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Abstract. We introduce Multimodal Private Signature (MPS) - an
anonymous signature system that offers a novel accountability feature:
it allows a designated opening authority to learn some partial informa-
tion op about the signer’s identity id, and nothing beyond. Such partial
information can flexibly be defined as op = id (as in group signatures),
or as op = 0 (like in ring signatures), or more generally, as op = Gj(id),
where Gj(·) is a certain disclosing function. Importantly, the value of op is
known in advance by the signer, and hence, the latter can decide whether
she/he wants to disclose that piece of information. The concept of MPS
significantly generalizes the notion of tracing in traditional anonymity-
oriented signature primitives, and can enable various new and appealing
privacy-preserving applications.

We formalize the definitions and security requirements for MPS. We next
present a generic construction to demonstrate the feasibility of designing
MPS in a modular manner and from commonly used cryptographic
building blocks (ordinary signatures, public-key encryption and NIZKs).
We also provide an efficient construction in the standard model based on
pairings, and a lattice-based construction in the random oracle model.

Keywords: new models, anonymous authentications, accountability, fine-grained
information disclosure, modular constructions, zero-knowledge, lattices, pairings

1 Introduction

Privacy is a fundamental human right and is an interdisciplinary area of study [54].
In the digital era, where most of our daily communications are done over computer
networks, the problem of privacy protection has become increasingly important
and challenging. On the other hand, the development of information technology
and cryptography also brings new technical solutions for privacy protection.
Since the 1980s [16], various privacy-preserving cryptographic protocols have
been proposed for this purpose. This essential area gets a lot of traction not
only because of growing practical demands, but also due to its great theoretical
interests. Indeed, designing these advanced systems is highly challenging, as they
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typically require not only basic algorithms but also non-trivial and specially-
developed tools such as zero-knowledge proofs [27] - a beautiful tool allowing to
prove the truth of given statements without revealing any additional information.

While privacy-sensitive users want to protect their anonymity as much as
possible, excessive privacy could be abused for illegal or inappropriate activities.
Hence, from the system authorities’ viewpoint, all users who carry out problematic
activities should be kept accountable. Thus, there is an uneasy “privacy vs
accountability” tension corresponding to the incentives of users and authorities. In
privacy-preserving cryptosystems focusing on anonymity that had been proposed
before the year 2021, either the users are granted absolute anonymity and can
never be traced [50,44,3], or there exists an authority who can break users’ privacy
without their consent [17,36,24,18]. In other words, these systems always lean
rigidly, either in favour of the users or of the authorities. A breakthrough in
tackling the “privacy vs accountability” tension was recently put forward in [42],
which introduced Bifurcated Anonymous Signatures (BiAS) - a novel primitive
in which whether the signer of a given signature can have absolute anonymity or
can be traced is made context-dependent and is known to the signer at the time
of signature generation. As a result, tracing can only be done with users’ consent
on the one hand, and no traceable signature can escape being traced on the other
hand. This primitive provides a reasonably fair setting for both authorities and
users and seems to have offered a satisfying resolution for the discussed tension.

However, a crucial disadvantage of BiAS and of previous proposals is that
accountability is realized via a total tracing procedure, during which all the
personal identifying information of the traced users must be disclosed to the
authorities. This level of accountability is indeed a serious violation of users’
privacy. Note that, while privacy is a complicated notion that has differed
throughout history [54], in its purest sense, it can be defined as the right of
an individual to control which information about herself or himself can be
disclosed [45]. Furthermore, in many real-life situations, it is not necessarily
the authorities’ highest priority to perform a total tracing. For instance, the
authorities could only be interested in learning whether an anonymous user is
over 18 years old, or works in a given organization, or lives in a particular area, or
has been fully vaccinated against COVID-19, or has an annual income exceeding
certain threshold. In the following, let us discuss several concrete examples.

Consider the scenario where an anonymous financial transaction (such as
the privacy-preserving cryptocurrency Monero [47]) with a hidden amount of
money is used to conduct online transactions. When an amount less than $100 is
transferred, then the transaction will be anonymous to everyone, including the
authority. However, when an amount between $100 and $1,000 is transferred, the
authority will be able to evaluate partial information about the sender, namely
which country the sender originated from. When an amount between $1,000 and
$10,000 is transferred, then the authority will be able to identify the country
and the organization where the transfer originated from. When an amount
larger than $10,000 is transferred, then the identity of the individual from the
organization in that specific country will be identified. In other words, depending
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on the underlying transaction amounts, the authority can learn different pieces
of information about the sender. There are four different levels of information
disclosure in the above scenario.

A more simplistic scenario can be related to an IP address, which is of the
form of w.x.y.z. When a small transaction is issued, then the authority will not
be able to learn any information about the address. However, when a medium
range of transactions is issued, then the authority will be able to compute w.x.*.*,
which denote the range of IP addresses within an organization. Finally, then a
large transaction is issued, then the full IP address can be identified.

As another example, imagine the situation where a data broker company
quietly sells people’s personal information to others. While this activity is ille-
gitimate, especially with the introduction of GDPR (General Data Protection
Regulation), this kind of activity remains happening in the wild. Suppose a
whistleblower who works in the data broker company, wants to “leak” this in-
formation to the authority. The purpose is to allow the authority to trace the
data broker company while protecting the whistleblower’s identity. Therefore,
it is essential that the whistleblower can still sell the data from the data broker
correctly. Those data eventually will trigger the authority to find some partial
identity information from the whistleblower, which points to the data broker
company.

Unfortunately, all existing cryptographic methods fail to offer such type of
balance between privacy and accountability, i.e., a setting in which authorities
can only learn the piece of partial information about the user that the latter
would like to disclose - and nothing else. Providing such fine-grained accountable
privacy is a highly important and desirable research goal, and addressing it would
likely require truly innovative technical ideas and approaches.

Our Contributions. We put forward the concept of “Multimodal Private
Signatures” (MPS), which provides a novel approach for private information
disclosure in anonymity-oriented authentication systems. In an MPS scheme,
registered users can generate signatures that remain anonymous to the public,
but can be opened by the authority to some partial information op on the identity
of the signer. Such partial information can flexibly be defined as op = id (as in
group signatures), or as op = 0 (like in ring signatures), or more generally, as
op = G(id), where G(·) is certain “disclosing function”. Importantly, the value of
op is known in advance by the signer, and hence, the latter can decide whether
she/he wants to disclose that piece of information.

In group signature, the disclosing function G(·) is basically the identity func-
tion, and in BiAS, G(·) is an all-or-nothing function. However, as mentioned in
the examples motivating MPS, a set of more flexible and fine-grained disclosing
functions are demanded to balance privacy and accountability in different ap-
plications. In MPS, this is achieved via two steps: first, we introduce a signing
function F that determines whether a message M is valid (e.g., the transaction
amount is below the limit set by the monetary authority), and if so, the critical
level j of M ; secondly, we define a family of disclosing functions G = {Gj(·)}
that discloses the appropriate level of identity information (i.e., Gj(id)) to the
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opening authority based on the critical level of M . It is worth noting that, for
privacy purposes, we also want to hide the critical level j, meaning M could be a
transformation of the real “message”, which we call the witness w of M . Looking
ahead, in the pairing-based and lattice-based constructions presented in this
paper, we use M = COM(w) where COM(·) denotes a secure commitment scheme.
Clearly, the privacy against the opening authority in MPS is more intricate than
that in other traceable anonymous signatures. Specifically, we require that the
opening authority learns only Gj(id) from a valid signature but nothing else.

More formally, an MPS system is associated with a collection of signing
functions F and a collection of disclosing functions {G1, . . . , GK}. When user
id would like to sign a message M with respect to signing function F ∈ F ,
it computes j = F (M,w, id) ∈ [0,K], where w is a “witness” - a context-
dependent piece of information available to the user (that intuitively explains
why F (M,w, id) = j). The value of j governs the signability of (M,w, id) as well
as the accountability of the resulting signature. Specifically, if j = 0, then id is
not allowed to sign. Otherwise, then id should be able to obtain a valid signature
that can be opened by the authority to the value Gj(id).

The concept of MPS could enable various appealing applications that previ-
ously have not been considered or realized. Apart from the examples we discussed
above, let us provide a few more illustrating scenarios.

In the context of anonymous surveys, one may implement an MPS system
allowing the survey conductor to learn some specific piece of information (e.g.,
age, gender, location) about participants who provided answers that meet certain
conditions (with the participant’s consensus). As for private access to buildings
or to online systems, the administrator may also use an MPS system so that to
gain certain statistics about the characteristics or activities of the anonymous
visitors. From another perspective, the signers may also use MPS to purposely
send some information to the authorities, e.g., for claiming the financial incentives
of releasing the signed messages.

Let us consider another hypothetical scenario concerning paper submissions
and reviews for a conference. An MPS system can help to keep both the authors
and the reviewers anonymous to the PC chair, yet allowing the latter to check
for CoI (Conflict of Interest). To this end, when submitting a paper, the author
signs the paper together with a commitment c to her identity id. The chair can
set up the system so that he can open the author’s affiliation z based on the
signature. If the paper is later accepted, the author can open c to reveal id and
claim authorship. Meanwhile, PC members can anonymously post comments
on the paper, yet disclose their affiliation z′ to the chair. The latter hence can
oversee if a CoI has occurred. Moreover, if a PC member would like to post a
negative comment on the paper, such as “I previously reviewed this paper and
the authors did not take my comments into account.”, then it should be backed
up with a legitimate witness w. Such a setting therefore can provide a much
higher level of privacy protection than contemporary conference management
systems.
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Having convinced ourselves that MPS is a highly interesting concept, we come
to the next steps: formal definitions and technical constructions for MPS.

Formalizations of MPS. To formalize MPS, we follow the setting of dynamic
group signatures [5,33], that was also employed in [42]. Namely, an MPS scheme
is a tuple of algorithms (Setup, ⟨Join; Issue⟩, Sign, Verify, Open). The main
differences here is that MPS additionally relies on signing functions F ∈ F to con-
trol signability of (M,w, id) and disclosing functions G1, . . . , GK to realize partial
information disclosure. Correctness ensures that as long as j = F (M,w, id) ̸= 0
where id is a joined user, then the resulting signature Σ should be accepted by
the verification algorithm and should be opened to Gj(id). Regarding security,
we demand two major requirements: privacy and unforgeability. For each of these
notions, we consider two types of adversary.

Regarding privacy, the first type of adversary can corrupt everyone in the sys-
tem, except the opening authority. This adversary acts like the CCA2-anonymity
adversary in group signatures. It is given the secret key of the group manager
(GM) - who is in charge of user enrolments, as well as signing keys of all users. It
is not allowed to corrupt the opening authority (OA), but it can adaptively query
the opening oracle. Roughly speaking, we require that it should be infeasible
for this adversary to learn any information about the signer id beyond the fact
that M is signable for id. The second type of privacy adversary is even stronger,
as it is even allowed to corrupt the OA. For this adversary, we require that no
additional information beyond Gj(id) can be learned. (Note that the OA can
always learn Gj(id).)

As for unforgeability, we would like to capture several requirements. First, it
should be infeasible for signer with identifier id to generate a valid signature Σ
associated with (M,F ) if F (M,w, id) = 0. Second, it should also be infeasible to
“mislead” the signature opening: if Open outputs op, then we expect that there
exists a registered id whose valid signing key was used by the signer as well as a
witness w such that op = GF (M,w,id)(id). Third, we demand that, no one, even a
coalition of a corrupted GM and a corrupted OA, can issue signatures on behalf
of honest user id. Note that the last two requirements resemble the notions of
full-traceability and non-frameability in dynamic group signatures [5,33].

However, formally defining unforgeability for MPS is a considerably non-
trivial task. The main reason is that the original algorithms in the system do
not provide a rigorous mechanism to determine whether a tuple (M⋆, F ⋆, Σ⋆)
forms a valid forgery. In particular, invoking Open only provides us with a value
op, which does not allow us to answer crucial questions such as: (i) Is message
M⋆ actually signable with respect to F ⋆ and some id? (ii) Is this the case that
op = GF (M⋆,w′,id′)(id

′) for some (id′, w′)? Therefore, for definitional purposes, we
would need to introduce certain auxiliary algorithms, namely, SimSetup and
Extract, that allow us to extract additional information, e.g., some identity id′

and some witness w′, so that we can meaningfully explain whether and how a
forgery has occurred. We note that, previous works such as [3,42] also had to
overcome similar situations.
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Generic Constructions. Next, to demonstrate the feasibility of building
MPS based on standard assumptions and in a modular manner, we provide
a generic construction. The construction makes use of common cryptographic
tools including ordinary signatures, public-key encryption, and non-interactive
zero-knowledge (NIZK) proofs/arguments with two (indistinguishable) modes: a
hiding mode with statistical zero-knowledge, and a binding mode with statistical
soundness and extractability. At a high level, the construction follows the classical
sign-then-encrypt-then-prove paradigm that is typically used for building group
signatures [17,4]. The main difference here is that we do not encrypt the signer’s
identity id (as in group signatures) or “id or 0” (as in BiAS [42]). Instead, we let
the signer encrypt the function value op = Gj(id) and prove the well-formedness
of the resulting ciphertext - which includes proving knowledge of (id, w) such
that op = GF (M,w,id)(id) is contained in the ciphertext. While such involved
statements can be proved in zero-knowledge using well-known NIZK systems
for NP such as [29,49], the resulting proofs/arguments would likely have sizes
depending on the sizes of the circuits computing functions F,G1, . . . , GK .

Theoretically speaking, the dependency of the proof size (and hence, of the
signature size) can potentially be reduced by using advanced techniques such
as fully-homomorphic encryption (FHE) [25,42], for which the main idea is to
compute over encrypted data so that to (publicly) obtain a ciphertext that will
decrypt to GF (M,w,id)(id). Nevertheless, using FHEs in that manner would require
significant computation costs and/or a large number of initial ciphertexts, and
could end up being less efficient than the usual sign-then-encrypt-then-prove
approach. We also investigate the potential of efficiently constructing MPS based
on functional encryption (FE) [7], since the idea that decryption reveals a function
of id is closely related to the spirit of FE. However, we have been unable to
progress in this direction: the main obstacle is to ensure that only Gj(id) can be
revealed via opening. For instance, giving the opening authority all the decryption
keys corresponding to (G1, . . . , GK) would not work well, as the authority may
additionally learn the index j. We therefore stick with the usual design approach,
and leave efficient FHE-based and FE-based constructions of MPS as appealing
open questions.

Our sign-then-encrypt-then-prove construction can also have efficiency advan-
tage when we instanstiate the system with concrete signing and disclosing func-
tions, the correct evaluations of which can be efficiently proved in zero-knowledge.
As illustrations, we provide a relatively efficient pairing-based construction in
the standard model, as well as a lattice-based scheme in the random oracle
model (ROM) that potentially enjoys post-quantum security. To be more specific,
in both instantiations, we consider G to be a family of linear transformation
functions on id, which are sufficient for many of the motivating applications.

Pairing-Based Constructions in the Standard Model. We present an
instantiation of the generic construction under pairing groups. The core compo-
nents of the construction include the Groth-Sahai proof system [30], a structure-
preserving signature (SPS) scheme [35], the Boneh-Boyen (BB) signature [6] and
a tag-based PKE [34].
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We can apply the aforementioned tools to construct efficient group signatures
without random oracles, as shown in [28]. The main challenge to construct an
MPS is handling the disclosed identity information Gj(id). Different from group
signature, we need to ensure not only the encrypted Gj(id) matches the real id
but also the disclosing function Gj(·) is the correct function to be applied.

In our construction, we consider a message M ∈ G1 being signed to be a
Pedersen commitment [48] for some value v ∈ Zp. The disclosing function to be
applied when signing a message depends on the value of v. For simplicity, in our
instantiation, we consider 4 possible ranges [Aj−1, Aj) (1 ≤ j ≤ 4), and for each
range, we define a disclosing function Gj(id). When generating a signature on
M , the signer needs to compute a ciphertext ct of Gj(id) under the OA’s public
key opk and then prove that

M = COM(v) ∧Aj−1 ≤ v < Aj ∧ ct = Enc(opk, Gj(id)).

To ensure the correct extraction of Gj(id), we need to extract the value v from
the NIZK proof. However, the Groth-Sahai proof does not support the extraction
of a random value in Zp. To address this issue, we convert the above statement
by utilizing the homomorphic property of the Pedersen commitment. Instead
of proving Aj ≤ v < Aj+1, we let the signer represent the value committed in
M/gAj , i.e., v −Aj , as a k-bit binary number, so that each bit can be extracted.
In addition, to extract the specific range, among all the possible ranges, the value
v actually falls in, we add two additional bits and express the proof statement
in the form of an OR-statement, where the additional bits point to the real
statement being proved.

Lattice-Based Constructions. While it is feasible to instantiate MPS in the
standard model via the lattice-based NIZK techniques of Peikert and Shiehian [49],
such a construction would expectedly be extremely inefficient. Here, our goal is
to build more efficient constructions in the ROM, where we can employ concrete
techniques for obtaining interactive ZK arguments for lattice-based relations, and
then remove interaction via the Fiat-Shamir transformation [22].

Similar to our pairing-based construction, here we consider the setting with
1 signing function F and 4 disclosing functions. We also let message M be a
commitment to witness w and define j = F (M,w) ∈ [0, 4] based on integer
ranges. We consider 4 disclosing functions, and for each j ∈ [1, 4] define Gj

as a linear endomorphism over Zk
2 . Specifically, let G1,G2,G3,G4 ∈ Zk×k

2 be
public matrices, then let Gj(id) := Gj · id. This definition is quite general and
expressive, in the sense that it captures many natural ways to disclose partial
information about id. For instance, we can set G1 = 0k×k and G4 = Ik, so that
G1(id) = 0 (i.e., non-traceable case) and G4(id) = id (i.e., fully traceable case).
We can also easily define G2,G3 so that G2(id), G3(id) each reveals a specific
subset of coordinates of id.

Our construction is proven secure under the Learning With Errors (LWE)
and the Short Integer Solutions (SIS) assumptions. The construction employs
the following lattice-based building blocks: (i) the KTX SIS-based commitment
scheme [31]; (ii) the SIS-based signature scheme from [37], which admits efficient
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zero-knowledge arguments of knowledge of a valid message-signature pair; (iii)
an LWE-based CCA2-secure PKE scheme obtained from the GPV IBE [26]
and the CHK transformation [14]; (iv) a SIS-based one-way function [1]; and
(v) an interactive statistical ZK argument system that can handle relatively
sophisticated linear and quadratic relations with respect to two moduli (q1 = 2
and q2 > 2) and that is compatible with the signature scheme from [37]. Indeed,
we need to prove in ZK that a plaintext y, encrypted under the GPV IBE
scheme, is exactly the value Gj(id), which is the major technical difficulty in our
design process. To this end, we adapt the Stern-like [53] framework from [40] and
then, employ several dedicated techniques to capture the relation y = Gj(id) by
equations modulo 2, that are compatible with the framework. We note that, there
are more efficient systems, such as [56,9,21,20], however, they are not known to
be applicable to the two-moduli setting here.

Related Work. There has been a vast body of work on anonymity-oriented
signature systems. One of the most prominent examples is group signature [17],
in which registered users are allowed to anonymously sign any message, but are
fully traceable by the opening authority. Group signature thus can be viewed
as a special case of MPS with a single disclosing function G(id) = id. Ring
signature [51], another well-known primitive, provides anonymity with no tracing,
yet can also be seen as an MPS system with G(id) = 0. Accountable ring
signature [55,8] offers either the ring-signature functionality or the group-signature
functionality, but the two modes are separated and distinguishable. Bifurcated
anonymous signature (BiAS) [42], a recently proposed concept, simultaneously
provide both “ring-signature mode” and “group-signature mode”, as well as
indistinguishability between the two modes. BiAS is therefore a special case of
MPS, with two disclosing functions G1(id) = 0 and G2(id) = id (but no signing
functions).

There have also been various attempts to increase the privacy of signers against
the opening authorities in group signatures, such as traceable signatures [32],
group signatures with message-dependent opening [52], accountable tracing
signatures [36] or threshold group signatures [11]. In the reverse direction are
proposals that aim to increase signers’ accountability, such as traceable ring
signatures [23], e-cash-related primitives [12,13] and traceable attribute-based
signatures [19]. However, in all these systems, the disclosing functions, once
activated, would reveal the full identity, i.e., G(id) = id.

Attribute-based signature [44] and predicate signature [2,46] provide fine-
grained controls on “who can sign”, while policy-based signature [3] and functional
signature [10] govern “which messages can be signed”. These controls of signability
can also be viewed as instances of MPS’s signing functions F (M,w, id) (with
restricted function range {0, 1}, rather than [0,K]).

As a summary, MPS does capture the appealing features of the primitives
listed above, and does further generalize and empower them in several dimensions.
In particular, the attractive generalization from all-or-nothing tracing of signer’s
identity to fine-grained disclosure of signer’s partial information could have a
great impact in this research area.
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At a high level, our conception of MPS based on group signature somewhat
resembles the revolutionizing conception of functional encryption [7] over ordinary
PKE, in the sense that the decrypting/opening procedure can only reveal a func-
tion of the plaintext/identity, rather than the whole plaintext/identity. However,
from a more technical perspective, there could be some crucial difference: while
it is known how to build group signatures from PKE in a modular manner, the
connection between MPS and functional encryption is still unclear.

Organization. The rest of the paper is organized as follows. In Section 2, we
provide our definitions of MPS, describe its syntax and formalize the security
requirements. Then, in Section 3, we give a generic construction of MPS satisfying
our model, based on commonly used cryptographic primitives. A pairing-based
instantiation is then presented in Section 4. A lattice-based construction then
follows in Section 5. We finally list several interesting open questions in Section 6.

Due to space restrictions, the reminders on the cryptographic building blocks
employed in our constructions and most of the security analyses have to be
deferred to the full version.

2 Multimodal Private Signatures

2.1 Syntax

Let λ ∈ N be a security parameter. Any Multimodal Private Signature system
is associated with natural numbers N,K ∈ poly(λ); a message space M; a
witness space W; an identity space ID; an opening space OP; together with a
collection F of N signing functions and a collection of K disclosing functions
G = {G1, . . . , GK}, where

F :M×W × ID → [0,K], ∀F ∈ F ; Gj : ID → OP, ∀j ∈ [1,K].

The parties involving in an MPS system are similar to those of dynamic group
signatures [5,33], namely, a trusted authority (TA), a group manager (GM), an
opening authority (OA), signers and verifiers. The job of TA consists of setting
up the system, announcing the public parameters and providing a secret key for
each of GM and OA. Eligible signers are enrolled to the system via an interactive
protocol with GM - who records the registration information into a table. A
registered signer with personal identifiable information id ∈ ID can issue a
signature Σ on a message M ∈ M and with respect to function F ∈ F , if the
signer possesses a witness w ∈ W such that j = F (M,w, id) ̸= 0, i.e., j ∈ [1,K].
Here, the witness w is a context-dependent string that (intuitively) serves as
an evidence for the signability of id on M and w.r.t F , and how w comes into
the signer’s possession is outside of the model (see also discussions in [3,42]). A
legitimate signature Σ should be publicly verifiable by any verifier, and could be
opened by OA - who would then learn the value of Gj(id) ∈ OP.

Formally, an MPS scheme associated with (N,K,M,W, ID,OP,F ,G) is a
tuple of polynomial-time algorithms (Setup, ⟨Join; Issue⟩,Sign,Verify,Open),
defined as follows.
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Setup(λ)→ (pp,msk, osk, reg). On input security parameter λ, this probabilis-
tic algorithm generates public parameters pp, a secret key msk for the Group
Manager (GM) and a secret key osk for the Opening Authority (OA). It also
initializes a registration table reg := ∅.

⟨Join(pp); Issue(pp,msk, reg)⟩. This is an interactive protocol run by a user who
wishes to become a group member and the GM. If it completes successfully,
then:

– Algorithm Join outputs user’s signing key skid = (id, secid, certid), where
id ∈ ID is a unique identifier, secid is a membership secret (that is known
only by the user), and certid is a membership certificate.

– Algorithm Issue stores the transcript of the protocol in the registration
table reg := reg ∪ transid.

Sign(pp, skid,M,w, F )→ Σ/⊥. Given pp, signing key skid = (id, secid, certid),
message M ∈ M, witness w ∈ W, and a signing function F ∈ F , this
probabilistic algorithm outputs a signature Σ or a symbol ⊥ indicating
failure.

Verify(pp,M, F,Σ)→ 1/0. This deterministic algorithm checks the validity of
the signature Σ on message M ∈M with respect to signing function F ∈ F .
It outputs a bit indicating the validity or invalidity of Σ.

Open(pp, osk, Σ,M,F )→ op/⊥. This algorithm takes as inputs the public pa-
rameters pp, the OA’s secret key osk, a signature Σ on message M ∈ M
with respect to signing function F ∈ F . It outputs either an opening result
op ∈ OP or symbol ⊥ to indicate failure.

2.2 Correctness and Security

The requirements that any Multimodal Private Signature system should satisfy
are correctness, privacy and unforgeability.

Correctness. Correctness of MPS guarantees that honest signers can join
the group, and when j = F (M,w, id) ̸= 0, signer id should be able to issue an
accepted signature Σ on message M and with respect to signing function F , and
that Σ should be opened to the value Gj(id). More formally, correctness of MPS
is defined as follows.

Definition 1 (Correctness). An MPS system associated with (N,K,M,W, ID,
OP,F ,G), where G = {G1, . . . , GK}, is called correct, if for all λ ∈ N, all
(pp,msk, osk, reg)← Setup(λ), the following conditions hold with overwhelming
probability in λ.

1. If ⟨Join(pp); Issue(pp,msk, reg)⟩ is run by two honest parties, then it com-
pletes successfully, and the signer obtains skid = (id, secid, certid).

2. If M ∈ M, F ∈ F , id ∈ ID, w ∈ W and if j = F (M,w, id) ∈ [1,K], then
algorithm Sign(pp, skid,M,w, F ) does not fail and
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Verify
(
pp,M, F,Sign(pp, skid,M,w, F )

)
= 1

Open
(
pp, osk,Sign(pp, skid,M,w, F ),M, F

)
= Gj(id).

Security. We require two main security properties for MPS, namely, privacy
and unforgeability. Informally, these properties capture the following intuitions.

Privacy roughly ensures that each party in the system can only learn the
piece of signer’s information which the signer intends to disclose. Given a valid
signature Σ ← Sign(pp, skid,M,w, F ), it should be infeasible for everyone -
excluding the OA - to learn anything about the signer’s private information, apart
from the fact that M is signable, i.e., j = F (M,w, id) ̸= 0. Furthermore, even
the OA should be able to additionally learn only the value Gj(id), and should
remain oblivious about j and id.

Unforgeability captures several requirements. First, it should be infeasible
for signer with identifier id to generate a valid signature Σ associated with (M,F )
if F (M,w, id) = 0. Second, it should also be infeasible to “mislead” the signature
opening: if Open(pp, osk, Σ,M,F ) outputs op ∈ OP, then we expect that there
exist a registered id whose valid signing key was used by the signer as well as a
witness w ∈ W such that op = GF (M,w,id)(id). Third, we demand that, without
the knowledge of membership secret secid, no one, even a coalition of corrupted
GM and OA, can issue signatures on behalf of honest user id. Note that the last
two requirements resemble the notions of full-traceability and non-frameability
in dynamic group signatures [5,33].

For each of the above security properties, we therefore will consider two types
of adversaries, whose goals and powers are related but different from each other.
For formalization, we will follow the definitional approach used by Libert et
al. [42], which was first put forward by Kiayias and Yung [33].

We will consider experiments in which the adversary interacts with a stateful
interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the
adversary invokes the various oracles available in the attack games. It is
initialized as stateI = (pp,msk, osk, reg), where reg is initially empty and
later will store all transcripts of ⟨Join; Issue⟩.

– SIGS: is a database of honestly generated signatures created by the signing
oracle. Each entry consists of a tuple (Σ, id,M,w, F ) indicating that signature
Σ was returned in response to a signing query involving identity id, message
M , witness w and signing function F .

– HUL: is an initially empty list of honest users introduced in the system by the
adversary acting as a dishonest GM. For these users, the adversary obtains
the transcript of ⟨Join; Issue⟩ but not the user’s membership secret.

– CUL: is an initially empty list of corrupted users that are introduced by the
adversary in the system in an execution of the join protocol.

In attack games, adversaries are granted access to the following oracles:

– OCU: allows the adversary to introduce users under its control in the group.
A ⟨Join; Issue⟩ protocol is run, in which the adversary plays the role of
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the prospective user. If the protocol successfully completes, a new user id is
added to CUL and the protocol transcript transid is added to reg.

– OHU: allows the adversary, acting as a corrupted GM, to introduce new honest
group members of its choice. A ⟨Join; Issue⟩ protocol is run, in which the
adversary plays the role of the GM . If the protocol successfully completes, a
new user id is added to HUL and protocol transcript transid is added to reg.
The interface stores the membership certificate certid and the membership
secret secid in a private part of stateI .

– Osig: given a tuple (M,w,F ) and an identifier id, the interface returns ⊥
if F (M,w, id) = 0 or if id ̸∈ HUL. Otherwise, the private area of stateI
must contain a certificate certid and a membership secret secid. The inter-
face outputs a signature Σ on behalf of user id and also updates SIGS ←
SIGS||(Σ, id,M,w, F ).

– Oopen: when this oracle is invoked on input of a valid triple (M,Σ,F ), the
interface runs algorithm Open using osk. When S is a set of tuples of the form
(M,Σ,F ), O¬S

open denotes a restricted oracle that only applies the opening
algorithm to tuples (M,Σ,F ) which are not in S.

– Oread and Owrite: are used by the adversary to read and write the content of
reg. At each invocation, Oread outputs the current records in reg. Meanwhile,
Owrite enables the adversary to modify reg as long as the table remains
well-formed.

Privacy. We say that an MPS scheme is private if it satisfies computational
privacy against Type-1-Adversary and computational/statistical privacy
against Type-2-Adversary.

Privacy against Type-1 Adversary. This captures the power of the CCA2-
anonymity adversary in group signatures [4,5,33]. The adversary is allowed to
corrupt the GM, corrupt all users, and is allowed to make queries to various
oracles, including adaptive queries to the opening oracle.

In the challenge phase, adversary returns a function F ⋆ ∈ F , a message
M⋆ ∈M, together with two valid signing keys skid0 = (id0, secid0 , certid0), skid1 =
(id1, secid1 , certid1), as well as witnesses w0, w1 ∈ W. Here, by “valid signing
keys”, we mean that the keys have been formed correctly via certain legitimate
executions of ⟨Join; Issue⟩, initiated by the adversary. Furthermore, for the
challenge to be meaningful, (M⋆, F ⋆) should be signable by both id0 and id1, i.e.,(

j0 = F ⋆(M⋆, w0, id0) ̸= 0
)
∧

(
j1 = F ⋆(M⋆, w1, id1) ̸= 0

)
.

Receiving a challenge signature Σ⋆ ← Sign(pp, skidb ,M
⋆, wb, F

⋆), where b
$←−

{0, 1}, the adversary can continue making non-trivial opening queries, i.e., those
that do not involve (M⋆, Σ⋆, F ⋆). Eventually, it outputs a guess b′ ∈ {0, 1} and
wins if the guess is correct with non-negligible advantage.

Privacy against Type-2 Adversary. This strong adversary can potentially
be computationally unbounded and can corrupt everyone in the system: GM,
all users and even OA. It is also allowed to make unrestricted queries to all
available oracles. Privacy against this adversary roughly demands that, apart
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from the opening result Gj(id) (and, obviously, the fact that the underlying
message-function pair is signable by id), the adversary can learn no additional
information about j or id.

In the challenge phase, when adversary returns (F ⋆,M⋆, skid0 , w0, skid1 , w1),
we additionally require that Gj0(id0) = Gj1(id1), namely, the opening information
corresponding to both choices of the challenger must be the same. This restriction
is necessary (as the adversary knows osk) and also sufficient to capture the
requirement that signature opening only reveals Gj(id).

1 (pp,msk, osk, reg = ∅)← Setup(λ).

2 (F ⋆,M⋆, skid0 , w0, skid1 , w1)← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk).

3 (F ⋆,M⋆, skid0 , w0, skid1 , w1)← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk, osk).

4 If F ⋆ /∈ F , or M⋆ /∈M, or skid0 is not valid, or skid1 is not valid, return 0.

5 If j0 = F ⋆(M⋆, w0, id0) = 0 or j1 = F ⋆(M⋆, w1, id1) = 0, return 0.

6 If Gj0(id0) ̸= Gj1(id1), return 0.

7 b
$←− {0, 1}; Σ⋆ ← Sign(pp, skidb ,M

⋆, wb, F
⋆).

8 b′ ← AOread,Owrite,OCU,OHU,Osig,O
¬(M⋆,Σ⋆,F⋆)
open (Σ⋆).

9 b′ ← AOread,Owrite,OCU,OHU,Osig,Oopen(Σ⋆).

10 Return (b′ = b).

Fig. 1: Experiment Expprivacy−1
A (λ) (resp., Expprivacy−2

A (λ)) excluding the
dotted (resp., solid) boxes.

The respective experiments, Expprivacy−1
A (λ) and Expprivacy−2

A (λ), are described
in Fig. 1. We hence come to the following formal definition of privacy for MPS.

Definition 2 (Privacy). An MPS system associated with (N,K,M,W, ID,
OP,F ,G) is called private if the following conditions hold.

1. Computational privacy against Type-1 adversary: For any PPT ad-
versary A, one has

Advprivacy−1
A (λ) :=

∣∣Pr[Expprivacy−1
A (λ) = 1]− 1/2

∣∣ ∈ negl(λ).

2. Statistical (resp., computational) privacy against Type-2 adversary:
For any adversary A (resp., any PPT adversary A), one has

Advprivacy−2
A (λ) :=

∣∣Pr[Expprivacy−2
A (λ) = 1]− 1/2

∣∣ ∈ negl(λ).

Unforgeability. Defining unforgeability for MPS is a considerably non-trivial
task. The main reason is that the original algorithms in the system do not provide
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a rigorous mechanism to determine whether a tuple (M⋆, F ⋆, Σ⋆) forms a valid
forgery. Therefore, for definitional purposes, we would need to introduce certain
auxiliary algorithms that allow us to extract additional information, e.g., some
identity id′ and some witness w′, so that we can meaningfully explain whether
and how a forgery has occurred.

To that end, we assume the existence of the following two auxiliary algorithms,
namely, SimSetup and Extract.

SimSetup(λ) Given the security parameter λ, this algorithm generates simulated
(pp,msk, osk, reg), together with an extraction trapdoor τext.

Extract
(
τext, (pp, Σ,M,F )

)
Given trapdoor τext, a valid signature Σ on message

M and with respect to signing function F , i.e., Verify(pp,M, F,Σ) = 1, this
extraction algorithm returns a pair ζ = (id′, w′) ∈ ID ×W.

Naturally, we demand that the outputs of SimSetup and Setup are in-
distinguishable to the adversary. Next, we require that (id′, w′) outputted by
Extract is compatible with the value op outputted by Open. Specifically, w′

should be a valid witness for the signability of identity id′ w.r.t. (M⋆, F ⋆), i.e.,
j′ = F (M⋆, w′, id′) ̸= 0, and, furthermore, Gj′(id

′) should coincide with op.
Formally, we define extractability as a “supporting” security property for un-
forgeability. The definition uses experiment Expextract

A (λ) described in Fig. 2.

Definition 3 (Extractability). An MPS system with auxiliary algorithms
SimSetup, Extract is called extractable if the following conditions hold.

1. The distribution of simulated (pp,msk, osk, reg)← SimSetup(λ) is compu-
tationally close to the distribution of a real output of Setup.

2. For any PPT adversary A involving in the experiment of Fig. 2, the advantage
Advextract

A (λ) := Pr
[
Expextract

A (λ) = 1
]
is negligible in λ.

1
(
(pp,msk, osk, reg = ∅), τext

)
← SimSetup(λ).

2 (F,M,Σ)← AOread,Owrite,OCU,OHU,Osig,Oopen(pp,msk, osk),

3 If F /∈ F , or M /∈M, or Verify(pp,M, F,Σ) = 0, return 0.

4 (id′, w′)← Extract(τext, (pp, Σ,M,F )); j′ = F (M,w′, id′);

5 If j′ = 0, return 1.
6 op← Open(pp, osk, Σ,M,F );

7 If Gj′(id
′) ̸= op, return 1.

8 Return 0.

Fig. 2: Experiment Expextract
A (λ).

Now, we are ready for the definitions of unforgeability. An MPS scheme is
said to satisfy unforgeability if it is extractable and has computational security
against Type-1-Forger and Type-2-Forger.
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1 ((pp,msk, osk, reg = ∅), τext)← SimSetup(λ).

2 (M⋆, F ⋆, Σ⋆)← AOread,Owrite,OCU,OHU,Osig,Oopen(pp, osk).

3 (M⋆, F ⋆, Σ⋆)← AOread,Owrite,OCU,OHU,Osig,Oopen(pp, osk,msk).

4 If F ⋆ /∈ F , or M⋆ /∈M, or Verify(pp,M⋆, F ⋆, Σ⋆) = 0, return 0.

5 (id′, ·)← Extract(τext, (pp, Σ
⋆,M⋆, F ⋆)).

6 If (Σ⋆, id′,M⋆, ·, F ⋆) ∈ SIGS, return 0.

7 If id′ /∈ CUL, return 1.

8 If id′ ∈ HUL, return 1.

9 Return 0.

Fig. 3: Experiment Expunforge−1
A (λ) (resp., Expunforge−2

A (λ)) excluding the
dotted (resp., solid) boxes.

– Type-1-Forger roughly captures the traceability adversary in group signatures.
It can fully corrupt the OA, corrupt a number of users and can make various
oracle queries. Its goal is to output a valid forgery (Σ⋆,M⋆, F ⋆) such that the
extraction points to some identity id′ which it has not previously corrupted.

– Type-2-Forger is similar to the non-frameability adversary in group signatures,
whose goal is to point the opening/extraction to an innocent user. The
adversary can corrupt everyone else in the system, i.e., GM, OA and all other
users. It succeeds if it can output a valid forgery that is extracted to some
honest identity id′.

In Fig. 3, we formalize the respective security experiments, i.e., Expunforge−1
A (λ)

and Expunforge−2
A (λ)). The formal definition of unforgeability follows.

Definition 4 (Unforgeability). An MPS system associated is called unforge-
able if it satisfies extractability, and for any PPT adversary A, one has

Advunforge−1
A (λ) := Pr[Expunforge−1

A (λ) = 1] ∈ negl(λ);

Advunforge−2
A (λ) := Pr[Expunforge−2

A (λ) = 1] ∈ negl(λ).

3 Generic Constructions

In this section, we present a generic construction of MPS for arbitrary signing
functions F ’s and arbitrary disclosing functions G1, . . . , GK . The construction
satisfies the correctness and security properties defined in Section 2, and employs
cryptographic building blocks that are commonly used for designing advanced
privacy-preserving primitives: ordinary (one-time) signatures, public-key encryp-
tion and non-interactive zero-knowledge (NIZK) proofs/arguments for some
NP-relations. For the latter ingredient, we additionally require the dual-mode
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property, i.e., we will use a NIZK system that operates in two modes: hiding
mode (for the real scheme and simulation) and binding mode (for simulated setup
and extraction).

Our construction can serve as a proof of feasibility of designing MPS based on
standard assumptions and in a modular manner. In particular, it can be realized
in the standard model from pairings and from lattices, using the techniques
for obtaining NIZKs for NP by Groth-Ostrovsky-Sahai [29] and by Peikert-
Shiehian [49], respectively.

At a high level, the construction follows the classical sign-then-encrypt-then-
prove paradigm. The main difference here is that we do not encrypt the signer’s
identity id (as in group signatures) or “id or 0” (as in BiAS [42]). Instead, we let
the signer encrypt the function value op = Gj(id) and prove the well-formedness
of the resulting ciphertext - which includes proving knowledge of (id, w) such
that op = GF (M,w,id)(id) is contained in the ciphertext. While such involved
statements can be proved in zero-knowledge using well-known NIZK systems
for NP such as [29,49], the resulting proofs/arguments would likely have sizes
depending on the sizes of the circuits computing functions F,G1, . . . , GK .

Our construction can also have efficiency advantage when we instanstiate the
system with concrete signing and disclosing functions, the correct evaluations
of which can be efficiently proved in zero-knowledge. As illustrations, we will
later present relatively efficient pairing-based and lattice-based constructions
of MPS for some specific functions F,G1, . . . , GK , in Section 4 and Section 5,
respectively.

In the following, we will give a technical overview of our generic construction
in Section 3.1, then describe it in detail in Section 3.2 and provide its analyses in
Section 3.3.

3.1 Technical Overview

The construction employs the following technical building blocks.

– A secure digital signature scheme S = (S.Kg,S.Sign,S.Ver);

– A secure one-time signature scheme OT S = (O.Kg,O.Sign,O.Ver);

– A secure public-key encryption scheme E = (E.Kg,E.Enc,E.Dec);

– A dual-mode NIZK argument system NIZK = (ZK.Setup,ZK.ExtSetup,
ZK.Prove,ZK.Ver,ZK.Sim,ZK.Extr) for the NP-relation R defined below.

The main ideas underlying the construction are as follows. The GM is as-
sociated with a signing-verification key-pair (msk,mpk) for S, while the OA is
associated with a decryption-encryption key-pair (osk, opk) for E . When joining,
a perspective user generates a signature key-pair (secid, upk), sends upk together
with its personal identifiable information id to GM. The latter certifies (id ∥ upk)
in the form of a signature certid. When signing, the signer first generates a
one-time signature key-pair (otk, ovk), uses its secret key secid to certify ovk as
signature s. Then it evaluates j = F (M,w, id) and encrypts Gj(id) under opk
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with randomness r, obtaining ciphertext c. The signer then generates a NIZK
argument π for the relation R defined as follows

R :=
{ (

mpk, opk, c,M, F, ovk
)
,
(
id, upk, certid, s, w, j, r

)
:

(S.Ver(upk, ovk, s) = 1) ∧ (S.Ver(mpk, (id ∥ upk), certid) = 1) ∧

(F (M,w, id) = j) ∧ (j ∈ [1,K]) ∧ (c = E.Enc(opk, Gj(id); r))
}
.

Next, the signer uses otk to one-time sign (M,F, c, π) as sig, and outputs the final
signature as Σ = (ovk, c, π, sig). Verification of Σ basically consists of verifying
sig and π. Meanwhile, opening of Σ is done via decrypting c with key osk.

Roughly speaking, the correctness of the obtained MPS scheme is based on the
correctness/completeness of the underlying building blocks. Privacy is achieved
as long as E is IND-CCA2 secure and NIZK has the ZK property. Meanwhile,
unforgeability is based on the soundness of NIZK, the unforgeability of S and
the strong unforgeability of OT S.

3.2 Description

Let λ ∈ N be a security parameter. Our generic construction of an MPS system
associated with (N,K,M,W, ID,OP,F ,G) works as follows.

Setup(λ)→ (pp,msk, osk, reg). On input security parameter λ, this probabilis-
tic algorithm performs the following steps:
1. Run S.Kg(λ) to obtain a signing-verification key-pair (msk,mpk).
2. Run E.Kg(λ) to obtain an decryption-encryption key-pair (osk, opk).
3. Run ZK.Setup(λ) to obtain a common reference string crs (and a simula-

tion trapdoor τsim - which is discarded) for the NIZK system.
Then, it sets pp := (crs,mpk, opk), GM’s secret key as msk and OA’s secret
key as osk, and initializes reg := ∅.

⟨Join(pp); Issue(pp,msk, reg)⟩. A user with personal identifiable information id,
who would like to join the group, interacts with the GM as follows.
1. User runs S.Kg(λ) to obtain a signing-verification key-pair (usk, upk).

Then it generates sigid ← S.Sign(usk, (id∥upk)), and sends (id, upk, sigid)
to GM.

2. GM verifies that S.Ver(upk, (id∥upk), sigid) = 1, and checks that id has
not been registered in table reg. If any of these conditions does not hold,
GM aborts. Otherwise, GM issues a signature σid ← S.Sign(msk, (id∥upk)),
sends σid to the user, sets transid := (id, upk, sigid, σid) and updates the
registration table reg := reg ∪ transid.

3. The user verifies that S.Ver(mpk, id∥upk, σid) = 1, and aborts if it is not
the case. Otherwise, user sets skid = (id, secid, certid), where secid = usk
and certid = (σid, upk).

Sign(pp, skid,M,w, F )→ Σ/⊥. Let skid = (id, secid, certid), where secid = usk
and certid = (σid, upk). The signing algorithm then proceeds as follows.
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1. Compute j = F (M,w, id) ∈ [0,K]. Return ⊥ if j = 0.
2. Generate a one-time signature key-pair (otk, ovk)← O.Kg(λ).
3. Use usk to certify ovk as signature s← S.Sign(usk, ovk).
4. Encrypt Gj(id) under public key opk as c = E.Enc(opk, Gj(id); r), where r

is the encryption randomness.
5. Generate an NIZK proof

π ← ZK.Prove
(
crs,

(
(mpk, opk, c,M, F, ovk), (id, upk, certid, s, w, j, r)

))
to prove that

(
(mpk, opk, c,M, F, ovk), (id, certid, s, w, j, r)

)
∈ R, where

R is the NP-relation defined above.
6. Use otk to issue a one-time signature sig ← O.Sign(otk, (M,F, c, π)).
7. Return the signature Σ := (ovk, c, π, sig).

Verify(pp,M, F,Σ)→ 0/1. Given a purported signature Σ = (ovk, c, π, sig) on
message M and with respect to signing function F , the verification algorithm
proceeds as follows.

1. If O.Ver(ovk, (M,F, c, π), sig) = 0, then return 0.
2. If ZK.Ver

(
crs, (mpk, opk, c,M, F, ovk), π

)
= 0, then return 0.

3. Return 1.

Open(pp, osk, Σ,M,F ). Given Σ = (ovk, c, π, sig), the opening algorithm pro-
ceeds as follows.

1. Use osk to decrypt c and obtain z ← E.Dec(osk, c) ∈ OP ∪ {⊥}.
2. Return ⊥ if z = ⊥. Otherwise, return op = z ∈ OP.

Auxiliary algorithms. Let us describe the auxiliary algorithms SimSetup
and Extract associated with the above MPS system, which are required by the
security model and are helpful for the security analyses.

SimSetup(λ). This algorithm is almost the same as the real setup algorithm
presented above. The only difference is that, at Step 3, instead of generating
crs← ZK.Setup(λ), one runs ZK.ExtSetup(λ) to obtain a common reference
string crs together with an extraction trapdoor τext. The simulated public
parameters are then set as pp = (crs,mpk, opk).

Extract
(
τext, (pp, Σ,M,F )

)
. Given the extraction trapdoor τext, a valid sig-

nature Σ = (ovk, c, π, sig) on message M and with respect to signing
function F , this algorithm runs ZK.Extr(crs, τext, π) to obtain a witness
(id′, cert′id, s

′, w′, j′, r′) for the relation R. It then outputs ζ = (id′, w′).

3.3 Analyses

Theorem 1 states that the correctness and security properties of the presented
MPS system can be based on the completeness/correctness and security features
of the employed cryptographic building blocks.
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Theorem 1. Assume that S is an unforgeable signature scheme under adaptive
chosen-message attacks, OT S is a strongly unforgeable one-time signature scheme,
E is an IND-CCA2-secure public-key encryption scheme and NIZK is a dual-
model non-interactive zero-knowledge argument system for relation R. Then, the
described MPS system satisfies correctness, privacy and unforgeability.

We prove Theorem 1 via Lemma 1–6. The proofs of Lemma 2–6 are provided
in the full version.

Lemma 1 (Correctness). If S, OT S and E are correct, and NIZK is com-
plete, then the presented MPS scheme satisfies correctness.

Proof. The proof is straightforward. It follows from the correctness of S that

S.Ver(upk, id,S.Sign(usk, id)) = 1, S.Ver(mpk, id,S.Sign(msk, id)) = 1.

Hence, an honest signer should be able to enrol in the group and obtain a
legitimate signing key skid = (id, secid, certid).

Next, thanks to the correctness of S as well as the completeness of NIZK,
the signer should be able to obtain a valid witness (id, certid, s, w, j, r) for the
relation R, and proof π should be accepted by ZK.Ver. Furthermore, one-time
signature sig should pass the verification algorithm O.Ver. Therefore, as long as
j = F (M,w, id) ̸= 0, one should have Verify(pp,M, F,Σ) = 1.

Finally, the correctness of E guarantees that E.Dec(osk,E.Enc(opk, Gj(id), r)))
returns Gj(id), and so does Open(pp, osk, Σ,M,F ). ⊓⊔

Lemma 2 (Type-1 Privacy). The described MPS system satisfies computa-
tional privacy against Type-1 adversary if (i) E has IND-CCA2 security; (ii)
NIZK has (computational/statistical) zero-knowledge property.

Lemma 3 (Type-2 Privacy). The described MPS system satisfies statistical
(resp. computational) privacy against Type-2 adversary if NIZK has statistical
(resp. computational) zero-knowledge property.

Lemma 4 (Extractability). The described MPS scheme is extractable if NIZK
has CRS indistinguishability and extractability in the binding mode, and if E is
correct.

Lemma 5 (Type-1 Unforgeability). The described MPS system satisfies
unforgeability against Type-1 forger if (i) the conditions of Lemma 4 hold; (ii) S
is unforgeable under chosen-message attacks; (iii) OT S is a strongly unforgeable
one-time signature; (iv) NIZK is computationally sound.

Lemma 6 (Type-2 Unforgeability). The described MPS system satisfies
unforgeability against Type-2 forger if (i) the conditions of Lemma 4 hold; (ii) S
is unforgeable under chosen-message attacks; (iii) OT S is a strongly unforgeable
one-time signature; (iv) NIZK is computationally sound.
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4 A Construction from Pairings

4.1 Notations and Parameters

Let (ê : G1×G1 → GT ) denote a non-degenerate bilinear map over pairing groups
G1 and GT of prime order p and G∗

1 := G1\{1}. Let g, h be random generators
of G1. Our construction assumes the following parameter spaces:

– an identity space ID = (G∗
1)

2 where each user identity is encoded as id =
(id1, id2) ∈ (G∗

1)
2;

– a user public key space UPK = G∗
1;

– a message spaceM = G1 for the signers where each M ∈M is a Pedersen
commitment for an integer value w1 ∈ Zp with randomness w2 ∈ Zp;

– a witness space W = Z2
p where a witness w = (w1, w2) for M ∈M consists

of the opening for M ;
– a function index space J = [1, 4];
– the valid ranges of w1, denoted by [Ai−1, Ai) for (1 ≤ i ≤ 4);
– a signing function F defined as

F (M,w = (w1, w2)) :=



1 iff (M = gw1hw2 ∧A0 ≤ w1 < A1)

2 iff (M = gw1hw2 ∧A1 ≤ w1 < A2)

3 iff (M = gw1hw2 ∧A2 ≤ w1 < A3)

4 iff (M = gw1hw2 ∧A3 ≤ w1 < A4)

0 otherwise

– an opening space OP = G2
1;

– a family of disclosing functions G = {Gj : (G∗
1)

2 → G2
1} (j ∈ [1, 4]) such that

for an identity id = (id1, id2) ∈ (G∗
1)

2

G1(id) = (1G1
, 1G1

), G2(id) = (1G1
, id2), G3(id) = (id1, 1G1

), G4(id) = (id1, id2).

4.2 Technical Overview

In our pairing-based MPS, a message M ∈ G1 is in the form of a Pedersen
commitment [48], i.e., M = gvhr where v represents a value (e.g., a transaction
amount) and r is the randomness. The construction follows the same paradigm
as the generic construction, but we change/adapt some of the building blocks by
following the design of an efficient group signature scheme by Groth [28], which
makes the construction more efficient. Specifically, we apply the following tools
in our construction:

– The structure-preserving digital signature scheme by Kiltz et al. [35] SPS =
(SPS.Kg,SPS.Sign,SPS.Ver) with message space ID × UPK = (G∗

1)
3 and

signature space G10
1 .
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– The (weak) Boneh-Boyen (BB) digital signature scheme [6] BBS = (BBS.Kg,
BBS.Sign,BBS.Ver) with public key spapce UPK = G∗

1 and signature space
G∗

1.

– The Pedersen commitment scheme [48] CM = (CM.Setup,CM.Cmt,CM.Open,
CM.Ver) with witness space W = Z2

p and commitment space G1.

– The tag-based PKE by Kiltz [34] E = (E.Kg,E.Enc,E.Ver,E.Dec) with mes-
sage space G1 and ciphertext space G5

1. Note that E.Ver allows public verifi-
cation of a ciphertext w.r.t. an encryption tag.

– The DLIN-based instantiation of the Groth-Sahai proof system [30] GS =
(GS.Setup,GS.Prove,GS.Ver,GS.SimSetup,GS.SimProve,GS.Extract) which in-
cludes two DLIN-based commitment schemes GSCMi = (GSCMi.Cmt,GSCMi.
Open,GSCMi.Ver) i ∈ {1, 2} for committing elements in G1 and Zp, respec-
tively. Both commitments use crsGS ← GS.Setup(λ) as the commitment key.

– A strongly unforgeable one-time digital signature schemeOT S = (O.Kg,O.Sign,
O.Ver).

In the center of our construction is the Groth-Sahai Proof system [30] that enables
efficient non-interactive proofs for statements expressed in the forms of pairing
product equations, multi-exponentiation equations and quadratic equations. To
be compatible with Groth-Sahai proof, we adopt a Structure Preserving Signature
[35] for the issuing of certid w.r.t. (id, upk) for a signer. To sign a message, the
signer randomly generates a one-time key pair (ovk, otk), certifies ovk using
usk, and employs the Groth-Sahai Proof system to prove that there is a valid
certification chain mpk → upk → ovk, without revealing id, upk or certid. The
one-time key is used to generate the final signature. However, since the Groth-
Sahai Proof system does not have NIZK for general pairing product equations,
we replace the NIZK proof by NIWI proof, as in [28].

Proving Gj(id). The main difference between our construction and [28] is in
dealing with the disclosed identity information Gj(id). In [28], the disclosing
function is the identity function, i.e., G(id) = id, so the opening authority OA’s
secret key is the same as the extraction key for the Groth-Sahai proof system
in the binding mode. In MPS, we need to separate OA’s secret key from the
extraction key as even the OA should not learn more than Gj(id). Moreover,
we need to ensure extractability, meaning that the correct identity information
Gj(id) is encrypted by the signer and j = F (M,w) ∈ [1, 4] is correctly computed
based on the witness w of the message M .

The Groth-Sahai Proof system allows perfect extraction of committed group
elements in G1, but not arbitrary elements in Zp. To achieve extractability in MPS,
we need to ensure the correct extraction of not only Gj(id) but also j = F (M,w)
where w ∈ Zp. Meanwhile, we observe that if a committed value in Zp is a binary
value, then we can also perfectly extract it from the commitment. This motivates
us to convert the witness w into binary form, and prove in zero-knowledge that
j = F (M,w).

To do so, we first observe that the Pedersen commitment is homomorphic.
Hence, to prove that the witness v of a message M = gvhr falls in a range, say
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[Ai, Ai+1) where Ai+1 −Ai = 2k, we only need to prove that M/gAi is a correct
commitment for v −Ai ∈ [0, 2k). To do so, we follow the standard range proof
approach by converting v −Ai into a k-bit binary string and proving that each
position has a binary value. We then employ additional bits (2 bits in our concrete
instantiation in this paper) to specify which range, among all the possible ranges,
the value v actually falls in. This is achieved by expressing the proof statement
in the form of an OR-proof, where the additional bits point to the real statement
being proved.

As a result, we convert the NIZK proof for Gj(id) into a collection of multi-
exponentiation equations in G1 and quadratic equations (for binary values) in
Zp, which can be proved using the Groth-Sahai Proof system while achieving
extractability.

It is worth noting that the above approach allows us to support a larger identity
space, e.g., id ∈ (G∗

1)
n, accompanied with a variety of disclosing functions.

Due to the space limit, the details are presented in the full version.

5 A Construction from Lattices

In this section, we present a concrete construction of MPS which is proven secure
under lattice-based assumptions in the random oracle model (ROM).

Let integers n,m, q, k = 3n⌈log q⌉, L and 0 < A1 < A2 < A3 < 2L − 1 be the
system parameters. Let (C1,C2) ∈ Zn×L

q × Zn×m
q be a commitment key for the

KTX commitment scheme [31], which is statistically hiding and computationally
binding under the SIS assumption.

Similar to the pairing-based construction presented in Section 4, this lattice-
based scheme is also associated with N = 1 signing function F and K =
4 disclosing functions G1, . . . , G4, and also consider the setting where m =
com(w1,w2), with m is a message to be signed, and w = (w1,w2) is a witness.

LetM = Zn
q , W = {0, 1}L × {0, 1}m, ID = OP = {0, 1}k. Define the signing

function F :M×W → [0, 4] as follows.

F (m,w) :=



0 if m ̸= C1 ·w1 +C2 ·w2 mod q, else

1 if (0 ≤W1 < A1), else

2 if (A1 ≤W1 < A2), else

3 if (A2 ≤W1 < A3), else

4 if (A3 ≤W1 ≤ 2L − 1),

where W1 = int(w1) - the integer in [0, 2L− 1] whose binary representation is w1.

Disclosing functions. For each j ∈ [1, 4] define Gj as a linear endomorphism
over Zk

2 . Specifically, let G1,G2,G3,G4 ∈ Zk×k
2 be public matrices, then let

Gj(id) = Gj · id.
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The definition is quite general and expressive, in the sense that it captures
many natural ways to disclose partial information about id. For instance, we can
set G1 = 0k×k and G4 = Ik, so that G1(id) = 0 (i.e., non-traceable case) and
G4(id) = id (i.e., fully traceable case). We can also easily define G2,G3 so that
G2(id), G3(id) each reveals a specific subset of coordinates of id.

5.1 Technical Overview

While it is feasible to instantiate MPS in the standard model via the lattice-
based NIZK techniques of Peikert and Shiehian [49], such a construction would
expectedly be extremely inefficient. Here, our goal is to build more efficient
constructions in the ROM, where we can employ concrete techniques for obtaining
interactive ZK arguments for lattice-based relations, and then remove interaction
via the Fiat-Shamir transformation [22].

Regarding lattice-based building blocks, apart from the KTX SIS-based
commitment scheme [31] which we mentioned above, we employ the following
ingredients:

– The SIS-based signature scheme from [37], which admits efficient zero-
knowledge arguments of knowledge of a valid message-signature pair. This
signature scheme will be used by the GM to issue users’ certificates.

– An LWE-based CCA2-secure PKE scheme obtained from the GPV IBE [26]
and the CHK transformation [14]. This encryption scheme will be used to
encrypt Gj(id), and ciphertexts will be decryptable by the OA.

– A SIS-based one-way function [1]. In the ROM, since the NIZK argument π
included in Σ can be viewed as a signature of knowledge [15] of the signer’s
membership secret secid, we can slightly depart from the generic construction
of Section 3, by equipping users with a one-way function rather than an
ordinary signature scheme.

– We also need a statistical ZK argument system that can handle relatively
sophisticated linear and quadratic relations with respect to two moduli (q1 = 2
and q2 > 2) and that is compatible with the signature scheme from [37]. To
this end, we choose to employ the Stern-like [53] framework from [40].

Proving in ZK that y = Gj(id). The major technical difficulty that we have
to overcome is to prove in ZK that a plaintext y, encrypted under the GPV IBE
scheme, is exactly the value Gj(id). To this end, we first would need to show
that the index j = F (m,w) ∈ [1, 4] is computed correctly. Our techniques are as
follows.

We first “extract” the position of W1 = int(w1) ∈ [0, 2L − 1] relative to
A1, A2, A3 by defining bits b1, b2, b3 ∈ {0, 1} such that

0 ≤W1 < A1 ⇐⇒ (b1, b2, b3) = (0, 0, 0) ⇐⇒ (1− b1)(1− b2)(1− b3) = 1;

A1 ≤W1 < A2 ⇐⇒ (b1, b2, b3) = (1, 0, 0) ⇐⇒ b1(1− b2)(1− b3) = 1;

A2 ≤W1 < A3 ⇐⇒ (b1, b2, b3) = (1, 1, 0) ⇐⇒ b1b2(1− b3) = 1;

A3 ≤W1 < 2L − 1 ⇐⇒ (b1, b2, b3) = (1, 1, 1) ⇐⇒ b1b2b3 = 1.
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This can be realized by viewing inequalities under the lens of integer additions,
in the following way. Suppose that there exist (non-negative) L-bit integers
Y0, Y1, Z0, Z1, T0, T1 and bits b1, b2, b3 such that:

W1 + (1− b1) · Y1 + (1− b1) = A1 + b1 · Y0,

W1 + (1− b2) · Z1 + (1− b2) = A2 + b2 · Z0, (1)

W1 + (1− b3) · T1 + (1− b3) = A3 + b3 · Y0.

Observe that, when b1 = 0, we have W1+Y1+1 = A1, implying that W1 < A1

since Y1 ≥ 0. On the other hand, if b1 = 1, we have W1 = A1 + Y0, and as
Y0 ≥ 0, we can deduce that W1 ≥ A1. In other words, b1 captures the predicate
(W1 ≥ A1). Similarly, we have b2 = (W1 ≥ A2) and b3 = (W1 ≥ A3).

Next, let us consider bits f0, f1 ∈ {0, 1} such that

y = Gj(id) = Gj · id = (1− f0)(1− f1) ·G1 · id + (1− f0)f1 ·G2 · id
+ f0 · (1− f1) ·G3 · id + f0 · f1 ·G4 · id mod 2. (2)

In other words, f0, f1 are such that j = 1, 2, 3, 4 if and only if (f0, f1) =
(0, 0), (0, 1), (1, 0), (1, 1), respectively.

Now, observe that f0, f1 and b1, b2, b3 are connected via the following equation:

(f0, f1) = (1− b1)(1− b2)(1− b3) · (0, 0) + b1(1− b2)(1− b3) · (0, 1)
+ b1b2(1− b3) · (1, 0) + b1b2b3 · (1, 1) mod 2. (3)

As a summary of the above ideas, we have reduced the problem of proving that
y = Gj(id) to the equivalent problem of proving knowledge of bits b1, b2, b3, f0, f1
and L-bit integers Y0, Y1, Z0, Z1, T0, T1 satisfying equations in (1), (2) and (3).

We note that equations in (1) can be proved in zero-knowledge using the
techniques from [41], which, in a nutshell, translate integer additions into binary
adders with carries, and hence obtain a system of equations modulo 2. Combining
with equations in (2) and (3), we can obtain an equation of the form

M2 · p2 = u2 mod 2, (4)

where matrix M2 and vector u2 are public, and p2 is a binary vector that encodes
all the information of vector id, bits b1, b2, b3, f0, f1 and integers Y0, Y1, Z0, Z1, T0, T1.

The main ZK argument system. Our construction will make use of a ZK
argument system that allows to prove knowledge of a tuple

(
id, z,x, certid =

(τ,v, s),w = (w1,w2),y, (r, e1, e2)
)
satisfying the following conditions:

(i) (z,x) is a preimage-image pair of a SIS-based one-way function;
(ii) certid = (τ,v, s) is a signature on message (id∥x), with respect to the signature

scheme from [37];
(iii) A GPV IBE ciphertext is a correct encryption of plaintext y, with randomness

(r, e1, e2);
(iv) m is a KTX commitment of w1 with randomness w2;
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(v) y = Gj(id), where j = F (m,w) ∈ [1, 4].

Recall that item (v) can be handled using the ideas we discussed above.
As for (i), (ii), (iii), (iv) we can use the techniques from [43,37] to obtain a
vector p1 that has coordinates in {−1, 0, 1} and that encodes the information of
(z,x, τ,v, s, id, r, e1, e2,w1,w2), and that satisfies an equation of the form

M1 · p1 = u1 mod q, (5)

where matrix M1 and vector u1 are public.
Now, our task is to prove that equations (4) and (5) hold for the constructed

vectors p1 and p2, both of which contain encoded information of id. To this end,
we can employ dedicated Stern-like permuting techniques [39,38] to reduce the
underlying relation to an instance of the abstract relation considered in [40]. (An
adaptation of [40], where there are two moduli q1 = q and q2 = 2, is presented in
detail in the full version.) As a result, we can obtain a statistical ZK argument
of knowledge for the considered relation.

5.2 Description of the Scheme

The scheme can be seen as an extension of the dynamic GS from [37]. The scheme
works with lattice parameter n ∈ O(λ), parameter ℓ = O(log n), prime modulus

q = Õ(n4), dimensions m = 2n⌈log q⌉, k = 3n⌈log q⌉, L = O(n), Gaussian
parameter σ = Ω(

√
n log q log n) and infinity norm bounds β = σω(logm). Let

bin(·) be a function mapping vectors over Zq to their binary representations.
The main ZK protocol of the scheme is for the relation Rlmps, defined below.

Definition 5. Define

Rlmps =
{ ((

A, {Aj}ℓj=0,D,D0,D1,u,F,C1,C2,m, {Gj}4j=1,B,G, c1, c2
)
,

(
id, z,x, certid = (τ,v, s),w = (w1,w2),y, (r, e1, e2)

))}
as a relation, where

– A,A0,A1, . . . ,Aℓ,D,B,F,C2 ∈ Zn×m
q , D0,D1 ∈ Z2n×2m

q , C1 ∈ Zn×L
q ,

G ∈ Zn×k
q , u ∈ Zn

q , c1 ∈ Zm
q , c2 ∈ Zk

q , G1, . . . ,G4 ∈ Zk×k
2 .

– id,y ∈ {0, 1}k, z ∈ {0, 1}m, x ∈ {0, 1}n⌈log q⌉, τ ∈ {0, 1}ℓ, v, s ∈ [−β, β]2m,
w1 ∈ {0, 1}L, w2 ∈ {0, 1}m, r ∈ [−B,B]n, e1 ∈ [−B,B]m, e2 ∈ [−B,B]k.

– x = bin(F · z mod q).

–
[
A | A0 +

∑ℓ
j=1 τj ·Aj

]
· v = u+D · bin(D0 · s+D1 · (id∥x)) mod q.

– c1 = B⊤ · r+ e1 mod q, c2 = G⊤ · r+ e2 + ⌊q/2⌋ · y mod q.

– m = C1 ·w1 +C2 ·w2 mod q.

– y = Gj(id).
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Using the techniques discussed above, we can obtain a statistical ZK argument
for Rlmps. The protocol, has soundness error 2/3. It is repeated κ = O(λ) times
in parallel to make the error negligibly small, and then made non-interactive via
the Fiat-Shamir heuristic. Our lattice-based MPS scheme works as follows.

Setup(λ)→ (pp,msk, osk, reg). This algorithm performs the following steps.

1. Generate verification key

(A,A0,A1, . . . ,Aℓ,D,D0,D1,u) ∈ (Zn×m
q )ℓ+3 × (Z2n×2m

q )2 × Zn
q

and signing key TA for the signature scheme from [37].

2. Generate master public key B ∈ Zn×m
q and master secret key TB for the

GPV IBE scheme [26].

3. Choose uniformly random matrices F ∈ Zn×m
q , and C1 ∈ Zn×ℓ

q , C2 ∈
Zn×m
q . Looking ahead, F will define a SIS-based one-way function, while

(C1,C2) will serve as a KTX commitment key for L-bit messages.

4. Let χ be a B-bounded distribution.

5. Choose a one-time signature scheme OT S = (O.Kg,O.Sign,O.Ver).

6. Choose hash functions HFS : {0, 1}∗ → {1, 2, 3}κ and HGPV : {0, 1}⋆ →
Zn×k
q that will be modeled as random oracles.

Output msk = TA, osk = TB, reg = ∅ and

pp = (A,A0,A1, . . . ,Aℓ,D,D0,D1,u,B,F,C1,C2,F, χ,OT S, HFS , HGPV ).

⟨Join(pp); Issue(pp,msk = TA, reg)⟩. A prospective user with identity id ∈ Zk
q

interacts with the GM as follows.

1. User selects z
$←− {0, 1}m, computes x = bin(F · z) ∈ {0, 1}n⌈log q⌉. User

then signs (id∥x) ∈ {0, 1}2m using an ordinary signature and sends (id∥x)
together with the signature sigid to the GM.

2. GM verifies sigid and then certifies (id∥x) using TA. The certificate has
the form certid = (τ,v, s) ∈ {0, 1}ℓ × [−β, β]2m × [−β, β]2m, satisfying

[
A | A0 +

ℓ∑
j=1

τj ·Aj

]
· v = u+D · bin(D0 · s+D1 · (id∥x)) mod q.(6)

3. User id verifies the validity of certid and outputs skid = (id, secid, certid),
where secid = z.

4. GM computes transid = (id,x, sigid, certid) and updates the registration
table reg := reg ∪ transid.

Sign(pp, skid,m,w = (w1,w2), F ). Given pp, signing key skid = (id, secid, certid),
message m ∈ M, witness w ∈ W, and signing function F , this algorithm
performs the following steps.

1. Check that F (m,w, id) ̸= 0, i.e., w1 ∈ {0, 1}L, w2 ∈ {0, 1}m and m =
C1 ·w1 +C2 ·w2 mod q. Return ⊥ if this is not the case.
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2. Determine the value of j = F (m,w, id) ∈ [1, 4]. Let y = Gj(id) ∈ {0, 1}k.
3. Generate a key-pair (otk, ovk)← O.Kg(λ) and encrypt y with respect to

“identity” ovk as follows. Let G = HGPV (ovk) ∈ Zn×k
q . Sample r← χn,

e1 ← χm, e2 ← χk, then compute the ciphertext(
c1 = B⊤ · r+ e1, c2 = G⊤ · r+ e2 + ⌊q/2⌋ · y

)
∈ Zm

q × Zk
q .

4. Using witness
(
id, z,x, certid = (τ,v, s),w = (w1,w2),y, (r, e1, e2)

)
, gen-

erate a NIZKAoK π for the relation Rlmps (Definition 5). This is done by
repeating κ times an interactive ZK argument of knowledge for Rlmps, and
made non-interactive as a triple π =

(
{CMTj}j∈[κ],CH, {RSPj}j∈[κ]

)
,

where CH = HFS(m, ovk, c1, c2, {CMTj}j∈[κ]) ∈ {1, 2, 3}κ.
5. Compute a one-time signature sig ← O.Sign(otk, (m, F, c1, c2, π)).
Output the signature

Σ = (ovk, c1, c2, π, sig). (7)

Verify(pp,m, F,Σ). This algorithm parses Σ as in (7), and returns 1 if:
1. O.Ver(ovk, (m, F, c1, c2, π), sig) = 1;

2. π is a valid NIZKAoK for Rlmps.
Open(pp, osk = TB, Σ,m, F ). This algorithm proceeds as follows.

1. Compute G = HGPV (ovk) ∈ Zn×k
q , then using TB to sample a small-

norm matrix Eovk such that B ·Eovk = G mod q.

2. Using Eovk to decrypt (c1, c2) (by computing ⌊(c2 −E⊤
ovk · c1)/(q/2)⌉),

so that to obtain y ∈ {0, 1}k. Output ⊥ if the decryption fails.

3. Output op = y.

5.3 Analyses of the Scheme

Efficiency. Let us analyze the asymptotic efficiency of the proposed scheme.
The size of pp is dominated by that of the verification key of the signature
scheme from [37] and has bit-size O(ℓmn log q) = Õ(λ2). A signing key skid
consists of a few small-norm vectors and has bit-size O(m log q log β) = Õ(λ).
The size of each signature Σ is dominated by that of the NIZKAoK π, which is
roughly κ = O(λ) times the bit-size of the underlying witness

(
id, z,x, certid =

(τ,v, s),w = (w1,w2),y, (r, e1, e2)
)
. Overall, Σ has bit-size Õ(λ2).

Correctness. The correctness of the described MPS scheme follows directly
from the correctness of the signature scheme from [37], the correctness of the
GPV IBE scheme [26] and the perfect completeness of the employed Stern-like
argument system [53,40].

Security. The security of the scheme can be proven in the ROM, under the
SIS and the LWE assumptions.

Theorem 2. In the random oracle model, the described MPS system satisfies
privacy and unforgeability if (i) the SIS and LWE assumptions hold; (ii) OT S is
a strongly unforgeable one-time signature; (iii) The employed argument system is
a statistically ZKAoK.

Due to space restriction, the proof of Theorem 2 is deferred to the full version.
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6 Open Questions

As the first work that proposes the brand-new concept of Multimodal Private
Signatures, we do not expect to provide a thorough study of this primitive. We
leave several fascinating open questions for future investigations:

1. Constructing practically usable MPS schemes with expressive signing and
disclosing functions;

2. Studying theoretical connections between MPS and other advanced primitives
like functional encryption and fully-homomorphic encryption;

3. Designing efficient MPS schemes with post-quantum security;

4. Equipping MPS with additional functionalities such as verifiable opening
and/or user revocation.
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