dependent with the original basis, we need to set the σ2 = O(m2)·ω(

√
logm)

(see the unforgeability proof below).

– To ensure that vectors sampled using a trapdoor are difficult SIS solutions,
we need to set β = O(ℓ4c·m7/2)·ω(

√
logm) such that β ≥ O(ℓ2c·m3/2)·σ1

√
m

for some constant c (see the unforgeability proof below).

– For the parameter q, we employ the work [26] to instantiate our PRF, which
based on standard LWE assumption with polynomial modulus q = O(n8+ϵ)
for any ϵ ∈ (0, 1). On the other hand, we employ the work [31] to instantiate
our OTS, it is required to set q ≥ 2wp

√
mnΩ(1) such that the property

collision resistant holds (see Lemma 2). To ensure our construction based on
SIS has a worst-case lattice reduction as defined in Definition 3, we need
to set the modulus q ≥ β · ω(

√
n log n). To guarantee the hardness of the

based LWEq,n,m,χ assumption, we need to set α = ω(
√
log q)/q such that

αq = ω(
√
log q) as defined in Definition 4. To satisfy these requirements, we

set q = O(ℓ4c ·m4) · (ω(
√
logm))2.

As the parameters set above, we note that the OTS scheme achieves the correct-
ness and strongly unforgeable (see Lemma 1 and 4) and the PRF is secure.

5 Proofs of Security and Privacy

Theorem 1 (Unforgeability). Let m, q, β, α, σ1, σ2, σ3 be some polynomials
in the security parameter n. For large enough σ1 = O(ℓ2c · m3/2) · ω(

√
logm),

σ2 = O(m2) · ω(
√
logm), σ3 = O(N1/2 · m5/2) · ω(

√
logm), and β = O(ℓ4c ·

m7/2) · ω(
√
logm), the LRS scheme is sUnfInsCor secure in the standard model.
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Proof. We proof the theorem by giving a reduction.

Reduction. Suppose the PPT adversary A has non-negligible advantage in
forging the signature by mounting the attack as defined in the security model of
Definition 1 on LRS, then there exists a PPT oracle algorithm (a reduction) S
attacking the SISq,n,m,β problem. Consider the following security game between
A and S. Upon receiving a challenge A ∈ Zn×m

q that is formed by m uniformly
random and independent samples from Zn

q , S simulates as follows.

Setup. S takes as input a security parameter n and a randomness γst to invoke
PP← Setup(1n; γst) algorithm. S simulates as follows.

– Select a random index i⋄
$←− {1, . . . , N} and sets A(i⋄) = A, then sample

(B(i⋄),TB(i⋄))← SuperTrapGen(1n, 1m, q,A(i⋄)).

– For i = i⋄ + 1, . . . , N, 1, . . . , i⋄ − 1:

• Select B(i) $←− Zn×m
q .

• Compute (A(i),TA(i)) ← SuperTrapGen(1n, 1m, q,B(i)).

• Let sk(i)OTS = TA(i) and vk(i)OTS = AcomTA(i) .

– For i = i⋄, select K̂(i⋄) $←− K and set vk(i
⋄)

OTS := K̂(i⋄).

– For i = 1 to N and d ∈ {0, 1}:

• Choose R
A

(i)
d

,R
C

(i)
d

$←− {1,−1}m×m.

• Construct A
(i)
d = A(i)R

A
(i)
d

+ dG and C
(i)
d = A(i)R

C
(i)
d

+ dG where G

is the gadget matrix.

– For i = 1 to N :

• Select a PRF key k(i) = (k
(i)
1 , k

(i)
2 , . . . , k

(i)
k )

$←− {0, 1}k.

– For i = 1 to N and j = 1 to k:

• Choose R
B

(i)
j

$←− {1,−1}m×m and construct B
(i)
j = A(i)R

B
(i)
j

+ k
(i)
j G.

– Let S = (vk(1), . . . , vk(N)) where each vk(i) = (A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k],

(C
(i)
0 ,C

(i)
1 )), then sends (PP, S, γst) to A.

Probing Signing Oracle. A adaptively issues tuples for querying the signing
oracle OSign(·, ·, ·). For simplicity, here consider only one tuple (µ,R, s) where s ∈
[N ], and requires that vk(s) ∈ S∩R. Let N = |R|. Assume the ring R = (vk(1), . . . ,
vk(N

′)), parse vk(s) = (A(s), (A
(s)
0 ,A

(s)
1 ),B(s), {B(s)

j }j∈[k], (C
(s)
0 ,C

(s)
1 )). S does

the following to response the signature.

– Compute d = PRF(k(s),µ).
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– For i = 1 to N :

• Compute A
(i)
CPRF,µ

= Eval(CPRF, ({Bj}(i)j∈[k],C
(i)
µ1 ,C

(i)
µ2 , . . . ,C

(i)
µm))

• Set F
(i)
CPRF,µ,1−d =

[
A(i) | A(i)

1−d −A
(i)
CPRF,µ

]
.

• Select u(i) $←− Zn
q .

– For i = i⋄ + 1, . . . , N, 1, . . . , i⋄ − 1:

• Compute e
(i)
1 ← SamplePre(A(s),TA(s) ,u(i), σ1).

• Uniformly choose e
(i)
0 ∈ Zm subject to the condition that F

(i)
CPRF,µ,1−d ·

(e
(i)
0 ; e

(i)
1 ) = 0 (mod q).

– For i = i⋄, note that F
(i⋄)
CPRF,µ,1−d can be transformed to

F
(i⋄)
CPRF,µ,1−d =

[
A(i⋄) | A(i⋄)

1−d −A
(i⋄)
CPRF,µ

]
=

[
A(i⋄) | A(i⋄)(R

A
(i⋄)
1−d

−R
(i⋄)
CPRF,µ

) + (1− 2d)G
]
∈ Zn×2m

q

then we can extend TG to T
F

(i⋄)
CPRF,µ,1−d

by BasisExtABB, then compute

(ei⋄0 ; ei⋄1 ) by SamplePre(F(i⋄)
CPRF,µ,1−d,TF

(i⋄)
CPRF,µ,1−d

, σ1,0).

– For i = 1 to N , sample x(i) ← Zn
q and z(i) = (B(i))⊤x(i) + e

(i)
0 .

– Construct an NIWI proof π for the gap language Lσ,ε by using the witness
{x(i), i}i∈[N ].

– For i = 1 to N , set F(i) =
[
AcomTA(i) | Acom +A(i)

]
∈ Zn×2m

q . Let Fchk =

[F(1) | · · · | F(N)] ∈ Zn×2Nm
q .

– Compute TF(s) ← BasisExtBindOVK(A(s),TA(s) ,F(s)),TFchk ← BasisRand
(BasisExt(TF(s) ,Fchk), σ2), and echk ← SamplePre(Fchk,TFchk ,0, σ3).

– If s = i⋄, select s̄
$←− {1, 2, . . . , N} \ i⋄, then use TA(s̄) to compute the TF(s̄) ,

TFchk , and echk as the last step.

– If i ̸= i⋄, compute the one-time signature s = TA(i)µ. If i′ = i⋄, uniformly
choose s

$←− S subject to the condition that Acoms = K̂µ.

– Return the signature Σ = (s, vk(s)OTS, echk, {e(i)1 , z(i)}i∈[N ], π) to A and adds
(µ,R, Σ) to a list L which S initialized in prior.

Probing Corrupting Oracle. A adaptively issues index i for querying the
corrupting oracle OCorrupt(·), S returns sk(i) to A and adds vk(i) to a set C
which S initialized in prior, while if i = i⋄ then S aborts.
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Exploiting the Forgery. A outputs one forgery (µ∗,R∗, Σ∗). Let N∗ = |R∗|.
Parse µ∗ = (µ∗

1, . . . , µ
∗
t ) and R∗ = (vk∗(1), . . . , vk∗(N

∗)
) where each vk(i

∗) =

(A(i∗), (A
(i∗)
0 ,A

(i∗)
1 ),B(i∗), {B(i∗)

j }j∈[k], (C
(i∗)
0 ,C

(i∗)
1 )). Parse Σ∗ = (s∗, vk∗OTS,

e∗chk, {e
(i∗)
1 , z(i

∗)}i∗∈[N∗], π
∗). S does the following to exploit the forgery.

– Check if Ver(µ∗,R∗, Σ∗) = 1 and (µ∗,R∗, Σ∗) /∈ L and R∗ ⊆ S \C, otherwise
S aborts.

– Compute d = PRF(k(i⋄),µ∗).

– For i∗ = i⋄:

• Compute A
(i⋄)
CPRF,µ∗ = A(i⋄)R

(i⋄)
CPRF,µ∗ + PRF(k(i⋄),µ∗)G by invoking the

Eval(CPRF, ({B(i⋄)
j }j∈[k],C

(i⋄)
µ∗
1
,C

(i⋄)
µ∗
2
, . . . ,C

(i⋄)
µ∗
m
)).

• Set F
(i⋄)
CPRF,µ∗,d =

[
A(i⋄) | A(i⋄)

d −A
(i⋄)
CPRF,µ∗

]
.

– Use TB(i⋄) to recover e
(i⋄)
0 . Then check if ∥e(i

⋄)
0 ∥ ≤ σ1

√
m and F

(i⋄)
CPRF,µ∗,d ·

(z(i
⋄); e

(i⋄)
1 ) = 0 (mod q) holds, otherwise S aborts.

– Note that the equation F
(i⋄)
CPRF,µ∗,d · (z(i

⋄); e
(i⋄)
1 ) = 0 (mod q) can be trans-

formed to the following[
A(i⋄) | A(i⋄)

d −A
(i⋄)
CPRF,µ∗

]
· (z(i

⋄); e
(i⋄)
1 ) = 0 (mod q)[

A(i⋄) | A(i⋄)(R
A

(i⋄)
d

−R
(i⋄)
CPRF,µ∗)+(d−PRF(k(i⋄),µ∗))

]
·(z(i

⋄); e
(i⋄)
1 ) = 0 (mod q)[

A(i⋄) | A(i⋄)(R
A

(i⋄)
d

−R
(i⋄)
CPRF,µ∗)

]
· ((B(i⋄))⊤x(i⋄) + e

(i⋄)
0 ; e

(i⋄)
1 ) = 0 (mod q)

A(i⋄) · (e(i⋄)
0 + (R

A
(i⋄)
d

−R
(i⋄)
CPRF,µ∗) · e(i⋄)

1 ) = 0 (mod q)

– Return e
(i⋄)
0 + (R

A
(i⋄)
d

−R
(i⋄)
CPRF,µ∗) · e(i

⋄)
1 as a SISq,n,m,β solution, and return

(Σ∗
OTS,µ

∗) as the forged one-time signature.

Claim. The public parameters PP and the set of verifications keys S that simu-
lated by S is statistically close to those in the real attack.

Proof. The matrices {A(i)}i∈[N ] in the real scheme and the matrices {A(i)}i∈[N ]\i⋄

in the simulation were generated by SuperTrapGen while the matrix A(i⋄) is
formed by m uniformly random and independent samples from Zn

q from the SIS
challenger. By Lemma 11, we know the {A(i)}i∈[N ] in both real and simulated
world have distribution that is statistically indistinguishable with real attack. For
the matrices {B(i)}i∈[N ], it were uniformly random selected in the real scheme;
In the simulation, the matrices {B(i)}i∈[N ]\i⋄ were chosen uniformly at random
while the matrix B(i⋄) was generated by SuperTrapGen. By Lemma 11, we know
the {B(i)}i∈[N ] in both real and simulated world have distribution that is statis-
tically indistinguishable with real attack. For the matrices {B(i)}i∈[N ], both real
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and simulated world select that in uniformly random, so it is immediate. For
the matrices (A

(i)
0 ,A

(i)
1 ), {B(i)

j }j∈[k], and (C
(i)
0 ,C

(i)
1 ) for all i ∈ [N ] generated

in the simulation have distribution that is statistically indistinguishable with
real attack by Lemma 10. Therefore, the set of verifications keys S given to A is
statistically close to those in the real attack.

Claim. The replies of the signing oracle OSign(·, ·, ·) simulated by S is statisti-
cally close to those in the real attack when set σ1 = O(ℓ2c ·m3/2) · ω(

√
logm),

σ2 = O(m2) · ω(
√
logm), and σ3 = O(N1/2 ·m5/2) · ω(

√
logm).

Proof. By Definition 4, in our parameters setting, the entries z(1), . . . , z(N) in
the signature tuples output from the oracle OSign(·, ·, ·) are statistically close to
those in the real attack. For the π, there is no change in the simulation and real
attack. For the vkOTS and s, there is no change for the queried index i ∈ [N ] \ i⋄
in both simulated and real world. For the queried index i = i⋄, both vkOTS and s
are selected from the desired distribution, so they are statistically close to those
in the real attack. Therefore, we focus on the entries (echk, (e

(1)
1 , . . . , e

(N)
1 )).

By Lemma 16, for sufficient large Gaussian parameter σ1 and σ3, the distribution
of the entries (echk, (e

(1)
1 , . . . , e

(N)
1 )) generated by SamplePre are statistically close

to the distribution of signatures generated in the real scheme. By Lemma 14,
for sufficient large Gaussian parameter σ2, the distribution of the output of
the BasisRand algorithm is statistically independent with the original basis. We
compute the σ1, σ2, and σ3 as follows.

– In the simulating signing oracle phase, we constructed F
(i⋄)
CPRF,µ,1−d =

[
A(i⋄) |

A(i⋄)(R
(i⋄)
1−d −R

(i⋄)
CPRF,µ

) + (1 − 2d)G
]
. By Lemma 7, R(i⋄)

1−d ≤ c
√
m for some

constant c. By Lemma 5,
∥∥R̃(i⋄)

CPRF,µ

∥∥ ≤ O(ℓ2c · m3/2) for some constant c.
Let R̄(i⋄) = R

(i⋄)
1−d − R

(i⋄)
CPRF,µ

. By Lemma 15,
∥∥T̃

F
(i⋄)
CPRF,µ,1−d

∥∥ < (
∥∥R̄(i⋄) +

1
∥∥) · ∥∥T̃G

∥∥. By Lemma 18, we know ∥T̃G∥ ≤
√
5. By Lemma 16, it requires

to set σ1 >
∥∥T̃

F
(i⋄)
CPRF,µ,1−d

∥∥ · ω(√logm). To satisfy these requirements, set

σ1 = O(ℓ2c ·m3/2) · ω(
√
logm) is sufficient.

– By Lemma 11,
∥∥T̃A(s)

∥∥ = O(log n ·
√
mn log q). By Lemma 19,

∥∥T̃F(s)

∥∥ ≤
O(m2) ·ω(

√
logm). Let T′

Fchk
be the extend basis that output from BasisExt

(TF(s) ,Fchk). By Lemma 13,
∥∥T̃′

Fchk

∥∥ =
∥∥T̃F(s)

∥∥. By Lemma 14, it is re-
quired to set σ2 ≥

∥∥T̃′
Fchk

∥∥ · ω(√logm). To satisfy these requirements, set
σ2 = O(m2) · ω(

√
logm) is sufficient.

– By Lemma 14,
∥∥T̃Fchk

∥∥ ≤ σ2

√
2Nm.

By Lemma 16, it is required to set σ3 ≥
∥∥T̃Fchk

∥∥ ·ω(√logm). To satisfy these
requirements, set σ3 = O(N1/2 ·m5/2) · ω(

√
logm) is sufficient.

Claim. A can produce a valid SISq,n,m,β solution with overwhelming probability.
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Proof. We argue that e
(i⋄)
0 + (R

A
(i⋄)
d

− R
(i⋄)
CPRF,µ∗) · e(i

⋄)
1 that S finally output

in the simulation is a valid SISq,n,m,β solution in two steps. We first explain it
is sufficiently short, note that e

(i⋄)
0 and e

(i⋄)
1 follow the distribution DZm,σ. By

Lemma 8, ∥e(i
⋄)

0 ∥, ∥e(i
⋄)

1 ∥ ≤ σ1
√
m. By Lemma 5,

∥∥R(i⋄)
CPRF,µ

∥∥ ≤ O(ℓ2c ·m3/2). By
Lemma 7, the norm of R

A
(i⋄)
d

is bounded by
√
m. By Lemma 18, ∥T̃G∥ ≤

√
5.

Therefore, it requires to set β ≥ O(ℓ2c ·m3/2) · σ1
√
m.

Then we prove e
(i⋄)
0 + (R

A
(i⋄)
d

−R
(i⋄)
CPRF,µ∗) · e(i

⋄)
1 is non-zero with overwhelming

probability. Suppose that the e
(i⋄)
1 = 0, then for a valid forgery we must have

at least one e
(i⋄)
0 ̸= 0 and thus e

(i⋄)
0 + (R

A
(i⋄)
d

− R
(i⋄)
CPRF,µ∗) · e(i

⋄)
1 is non-zero.

Suppose on the contrary, there exists one e
(i⋄)
1 ̸= 0, then we need to argue

(R
A

(i⋄)
d

−R
(i⋄)
CPRF,µ∗) · e(i

⋄)
1 is non-zero with overwhelming probability. Due to we

assume e
(i⋄)
1 = (e1, . . . , em) ̸= 0 which means at least one coordinate of e

(i⋄)
1 ,

denote as eo where o ∈ [m], such that eo ̸= 0. Let R̄ = (R
A

(i⋄)
d

−R
(i⋄)
CPRF,µ∗) and

write R̄ = (r̄1, . . . , r̄m) and so R̄ · e(i
⋄)

1 = r̄oeo +
∑

ō∈[m]\o r̄ōeō. Note that for
the fixed message µ∗ on which A made the forgery, R̄ (therefore r̄o) depends
on the low-norm matrices (R

A
(i⋄)
0

,R
A

(i⋄)
1

),
{
R

B
(i⋄)
j

}
j∈[k]

, (R
C

(i⋄)
0

,R
C

(i⋄)
1

) and

PRF key k(i⋄). The information about r̄o for A is from the public matrices in
the verification set S that given to the A, and note that the PRF keys k which is
not included in S. Therefore, by the pigeonhole principle there is an exponentially
large freedom to pick a value to r̄o which is compatible with A’s view.

Finally, we analyze A’s advantage. Let ϵLRS denotes the advantage of A success-
fully forge the signature Σ∗ with respect to the message it wants to forge. Let
ϵPRF denotes the advantage of A successfully predict the the bit value b with
respect to the message it wants to forge. Let ϵSIS denotes the advantage of S
successfully output a SISq,n,m,β solution. Assume the based PRF is secure, A
can not distinguish PRF from random functions, it will randomly pick either{
A

(i∗)
0

}
i∗∈[N∗]

or
{
A

(i∗)
1

}
i∗∈[N∗]

to make a forgery. Therefore, with 1
2 chance A

will forge the one that S will be able to use to break the SISq,n,m,β . Moreover, the
probability Pr[i⋄ ∈ R∗] ≥ 1

N . Therefore, we have ϵSIS ≥ ϵLRS/(2N)−ϵPRF−ϵOTS−
negl(n) where negl(n) denote the negligible statistical error in the simulation.
For the running time to answer one signing query, S’s running time is bounded
by O(TBasisExtABB +TSamplePre +TotsSign +TEval). So the total running time of S in
the simulation is bounded by O(QSign ·(TBasisExtABB+TSamplePre+TotsSign+TEval)).
This completes the proof.

Theorem 2 (Anonymity). Set the parameters as Sect. 4.3, the LRS scheme
is signer-anonymous in the standard model.

Proof. The proof proceeds in a sequence of experiments E0, H0, H1, E1 such that
E0 (resp., E1) corresponds to the experiment of Anonymity in Definition 1 with
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b = 0 (resp., b = 1), and such that each experiment is indistinguishable from the
one before it. This implies that A has negligible advantage in distinguishing E0

from E1, as desired.

E0: This experiment first generate PP← Setup(1n; γst), and
{

vk(i), sk(i)
}
i∈[N ]

by

repeatedly invoking KeyGen(γ(i)
kg ), and A is given (PP, S = {vk(i)}i∈[N ]) and the

randomness γst. Then A provides a challenge (R∗,µ∗, s∗0, s
∗
1) to the challenger

after the probing phase, and requires that s∗0 ̸= s∗1, vk(s
∗
0), vk(s

∗
1) ∈ S ∩ R∗, and

none of OSign(·, ·, s∗0), OSign(·, ·, s∗1), OCorrupt(s∗0), OCorrupt(s∗1) was queried.
For the challenge (R∗,µ∗, s∗0, s

∗
1), the experiment uses sk(s

∗
0) to compute the

signature tuple Σ∗ and responses to A. After the probing phase and with the
restriction that none of OSign(·, ·, s∗0), OSign(·, ·, s∗1), OCorrupt(s∗0), OCorrupt(s∗1)
was queried, A outputs the guess.

H0: This experiment is as same as experiment E0 except that we change how the
signature Σ∗ is generated: we sample e

(s∗1)
0 by SamplePre rather than randomly

select it from Zm.

Then we show that E0 and H0 are indistinguishable for A, which we do by giving
a reduction from the hardness assumption LWEq,n,m,χ.

Reduction. Suppose A has non-negligible advantage in distinguishing E0 and
H0, then there exists a PPT oracle algorithm (a reduction) S breaking the hard-
ness assumption LWEq,n,m,χ. S is given as input (B, z) ∈ Zn×m

q × Zm
q , where B

is uniform and z is either uniform or equal to B⊤s+ e for e← DZm,αq
√
2.

Setup Phase. S takes as input a security parameter n and a randomness γ to
invoke PP← Setup(1n; γst) algorithm. S simulates as follows.

– Choose a random index i⋄
$←− {1, . . . , N}, sets B(i⋄) = B.

– For i = i⋄ + 1, . . . , N, 1, . . . , i⋄ − 1, select B(i) $←− Zn×m
q .

– For i = 1 to N , compute (A(i),TA(i))← SuperTrapGen(1n, 1m, q, B(i), γ
(i)
kg ).

Set vk(i)OTS = AcomTA(i) and sk(i)OTS = TA(i) .

– For i = 1 to N and d ∈ {0, 1}, select A
(i)
d ,C

(i)
d

$←− Zn×m
q .

– For i = 1 to N , select a PRF key k(i) $←− {0, 1}k.

– For j = 1 to k, select B
(i)
j

$←− Zn×m
q .

– Set S = {vk(i)}i∈[N ], vk(i) = (A(i), (A
(i)
0 ,A

(i)
1 ),B(i), {B(i)

j }j∈[k], (C
(i)
0 ,C

(i)
1 )),

then sends (PP, S, γst) to A.

Challenge. A provides a challenge (R∗,µ∗, s∗0, s
∗
1) to the challenger. S chooses

a random bit b ∈ {0, 1} and fixes it throughout the response phase for the
challenge. For each tuple (R∗,µ∗, s∗0, s

∗
1) in the challenge, S does as following:
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– Let N∗ = |R∗|. Check if s∗0 ̸= s∗1, vk(s
∗
0), vk(s

∗
1) ∈ S∩R∗ and i⋄ = s∗1, otherwise

S outputs a random bit and aborts the simulation.

– Compute d = PRF(k(s∗0),µ∗).

– Compute Fchk and echk as in Sign algorithm.

– For i∗ = s∗0, select e
(s∗0)
1

$←− Zm
q and computes e

(s∗0)
0 by SamplePre such that

F
(s∗0)
CPRF,µ∗,1−d · (e

(s∗0)
0 ; e

(s∗0)
1 ) = 0 (mod q) holds as in Sign algorithm.

– For i∗ = s∗1, let z(i∗) = z, uniformly choose e(s
∗
1)

1 ∈ Zm
q such that F(s∗1)

CPRF,µ∗,1−d·
(z; e

(i∗1)
1 ) = 0 (mod q) holds.

– For all i∗ ∈ [N∗] and i∗ ̸= s∗0, s
∗
1, select e

(i∗)
1 ← DZm,σ and compute e

(i∗)
0 ∈

Zm uniformly subject to the condition that F
(i∗)
CPRF,µ∗,1−d · (e

(i∗)
0 ; e

(i∗)
1 ) = 0

(mod q) holds as in Sign algorithm.

– For i∗ = s∗1 + 1, . . . , N∗, 1, . . . , s∗1 − 1, compute the ciphertext z(i
∗) as in E0

and H0. Then construct an NIWI proof π for the gap language Lσ,ε as in
Sign algorithm.

– Compute one-time signature s = T
A(s∗0)µ∗.

– Return the signature Σ∗ = (s, vkOTS, echk, {e(i
∗)

1 , z(i
∗)}i∗∈[N∗], π) and the

randomness set {γ(i)
kg }i∈[N ]\{s∗0 ,s∗1} to A.

Guess. When A outputs the guess b′, S outputs the guess b′.

Let D$ denote the above experiment when S’s input z is uniformly distributed.
Let DLWE denote the above experiment when S’s input z is distributed according
to y = B⊤s+ e for e← DZm,αq

√
2.

Claim. A’s view in D$ is statistically close to its view in E0.

Proof. In experiment E0, we have z(s
∗
1) = (B(s∗1))⊤s(s

∗
1)+e

(s∗1)
0 where e

(s∗1)
0 is cho-

sen uniformly subject to F
(s∗1)
CPRF,µ∗,1−d ·(e

(s∗1)
0 ; e

(s∗1)
1 ) = 0 (mod q) and e

(s∗1)
1

$←− Zm
q .

In D$, we let z(s
∗
1) = z and recall that z = B⊤s + e for e ∈ Zm

q is uniformly
selected. And e

(s∗1)
1 is chosen uniformly subject to F

(s∗1)
CPRF,µ∗,1−d · (z; e

(s∗1)
1 ) = 0

(mod q). Recall F(s∗1)
CPRF,µ∗,1−d = A(s∗1)e

(s∗1)
0 +(A

(s∗1)
1−d−A

(s∗1)
CPRF,µ

)·e(s
∗
1)

1 = 0 (mod q).
We can view A(s∗1) and (A

(s∗1)
1−d − A

(s∗1)
CPRF,µ

) as regular function Zm
q → Zn

q . By
Lemma 10, the randomly chosen e

(s∗1)
0 is uniform over the images of A(s∗1). For

a regular function, choosing a uniform element from the images, followed by a
uniform element from its pre-images, is equivalent to choosing a uniform ele-
ment from the domain, as is done in D$. Therefore the choice of e(s

∗
1)

0 in E0 is
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statistically close to uniform over Zm
q , and hence z(s

∗
1) is statistically indistin-

guishable between E0 and D$. Similarly, this proof also can show the e
(s∗1)
1 in D$

statistically close to uniform over Zm
q .

Claim. A’s view in DLWE is statistically close to its view in H0.

Proof. In experiment H0, z(s∗1) = (B(s∗1))⊤x(s∗1)+e
(s∗1)
0 where e

(s∗1)
0 is sampled by

SamplePre algorithm. In DLWE, we let z(s
∗
1) = z and recall that z = B⊤x+ e for

e ← DZm,αq
√
2. The proof to show e

(s∗1)
1 in H0 and DLWE indistinguishable is as

same as the last claim. Under the setting of the parameters given in Sect. 4.3,
and by Lemma 16, z(s∗1) is indistinguishable between H0 and D$.

H1 : This experiment is the same as experiment E1 except that the proof π is
now computed using the witness {x(i∗), i∗}(s

∗
1)

i∗∈[N∗] rather than {x(i∗), i∗}(s
∗
0)

i∗∈[N∗].

The rest of the proof is straightforward. H1 is indistinguishable from E1 by ex-
actly the same argument used to show the indistinguishability of H0 and E0. By
the witness indistinguishability of the proof system, H0 and H1 are indistinguish-
able. This completes the proof.

Theorem 3 (Linkability). Set the parameters as Sect. 4.3, the LRS scheme
is signer-linkable in the standard model.

Proof. In LRS, the vkOTS consists of two parts, Acom and TA i.e., vkOTS =
AcomTA. The goal of the adversary is to produce a new vk∗OTS ̸= vkOTS. However,
in order to achieve that, the adversary must generate a TF(s) for some index s
belong to the ring that the adversary provided, which contradicts the hardness
of the SIS problem.

Reduction. Suppose the PPT adversary A has non-negligible advantage in
breaking the signer-linkability by mounting the attack as defined in the linka-
bility model of Definition 1 on LRS, then there exists a PPT oracle algorithm (a
reduction) S attacking the SISq,n,m,β problem. Consider the following security
game between A and S. Upon receiving a challenge A ∈ Zn×m

q that is formed by
m uniformly random and independent samples from Zn

q , S simulates as follows.

Setup Phase. S takes as input a security parameter n and a randomness γst to
invoke PP← Setup(1n; γst) algorithm, then S does as follows.

– Compute (B,TB, R̄)← SampleRwithBasis(Acom) such that B = AcomR̄
−1.

– Let A = [a1 | · · · | am].

– For i = 1 to m:

• Sample r′i ← SamplePre(B,TB,ai, σ) such that Br′i = ai.

• Repeat the last step until r′i is Zq linearly independent of r1, . . . , ri−1.
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– Let R′ ∈ Zm×m be the matrix whose columns are r′1, . . . , r
′
m.

– Send (PP, γst) to A.

Output Phase. A outputs l (l ≥ 2) (messages, ring of verification keys, signa-
ture) tuples (R∗

i ,µ
∗
i , Σ

∗
i ). It holds that Ver(R∗

i ,µ
∗
i , Σ

∗
i ) = 1 for i ∈ [l], Link(R∗

i ,µ
∗
i ,

Σ∗
i ,R

∗
j ,µ

∗
j , Σ

∗
j ) = 0 for any i, j ∈ [l] s.t. i ̸= j, and | ∪i=1 R∗

i | < l, otherwise S
aborts the simulation.

Infer that there must exist a ring member in the union set ∪i=1R∗
i who generated

at least two signature tuples. In other words, this ring member, assuming his
index is s, had produced two valid one-time verification keys (vkOTS, vk∗OTS). Let
vkOTS = AcomTA(s) and N∗ = | ∪i=1 R∗

i |. There are two ways for A to produce
the vk∗OTS:

– A produces a TA∗ ̸= TA(s) such that vk∗OTS = AcomTA∗ . In this case, exist-
ing an index s ∈ [N∗] satisfy that, F(s) =

[
AcomTA∗ | Acom +A(s)

]
. Recall

the BasisExtBindOVK algorithm, F(s) has the basis TF(s) =
[

−R Im
T

A(s)R −T
A(s)

]
such that F(s) ·TF(s) = 0 (mod q). It holds that Acom(TA(s)R−T∗

AR) = 0
(mod q). By the prior setting in Setup phase, we have Acom = AR′−1R̄,
therefore, R′−1R̄(TA(s)R−T∗

AR) will be a valid SIS solution.

– A produces a A∗
com ̸= Acom such that vk∗OTS = A∗

comTA. However, in the
phase of verifying the one-time signature, it is required that the equation
A∗

comΣOTS = vk∗OTSµ holds. Therefore, A still needs to compute a TA∗ such
that A∗

comTA∗µ = AcomTAµ holds. In this case, F(s) =
[
A∗

comTA∗ | Acom +

A(s)
]

has the basis TF(s) =
[

−R Im
T

A(s)R −T
A(s)

]
. It holds that AcomTA(s) = 0

(mod q). By the prior setting in Setup phase, R′−1R̄TA(s) will be a valid
SIS solution.

Claim. A can produce valid SISq,n,m,β solutions with overwhelming probability.

Proof. We argue the R′−1R̄(TA(s)R−T∗
AR) and R′−1R̄TA(s) are valid SISq,n,m,β

solution in two steps. We first explain they are sufficiently short. By Lemma 11,
the Gram-Schmidt norm of TA(s) and T∗

A is bounded as O(log n ·
√
nm log q).

By Lemma 17 and 12, the Gram-Schmidt norm of R, R′, and R̄ is bounded as
O(
√
nm log q) ·ω(

√
logm). Therefore, even the larger one i.e., R′−1R̄(TA(s)R−

T∗
AR) whose Gram-Schmidt norm is bounded as O(log n·(nm log q)2)·(ω(

√
logm))3

which is less than the β = O(ℓ4c ·m7/2) · ω(
√
logm) as given in Sect. 4.3. Then

we prove they are non-zero. The proof is similar with the non-zero proof in un-
forgeability proof (cf. Proof of Theorem 1). Let R̂ = R′−1R̄. Observe that for
the fix message µ∗ on which A made the additional signature, R̂ depends on the
low-norm matrices R′ and R̄. The only information about R̂ is from the public
matrix Acom in PP. So by the pigeonhole principle there is a (exponentially) large
freedom to pick entries of R̂ which is compatible with A′s view. This completes
the proof.
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Theorem 4 (Non-Slanderability). Set the parameters as Sect. 4.3, the LRS
scheme is signer-non-slanderable in the standard model.

Proof. For a v̂kOTS in a honest signature tuple, the goal of the adversary is to
produce a vk∗OTS = v̂kOTS in a forged signature tuple. Specifically, for a v̂kOTS =

AcomTA, there are three ways to produce a new vk∗OTS s.t. vk∗OTS = v̂kOTS,
generate a new A∗

com i.e., vk∗OTS = A∗
comTA, T∗

A i.e., vk∗OTS = AcomT
∗
A, or A∗

com
and T∗

A i.e., vk∗OTS = A∗
comT

∗
A. However, in order to achieve that, the adversary

must generate a TF(s) for some index s belong to the ring that the adversary
provided, which contradicts the hardness of the SIS problem.

Reduction. Suppose the PPT adversary A has non-negligible advantage in
breaking the signer-linkability by mounting the attack as defined in the linka-
bility model of Definition 1 on LRS, then there exists a PPT oracle algorithm (a
reduction) S attacking the SISq,n,m,β problem. Consider the following security
game between A and S. Upon receiving a challenge A ∈ Zn×m

q that is formed by
m uniformly random and independent samples from Zn

q , S simulates as follows.

Setup Phase. As same as the Setup Phase (cf. proof of Theorem 1) of un-
forgeability proof except S additionally compute the (R̄,R′) as in the Setup
Phase of linkability proof (cf. proof of Theorem 3) before send (PP, γst) to A.

Probing Phase. As same as the Probing Phase of the unforgeability proof
(cf. proof of Theorem 1).

Output. A outputs two signature tuples (µ∗,R∗, Σ∗) and (µ̂, R̂, Σ̂) where Σ̂ is
replied from OSign(µ̂, R̂, î) for î ∈ [N ]. Let N∗ = |R∗|. Check if Ver(µ∗,R∗, Σ∗) =

1, (µ∗,R∗, Σ∗) /∈ L, (µ̂, R̂, Σ̂) ∈ L, vk(̂i) /∈ R∗, the proof π∗ is correct, and
Link(R∗,µ∗, Σ∗, R̂, µ̂, Σ̂) = 1 i.e., vk∗OTS = v̂kOTS, otherwise aborts. Let v̂kOTS =

AcomTA. There are three ways for A to produce a new vk∗OTS s.t. vk∗OTS = v̂kOTS.

– A corrupts the TA and then computes a A∗
com such that A∗

comTA = AcomTA.
In this case, existing an index s ∈ [N∗] satisfy that, F(s) =

[
A∗

comTA |
Acom+A(s)

]
. By the BasisExtBindOVK algorithm, F(s) has the basis TF(s) =[

−R Im
T

A(s)R −T
A(s)

]
. It holds that AcomTA(s) = 0 (mod q). By the prior set-

ting in Setup phase, we have Acom = AR′−1R̄, therefore, R′−1R̄TA(s) will
be a valid SIS solution.

– A computes a basis T∗
A such that AcomT

∗
A = AcomTA. This case is as same

as the first case of the linkability proof (cf. proof of Theorem 3).

– A selects a basis T∗
A and then computes the A∗

com such that A∗
comT

∗
A =

AcomTA. This case is as same as the second case of the linkability proof (cf.
proof of Theorem 3).

Claim. A can produce valid SISq,n,m,β solutions with overwhelming probability.
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Proof. The proof is as same as the proof of claim in signer-linkable proof (cf.
proof of Theorem 3).
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