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Abstract

This paper presents the development of cryptography since Shannon’s sem-
inal paper “Communication Theory of Secrecy Systems” in 1949.

1 Introduction

Shannon’s work [80] was a turning point, and marked the closure of classical cryp-
tography and the beginning of modern cryptography. Indeed, starting from 1949,
cryptography theory and applications have gone through significant progress, cer-
tainly much faster than the previous several centuries.

Humans’ interest in cryptography is as old as the invention of writing. While
we have good information and insights about cryptographic methods in the past 2
millennia, we surmise that older algorithms like their more recent successors were
all letter- or word-based “codes” in which one substitutes each letter or word with
the corresponding code-letter or code-word found in the codebook, according to a
selection algorithm. Sender and receiver must share the codebook to “encode” or
“decode” the messages. On the other hand, based on the frequencies of the code-
letters, cryptanalysts attempted to make sense of the encoded (encrypted) message
without having access to the codebook. The competition between the cryptographers
and cryptanalysts have been real and fierce, especially when applications involved
state or military data. We do get into history of classical cryptography due to the
lack of space in this paper, and recommend a new and well-written book for interested
readers, “History of Cryptography and Cryptanalysis” [33].

The interplay between cryptographic theory and applications opened up new areas
of applications and also motivated the practitioners of the theory to develop new
methods and algorithms. There is much to write about cryptography, but given the
space, we will limit our focus to secret-key cryptography, public-key cryptography,
post-quantum cryptography, and homomorphic encryption, which are also section
headers in this paper.
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The development of secret-key cryptography started soon after Shannon’s in-
sights how one builds complex, usable and efficient secret-key cryptographic algo-
rithms. Horst Feistel’s LUCIFER [38, 37, 54] at IBM, followed up by US NIST Data
Encryption Standard [64], and a plethora of academic, commercial, cyberpunk al-
gorithms and standards, to finally AES [65] which is another US standart. These
algorithms were all built upon Shannon’s ideas. The driving factor comes from bank-
ing application, that is for our need to relay confidential financial information. This
is an ongoing work, and the academic, industrial and government bodies will continue
to develop newer secret-key cryptographic algorithms.

A second revolution in cryptography happened somewhere between 1976 and 1978,
interestingly right around time when the secret-key cryptographic algorithm DES was
standardized by the US. While trying to address the problem of how to share secret
keys between two or more parties, researchers at Stanford and MIT invented public-
key cryptography. The Diffie-Hellman key exchange algorithm [32] and the RSA
public-key cryptographic algorithm [76] have indeed changed cryptography as signif-
icantly as Shannon’s contribution. In the ensuing years, practical solutions to key
exchange between parties, digital signatures, and public-key encryption methods al-
lowed us to build trust architectures into Internet-connected servers, desktop and and
mobile computers. The public-key cryptography provided techniques, mechanisms,
and tools for private and authenticated communication, and for performing secure
and authenticated transactions over the Internet as well as other open networks.
This infrastructure was needed to carry over the legal and contractual certainty from
our paper-based offices to our virtual offices existing in the cyberspace. The timing
of the invention of public-key cryptography was near perfect!

The first two decades of the 21st Century presented two challenges for cryptog-
raphers. The first and formidable challenge was that quantum computers were be-
coming feasible. Experimental quantum computers developed or sponsored by two
major companies (IBM and Microsoft) and several research institutes in major re-
search universities are available for researchers to test their quantum algorithms [88].
It has already been established by Peter Shor [81, 83] that a quantum computer
(if available) with several thousands quantum bits (qubits) can be programmed to
break public-key almost all of the public-key cryptographic algorithms. Therefore
academic and governmental efforts started to design public-key cryptographic algo-
rithms that would be resistant to quantum computing attacks, which gave birth to
post-quantum cryptography. In April 2015, the US NIST held a “Workshop on
Cybersecurity in a Post-Quantum World” to discuss cryptographic algorithms for
public-key based key agreement and digital signatures that are not susceptible to
cryptanalysis by quantum algorithms. In this direction, NIST recently launched the
so-called “Post- Quantum Cryptography Standardization” process, a multiyear effort
aimed at selecting the next-generation of quantum-resistant public-key cryptographic
algorithms for standardization.

Another formidable challenge has been the desire to compute with the encrypted
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text without decrypting, which is termed as homomorphic encryption. The poten-
tial applications of homomorphic encryption were recognized and appreciated almost
about the same time as the first public-key cryptographic algorithm RSA was in-
vented, which is multiplicatively homomorphic. The ensuing 30 years have brought
on several additively or multiplicatively homomorphic encryption functions with in-
creasing algorithmic complexity. In 2009, Craig Gentry and several other authors
later on proposed fully (both additively and multiplicatively) homomorphic encryp-
tion algorithms and addressed issues related to their formulation, arithmetic, and
security. We now have a variety of fully homomorphic encryption algorithms that
can be applied to various private computation problems in healthcare, finance and
national security.

We start with Shannon’s ideas in Section 2, and show how Feistel used them to
create his seminal cryptographic algorithm LUCIFER. In this paper, we focus only
on the DES and AES, the US standardized algorithms since the first was the chosen
algorithm for applications ranging from banking to Internet for 2 decades, while latter
has been in use as its replacement for more than 2 decades, going into the 3rd.

The Section 3 covers public-key cryptography which tackles key management,
public-key encryption and digital signatures, providing authentication and nonrepu-
diation properties for the exchanged data and communicating parties. We will cover
the basic ideas and algorithms of public-key cryptography briefly, and move into post-
quantum cryptography in the Section 4. The advent of quantum computing is bound
to change public-key cryptography, and the changes have already started. We will
give an overview of post-quantum cryptography in this section.

Finally the Section 5 covers homomorphic encryption which will bring a kind of
luxury to data science such that we can keep everything encrypted and still accomplish
the necessary computations for maintaining the data as well as inferring from it. This
will indeed be a revolution, and will bring nearly-absolute security for our precious
data.

2 Secret-Key Cryptography

Claude Shannon wrote his “secrecy” paper in 1945, however it was declassified and
published only in 1949 [80]. Shannon suggested that cryptanalysis using statistical
methods might be defeated by the mixing or iteration of non-commutative opera-
tions. Shannon refers to these operations as confusion (or substitution) and diffusion
(transposition). His ideas were used in the design of the top 3 encryption algorithms
in the following 5 decades. The LUCIFER [38, 37] and DES S-boxes and P-boxes
[63, 64] are Feistel’s interpretation of Shannon’s confusion and diffusion. Similarly,
AES or Rinjdael also uses many rounds to mix confusion and diffusion [65, 29].
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2.1 LUCIFER

Horst Feistel changed cryptology. Historically (pre-Shannon days), encryption algo-
rithms have been dictated by the hardware available. The pinwheels of the 1934
Hagelin machine, the rotors of the 1918 German Enigma machine, the telephone dial
switches used in the 1937 Japanese Purple machine and nonlinear versions of the
linear feedback shift register were subsequently based on the 1947 transistor break-
through [54]. Horst knew about some of these, but he realized that hardware was a
limitation; a program could directly implement encryption and so he started in the re-
verse direction. When asked by about the idea behind his algoritm LUCIFER, Horst
said “The Shannon secrecy paper [10] reveals all” [54]. He understood the power of
Shannon’s idea, followed the master’s advice, leading to LUCIFER and DES.

LUCIFER was the very first encryption algorithm designed for software. In fact,
LUCIFER is the name for the software implementation of the block cipher described
in the 1971 patent designated by Feistel. Coded in the APL language, LUCIFER
originally was stored in the APL directory (folder) with the intended name DEMON-
STRATION. Early versions of APL limited the character length of a file name, and a
colleague suggested the name DEMON, modified by Horst to LUCIFER. Shannon’s
secrecy paper alone may have provided the real inspiration for a person of Horst’s
creative genius. Still, Horst Feistel went in his own cryptographic direction, providing
a fresh point of view. A modified LUCIFER became the Data Encryption Standard
(DES), affirmed in 1976 as a Federal Information Processing Standard (FIPS 46-
1). AES became the new FIPS, replacing DES in 2000 as a standard. The Triple
DES-variant (3DES) continues to be used for authenticated transactions in banking
[52, 53].

2.2 DES

The Data Encryption Standard is a US standard that provided confidentiality for
financial transactions from 1970s till to the end of 1990s. It was developed by IBM,
based on ideas of Horst Feistel, and submitted to the National Bureau of Standards
(the precursor of the National Institute of Standards and Technology) following an
invitation to propose a candidate for the protection of sensitive, unclassified electronic
data. After consulting with the National Security Agency (NSA), the NBS eventu-
ally selected a slightly modified version, which was published as an official Federal
Information Processing Standard (FIPS) for the United States in 1977, with the num-
ber FIPS 46. It quickly became an international standard, and enjoyed widespread
deployment.

However, there was also some controversy about the DES for several years. The
design philosophy of certain elements (S-boxes) was never explained (classified), and
its key length was unnaturally short (56 bits) while it could have been 64 bits. The
NSA involvement was found suspicious by some researchers, especially on its key
length [48]. There were also conspiracy theories about the DES having a “back-
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door” for easy decryption (which was never proven to-day). Academic community
approached the DES with caution, however, in the end, it significantly contributed
to the development of modern cryptography for our communication and computing
systems

The fundamental building block in DES is a substitution followed by a permu-
tation on the text, based on the key. This is called a round function. DES has 16
rounds.

Figure 1: The 16 rounds of DES and the round function.

A cryptographic algorithm should be a good pseudorandom generator in order to
foil key clustering attacks. DES was designed so that all distributions are as uniform as
possible. For example, changing 1 bit of the plaintext or the key causesthe ciphertext
to change in approximately 32 of its 64 bits in a seemingly unpredictable and random
manner.

However, Biham and Shamir [8] observed that with a fixed key, the differential
behavior of DES does not exhibit pseudorandomness. If we fix the XOR of two
plaintexts P and P ∗ at P ′ then T ′ (which is equal to T ⊕ T ∗) is not uniformly
distributed. In contrast, the XOR of two uniformly distributed random numbers
would itself be uniformly distributed. The attack (called differential cryptanalysis)
based the nonrandom behavior of the DES still could not break DES, primarily due
to the fact that 16 rounds made the tracing of the differences of the plaintexts and
ciphertexts very difficult. Biham and Shamir showed that DES reduced to 6 rounds
can be broken by a chosen plaintext attack in less 0.3 seconds on a PC using 240
ciphertexts; the known plaintext version requires 236 ciphertexts. On the other hand,
DES reduced to 8 rounds can be broken by a chosen plaintext attack in less than
2 minutes on a PC by analyzing about 214 ciphertexts; the known plaintext attack
needs about 238 ciphertexts. Yet, the full DES (16 rounds) can only be broken by
analyzing 236 ciphertexts from a larger pool of 247 chosen plaintexts using 237 time.
The differential cryptanalysis confirmed the importance of the number of rounds and
the method by which the S-boxes are constructed.
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On the other hand, the variations on DES turn out to be easier to cryptanalyze
than the original DES. Most importantly, certain changes in the structure of DES
hase catastrophic results, as shown in Table 1.

Table 1: Effectiveness of differential cryptanalysis.

Modified Operation Chosen Plaintexts
Full DES (No change) 247

Random P permutation 247

Identity P permutation 219

Order of S-boxes 238

Change XOR by Addition 231

Random S-boxes 221

Random Permutation 244 ∼ 248

One Entry S-box 233

Uniform S-boxes 226

Eliminate Expansion E 226

Order of E and subkey XOR 244

Feistel ciphers take an important part in secret key cryptography from both theo-
retical and practical point of view. After DES, new schemes have been published, like
GOST in Russia, IDEA, and RC-6 in the United States. From a practical point of
view, Feistel ciphers had their days of glory with the DES algorithm and its variants
(3DES with two or three keys, XDES, etc.) that were the most widely used secret key
algorithms around the world between 1977 and 2000. After 2000, the AES algorithm,
which is not a direct Feistel cipher, but still based on the Shannon’s ideas (confusion
and diffusion) which were very effectively utilized by Feistel, has become the standard
for secret key encryption.

2.3 AES

AES is a key-alternating block cipher, with plaintext encrypted in blocks of 128 bits.
The key sizes in AES can be 128, 192, or 256 bits. It is an iterated block cipher
because a fixed encryption process, usually called a round, is applied a number of
times to the block of bits. Finally, we mean by key-alternating that the cipher key is
XORed to the state (the running version of the block of input bits) alternately with
the application of the round transformation. The original Rijndael design allows for
any choice of block length and key size between 128 and 256 in multiples of 32 bits. In
this sense, Rijndael is a superset of AES; the two are not identical, but the difference
is only in these configurations initially put into Rijndael but not used in AES [29].

The state matrix of AES is formed from the input data as a 4 × 4, 4 × 6,
and 4 × 8 matrices, for 128, 192 or 256 bits, respectively. Given the 128-bit data
(A0A1A2 · · ·A14A15) such that each of Ai is 8 bits (1 byte), the 4× 4 state matrix is
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formed as 
A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15


The 8-bit (1-byte) binary data is usually represented in hexadecimal, such as (a3) =
(1010 0011). While the 8-bit input data block is a binary number in its most generic
form, the Rijndael/AES treats each one of the bytes in the state matrix as elements
of the Galois field GF(28). The irreducible polynomial of the field GF(28) is p(x) =
x8+x4+x3+x+1. A field element a(x) ∈ GF(28) is represented using a polynomial
of degree at most 7 with coefficients ai ∈ GF(2) such that

∑7
i=0 aix

i = a7x
7 + x6x

6 +
a5x

5+a4x
4+a3x

3+a2x
2+a1x+a0. For example, (a3) = (1010 0011) = x7+x5+x+1.

AES has 4 sub-rounds, named as AddRoundKey, SubBytes, ShiftRows, MixColumn.
Except the ShiftRows operation, all of them involve finite field addition, inversion,
and linear and non-linear operations in the field GF(28).

Figure 2: The 10 rounds of AES and the round function.

Here we describe only the MixColumn operation which multiplies a fixed 4 × 4
matrix with every 4 × 1 column vector of the 4 × 4 state matrix. The MixColumn
matrix M in hex and polynomial representation is

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x


Given a 4× 1 column vector u of the state matrix, such that each vector entry is an
element of the finite field GF(28), we perform a matrix-vector multiplication operation
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Mu using field multiplications and additions to compute the new column vector of
the state matrix. We give an example of the MixColumn operation example below:

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




d4

bf

5d

30

 =


04

66

81

e5


We show the computation of the first entry of the resulting vector, in other words,
the computation of

[02 03 01 01]


d4

bf

5d

30

 = (04)

By representing the column vector [d4 bf 5d 30]T as a polynomial vector, we can
write this MixColumn operation in polynomial representation as

[x x+ 1 1 1]


x7 + x6 + x4 + x2

x7 + x5 + x4 + x3 + x2 + x+ 1
x6 + x4 + x3 + x2 + 1

x5 + x4


To compute the inner product, we perform polynomial multiplications, additions, and
reductions modulo p(x) whenever necessary:

x · (x7 + x6 + x4 + x2) +
(x+ 1) · (x7 + x5 + x4 + x3 + x2 + x+ 1) +

1 · (x6 + x4 + x3 + x2 + 1) +
1 · (x5 + x4)

The first product x ·(x7+x6+x4+x2) needs to be computed and reduced if necessary.
Here, we need reduction modulo the irreducible polynomial p(x) since the resulting
polynomial would be of degree 8

x · (x7 + x6 + x4 + x2) = x8 + x7 + x5 + x3

= (x4 + x3 + x+ 1) + x7 + x5 + x3

= x7 + x5 + x4 + x+ 1

= (1011 0011) = (b3)

After the polynomial multiplication, we reduced the highest degree term (which is
x8) by substituting it with x4 + x3 + x+ 1, which is the lower half of the irreducible
polynomial p(x) = x8 + x4 + x3 + x+ 1.

The second product, after the multiplication gives

(x+ 1) · (x7 + x5 + x4 + x3 + x2 + x+ 1) = x8 + x7 + x6 + 1
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We also need to reduce it modulo p(x) since its degree is larger than 8. By substituting
x8 with x4 + x3 + x+ 1, we obtain

(x4 + x3 + x+ 1) + x7 + x6 + 1 = x7 + x6 + x4 + x3 + x

which is equal to (1101 1010) = (da). However, we do not need reductions for the
third and fourth products:

1 · (x6 + x4 + x3 + x2 + 1) = x6 + x4 + x3 + x2 + 1 = (5d)
1 · (x5 + x4) = x5 + x4 = (30)

Finally, adding all 4 resulting polynomials, we obtain the top entry as

(02) · (d4) = (b3) x7 + x5 + x4 + x+ 1
(03) · (bf) = (da) x7 + x6 + x4 + x3 + x
(01) · (5d) = (5d) x6 + x4 + x3 + x2 + 1
(01) · (30) = (30) x5 + x4

(04) x2

The remaining 3 entries are obtained by repeating the above operations by multiplying
the second, third, and fourth rows of the fixed MixColumn matrix with the same state
column.

3 Public-Key Cryptography

In public-key cryptography, the encryption EKe(M) and the decryption DKd
(C) func-

tions are inverses of one another, and use different keys

C = EKe(M) and M = DKd
(C) .

These processes are asymmetric, and the keys are not equal, i.e., Ke ̸= Kd. The
naming conventions are

• Ke is the public key, which is expected to be known by anyone;

• Kd is the private key, known only to the user;

• Ke may be easily deduced from Kd;

• However, Kd is not easily deduced from Ke.
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Figure 3: The general concept of public-key encryption.

The User publishes his own public key Ke and anyone can obtain it and can
encrypt a message M , and send the resulting ciphertext to the User C = EKe(M).
The private key Kd is known only to the User and only the User can decrypt the
ciphertext to get the message M = DKd

(C). The adversary may be able to block the
ciphertext, but it cannot decrypt. A public-key cryptographic algorithm is based on
a function y = f(x) such that given x, computing y is easy; while, given y, computing
x is hard:

Figure 4: The general concept of a one-way function.

Such functions are called one-way functions. In order to decide which function
is hard according to this criteria, we can resort to the theory of complexity. However,
a one-way function is difficult for anyone to invert, including the receiver of the
encrypted text. Instead, we need a function that is easy to invert for the legitimate
receiver of the encrypted message, but hard for everyone else. Such functions are
called one-way trapdoor functions.

In order to build a public-key encryption algorithm, we need a one-way trapdoor
function. As this fact is understood around 1975-1976, researchers at Stanford and
MIT were looking for such special functions which are either based on the known
one-way functions or some other “unknown” constructions. Since then the following
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one-way functions have been identified, allowing us to build public-key encryption
algorithms with the help of trapdoor mechanisms:

• Discrete Logarithm:
Given p, g, and x, computing y in y = gx (mod p) is EASY
Given p, g, y, computing x in y = gx (mod p) is HARD

• Factoring:
Given p and q, computing n in n = p · q is EASY
Given n, computing p or q in n = p · q is HARD

• Discrete Square Root:
Given x and y, computing y in y = x2 (mod n) is EASY
Given y and n, computing x in y = x2 (mod n) is HARD

• Discrete eth Root:
Given x, n and e, computing y in y = xe (mod n) is EASY
Given y, n and e, computing x in y = xe (mod n) is HARD

3.1 The Diffie-Hellman Key Exchange Method

The first one-way function in this list gave birth to the Diffie-Hellman Key Ex-
change Method, whose trapdoor mechanism is based on the commutativity of expo-
nentiation (ga)b = (gb)a. It was invented by Martin Hellman and Whitfield Diffie who
published their paper “New Directions in Cryptography” in 1976 [32], introducing a
radically new method of distributing cryptographic keys, and thus solving one of the
fundamental problems of cryptography.

• A and B agree on a prime p and a primitive element g of Z∗
p . This is accom-

plished in public: p and g are known to the adversary

• A selects a ∈ Z∗
p , computes r = ga (mod p), and sends r to B

• B selects b ∈ Z∗
p , computes s = gb (mod p), and sends s to A

• A (having received s) computes K = sa (mod p)

• B (having received r) computes K = rb (mod p)

• These two quantities are equal since

K = ra = (ga)b = gab (mod p) ,

K = sb = (gb)a = gab (mod p) .
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At the end of these computation and communication steps, the parties A and B have
the key value K, which is known to them but computing K is hard by anyone who
sees and records all communicated values. The difficulty of computing the key K
depends on the Discrete Logarithm Problem, whose general definition is given as:
The computation of x ∈ Z∗

p in y = gx (mod p), given p, g, and y.
For example, given p = 23 and g = 5, how can we find x such that 7 = 5x

(mod 23)? The answer in this case easy x = 19 since we can find it by trying all
possible values in Z∗

23 = {1, 2, . . . , 22}. However, the difficulty of computing the
discrete logarithm for a larger p will significantly higher; consider p = 158(2800 +
25) + 1 =

1053546280395016975304616582933958731948871814925913489342608
7342587178835751858673003862877377055779373829258737624519904
5043066135085968269741025626827114728303489756321430023716636
9174066615907176472549470083113107138189921280884003892629359

and g = 17, and the computation of x ∈ Z∗
p such that 2 = 17x (mod p). Such x

exists since 17 is a primitive root of p, however, the number of trials to find it will
require insurmountable time and energy.

If the Discrete Logarithm Problem is difficult in a group (such as Z∗
p ), we can use

it to implement not only the Diffie-Hellman key exchange method, but also several
other public-key cryptographic algorithms, such as the ElGamal public-key encryp-
tion method and the Digital Signature Algorithm. As we described, we can resort to
the exhaustive search of the unknown value by trying all possible values of x ∈ Z∗

p

iteratively.
z = g
for i = 2 to p− 1

z = g · z (mod p)
if y = z

return x = i

This algorithm requires p − 2 multiplications. However, it is an exponential algo-
rithm in terms of the input size, which is the number of bits in the prime p. Since,
the multiplications of two k-bit operands are of order O(k2), the search complexity is
exponential in k, as O(pk2) = O(2kk2). There are better algorithms, such as Shanks
Algorithm, Pollard Rho Algorithm, Pohlig-Hellman Algorithm, and the Index Cal-
culus Algorithm; the first three algorithms are still of exponential complexity. The
analysis is of the Index Calculus Algorithm is more complicated, and is estimated to
be

O
(
ec·(log p)

1/3(log log p)2/3
)
.

This time complexity is sub-exponential since it is faster than exponential (in log p)
but slower than polynomial. Therefore, the Discrete Logarithm Problem remains to
be a hard problem on a digital computer, making the Diffie-Hellman key exchange
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method a strong public-key cryptographic algorithm. Currently much of wireless
communication and internet security depends on it.

3.2 The RSA Algorithm

The second important algorithm in the search for one-way trapdoor functions came
from the 3 MIT professors, Ronald Rivest, Adi Shamir, and Leonard Adleman in the
Summer and Fall of 1976. Their paper was published in 1978 [76], and MIT patented
the method 1983 (which ended in 2000). The Rivest-Shamir-Adleman Algorithm or
briefly as the RSA Algorithm constructs public and private keys for the User as
follows:

• The User generates 2 large, about same size random primes: p and q

• The modulus n is the product of these two primes: n = p · q

• Euler’s totient function of n is given by ϕ(n) = (p− 1) · (q − 1)

• The User selects e as 1 < e < ϕ(n) such that gcd(e, ϕ(n)) = 1 and computes
d = e−1 (mod ϕ(n)) using the extended Euclidean algorithm.

• The public key: The modulus n and the public exponent e.

• The private key: The private exponent d, the primes p and q, and ϕ(n) =
(p− 1) · (q − 1)

Once the keys are available, the encryption and decryption operations are performed
by computing

C = M e (mod n) ,

M = Cd (mod n) ,

where M,C are the plaintext and ciphertext such that 0 ≤M,C < n.
The security of the RSA Algorithm depends on the discrete eth root problem, i.e.,

given y, n and e, computing x in y = xe (mod n) is known to be a hard problem.
One we can attempt to break the RSA algorithm in several ways:

• Compute eth Root of M e (mod n) and obtain M

• Factor n = pq, compute d = e−1 mod (p− 1)(q − 1)

• Obtain ϕ(n) by some method, and compute d = e−1 mod ϕ(n)

There is no known algorithm for computing discrete eth root mod n directly, and it is
obvious factoring n indeed breaks the RSA encryption algorithm. However, “Breaking
RSA” does not mean that we can factor n. There is no general proof for such a claim.
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3.3 Digital Signatures

A digital signature or digital signature algorithm is a mathematical method for
demonstrating the authenticity of a digital message or document. A valid digital
signature gives a recipient reason to believe that the message was created by a known
sender (authentication) such that he cannot deny sending it (non-repudiation) and
that the message was not altered in transit (integrity). Digital signatures are com-
monly used for software distribution, financial transactions, and in other cases where
it is important to detect forgery or tampering. A public-key encryption algorithm is
also a digital signature algorithm, the most notable example being the RSA algorithm.

Diffie and Hellman first described the concept of a digital signature scheme, and
they conjectured that such methods exist. The RSA algorithm can be used as a
public-key encryption method and as a digital signature algorithm

Figure 5: The general concept of digital signatures.

However, the plain RSA signatures have certain security problems. Other digital
signature algorithms have been developed after the RSA: Lamport signatures, Merkle
signatures, and Rabin signatures. Several more digital signature algorithms followed
up, and are in use today: ElGamal, the Digital Signature Algorithm (DSA), the
elliptic curve DSA (ECDSA).

The steps of the (plain) RSA signatures follows as:

• User A has an RSA public key (n, e) and private key (n, d)

• User A creates a message M < n, and encrypts the message using the
private key to obtain the signature S as

S =Md (mod n)
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and sends the message (plaintext) and the signature [M,S] to User B

• User B receives [M,S], obtains User A’s public key from the directory, and
decrypts the signature using the public key:

T = Se (mod n)

If T =M , then the User B decides that the signature S on the message M was
created by User A

The plain RSA signatures have several problems to be used directly as a signature
scheme in practice. First of all, the message length is limited to the modulus length,
and longer messages cannot be directly signed. A biggest concern is that legiti-
mate signatures can be used to create forged signatures. Consider that [M,S]
is a legitimate pair of message and signature, created by the owner of the public
and private key pair such that S = Md (mod n) and M = Se (mod n). The pair
[M2 mod n, S2 mod n] also verifies:

(S2)e = (Se)2 =M2 (mod n)

It appears that [M2 mod n, S2 mod n] is a legitimate signature.
The solution of these problems with plain RSA signatures are avoided by employ-

ing a hash function H(·). Instead of encrypting M with the private key, we encrypt
H(M): the hash of M

h = H(M) → S = hd (mod n) → [M,S]

The receiving party verifies the message and signature pair [M,S] using

h = H(M) → T = Se (mod n) → T
?
= h

The cryptographic hash function H(·) is a publicly available function, and does not
involve a secret key.

The Diffie-Hellman and RSA algorithms opened up new avenues for cryptography,
particularly in internet security and wireless communication. The next 4 decades
from 1980s to now have seen their proliferation and implementations. New methods
and standards have been developed by NIST, as well as banking, communication,
and internet communities. Public-key cryptography has become an household term,
including the software packages and communication utilities, such as SSL and https.

4 Post-Quantum Cryptography

A quantum computer is based on the principles of quantum physics to perform com-
putations. Classical computers use bits which is either 0 or 1 whereas quantum
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computers use quantum bits (called qubits) which can be either in a 1 or 0 quan-
tum state or in a superposition of these states. A quantum computer is useful only
if a quantum algorithm which solves a particular problem exists. It is important
to make the distinction between Quantum Cryptography and Post-Quantum Cryp-
tography (PQC). Quantum cryptography refers to quantum mechanical solutions to
achieve communication secrecy or quantum key distribution. On the other hand,
post-quantum cryptography aims to design and deploy algorithms that are secure
against classical and quantum attacks. The security proofs of current widely used
public-key cryptosystems (namely, RSA, Diffie-Hellman and ECC) are based on the
hardness of integer factorization, discrete logarithm and elliptic curve discrete log-
arithm problems. Solving these problems using classical computation technology,
even with hardware accelerators, takes hundreds of years. However, in 1994 Peter
Shor [82] proposed an algorithm which solves these problems in polynomial time with
a large-scale (a few thousands qubits) quantum computer. Although the key sizes
for RSA and ECC used today are resistant against currently available small-scale
quantum computers, the transition from public-key cryptography to post-quantum
cryptography is needed in the near future, before any large-scale computers are built.
Compared with public-key cryptography, symmetric cryptography is less affected by
quantum attacks like Grover’s algorithm which halves the security level.

In 2016, National Institute of Standards and Technology (NIST) released a report
that announced a standardization plan for PQC and called for new quantum-resistant
cryptographic algorithms for key encapsulation mechanisms (KEM), public-key en-
cryption (PKE) and digital signatures. The evaluation criteria used throughout the
NIST PQC standardization process are: 1) security, 2) cost and performance, and 3)
algorithm and implementation properties.

Table 2: NIST 3rd round finalists
(Cb: Code-based; Lb: Lattice-based; Mv: Multivariate).

Scheme Type Security Problem

Classic McEliece KEM, Cb Decoding Goppa codes
CRYSTALS-KYBER KEM, Lb Module-LWE

NTRU KEM, Lb NTRU problem
SABER KEM, Lb Module-LWE

CRYSTALS-DILITHIUM Sign, Lb Module-LWE and Module-SIS
FALCON Sign, Lb Ring-SIS over NTRU lattices
Rainbow Sign, Mv Unbalanced Oil-Vinegar (UOV)

Among 82 received submissions by the November 2017 deadline, 69 of them were
accepted into the first round of the standardization process in December 2017 as they
met the submission requirements and minimum acceptability criteria. In January
2019, NIST moved 26 algorithms on to the second round of the process by consulting
public feedback and internal reviews of candidates. 17 of them were KEMs/PKEs and
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9 were digital signatures. Four of the 26 candidates were mergers of the first round
algorithms. In July 2020, NIST announced the 15 candidates moved on to the third
round of the standardization process. Of the 15 advancing candidates, seven have
been selected as finalists and eight as alternate candidates. The alternate candidates
are considered as potential candidates for future standardization, most likely after
another round of evaluation.

Table 3: NIST third round alternate (Cb: Code-based; Lb: Lattice-based; Ib:
Isogeny-based; Mv: Multivariate; Sym: Symmetric; Hb: Hash-based).

Scheme Type Security Problem

BIKE KEM, Cb Decoding QC-MDPC codes
HQC KEM, Cb Decisional QCSD with parity

FrodoKEM KEM, Lb LWE
NTRU Prime KEM, Lb NTRU

SIKE KEM, Ib Isogenies of elliptic curves
GeMSS Sign, Mv Hidden Field Equation (HFE)
Picnic Sign, Sym ZKP

SPHINCS+ Sign, Hb security of the hash functions

There are five competing families of PQC algorithms: Code-based encryption,
Isogeny-based encryption, Lattice-based encryption and signatures, Multivariate sig-
natures, and Hash-based signatures.

4.1 Code-based Cryptography

Code-based cryptography uses error-correcting codes to build public-key encryption
algorithms. The first code-based cryptosystem was proposed by Robert J. McEliece
in 1978 [61]. Athough it is as old as RSA and has much stronger security history than
RSA, due to large key sizes (large matrices as its public and private keys) it was not
deployed in practical applications so far. However, today it is a strong candidate for
PQC as it is resistant to attacks using Shor’s algorithm.

The security of McEliece cryptosystem is based on the hardness of efficient decod-
ing of a selected linear code. A decoding algorithm corrects errors which might have
occurred during the transmission of a message over a communication channel. The
classical decoding problem is to find the closest codeword c ∈ C to a given y ∈ Fn

q

assuming that there is a unique closest codeword. Berlekamp, McEliece and van
Tilborg [5] showed that the general decoding problem for binary linear codes (over
F2) is NP-complete. The original McEliece cryptosystem uses secretly generated ran-
dom binary Goppa codes [46] which can be efficiently decoded with the algebraic
decoding algorithm of Patterson [72]. Before presenting the algorithms of McEliece,
we give a brief description of linear codes.
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Let Fq be the finite field with q elements, where q is a prime power. A q-ary
linear code of length n and dimension k is a k-dimensional vector subspace of Fn

q .
The elements of the code are called codewords. The minimum distance of the code
is minimum weight of its nonzero codewords, where the weight of a codeword is
the number of its nonzero coordinates. A linear code of length n, dimension k and
minimum distance d is referred to as an [n, k, d] code. A code of minimum distance
d ≥ 2t+ 1 can correct up to t errors, i.e., C is a ⌊(d− 1)/2⌋-error correcting code. A
vector with more errors will likely get decoded incorrectly.

Since a linear code is a vector space, it admits a basis. Any codeword can be
expressed as the linear combination of these basis vectors. A generator matrix G
of an [n, k, d] code C is a k × n matrix whose rows form a basis for C. Namely,
C = {xG : x ∈ Fk

q}. A parity-check matrix of C is an (n − k) × n matrix H such
that {c ∈ Fn

q : HcT = 0} where cT is the transpose of c. If G has the form [Ik|A],
where Ik is the k × k identity matrix, then G is said to be in systematic form. The
matrix H = [AT |In−k] is then a parity-check matrix for C. There are many generator
matrices for a linear code, but there is a unique one in systematic form if it exists.

The algorithms of the original McEliece cryptosystem is as follows:
KeyGen: A t-error correcting binary [n, k, d] linear code C with a generator matrix
G′ is picked. Further, a k×k random binary invertible matrix S and an n×n random
binary permutation matrix P are chosen. Multiplying a vector by a permutation
matrix, which has exactly one 1 in each row and each column and 0s elsewhere,
permutes the entries of the vector. The public key is the pair (G = SG′P, t) and the
secret key is the triple (G′, S, P ) with an efficient decoding algorithm for C.
Enc: To encrypt a plaintext m ∈ Fk

2, a random vector e ∈ Fn
2 of weight t is chosen

and the ciphertext is computed as

c = mG+ e.

Dec: To decrypt a ciphertext c ∈ Fn
2 the legitimate receiver, who knows the matrices

S, G′, P and an efficient decoding algorithm for C, computes first

cP−1 = mGP−1 + eP−1 = mSG′PP−1 + eP−1 = mSG′ + eP−1.

Note that the weight of eP−1 is t and since C is a t-error correcting code, the
codeword mSG′ is obtained. Using the decoding algorithm for C, the legitimate
receiver recovers mS and then covers m by multipliying the inverse of S.

McEliece’s original parameter sizes n = 1024, k = 524, t = 50 were designed for
264 security which was broken in 2008 [6] with more than 260 CPU cycles. Further,
the new parameters were designed to minimize public-key size while achieving 80-bit,
128-bit, or 256-bit security against known attacks [6]. For a detailed security analysis
of these codes, we refer the reader to [56].
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4.2 Isogeny-based Cryptography

Isogeny-based cryptography uses maps between elliptic curves, called isogenies, to
build public-key cryptography. The first such cryptosystem was discovered by Cou-
veignes in 1997, but became better known in 2006 [28]. This system further devel-
oped by Rostovtsev and Stolbunov in [77] and Stolbunov in [87]. All these proposed
systems are based on the difficulty of computing isogenies between ordinary elliptic
curves. This hardness assumption is totally different from the hardness of the elliptic
curve discrete logarithm problem for security. Therefore, Shor’s quantum algorithm
[82] cannot break these systems. However, Couveignes–Rostovtsev–Stolbunov (CRS)
cryptosystem based on ordinary elliptic curves can be broken with a subexponential
quantum attack [23]. In 2011, Jao and De Feo [51] used isogenies between super-
singular elliptic curves rather than ordinary ones to construct a novel key-exchange
protocol, called Supersingular Isogeny Diffie-Hellman (SIDH). The extended version
of SIDH was later released by Jao, De Feo and Plût with [39]. SIDH addressed both
the performance and security drawbacks of CRS system. Thenceforth SIDH has at-
tracted almost all research focus of isogeny-based cyrptography. SIDH resists against
the attack proposed in [23] which exploits the commutativity of the endomorphism
ring of an ordinary elliptic curve, since SIDH is constructed using the isogenies be-
tween supersingular elliptic curves whose endomorphism ring is non-commutative.
Currently known fastest classical and quantum attacks against SIDH are both expo-
nential. The SIDH algorithm also provides perfect forward secrecy which improves
the long-term security of encrypted communications. Further, compromise of a key
does not affect the security of past communication.

SIDH was used to build the key encapsulation mechanism SIKE (Supersingu-
lar Isogeny Key Encapsulation) [50] based on pseudo-random walks in supersingular
isogeny graphs, that was submitted to the NIST standardization process on post-
quantum cryptography and selected as a third round alternate candidate. One of
the main advantages to SIKE is that it has the smallest public key sizes of all the
encryption and KEM schemes, as well as very small ciphertext sizes. Among all the
post-quantum cryptosystems, isogeny-based systems are the most recent and their
security against quantum attacks needs to be further studied.

In 2018, Castryck et al. [16] presented CSIDH (Commutative Supersingular
Isogeny Diffie-Hellman) which directly adopts the CRS cryptosystem based on ordi-
nary elliptic curves to supersingular case. CSIDH is vulnerable to the attack proposed
in [23]. On the performance side, CSIDH is much faster than CRS while it is slower
than SIDH. CSIDH has not been submitted to NIST’s standardization process since
it was designed after the submission deadline date.
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Table 4: Instantiations of Diffie-Hellman.

DH ECDH SIDH

elements integers g
modulo prime

points P in
curve group

curves E in
isogeny class

secrets exponents x scalars k isogenies ϕ
computations g, x 7→ gx k, P 7→ [k]P ϕ, E 7→ ϕ(E)

hard
problem

given g, gx

find x
given P , [k]P
find k

given E , ϕ(E)
find ϕ

In this section, original SIDH key-exchange protocol will be explained. But first,
we briefly introduce supersingular elliptic curves over finite fields and isogenies. For
more details on elliptic curves and their use in cryptography, we refer the interested
readers to [84, 40].

4.2.1 Supersingular Elliptic Curves and Isogenies

Let Fq be a finite field of q elements where q is a prime power, namely q = pn for
n > 0 and p > 3. An elliptic curve E defined over Fq, denoted as E/Fq, is given by
an equation in short Weierstrass form

E : y2 = x3 + ax+ b, a, b ∈ Fq and 4a3 + 27b2 ̸= 0.

The set of points on E over Fq are the set of pairs (x, y) ∈ F2
q satisfying the curve

equation

E(Fq) = {(x, y) ∈ F2
q : y

2 = x3 + ax+ b} ∪ {OE},

where OE = (∞,∞) is the point at infinity , which is also considered to be a solution
to the Weierstrass equation. The set of points on an elliptic curve E is an abelian group
with the identity element OE under the ”chord and tangent rule”. The number of
points on E/Fq is #E(Fq) = q+1−t for an integer t lying in the interval [−2√q, 2√q].
An elliptic curve is called supersingular if t ≡ 0 mod p, or equivalently #E(Fq) =
1 mod q, and is called ordinary otherwise.

For k ∈ N and P ∈ E(Fq), we define [k]P = P +P + · · ·+P (n times). The order
of P is k if [k]P = OE . Since E(Fq) is a finite group, the order of any point P ∈ E(Fq)
is finite and divides the group order #E(Fq).

Let E1 and E2 be two elliptic curves over Fq. An isogeny ϕ : E1 → E2 is a non-
constant rational function which is a group homomorphism (i.e., compatible with the
group operations) satisfying ϕ(OE1) = OE2 . Two elliptic curves are isogenous if
there is an isogeny between them. Endomorphisms are a special class of isogenies
where the domain and co-domain are the same curve. The endomorphism ring of E
is the set of isogenies from E to itself, along with the zero map 0 : E → E given by
0(P ) = OE for all points P on E . In a set notation, End(E) = {ϕ : E → E} ∪ {0}.
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Isomorphisms also forms special class of isogenies where the kernel is trivial. If
there is a pair of isogenies ϕ : E1 → E2 and ψ : E2 → E1 such that both ϕ ◦ ψ and
ψ◦ϕ are the identity, then ϕ and ψ are isomorphisms and so E1 and E2 are isomorphic
curves. Elliptic curves up to isomorphism forms the isomorphism classes. The typical
representative for isomorphism classes is the j-invariant which is

j(E) = 1728
4a3

4a3 + 27b2

for elliptic curves in short Weierstrass form. The SIDH algorithm establishes the
secret key by computing the j-invariant of two isomorphic supersingular elliptic curves
generated by the two communicating parties that happens to be isogenous to an initial
supersingular curve.

A theorem of Tate states that E1 and E2 are isogenous if and only if they have
the same number of points over Fq (indeed over any finite extension of Fq), i.e.,
#E1(Fq) = #E2(Fq) [90]. The set of curves that are isogenous to an elliptic curve E
is called the isogeny class of E . Note that if E is supersingular then all curves in its
isogeny class are supersingular; similarly, isogeny class of an ordinary curve consists
of ordinary curves. It is well known that every supersingular curve is isomorphic to
one defined over Fp2 . From now on, we consider the supersingular curves only.

Cryptography is interested in separable isogenies, which does not factor through
Frobenius map (x, y) 7→ (xq, yq) over Fq. The degree of a separable isogeny is the
number of points in its kernel. An isogeny is defined by its kernel in the sense that
for every finite subgroup G of E1, there is a unique E2 (up to isomorphism) and a
separable isogeny ϕ : E1 → E2 such that Ker ϕ = G. Instead of E2, we sometimes
write E1/G. Given a finite subgroup G of E1, an isogeny ϕ : E1 → E2 with kernel G can
be constructed by Vélu’s formulas [92]. Notice that the number of distinct isogenies
of degree ℓ, called as ℓ-isogenies, is equal to the number of distinct subgroups of E1
of order ℓ.

As an example, for each m ∈ Z such that p ∤ m and an elliptic curve E over Fq,
consider the following separable isogeny

[m] : E → E
P 7→ [m]P.

The kernel of this isogeny is the m-torsion subgroup of E , denoted by E [m], which
is the set of points on E of order m,

E [m] = {P ∈ E : [m]P = OE} = Z/mZ× Z/mZ.

The degree of the above isogeny is equal to #E [m] = m2.

4.2.2 Supersingular Isogeny Diffie-Hellman (SIDH)

First, the domain (public) parameters are fixed. Let p be a prime of the form
ℓA

eAℓB
eBf ± 1, where ℓA and ℓB are small primes, eA and eB are positive integers
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and f is a small cofactor such that p is a prime. A supersingular elliptic curve E
defined over Fq = Fp2 is constructed (this can be done via an efficient algorithm
due to Broker [15]) such that it has cardinality (ℓA

eAℓB
eBf)2. Elliptic curve points

PA, QA ∈ E [ℓeAA ] are chosen such that the group ⟨PA, QA⟩ generated by PA and QA is
the entire group E [ℓeAA ], i.e., {PA, QA} form a basis for E [ℓeAA ]. In a similar way, elliptic
curve points PB, QB ∈ E [ℓeBB ] are chosen such that the group ⟨PB, QB⟩ generated by
PB and QB is the entire group E [ℓeBB ].

The SIDH key exchange protocol between two parties A and B works as follows:

• A picks two random integers 0 ≤ mA, nA < ℓeAA such that ℓA ∤ mA, nA and com-
putes [mA]PA + [nA]QA. Similarly, B picks two random integers 0 ≤ mB, nB <
ℓeBB such that ℓB ∤ mB, nB and computes [mB]PB + [nB]QB.

• A creates a secret isogeny ϕA : E → EA with kernel generated by the point
[mA]PA + [nA]QA by using Vélu’s formulas. Then EA = ϕA(E) = E/KA where
KA = ⟨[mA]PA + [nA]QA⟩ is the kernel. Similarly, B creates a secret isogeny
ϕB : E → EB for which the kernel is KB = ⟨[mB]PB + [nB]QB⟩ and EB =
ϕB(E) = E/KB.

• In the exchange step of the protocol, A andB publishes the messages (EA, ϕA(PB), ϕA(QB))
and (EB, ϕB(PA), ϕB(QA)), respectively.

• Upon receipt of B’s message, A computes an isogeny ϕ′
A : EB → EAB with

kernel ⟨[mA]ϕB(PA) + [nA]ϕB(QA)⟩ = ⟨ϕB([mA]PA + [nA]QA⟩ = ϕB(KA). Here,
EAB = EB/ϕB(KA). Similarly, having received A’s message, B computes an
isogeny ϕ′

B : EA → EBA with kernel ⟨[mB]ϕA(PB) + [nB]ϕA(QB)⟩ = ϕA(KB).
Here, EBA = EA/ϕA(KB).

• The elliptic curves EAB and EBA computed by A and B are isomorphic as they
are both isomorphic to E/⟨KA, KB⟩, so they have the same j-invariant. This
common j-invariant is the shared secret key.

Given the curves EA, EB and the points ϕA(PB), ϕA(QB), ϕB(PA), ϕB(QA) as de-
scribed in the above protocol, finding the j-invariant of E/⟨KA, KB⟩ is called as su-
persingular computational Diffie-Hellman (SSCDH) problem. The security of SIDH
is based on this problem. SSCDH is more special (due to auxiliary information)
than the main problem in this area known as supersingular isogeny problem which
is described as follows: Given a finite field K and two supersingular elliptic curves
E1, E2 defined over K such that |E1| = |E2|, compute an isogeny ϕ : E1 → E2. The
best known classical algorithm for this problem is due to Delfs and Galbraith [31]
and requires Õ(p1/2) bit operations and the best known quantum algorithm is due to
Biasse et al [7] and requires Õ(p1/4) bit operations. However, SSCDH problem can be
regarded as an instance of the claw problem for which the best known classical and
quantum attacks requires O(p1/4) and O(p1/6) bit operations, respectively [95, 89].
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Note that the number of possible secret isogenies that A can create is equal to the
number of possible distinct kernels, which is ℓeA−1

A (ℓA+1) and the number of possible
isogeny choices for B is ℓeB−1

B (ℓB + 1).
Further note that the time needed to compute an isogeny grows linearly with

the degree of the isogeny. Representing a large degree isogeny as a composition
of small prime degree isogenies makes isogeny crypto feasible. For example, SIDH
decomposes a degree ℓeAA isogeny into a sequence of eA isogenies of degree ℓA instead of
computing the isogeny in a single step using Vélu’s formulas. while the computation
cost of the latter one is O(ℓeAA ), the cost to compute the former one is proportional
to ℓA. To reduce the cost of the computation of sequences of isogenies and speed the
computation up, Jao and De Feo proposed a new method. For further details, we
refer the readers to [51].

The selection of the primes, the selection of the curve equation and the elliptic
curve point representation (affine vs projective) together yield efficient implementa-
tions of the SIDH algorithm. For the fast arithmetic computation inside the SIDH
protocol, it is more convenient to use the primes of the form p = 2eA3eB±1. For an ini-
tial curve E/Fp2 : y

2 = x3+x where p = 2eA3eB±1, the 751-bit prime p = 23723239−1
provides 125-bit post-quantum security level matching security of AES-192 and the
964-bit prime p = 24863301− 1 provides 161-bit post-quantum security level matching
AES-256.

5 Homomorphic Encryption

Cloud computing offers many services to users, including storage of and computation
with large amounts of data. To take the advantage of the cloud computing, users
must share their data with the service provider. These data might be sensitive (for
example, financial data or patients’ medical reords). A simple solution to ensure data
privacy is to encrypt the data that is sent to the cloud. However, a user cannot
compute on the data in the cloud, and to perform computations, the data must be
downloaded and decrypted, or the secret key must be shared with the service provider.
The former process nullifies the major advantage of using cloud services while the later
process sacrifices privacy. This is where homomorphic encryption (HE) comes into
play. While the conventional encryption schemes cannot perform operations on the
encrypted data without decrypting it first, HE allows the cloud servers to compute on
encrypted data without decrypting it in advance. This concept was first introduced in
1978, shortly after the invention of RSA cryptosystem [76], by Rivest, Adleman and
Dertouzous [75], in their work entitled ”On data banks and privacy homomorphism”.

A homomorphic (public-key) encryption scheme E consists of four efficient algo-
rithms: KeyGenE , EncE , DecE and EvalE , where the first three algorithms are the
usual 3-tuples of any conventional public-key encrption scheme whereas the fourth
one is an HE-specific algorithm which is associated to a set of permitted functions
FE . These algorithms are efficient in the sense that their computational complexity
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must be polynomial in security parameter λ that specifies the bit-length of the keys.
KeyGenE takes a security parameter λ as input, and outputs a pair of keys (pk, sk),
where pk denotes the public key and sk denotes the secret key. EncE takes the public
key pk, a plaintext m from the underlying plaintext spaceM and some randomness
as inputs, and outputs a ciphertext c ∈ C where C is the ciphertext space. DecE takes
the secret key sk and a ciphertext c as inputs, and outputs a plaintext m. Correct
decryption is required to be able to call E an encryption scheme, i.e. the equality

DecE(sk,EncE(pk,m)) = m

should be satisfied. EvalE takes the public key pk, any ciphertexts c1, . . . , ct ∈ C
with EncE(pk,mi) = ci and any permitted function f in FE as inputs. It outputs
an evaluated ciphertext that encrypts f(m1, . . . ,mt). Correct evaluation is satisfied
if the following holds:

DecE(sk,EvalE(pk, f, c1, . . . , ct)) = f(m1, . . . ,mt),

i.e. the evaluated ciphertext decrypts to the computation of the plaintexts through
f ∈ FE . If f is not in FE , with an overwhelming probability, EvalE algorithm will
not produce a meaningful output.

If E has the properties of both correct decryption and correct evaluation for the
functions in FE , then it is called an FE-homomorphic scheme. However, mere cor-
rectness does not rule out trivial schemes where the evaluation algorithm just output
(f, c1 . . . , ct) without processing the ciphertexts at all, and the decryption function
decrypts the ciphertexts c1, . . . , ct and then apply f to the resulting plaintexts. Fur-
ther important attribute of an homomorphic encryption scheme, which is referred as
compactness (or compact ciphertext requirement), excludes this trivial case. Com-
pactness property requires the ciphertext size and decryption time to be completely
independent of the homomorphically evaluated function f but only dependent on the
security parameter λ. For example, decryption of an evaluated ciphertext takes the
same amount of computation as decryption of a fresh ciphertext c = EncE(pk,m).
More formally, E is compact if there exists a polynomial g such that, for every value
of the security parameter λ, DecE can be expressed as a circuit of size at most g(λ).
Note that an FE -homomorphic scheme is not necessarily compact.

An arithmetic function f can also be represented as a circuit which breaks the
computation of f down into AND, OR and NOT gates. Addition, subtraction and
multiplication operations (in fact, these operations modulo 2) are enough to evaluate
these gates. For x, y ∈ {0, 1}, we have AND(x, y) = xy, NOT(x) = 1 − x and
OR(x, y) = 1− (1− x)(1− y).

Homomorphic encryption schemes are categorized into three classes according to
the set of permitted functions. If an encryption scheme permits only one type of oper-
ation (either addition or multiplication) with an unlimited number of times, then it is
called a partially homomorphic encryption (PHE) scheme; if it allows one type
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of operation with a limited number of times while allowing another infinitely many
times, it is called a somewhat homomorphic encryption (SWHE) scheme. In
PHE and SWHE schemes, there is no compactness requirement, i.e., the ciphertexts
can get quite larger with each homomorphic operation. If an encryption scheme can
handle all functions (i.e., allows both addition and multiplication infinitely many
times) and fulfill the compactness requirement then it is called as fully homomor-
phic encryption (FHE) scheme.

PHE schemes are deployed in some particular real-life applications like electronic
voting [3] and Private Information Retrieval (PIR) [55] whose algorithms support only
addition operation. Although, SWHE schemes support both addition and multiplica-
tion, the maximum number of operations performed homomorphically is limited since
each operation contributes ”noise” to the ciphertext and after a threshold decryption
fails. However, explosion in demand for cloud computing platforms accelerated the
construction of FHE schemes which enables arbitrary computation on encrypted data.

5.1 Partially Homomorphic Encryption

There are several PHE schemes [76, 45, 35, 2, 62, 69, 71, 30], supporting either
addition or multiplication operation, in the literature . In this section, we focus on
two PHE schemes.

5.1.1 Goldwasser-Micali Algorithm

The Goldwasser–Micali (GM) algorithm [45], developed by Shafi Goldwasser and
Silvio Micali in 1982, has the distinction of being the first probabilistic public-key
encryption scheme, where each plaintext has several corresponding ciphertexts. The
security of the GM algorithm is based on the Quadratic Residuosity Problem modulo
n = p× q.

An integer a ∈ Z∗
n is called a quadratic residue modulo n if there exists an integer

x ∈ Z∗
n such that a ≡ x2 (mod n). If there is no solution to this congruence, then a

is called a quadratic non-residue modulo n.
There is a special number-theoretic tool associated with quadratic residues, the

Jacobi symbol, denoted by

(
a

n

)
, which is defined for all a ≥ 0 and all odd positive

integers n. For the sake of a total understanding of the GM algorithm, we refer the
reader to Section 2.1.10 (Quadratic Residues) in [70]. If n > 3 is an odd composite
integer, the problem of determining whether a nonnegative integer a with Jacobi
symbol 1 is a quadratic residue modulo n is called the Quadratic Residuosity Problem.
KeyGen: Two random large primes p and q are chosen, and n = p× q is computed.

Then a quadratic non-residue x ∈ Z∗
n with Jacobi symbol

(
x

n

)
= 1 is chosen. This

choice is accomplished by finding x ∈ Z∗
n such that

(
x

p

)
=

(
x

q

)
= −1. By choosing
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p and q as Blum integers, i.e. p ≡ 3 (mod 4) and q ≡ 3 (mod 4), the integer n− 1 is

guaranteed to be a quadratic non-residue with

(
n− 1

n

)
=

(
−1
n

)
= 1. The public

key pair is (n, x) and the private key pair is (p, q).
Enc: After converting the message into a plaintext which is a string of bits (m1,m2, . . . ,mk),
the sender picks uniformly at random yi ∈ Z∗

n for each bit mi and encrypts each bit
by computing

ci = E(mi) ≡ y2i × xmi (mod n).

via the encryption function

E : ({0, 1},⊕) → (Z∗
n,×)

m 7→ y2 × xm,

where⊕ denotes addition modulo 2, × denotes modular multiplication and Z∗
n denotes

the set of positive integers that are less than n and relatively prime to n. The
ciphertext generated is (c1, c2, . . . , ck), such that ci ∈ Zn for i = 1, 2, . . . , k.
Dec: To decrypt the message and get the plaintext back, the legitimate receiver,
who knows the private key pair (p, q) and can decide the quadratic residuosity of ci
modulo p and modulo q, determines whether ci is a quadratic residue modulo n for
i = 1, . . . , k. If ci is a quadratic residue modulo both p and q, then ci is a quadratic
residue modulo n, which necessarily yields mi = 0. Otherwise, ci is a quadratic non-
residue modulo n which implies mi = 1.
Eval: Let y1 and y2 be randomly selected integers in Z∗

n. For bits m1 and m2,

E(m1)× E(m2) ≡ (y1
2 × xm!)× (y2

2 × xm2) (mod n)

≡ (y1 × y2)2 × xm1⊕m2 (mod n)

≡ E(m1 ⊕m2),

which yields
D(E(m1)× E(m2)) = m1 ⊕m2.

The randomness in the encryption of m1 ⊕m2 is y1 × y2, which is neither uniformly
distributed in Z∗

n nor independent of the randomness in E(m1) and E(m2). However
this can be addressed by the re-randomization property of GM algorithm. Let r ∈ Z∗

n

be a random number. Then,

r2 × E(m) ≡ r2 × y2 × xm (mod n) ≡ (r × y)2 × xm (mod n),

which is a valid encryption of m with the randomness r × y ∈ Z∗
n. Hence D((r2 ×

E(m)) = m.
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5.1.2 ElGamal Algorithm

The ElGamal cryptosystem [35], which is a public-key encryption scheme proposed by
Taher ElGamal in 1985, improves the Diffie-Hellman key exchange method [32] into an
encryption algorithm. There are two number theoretic versions of this algorithm; one
is multiplicatively homomorphic and the other is additively homomorphic. Additively
homomorphic version is not practical in use since it forces the legitimate receiver to
solve a discrete logarithm problem, which is intractable, to decrpyt a ciphertext.
Therefore, we focus our attention on the multiplicatively homomorphic version of
ElGamal. Its security is based on the hardness of both the Computational Diffie-
Hellman Problem and the Decisional Diffie-Hellman Problem in the underlying group
Gq.
KeyGen: Two random large primes p and q satisfying q | (p− 1) are chosen. Next,
a cyclic subgroup Gq of Z∗

p of order q with generator g is chosen. This choice is

accomplished by selecting some y ∈ Z∗
p and computing g ≡ y(p−1)/q (mod p). Finally a

random x ∈ Zq is selected an h = gx (mod p) is computed. The public key quadruple
is (p, q, g, h) and the private key is x.
Enc: The plaintext is m ∈ Gq. The sender generates a random number r ∈ Zq and
computes the ciphertext pair

E(m) = (c1, c2) = (gr (mod p),m× hr (mod p))

via the encryption function

E : (Gq,×) → (Gq ×Gq,×)
m 7→ (gr,m× hr),

For encryption of each message, a new r is chosen to be a uniformly random
integer in order to ensure security.
Dec: The legitimate receiver who holds the private key x can decrypt the ciphertext
(c1, c2), without knowing the value of r, by computing u1 and u2 as

u1 = (gr)x = (gx)r ≡ hr (mod p)

u2 = u1
−1 × c2 ≡ h−r × (m× hr) ≡ m (mod p),

where u1
−1 is the multiplicative inverse of u1 in the group Gq. This inverse can be

computed using the Extended Euclidean Algorithm in number theory.
Eval: Let m1 and m2 be two plaintexts with accompanying random numbers r and
r′, respectively. Then the pairwise products of the ciphertext pairs are

E(m1)× E(m2) = (c1 × c′1, c2 × c′2)
= (gr × gr′ (mod p), (m1 × hr)× (m2 × hr

′
) (mod p))

= (gr+r′ (mod p),m1 ×m2 × hr+r′ (mod p))

= E(m1 ×m2)
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where the randomness in the encryption ofm1×m2 is r+r
′, which is neither uniformly

distributed in Zq nor independent of the randomness in E(m1) and E(m2). However
this can be addressed by the re-randomization property of the multiplicative ElGamal
algorithm.

Let E(m) = c = (c1, c2) ≡ (gr,m × hr) (mod p) for random r ∈ Zq, and r
′ ∈ Zq

be another chosen random number. Then

(c1 × gr
′
, c2 × hr

′
) ≡ (gr × gr′ ,m× hr × hr′) (mod p)

≡ (gr+r′ ,m× hr+r′) (mod p),

which is a re-randomized ciphertext of the original message m where r + r′ ∈ Zq.
D(c) = D(c× (gr

′
, hr

′
)).

5.2 Somewhat Homomorphic Encryption

Until 2005, all proposed encryption schemes had partial (either additive or multi-
plicative) homomorphic property. In 2005, Boneh, Goh and Nissim constructed BGN
cryptosystem based on bilinear pairings on elliptic curves that can support arbitrarily
many additions and a single multiplication by keeping the ciphertext size constant.
While BGN scheme meets the compactness requirement, allowing only one multipli-
cation makes it somewhat homomorphic. After the first plausible FHE published
in 2009 [41], some SWHE versions of FHE schemes were also proposed due to the
performance issues associated with FHE schemes.

5.3 Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a special type of encryption which is both
additively and multiplicatively homomorphic. Since addition and multiplication form
a complete set of operations, an FHE scheme allows any polynomial-time computation
on encrypted data. In 1978, Rivest, Adleman and Dertouzos [75] first proposed
theoretic possibility of a scheme supporting arbitrarily complex computation in their
paper titled “On Data Banks and Privacy Homomorphisms”. However, for more than
30 years, this theoretic possibility could not be put into practice and so it has been
regarded as a “holy grail” of cryptography. Craig Gentry proposed the first plausible
way of obtaining an FHE scheme based on ideal lattices in his seminal Stanford PhD
thesis [41].

Gentry’s proposed scheme is not only an FHE scheme but also a blueprint to
obtain an FHE scheme from an SWHE scheme. Although this scheme was considered
as a major breakthrough, it was not efficient and hard to implement. Since the
release of this blueprint, significant progress has been made in the direction of finding
efficient and simpler FHE schemes [85, 91, 86, 13, 12]. His construction has three
components: an SWHE scheme that can support a limited number of operations (a
few multiplications and arbitrarily many additions), squashing method which converts
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the SWHE scheme into a bootstrappable one and finally a method of bootstrapping
which turns the (bootstrappable) SWHE scheme into an FHE scheme.

Encryption functions of all existing SWHE schemes works by adding a small
amount of noise to the plaintext. Homomorphic evaluations on ciphertexts increase
this noise and once it exceeds a certain threshold, the decryption fails. Bootstrapping
refreshes a ciphertext by running the decryption function on it homomorphically. An
SWHE scheme E is called bootstrappable if it can evaluate its own decryption function,
plus one addition or multiplication gate modulo 2. When these augmented circuits
are in the permitted set of functions (or circuits) FE , one can construct a fully homo-
morphic encryption scheme from E . A bootstrappable scheme refreshes the evaluated
ciphertext for more homomorphic computations by reducing the noise in the cipher-
text via the following RecryptE algorithm.

RecryptE(pk2, DE , sk1, c1)

• Generate c1 via EncryptE(pk2, c1j) over the bits of c1

• Output c = EvalE(pk2, DE , sk1, c1)

First, it is supposed that two different public and secret key pairs are generated,
(pk1, sk1) and (pk2, sk2). Let c1 be the encryption of the message bit m with pk1 and
let sk1 be a vector of ciphertexts encrypted with pk2 over the bits of sk1. The public
key pk2, the decryption circuit DE , sk1 and c1 are taken as inputs by the RecryptE
function. First, c1 is generated as a bitwise encryption of c1 with the key pk2 using
the encryption function. It is easy to recognize that c1 is doubly-encrypted. Since
the SWHE scheme E can evaluate its own decryption function homomorphically, the
noisy inner ciphertext is decrypted homomorphically with sk1. After the evaluation,
a new encryption of m but under pk2 is obtained. While the noise is decreased by
eliminating the noise from the inner ciphertext, additional noise is added during the
homomorphic evaluation of the decryption function. As long as the new noise added is
less than the old noise removed, there is a progress. Further homomorphic operations
can be done repeatedly on the obtained “fresh” ciphertext until reaching again a
threshold point.

Gentry’s bootstrapping technique can be applied only if the decryption function
is simple enough. Otherwise, first squashing method should be applied in order to
reduce the complexity of the decryption function so that it is in the set of permitted
functions. In brief, squashing converts an SWHE scheme into a bootstrappable one.

The development of FHE since the release of Gentry’s work [41] can be roughly
divided into four generations according to the techniques used in constructing the
FHE schemes.
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5.3.1 First Generation FHE

This starts with Gentry’s original scheme using ideal lattices [41]. The security of
the underlying SWHE scheme is based on the hardness of an average-case decision
problem over ideal lattices, namely a variant of the “bounded distance decoding prob-
lem (BDDP)” on ideal lattices. The semantic security of the achieved FHE scheme
is based on an additional assumption called “sparse subset sum assumption”. Sub-
sequently, Gentry [42] showed a worst-case to average-case reduction for BDDP over
ideal lattices. In the same year of this security reduction, van Dijk et al. [91] presented
the second FHE scheme based on the Gentry’s idea, but ideal lattice computations
were replaced by simple integer aritmetic operations. The security of this fully ho-
momorphic DGHV scheme is based on the “approximate gcd (AGCD) problem” and
“sparse subset sum problem (SSSP)”. Then, Smart and Vercauteren [85] introduced
a third variant of Gentry’s scheme which uses both relatively small key and cipher-
text size. Afterwards, a series of articles [68, 44, 79] presented optimized the key
generation algorithms in order to implement Gentry’s FHE scheme efficiently.

These first generation schemes have several bottlenecks in terms of applicability
in real life. Firstly, they have limited homomorphic capacity due to very rapid noise
growth. Squashing the decryption circuit to make the underlying SWHE schemes
bootstrappable comes at the expense of additional and fairly strong security assump-
tion namely the sparse subset sum assumption. Moreover, the schemes that follow
Gentry’s blueprint have inherent efficiency limitations. The efficiency of an FHE
scheme is measured by the ciphertext and key size, the time it takes to encrypt and
decrypt, and more importantly per-gate computation overhead which is defined as the
ratio between the time it takes to compute a circuit homomorphically on encrypted
inputs to the time it takes to compute it on clear inputs. The first generation FHE
schemes that follow Gentry’s blueprint have a quite poor performance so that their
per-gate computation overhead is p(λ), a large polynomial in the security parameter.

In 2011, Gentry and Halevi [43] constructed a new approach which is one of the
first major deviations from Gentry’s blueprint. Their construction still relies on ideal
lattices and on bootstrapping but eliminates the need for squashing and thereby does
not rely on the hardness of the SSSP. However, there is no noteworthy improvement
on the efficiency aside from the optimization that reduces the ciphertext length.

5.3.2 Second Generation FHE

The second generation began in 2011 with the work of Brakerski and Vaikuntanathan
[14]. They introduced re-linearization technique to control ciphertext dimension in
homomorphic multiplications. Further, they showed how to construct a bootstrap-
pable scheme without using squashing, instead using a new method to simplify the
decryption algorithm named dimension-modulus reduction which does not require
sparse subset sum assumption for security. The security of BV scheme is based solely
on the hardness of much more standard “learning with error (LWE)” problem in-
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troduced by Regev [74] as a generalization of “learning parity with noise” problem.
Compared with the previous schemes using squashing method, BV scheme [14] (as
well as GH scheme [43]) has no noteworthy efficiency improvement because of costly
bootstrapping operation. The real cost of bootstrapping for FHE schemes that follow
Gentry’s blueprint is much worse than quadratic (see [12] for a detailed analysis).
Brakerski, Gentry and Vaikuntanathan leveraged the techniques in [14] and con-
structed a leveled -FHE scheme [12]. Leveled-FHE is a relaxation of FHE, in which
the parameters depend (poynomially) on the depth of the circuits that the scheme is
capable of evaluating. The depth referred here is the multiplicative depth which is
the maximal number of sequential multiplications that can be performed on cipher-
texts. The re-linearization and dimension-modulus reduction techniques in [14] were
enhanced as the key switching and modulus switching techniques in BGV scheme.
Modulus switching is a powerful noise management technique that control the noise
without bootstrapping and it is computationally cheaper than bootstrapping. This
technique sacrifices modulus size without jeopardizing the correctness of decryption.
In other words, a ciphertext modulo q is replaced with a ciphertext modulo a smaller
modulus p which decrypts to the same plaintext. Although BGV scheme does not
requires bootstrapping, they used it as an optimization to reduce the per-gate com-
putation overhead. The security of BGV scheme is based on RLWE (ring learning
with error) problem [60] with quasi-polynomial approximation factors whereas all the
previous schemes relies on the hardness of problems with sub-exponential approxi-
mation factors. BGV scheme can also be instantiated with LWE rather than RLWE,
albeit with worse performance. After BGV scheme, Brakerski [11], introduced a new
scale-invariant FHE without modulus switching. In this scheme, the same modulus
is used throughout the homomorphic evaluation process. Compared with previous
LWE-based FHE schemes, in [11] the ciphertext noise grows only linearly with the
homomorphic operations rather than exponentially. Then, Fan and Vercauteren [36]
optimized the Brakerski’s scheme by changing the based assumption from LWE prob-
lem to RLWE problem. Another improvements of Brakerski’s scheme was reducing
the computational overhead of key switching, faster execution of homomorphic oper-
ations and efficiency improvement [93]. Later Zhang et al. modified and improved
Brakerski’s scheme [96].

It is also worth noting that in 2012 a NTRU-based multikey FHE scheme was
proposed by Lopez-Alt, Tromer and Vaikuntanathan (LTV) [59] for its promising
efficiency and standardization properties. However, to allow homomorphic operations
and prove security, a non-standard assumption is required in LTV scheme. In the
following year, Bos, Lauter, Loftus, and Naehrig [9] showed how to remove this non-
standard assumption via Brakerski’s scale invariant technique [11].

In second generation FHE schemes, noise growth is slower during homomorphic
evaluations compared with first generation FHE schemes. Moreover, although second
generation follows Gentry’s blueprint in the sense that they first construct a SWHE
scheme and then transform it into a FHE scheme using bootstrapping, they can even
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be operated in the leveled-FHE mode without bootstrapping and this makes them
more efficient. However, the complex process of key-switching (or re-linearization)
still introduces a huge computational cost which is a main bottleneck for practicality.

5.3.3 Third Generation FHE

In 2013, Gentry, Sahai and Waters proposed a new LWE-based FHE scheme, known
as GSW, which uses approximate eigenvector method instead of the expensive re-
linearization (or key switching) technique. Since the ciphertexts of GSW scheme are
matrices that are added and multiplied homomorphically in a natural way, the cipher-
text dimension is kept constant. GSW scheme is simpler and asymptotically faster
than the previous LWE-based FHE schemes. In the following years, two efficient
ring variants of the GSW cryptosystem known as FHEW [34] and TFHE [24] were
introduced by Ducas and Micciancio and by Chillotti et al, respectively.

5.3.4 Fourth Generation FHE

All three generation FHE schemes mentioned above support the exact arithmetic
operations over some discrete spaces like rings or finite fields. However, majority of
real-world applications require computations in a continuous space such as R or C.
To address this issue, Cheon et al. proposed CKKS algorithm [21] which provides
a natural setting for performing operations on approximate numbers. The CKKS
algorithm is particularly suitable for implementing prediction and machine learning
methods. The name of the algorithm originally went by the name HEAAN, but later
the authors changed it to CKKS in order to distinguish it from the homomorphic
encryption library HEAAN which implements CKKS. After the release of the CKKS
scheme, a full residue number system (RNS) variant was introduced in [20].

Bootstrapping to extend the original leveled encryption scheme CKKS to a fully
homomorphic encryption was first proposed by Cheon et al [19]. Subsequently, several
newer and better algorithms have been presented for bootstrapping CKKS and its
full-RNS variants [17, 47, 10, 57].

5.4 Implementation Issues

Several open-source FHE libraries exist today. Below we list the most popular ones
with the authors (developers) created them, the schemes they support and the lan-
guages they are implemented in.

SEAL : Authored by Microsoft; includes BFV, CKKS and written in C++

PALISADE : Authored by a consortium of DARPA-funded defense contractors;
includes BGV, BFV, CKKS, TFHE, FHEW and written in C++

HELib : Authored by Halevi and Shoup; includes BGV, CKKS and written in C++
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HEAAN : Authored by Cheon, Kim, Kim, and Song; includes CKKS and written
in C++

FHEW : Authored by Ducas and Micciancio; includes FHEW and written in C++

TFHE : Authored by Chillotti et al; includes TFHE and written in C++

FV-NFLlib : Authored by CryptoExperts; includes BFV and written in C++

FV-NFLlib : Authored by EPFL-LDS; includes BFV, CKKS and written in Go

In order to use homomorphic encryption in medical and financial sectors and also
for national security, it will have to be standardized via an agreement on security
levels for parameter sets by multiple standardization bodies and government agen-
cies. HomomorphicEncryption.org group, co-founded in 2017 by Microsoft, IBM, and
others, is an open consortium of people from industry, government and academia for
this standardization process [1].

With the rapid development of FHE schemes and libraries, and frameworks, it is
important that the cryptography community has a standard for how to safely set the
security parameters. In order for homomorphic encryption to be adopted in medical,
health, and financial sectors, An important part of the standardization process is the
agreement on security levels for varying parameter sets. HomomorphicEncryption.org
has undertaken the task of this standardization.

In the remainder of this section, we describe the ideas behind Gentry’s lattice
based original construction forming the first generation with the conceptually simpler
DGHV scheme [91]. Then, BGV scheme will be presented to describe the ideas behind
the second generation. Finally, fourth generation CKKS scheme will be explained.

5.5 The DGHV Scheme

In [91], van Dijk et al. described a remarkably simple SWHE scheme using only
modular arithmetic and used Gentry’s techniques to convert it into a fully homomor-
phic scheme. The construction is based on the hardness of the Approximate Greatest
Common Divisor (AGCD) problem formulated by Howgrave-Graham [49]. It is easy
to compute the greatest common divisor of a given set of integers by Euclidean Algo-
rithm. However, given polynomially many near-multiples xi = si + p · qi of a number
p, where si is much smaller than p · qi, it is hard to compute p. In fact, AGCD
assumption states that when the multiples are ”noisy”, it is not possible to compute
p efficiently. AGCD problem can be reduced to the security of the scheme of van Dijk
et al.

A secret-key SWHE scheme will be described first. Then a public-key version will
be obtained by invoking the result of Ron Rothblum [78] that shows how to transform
any secret-key homomorphic encryption scheme into a public-key one.
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DGHV construction uses a number of parameters (all polynomial in the security
parameter λ) adapted from AGCD problem and they are set under some constraints.
As a convenient parameter setting, set N = λ, P = λ2 and Q = λ5.

KeyGenE : A random P -bit odd integer p (not necessarily prime) is generated.

EncE : To encrypt a bit m ∈ {0, 1}, a random N -bit number µ is chosen such that
µ = m mod 2 and a random Q-bit number q is chosen. Write µ = m+ 2r for r ≪ p.
The output is a fresh ciphertext c = E(m) = µ + pq = m + 2r + pq with a small
“noise” µ which masks the actual message.

DecE : The ciphertext is decrypted as m = D(c) = (c mod p) mod 2. Decryption
works properly as long as the noise c mod p is in the range (−p/2, p/2) such that p
divides c− c′. This condition put a limit on the number of homomorphic operations
performed on the ciphertexts. As the noise of the system grows over p/2, the decryp-
tion no longer returns the correct result.

EvalE : Consider the ciphertexts c1 = m1 + 2r1 + pq1 and c2 = m2 + 2r2 + pq2, where
ci’s noise is mi + 2ri. Then homomorphic addition computes

E(m1) + E(m2) = (m1 +m2) + 2(r1 + r2) + p(q1 + q2)

which is a valid ciphertext of m1 + m2 as long as the noises are small enough so
that |(m1 + m2) + 2(r1 + r2)| < p/2. It is possible to perform various number of
homomorphic additions before noise goes beyond p/2.

Homomorphic multiplication computes

E(m1)E(m2) = m1m2 + 2(2r1r2 + r1m2 + r2m1) + pq′

for some integer q′. This is a valid ciphertext of m1m2 and can be decryted as long
as the noises are small enough so that | = m1m2 + 2(2r1r2 + r1m2 + r2m1)| < p/2. It
is clear that multiplication increases the noise faster than addition.

After performing too many multiplications and additions, the noise can go be-
yond p/2 and the decryption function of the scheme E no longer outputs the cor-
rect plaintext. Hence, this somewhat homomorphic encryption scheme is not fully
homomorphic. But still E is homomorphic enough. It can handle an elementary
symmetric polynomial in t variables of degree (roughly) d < P/(N · log t) as long as
2Nd ·

(
t
d

)
< p/2.

The scheme described so far was the secret-key version of the homomorphic en-
cryption. A public-key version is presented in [91]. The secret key of the scheme is p
as before. The public key is a list of encryptions of zero under the secret-key version:
{xi = 2ri + pqi}ki=0 where ri and qi are chosen as before. Here the xi are sampled so
that x0 is the largest, x0 is odd and x0 mod p is even. To encrypt a bit m, a random
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subset S ⊂ {1, 2, . . . , k} and a random integer in a certain range are chosen. The
encryption is

c = m+ 2r + 2
∑
i∈S

xi mod x0

The ciphertext is decrypted as (c mod p) mod 2 as long as c has a small noise
(which is possible only if the encyptions of zero in the public key have small noises).

Now it is time to ask this question: Is the somewhat homomorphic scheme E de-
scribed above “bootstrappable” ? Only if E is capable of evaluating its own decryption
circuit (plus some), the answer is “yes”.

For the bootsrapping analysis, consider the decryption function

m = (c mod p) mod 2.

Since c mod p = c − p · ⌊c/p⌉, where ⌊·⌉ rounds to the neraest integer, and also p is
odd, decryption function can be written more simply as

c− ⌊c/p⌉ mod 2 = (c mod 2)⊕ (⌊c/p⌉ mod 2).

This is just the XOR of the least significant bits of c and ⌊c/p⌉.
Computing the least significant bit and XOR is immediate. However, computing

⌊c/p⌉ is complicated. Because, each long numbers c and 1/p need to be expressed with
at least P ≈ log p bits of precision to guarantee that ⌊c/p⌉ is computed correctly. As
two P -bit numbers are multiplied, a bit of the result may be a high-degree polynomial
of the input bits. This degree is also roughly P . Since E can handle an elementary
symmetric polynomial in t variables of approximate degree d < P/(N · log t), it is
not possible for E to handle even a single monomial of degree P , where the noise
of output ciphertext is upper-bounded by (2N)P ≈ pN ≫ p/2. It turns out that E
cannot handle its decryption function, which means it is not bootstrappable.

However, it is possible to transform the scheme, by using Gentry’s ingenious
squashing technique, into a bootstrappable one with the same homomorphic capacity
but a decryption function that is simple enough. This transformation is accomplished
by augmenting the public key with a “hint” about the secret key. The hint is a large
set of rational numbers that has a secret sparse subset which sums to the original
secret key. The “post-processed” ciphertext via this hint, which contains a sum of a
small set of nonzero terms instead of the multiplication of long numbers c and 1/p,
is decrypted more efficiently than the original ciphertext. In order to guarantee that
the hint in the public key does not reveal any adversary information about the se-
cret key, an additional security assumption is required, namely “sparse subset sum”
assumption. This assumption is based on the difficulty of sparse subset sum problem
(SSSP) used by Gentry [41] and studied previously in the context of server-aided
cryptography [66]. For more details on this, we refer the reader to [91].

DGHV scheme is conceptually very simple but less efficient than the lattice-based
scheme. Several optimizations and new variants over integers was introduced to
address the efficiency problem [26, 27, 94, 18, 25, 73, 67, 22, 4].
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5.6 The BGV scheme

We will describe here the RLWE instantiation of the BGV scheme [12] which has a
considerably better performance compared to the LWE instantiation. Let λ and µ
be security parameters. In the setup procedure, a 4-tuple of parameters params =
(q, d,N, χ) is chosen, where q = q(λ) is a µ-bit odd modulus, d = d(λ) is a power of
2, N > ⌈3 log q⌉ and χ is a discrete Gaussian distribution over Z. The underlying
ring of this scheme is the ring of polynomials of degree less than d with integer
coefficients denoted as R = Z[x]/(xd + 1). Rq is used to denote the quotient ring
R/qR = Zq[x]/(x

d + 1) where the coefficients of polynomials are integers modulo q.
Vectors will be written in bold lowercase letters.

SecretKeyGen: The secret key s is generated by drawing s′ ← χ and setting
s = (1, s′) ∈ Rq

2.
PublicKeyGen: The public key is obtained by generating a column matrix A′ ←
RN×1

q uniformly and an error vector e ← χN , and then setting b ← A′s′ + 2e. The
public key A is an N × 2 matrix over Rq whose first column is b and the second
column is -A′.
Enc: A message m ∈ R2 is encrypted by setting m = (m, 0) ∈ Rq

2, generating
r← R2

N uniformly and computing the ciphertext c←m+AT r ∈ Rq
2.

Dec: A ciphertext c is decrypted as m← [[⟨c, s⟩]q]2 which is the reduction of the dot
product of c and s first modulo q (into the interval (−q/2, q/2)) and then modulo 2.

In order to construct a leveled homomorphic encryption scheme from the encryp-
tion scheme defined above, some operations must be defined, namely BitDecomp,
Powersof2, SwitchKeyGen, SwitchKey and Scale.

BitDecomp(x ∈ Rn
q ) operation decomposes x into its bit representation

(u0,u1, . . . ,u⌊log q⌋) ∈ R2
n·⌈log q⌉,

where x =
∑⌊log q⌋

j=0 2j · uj with all uj ∈ Rn
2 .

Powersof2 (x ∈ Rn
q ) operation outputs the vector

(x, 2 · x, . . . , 2⌊log q⌋ · x) ∈ Rn·⌈log q⌉
q .

For vectors c and s of equal length, it is easy to observe that

⟨BitDecomp(c, q),Powersof2(s, q)⟩ = ⟨c, s⟩ (mod q).

Key switching method consists of two procedures described below.
SwitchKeyGen(s1 ∈ Rn1

q , s2 ∈ Rn2
q ) operation starts by generating a public key

A from the secret key s2 for N = n1 · ⌈log q⌉ as described above. Then it ouputs
a (public key) matrix B bay adding Powersof2(s1) ∈ RN

q to the first column of the
matrix A.
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SwitchKey(B, c1) takes the ciphertext c1 encrypted under the secret key s1 and
the output B of SwitchKeyGen, then outputs a new ciphertext c2 that encrypts the
same message under s2, namely

c2 = BitDecomp(c1)
T ·B ∈ Rn2

q ,

where n2 is the dimension of s2.
Finally, for the sake of completeness, the Scale operation must be defined.
Scale(x, q, p, r) outputs x′ defined as the R-vector closest to (p/q) ·x that satisfies

x′ = x (mod r), where q > p.
Let c be a valid encryption of m under the secret key s modulo q (i.e., m =

[[⟨c, s⟩]q]2 ) and let s be a short vector. Further let c′ be a simple scaling of c, that is
the R-vector closest to (p/q) · c such that c′ = c mod 2. It turns out that c′ is a valid
encryption of m under s modulo p < q using the usual decryption equation (i.e., m =
[[⟨c′, s⟩]p]2). In a nutshell, it is possible to change the inner modulus in the decryption
equation to a smaller number while preserving the correctness of decrption under the
same secret key. An evaluator, who does not know the secret key but only knows a
bound on its length, can transform a ciphertext c satisfying m = [[⟨c, s⟩]q]2 into a
ciphertext c′ satisfying m = [[⟨c′, s⟩]p]2 (see Lemma 5 in [12]). Most interestingly, if
s has coefficients that are small in relation to q and p is sufficiently smaller than q,
then the magnitude of the noise in the ciphertext essentially decreases (Corollary 1
in [12])

|[⟨c′, s⟩]p| < |[⟨c, s⟩]q|.

Given the scheme and operations described above, it is now possible to define a
leveled FHE scheme which can be transfromed into a FHE scheme by using Gentry’s
bootstrapping technique.

Let L be a parameter indicating the number of levels of arithmetic circuit that
the FHE scheme is capable of evaluating. Further let µ = µ(λ, L), where λ is the
security parameter. The setup procedure defined previously must be called from
L(input level of circuit) to 0 (output level) in order to obtain a ladder of parameters.
Namely, paramsj = (qj, d,Nj, χ) where ql > qL−1 > · · · > q1 > q0 has size (j + 1)µ
bits and Nj > ⌈3 log qj⌉ for j = 0, 1, . . . , L. The parameter sets paramsj is used
to generate the secret key sj, by executing the SecretKeyGen procedure, and the
public key Aj, by executing the PublicKeyGen procedure described earlier for ecah
level j = L,L − 1, . . . , 1, 0. Then by tensoring sj with itself, set s′j = sj ⊗ sj whose
coefficients are each of the product of two coefficients of sj in Rqj . Afterwards, set
s′′j = BitDecomp(s′j) and perform Bj = SwitchKeyGen(s′′j , sj−1). Encryption is done
by carrying out the encryption operation defined before using the public keys Aj and
decryption is done by executing the decryption operation defined before using the
secret key sj. The ciphertexts in depth j of the circuit are assumed to be encrypted
under sj using the modulus qj. Homomorphic addition and multiplication operations
are executed on the ciphertexts, and after performing each operation, a function
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named Refresh is called. Refresh calls the Scale function to switch the moduli and
then invokes the SwitchKey function to switch the key under which the resulting
ciphertext is encrypted. Indeed, since addition increases the noise much more slowly
than multiplication, it is not necessarily required to refresh after additions.

5.7 The CKKS scheme

Cheon et al. [21] proposed CKKS scheme in 2017 for efficient approximate com-
putation on encrypted data. The CKKS algorithm works in the ring of polynomi-
als with integer coefficients modulo the mth cyclotomic polynomial Φm(x) that is
R = Z[x]/(Φm(x)). The degree of Φm(x) is n = ϕ(m), where ϕ is the Euler’s totient
function. In the ring Rq = Zq[x]/(Φm(x)), the elements are polynomials whose degree

is up to n−1 with coefficients in the range (−q/2, q/2]. If ζ = e
2πi
m is a primitive mth

root of unity, then the mth cyclotomic polynomial is

Φm(x) =
∏

1≤j≤m
gcd(j,m)=1

(x− ζj).

In CKKS,m ≥ 2 is taken as a power of 2. Then Φm(x) = xm/2+1 = xn+1. Before
encryption and after decryption of CKKS scheme, encoding and decoding functions
are called, respectively. Consider the canonical embedding map

σ : R → Cn

a(x) 7→ (a(ζj))j∈Z∗
m
,

where the second half of the complex values in the image vector σ(a) are the symmetric
complex conjugates of the first half. So we can project the image vectors onto their
first half via the natural projction π : Cn → Cn/2. Then the decoding function
transforms an arbitrary polynomial a(x) ∈ R into a complex vector z such that
z = π ◦ σ(a) ∈ Cn/2. The encoding function is defined as the inverse of this decoding
function. Specifically, it encodes an input vector z ∈ Cn/2 into a polynomial a(x) =
σ−1 ◦ π−1(z).

The L-infinity norm of σ(a) for a ∈ R is denoted by ||a||∞ = ||σ(a)||∞, which is
equal to the largest of the absolute value of the complex components of the vector σ(a).
Following notations in [21], we define three distributions as follows. Given a real γ > 0,
DG(γ2) denotes a distribution over Zn which samples it components independently
from the discrete Gaussian distribution of variance γ2. For a positive integer h,
HWT (h) denotes uniform distribution over the set of vectors in {0,+1,−1}n whose
Hamming weight is exactly h. For a real o ≤ ρ ≤ 1, the distribution ZO(ρ) draws each
vector from {0,+1,−1}n with probability ρ/2 for each of +1 and −1, and probability
of being zero is 1− ρ.

The aim is to construct a leveled HE scheme for approximate arithmetic. Let the
integer L be the depth of the arithmetic circuit to be evaluated homomorphically and
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p > 0 be a base. The ciphertext modulus is qk = pk for each level k = 1, . . . , L.
Parameters for level k come from Zqk [x]/(x

n + 1) for each k = 1, . . . , L. The input
level of the arithmetic circuit uses the modulus qL = pL, and the next level uses
qL−1 = pL−1 and so on. The output level uses the modulus q1 = p.
SecretKeyGen: For O(2λ) security, we choose the parameters of the scheme as a
power of two m = 2n, a real value γ, an integer h, an integer P , and the base p.

Then we sample s ← HWT (h), a ← RqL , a
′ ← RP ·qL , e ← DG(γ2) and e′ ←

DG(γ2) to generate the following secret key sk, the public key pk and the evaluation
key evk, respectively.

sk = (1, s)

pk = (b, a) ∈ R2
qL

where b = −a · s+ e (mod qL)

evk = (b′, a′) ∈ R2
PqL

where b′ = −a · s+ e+ P s2 (mod P · qL).

Note that vectors above also represents polynomials whose coefficients are the
components of the corresponding vector. So the vectors are multiplied as polynomials
in the corresponding polynomial ring and then written back as a vector.
Enc: After encoding an input message z ∈ Cn/2 into the plaintext m ∈ R using the
procedure described previously, and sampling v← ZO(0.5) and e0, e1 ← DG(γ2), we
compute the ciphertextvia the encryption function Epk as

c = Epk(m) = v · pk+ (m+ e0, e1) (mod qL).

Dec: The plaintext polynomial m is computed from a ciphertext c in level k via the
decryption function Dsk as

m = Dsk(c) = ⟨c, sk⟩ (mod qk).

The CKKS algorithm introduces an error so that the decrypted value is not exactly
the same as the input value, indeed we have

Dsk(Epk(m)) ≈m.

During the evaluation of the arithmetic circuit, the CKKS algorithm performs
homomorphic addition, homomorphic multiplication, and rescale operations.

The homomorphic addition of two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1) in the

same circuit level k is performed using

cadd = c+ c′ (mod qk)

= (c0, c1) + (c′0, c
′
1) (mod qk)

(d0,d1) = (c0 + c′0, c1 + c′1) (mod qk).

Here the input values c0, c
′
0, c1, c

′
1and the output values d0,d1 are the elements of the

ring Rqk and the arithmetic is performed in this polynomial ring.
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The homomorphic multiplication of two ciphertexts c = (c0, c1) and c′ = (c′0, c
′
1)

in the same circuit level k is performed using

cmult = c⊙ c′ (mod qk)

= (d0,d1) + ⌊P−1 · d2 · evk⌉ (mod qk)

where (d0,d1,d2) = (c0 ·c′0, c0 ·c′1+c′0 ·c1, c1 ·c′1) (mod qk) and ⌊·⌉ stands for rounding
to the nearest integer. The output components of cmult are also the elements of the
ring Rqk and the arithmetic is performed in this ring.

Rescale operation Rescalek→k′(c) transfroms the ciphertext c from level k to level
k′ by computing

c′ = ⌊pk′−k · c⌉ (mod qk′)

(c′0, c
′
1) = ⌊pk′−k · (c0, c1)⌉ (mod qk′)

= (⌊pk′−k · c0⌉, ⌊pk
′−k · c1⌉) (mod qk′)

Generally, k′ = k − 1, and therefore, the resclae transforms c from k to k − 1 (one
level closer to the output level)

c′ = ⌊p−1 · c⌉ (mod qk−1)

(c′0, c
′
1) = ⌊p−1 · (c0, c1)⌉ (mod qk−1)

= (⌊c0/p⌉, ⌊c1/p⌉) (mod qk−1)

6 Conclusions

This paper presented an extensive summary of the evolution of cryptography since
Shannon’s seminal paper “Communication Theory of Secrecy Systems” [80]. The first
milestone point is the development of secret-key cryptographic methods LUCIFER,
DES, and AES [38, 63, 65], that started in 1958 and continue to-day. The second
milestone was the invention of public-key cryptography, starting with Diffie-Hellman
key exchange [32] and Rivest-Shamir-Adleman [76] between 1976-1978. Followed up
public-key cryptography, a variety of post-quantum cryptographic (PQC) algorithms
[58] have been developed, that are expected to make us safe with the advent of
quantum computers. Then, we have partially homomorphic encryption (HE) methods
[70] that have been flourishing since the day public-key cryptography was invented,
and finally fully-homomorphic encryption methods which are based on the ideas of
Craig Gentry [41]. The PQC and HE methods are the two directions cryptographic
research and development will move on in the next 2 decades.

Our interest in cryptography is as old as the invention of writing, and it is doubtful
this fascination will vane. There will be many information security challenges ahead,
and we will attempt to understand and bring solutions for them using cryptographic
ideas and tools.
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