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Abstract. In supersingular isogeny-based cryptography, the path-finding problem reduces to the endomor-
phism ring problem. Can path-finding be reduced to knowing just one endomorphism? It is known that a

small endomorphism enables polynomial-time path-finding and endomorphism ring computation [38]. An

endomorphism gives an explicit orientation of a supersingular elliptic curve. In this paper, we use the vol-
cano structure of the oriented supersingular isogeny graph to take ascending/descending/horizontal steps on

the graph and deduce path-finding algorithms to an initial curve. Each altitude of the volcano corresponds

to a unique quadratic order, called the primitive order. We introduce a new hard problem of computing
the primitive order given an arbitrary endomorphism on the curve, and we also provide a sub-exponential

quantum algorithm for solving it. In concurrent work [57], it was shown that the endomorphism ring prob-

lem in the presence of one endomorphism with known primitive order reduces to a vectorization problem,
implying path-finding algorithms. Our path-finding algorithms are more general in the sense that we don’t

assume the knowledge of the primitive order associated with the endomorphism.

1. Introduction

The security of isogeny-based cryptosystems depends upon a constellation of hard problems. Central
are the path-finding problem introduced in [10] (to find a path between two specified elliptic curves in a
supersingular `-isogeny graph), and the endomorphism ring problem (to compute the endomorphism ring
of a supersingular elliptic curve). Only exponential algorithms are known for general path-finding, in the
absence of information beyond the j-invariants you wish to navigate between. However, if the endomorphism
rings are known, the KLPT algorithm allows for polynomial-time path-finding [34]. In fact, it is known that
the path-finding and endomorphism ring problems are equivalent [25,58]. These are the central problems in
isogeny based cryptography, despite the recent complete break of SIDH/SIKE [7] and [39]. The hardness of
these problems is in no way affected by the attack, and they form the basis of the CGL hash function [10],
CSIDH [8], and OSIDH [15], among others.

A natural question to ask is whether knowledge of a single explicit endomorphism (which generates only
a rank 2 subring of the rank 4 endomorphism ring) can be used for path-finding. Answering this question is
the goal of this paper: we give explicit algorithms transforming knowledge of one endomorphism into a way-
finding tool that can detect ascending, descending and horizontal directions with regards to the corresponding
orientation, and use this to walk to j = 1728.

By explicit endomorphism, we mean one given in some form in which its action on the curve is computable,
and its minimal polynomial is known (but note that, given an endomorphism, both its norm and trace are
in many cases computable; see Section 2.2). For example, such an endomorphism may be given as a rational
map, or a composition chain of rational maps, and these are the two cases we focus on in this paper. The
data of such an endomorphism is equivalent to the data of an orientation of a supersingular elliptic curve
E, namely a map ι : K → Q ⊗Z End(E), where K is the imaginary quadratic field generated by a root of
the minimal polynomial of the endomorphism.
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The study of orientations provides some structure to the supersingular isogeny graph, which has recently
been exploited [15, 20, 42]. In particular, the `-isogeny graph of oriented supersingular elliptic curves over
Fp has a volcano structure familiar from the ordinary case: Each connected component consists of a single
cycle, called a rim, of vertices connected by horizontal edges, and descending edges connecting the rim the
non-rim vertices at lower altitudes of the volcano. Non-rim vertices only have ascending/descending edges.
This graph maps onto the supersingular `-isogeny graph over Fp. Our approach is to use the orientation
provided by a given explicit endomorphism to discern ascending, descending and horizontal directions with
regards to the volcano. This provides a sort of tool for ‘orienteering’. (The sport of orienteering involves
finding one’s way to checkpoints across varied terrain using only map and compass.)

The core result of our paper is an algorithm that finds an `-isogeny path from a given supersingular elliptic
curve E to an initial curve Einit, given a single explicit endomorphism of E. We take Einit to be the curve
with j-invariant j = 1728, but other choices are possible (see Section 6.3). The overall plan is as follows.
First, climb the oriented volcano from E, oriented by the given endormorphism, to the volcano rim (using
the given endomorphism as our ‘orienteering tool’). Then, by orienting the curve j = 1728 with the same
field, we can climb to the rim from there also. Finally, we attempt to meet by circling the rim.

This approach is limited by our ability to traverse a potentially large segment of the rim, or to hit
the same rim in a large cordillera of volcanoes, whose size is generally equal to the class number of the
corresponding quadratic order. If we simply walk the rim, then, classically, the runtime depends linearly on
this class number. Using a quantum computer to solve the vectorization problem (see Section 9.1) yields a
subexponential algorithm.

1.1. Main theorems. We rely on a number of heuristic assumptions: (i) The Generalized Riemann Hy-
pothesis (hereafter referred to as GRH). (ii) Powersmoothness in a quadratic sequence or form is as for
random integers (a powersmooth analogue of the heuristic assumption underlying the quadratic sieve; see
Heuristics 5.10 and 9.3). (iii) The orientations of a fixed j-invariant are distributed reasonably across all
suitable volcanoes (Heuristic 3.7). (iv) This distribution is independent of a certain integer factorization
(Heuristic 6.7). (v) The aforementioned integer factorization is prime with the same probability as a random
integer (Heuristic 6.4; this heuristic is similar to those used in [24] and [34]).

We state our main results here; their proofs can be found in Section 11.1. We use the notation Lx(y) =
exp(O((log x)y(log log x)1−y)). Our first theorem gives a classical algorithm for `-isogeny path-finding that
is subexponential in log p times a certain class number, for a wide range of input endomorphisms.

Let ∆′ be the `-fundamental part of the discriminant ∆ of an endomorphism θ of a supersingular curve
E (obtained1 by removing the largest even power of `). Let h∆′ be the class number of the quadratic order
of discriminant ∆′. Note that ∆′ can be significantly smaller than ∆.

Theorem 1.1. Assume |∆′| ≤ p2. Under the heuristic assumptions given above, there is a classical algorithm
(given explicitly in Section 11; see also Algorithm 8.1) that, given an endomorphism θ of sufficiently large
degree d which can be efficiently evaluated on points, finds an `-isogeny path of length O(log p + h∆′) from
E to the curve with j = 1728 in runtime h∆′Ld(1/2) poly(log p).

The term ‘sufficiently large’ as applied to the degree d asks that Ld(1/2) ≥ poly(log p). The term
‘efficiently’ means that the endomorphism can be evaluated on points P ∈ E(Fpk) in time polynomial in
log d, in k and in log p. An example of such an endomorphism is an endomorphism given as a chain of
isogenies of small degree, but we can also accommodate less efficient endomorphism representations. The
full formal statement given in Theorem 11.1 tracks the cost of this evaluation in the final runtime: it is
assumed that the endomorphism θ can be evaluated on points P ∈ E(Fpk) in time denoted Tθ(k, p), and the
algorithm runtime, more precisely, is Tθ(Ld(1/2), p) + h∆′Ld(1/2) poly(log p). The algorithm comes in two
phases: the first phase is to represent the given endomorphism as an isogeny chain in runtime Tθ(Ld(1/2), p)
depending on the representation of θ; the second phase walks the isogeny graph using this representation
and always has runtime h∆′Ld(1/2) poly(log p). Phase one is included to allow for an abstract notion of an
input endomorphism (see Section 5.1).

Any θ of degree d which is represented in terms of rational maps has Tθ(k, p) = poly(d, k, log p), hence the
final runtime would be poly(d log p) + h∆′Ld(1/2) poly(log p). But θ could be represented as a composition
chain of isogenies in such a way that Tθ(k, p) is polynomial in log d. In this case, the final runtime would

1Except when ` = 2, if ∆ = 22k∆′′ where 4 - ∆′′ and ∆′′ ≡ 2, 3(mod 4), then we set ∆′ := 4∆′′.
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be h∆′Ld(1/2) poly(log p). The factor Ld(1/2) in the runtime arises from the need, during the algorithm, to
sieve for endomorphisms of powersmooth degree amongst translates θ + [d], d ∈ Z.

The algorithm can perform significantly better in some special cases, such as when the endomorphism is
presented in an efficient way (in which case the first phase may be skipped), the curve is already at a rim
(in which case the sieving is avoided), or the class number h∆′ is small (in which case the walk is short), etc.
Specifically, modifications of the algorithm lead to special cases:

(1) If the input endomorphism is rationally represented in polynomial space, or the class number is
polynomial in log p (with some conditions on `), the algorithm becomes polynomial in log p (Theo-
rem 11.3). The cryptographic weaknesses in these cases are already known by other methods [38].

(2) If ` is inert in the field Q(
√

∆), the runtime improves for endomorphisms in suitable form to Ld(1/2)+
h∆′ poly(log p), and the path length is improved to O(log p) (Proposition 8.1).

(3) If, in addition to (2), ∆′ = ∆, then the runtime improves further to h∆′ poly(log p) (Proposition 8.1).
(4) If the degree of the endomorphism has B(p)-powersmooth factorization and its discriminant is co-

prime to `, then the runtime improves to h∆′ poly(B(p) log p) (Theorem 11.5).
(5) If degree and discriminant have suitable factorizations, then the runtime can improve to poly(log p)

even for non-small endomorphisms (Theorem 11.4). Such endomorphisms exist on all supersingular
elliptic curves.

Our second theorem gives a quantum algorithm for finding a smooth isogeny to an initial curve that runs
in subexponential time in log |∆|, and polynomial in log p.

Theorem 1.2. Under the heuristic assumptions given above, there is a quantum algorithm (given explicitly
in Section 11; see also Algorithm 10.1) which, given an endomorphism θ of degree d and discriminant ∆
satisfying d � |∆| ≤ p2 and which can be efficiently evaluated on points, will return an L|∆|(1/2)-smooth

isogeny of norm O(
√
|∆|) from E to the curve of j = 1728, and runs in time subexponential in log |∆| and

polynomial in log p.

The term ‘efficiently’ is as for Theorem 1.1. In the full formal statement in Theorem 11.2, the runtime,
more precisely, is Tθ(O(log2 d), p)L|∆|(1/2).

In both theorems, one may use other suitable initial curves besides j = 1728; see Section 6.3.

1.2. A new hard problem. Each altitude of an oriented volcano corresponds to a unique order in K,
called the primitive order for the oriented curves at that altitude. The orders get smaller as the altitude gets
lower, decreasing in index by ` at each step. Given an elliptic curve E oriented by an endomorphism θ, the
knowledge of the primitive order O with respect to (E, θ) plays a vital role in the algorithms: our classical
algorithm computes a suborder of O whose relative index in O is coprime to ` in order to walk horizontally
more efficiently; our quantum algorithm requires the full knowledge of O in order to solve the O-vectorization
problem.

The primitive order O doesn’t come for free; this is Problem 1.3. To the best of our knowledge, this
paper is the first work that introduces this problem as a hard problem and provides a quantum algorithm
(Proposition 9.8) for solving it in quantum sub-exponential time.

Problem 1.3 (PrimitiveOrientation). Given a supersingular elliptic curve E, and an endomorphism θ ∈
End(E), determine the quadratic order O such that O ∼= Q(θ) ∩ End(E).

The importance of Problem 1.3 comes from the increasing interest in orientations on elliptic curves. Given
an arbitrary supersingular elliptic curve E, the best known way to define an orientation on E is to perform
random walks on the supersingular isogeny graph until a cycle on E is found, whereby an endomorphism on E
is obtained by composing the edges along the cycle. In order to take advantage of the associated orientation,
it is important to be able to answer Problem 1.3. This most general setting for obtaining orientations on E
is the setting our paper works with.

Classically, however, solving Problem 1.3 as discussed in Section 9.2 takes time polynomial in the largest
prime power factor of f , where f is the conductor of Z[θ]. Luckily, with our classical path-finding algorithm
(Theorem 11.1), we are able to circumvent the issue by computing a specific smaller order instead, which can
be done in polynomial time. This is also what makes our path-finding algorithms more general comparing
to the algorithms in a related paper [57] (See Section 1.4).
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1.3. Other algorithms presented. Some of the explicit building blocks of the results above may have
independent applications. In particular, we provide algorithms for the following tasks, among others:

(1) Section 4 provides methods for detecting ascending, descending and horizontal directions in general.
(2) Remark 4.9 explains how to adapt the algorithms of this paper to an endomorphism given as an

approximate element of the Tate module (i.e. given by its action on `-torsion).
(3) Section 5.3 presents a technique for obtaining a prime-power powersmooth isogeny chain endomor-

phism from the same quadratic order as a given endomorphism (Algorithm 5.3).
(4) Section 6 discusses an algorithm which computes an orientation of the elliptic curve of j-invariant

1728 (or other suitable curves; see Section 6.3) by an `-power multiple of a given discriminant
(Algorithm 6.1). In other words, given a quadratic order O, it finds j = 1728 somewhere in the
cordillera of an order containing O. In fact, it finds arbitrarily many such orientations, moving
gradually further ‘down’ the volcanoes. This algorithm runs in heuristic polynomial time when the
discriminant is coprime to p and less than p2 in absolute value.

(5) Section 7.2 concerns a method for computing the class group action of Cl(O) on SSprO , the set of
curves primitively oriented by O. In fact, we demonstrate how to navigate SSprO using the class group
action of Cl(O′) for any O′ ⊆ O such that ` - [O : O′].

(6) Section 9 provides two new quantum algorithms. Namely, an algorithm for vectorization on an
oriented volcano rim (Proposition 9.4; prior work includes [11, Section 6.1], [57, Proposition 4]; our
approach includes a novel method to evaluate isogenies on oriented curves), and for determining the
quadratic order for which a given orientation is primitive (Proposition 9.8). We provide runtime
analyses of these algorithms in turns of the degree and presentation of the given orientation and the
prime p.

(7) Given the input of an elliptic curve with orientation, Section 10 provides a quantum algorithm
(Algorithm 10.1) for finding a smooth isogeny to j = 1728. In Proposition 10.1, we analyze the
runtime of this algorithm in terms of the degree and presentation of the given orientation and the
prime p.

(8) Section 12 contains an efficient algorithm for dividing an isogeny by [`] (Algorithm 12.2), originally
outlined by McMurdy. We make McMurdy’s approach explicit for an arbitrary small prime ` (he
only made explicit the case ` = 2, which is more straightforward).

1.4. Related work. The question of the security of one endomorphism has recently been ‘in the air,’
for example, with the uber isogeny assumption of [22] (see Remark 9.2). Knowledge of a small explicit
endomorphism is known to be a weakness [37, 38]. The work in this paper was done concurrently with [57],
which also provides path-finding algorithms in the setting of oriented curves. However, the two papers are
very different in nature. The work in [57] covers a web of reductions between a wide variety of hard problems
related to orientations using quaternion algebras, which are of interest both in theory and applications. The
path-finding algorithms are not stated as results in [57] but rather implied by several reductions combined
with algorithms for solving the vectorization problem for oriented curves classically and quantumly. Our
paper, by contrast, focuses on the path-finding problem. Our method is very explicit and works with isogenies
and endomorphisms directly. We discuss the practical representations of isogenies and endomorphisms,
provide complete algorithms, detailed runtime analysis and concrete numerical examples.

The most important advantage of our path-finding algorithms over those given by [57] is that we deal with
orientations in greater generality. In both papers, an orientation is identified with an endomorphism. As
discussed in Section 1.2, our input is an arbitrary endomorphism θ, and it is a hard problem (Problem 1.3)
to find the primitive order with respect to (E, θ). However, the input endomorphism θ in [57] is one such
that the order Z[θ] is already the primitive order. Such an endomorphism is unlikely to be found for an
arbitrary supersingular elliptic curve.

With due consideration of the added constraints on input for the algorithm in [57], we can more accurately
compare runtimes. Let ∆, ∆′ and h∆′ be as in Section 1.1. Classically, the runtime of the algorithm in [57]

is linear in h
1/2
∆′ whereas the runtime of our algorithm is linear in h∆′ . Quantumly, both algorithms run

in subexponential time. If we consider the same input endomorphism in [57] as in this work, then the
runtime for solving Problem 1.3 should be added to the runtime of [57]. As discussed in Section 9.2, solving
Problem 1.3 takes time polynomial in the biggest prime power factor of the conductor of Z[θ] classically and
subexponential time quantumly.
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Lastly, the paper [57] assumes the stronger hypothesis that the discriminant of the input endomorphism
has a known factorization. We do not assume this. The work [57] is not heuristic beyond a dependence on
GRH and the solution to the vectorization problem ([57, Proposition 4]), whereas we rely on a number of
heuristic assumptions as given in Section 1.1. Our classical algorithm directly produces a path whose length
depends on the class number (since it traverses a volcano rim), whereas a reduction to the vectorization
problem as in the algorithms implied in [57] and our quantum algorithm produces a path of poly(log p)
length.

Other related work includes [9, 20]. In [2], the authors of the present article show that appropriately
defined closed walks of the isogeny graph are in bijection with the rims of oriented isogeny volcanoes, giving
a class number sum for their number.

1.5. Other contributions. We give careful runtime analyses for various tasks related to endomorphisms
represented as rational functions or as composition chains of isogenies, including evaluation, translation,
division-by-[`], and Waterhouse transfer. Additionally, we provide a review and some modest extensions to
the theory of orientations as described in [15,42]; see Section 3, in particular Section 3.3.

In a follow-up paper [2], we establish a theoretical bijection between volcano rims and cycles in the `-
isogeny graph, and address some of the aforementioned heuristics for oriented supersingular `-isogeny graphs
used in this paper.

Throughout the paper we demonstrate our algorithms with a running example first introduced in Exam-
ple 3.2. The examples are given in more detail in SageMath [51] worksheets with accompanying PDF details,
available on GitHub [3].

1.6. Outline. In Section 2, we set some notations and conventions and also state a few runtime lemmata.
In Section 3, we introduce the main object of study, namely oriented `-isogeny graphs and their properties,
including some heuristic behaviour. In Section 4, the relationship between an endomorphism and an orien-
tation is explained, and we also introduce a few new definitions that aid in navigating the oriented `-isogeny
graph. In Section 5, we discuss the representation of endomorphisms, along with the basic functionalities
for these representations required for later algorithms. We then compute orientations for the supersingular
elliptic curve of j-invariant 1728 in Section 6. In Sections 7 and 8, we present algorithms for walking on
an oriented `-isogeny graph and for classical path-finding to j = 1728 and give detailed runtime analyses
and examples for illustration. We then provide quantum algorithms to solve the oriented vectorization and
the primitive orientation problems in Section 9 and a quantum algorithm for finding a smooth isogeny to
j = 1728 in Section 10. In Section 11, we discuss the proofs of our main theorems as well as some spe-
cial cases. Lastly, we leave to Section 12 the technical explanation of McMurdy’s division-by-` algorithm
and provide its runtime analysis. Throughout the paper, to aid in reading, important assumptions will be
rendered in bold.

1.7. Acknowledgements. We would like to thank Catalina Camacho-Navarro, Elena Fuchs, Steven Gal-
braith, David Kohel, Péter Kutas, and Christophe Petit for helpful discussion. We especially thank Benjamin
Wesolowski, who took the time to share highly valuable suggestions on an earlier draft, particularly some
important corrections concerning Proposition 9.4. We would also like to thank the conference Women in
Numbers 5 for the opportunity to form this research group.

2. Background

2.1. Notations and conventions. Throughout the paper, let p be a cryptographically sized prime
(upon which runtimes will depend), and let ` be a small prime (whose size will be assumed O(1) for
runtimes). In particular, ` 6= p. We will assume both p and ` are defined once throughout the
paper (so, for example, they will not be repeated as an input to every algorithm); the only exception being
Sections 9 and 10.

Every elliptic curve considered in the paper is assumed to be a supersingular curve over Fp. All such
curves can be defined over Fp2 . Every isogeny and endomorphism is assumed to have domains and codomains
which are curves of this type. We use the notation End(E) for the endomorphism ring of the elliptic curve
E over Fp, and End0(E) := Q ⊗Z End(E) for the endomorphism algebra of E. We use the notation OE
for the identity element of an elliptic curve E, and j(E) for the j-invariant. We use the variables ϕ and
ψ to denote isogenies, while θ is generally reserved for endomorphisms. The dual isogeny to an isogeny
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ϕ is denoted by ϕ̂. Let E(p) denote the curve obtained by the action of Frobenius on E (acting on the
Weierstrass coefficients). Let πp : E → E(p) denote the Frobenius isogeny, given by πp(x, y) = (xp, yp). Note
that Frobenius is an endomorphism if E is defined over Fp. Frobenius also acts on any isogeny ϕ : E → E′

(acting on its coefficients) to give ϕ(p) : E(p) → (E′)(p) of the same degree. Unless otherwise specified (such
as Frobenius), isogenies will be assumed to be separable throughout the paper (many of the algorithms
herein would not apply to inseparable endomorphisms or isogenies).

There is only one fixed supersingular `-isogeny graph under consideration at any time, which we denote
simply by G. Namely, this is the graph whose vertices are Fp-isomorphism classes of supersingular elliptic
curves (which we will often refer to simply by their j-invariants), and whose directed edges are `-isogenies
(when there are no extra automorphisms, we can identify dual pairs to create an undirected graph).

We consider imaginary quadratic fields K = Q(
√

∆), where ∆ < 0 is a fundamental discriminant. Then
the ring of integers has the form OK = Z[ω], where

ω =

{
1+
√

∆
2 if ∆ ≡ 1 (mod 4),

√
∆
2 if ∆ ≡ 0 (mod 4).

Since we sometimes have multiple quadratic orders under consideration, we use the notation (α, β)O for the
ideal generated by α and β in O. The (possibly non-maximal) orders O of K are parameterized by a positive
integer called the conductor. If O has conductor f , then O = Z[fω]. If ` - f , then we say that both O
and its discriminant are `-fundamental. Given a discriminant ∆, its `-fundamental part is the maximal
`-fundamental discriminant dividing ∆.

Write Bp,∞ for the rational quaternion algebra ramified at p and ∞. Every quadratic field K is
assumed to embed in the quaternion algebra Bp,∞, i.e. to be an imaginary quadratic field in which
p does not split [53, Proposition 14.6.7(v)]; the only exception is in the discussion of Heuristic 6.4. Every
quadratic order O is assumed to generate such a field K, and to have discriminant not divisible by p.
Every quadratic discriminant is assumed to be the discriminant of such a quadratic orderO, and we write ∆O.
We denote by OK the maximal order of the quadratic field K and reserve ∆K for the discriminant of OK .

Complex conjugation (which is also the action of Gal(K/Q)) is denoted by an overline: α 7→ α. We use
the notation Cl(O) and hO for the class group and class number, respectively, of a quadratic order O.

The reduced norm and trace of Bp,∞ coincide with the norm and trace of an element when it is considered
as a quadratic algebraic number; when we discuss norm and trace it is always this we refer to.

For runtime analyses we use big O notation, including soft Õ for absorbing log factors. The notation
M(n) will indicate the runtime of field operations (addition, multiplication, inversion) in a finite field of
cardinality n; here, we note that M(nk) = O(M(n)) when k is constant. In the later portions of the
paper we are mainly concerned with the distinction between polynomial, subexponential and exponential
algorithms. We write runtime as poly(x) if there exists a polynomial f so the runtime is O(f(x)). When we
are concerned only with whether runtime is polynomial, we will suppress the notation M, by assuming that
M(n) = poly(log n). For subexponential runtimes, we use notation Lx(y) = exp(O((log x)y(log log x)1−y)).

For general background on isogeny-based cryptography and supersingular isogeny graphs, we will assume
the reader is familiar with a resource such as [25, Section 2] or [21].

2.2. Runtime lemmata. In this section, we recall some basic runtimes for isogenies and torsion points,
etc. The first lemma is standard.

Lemma 2.1. Given P,Q ∈ E[N ], and 0 ≤ a, b < N , computing [a]P + [b]Q takes time O((logN)M(pN
2

)).

Lemma 2.2 ([4, Corollary 2.5]). Let ϕ : E → E′ be an isogeny between two supersingular elliptic curves,
both defined over Fp2 . Then ϕ is defined over Fp12 . If neither of j(E) or j(E′) are 0 or 1728, then ϕ is
defined over Fp4 .

Lemma 2.3. Let t denote the smallest integer such that E[N ] ⊆ E(Fpt). In particular, t ≤ N2−1. Finding

a basis of E[N ] has runtime Õ(N4(log p)M(pN
2

)).

Proof. This can be proved by adapting the second paragraph of the proof of Lemma 5 in [28]. In partic-
ular, the limiting runtime is the call to the equal-degree factorization algorithm of [55], which takes time

Õ(N4(log p)M(pN
2

)). See also [4, Lemma 6.9]. �
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In practice, this can be done much faster in some cases, e.g. when N is large and t is small.

Lemma 2.4. Consider an isogeny ϕ : E → E′ of degree d, and a point P ∈ E(Fpt), where 12 | t. Then com-

puting ϕ(P ) takes time O(dM(pt)). In particular, if P ∈ E[N ], then the time taken is O(dM(plcm(12,N2))).

Proof. Write ϕ as a rational map ϕ(x, y) = (ϕ1(x), ϕ2(x)y); here the denominators and numerators of ϕ1(x)
and ϕ2(x) are polynomials in x of degree at most 3d. By Lemma 2.2, we can assume that their coefficients are
in Fp12 ⊆ Fpt . To compute ϕ(P ), we apply Horner’s algorithm [33, p. 467], which requires O(d) operations
in the field. Assume that P is an N -torsion point on E. Then t can be chosen such that t ≤ lcm(t,N2) by
Lemma 2.3. �

In the case that ϕ = [n] for some integer n, it is more efficient to use a standard double-and-add approach,
which will also take polynomial time in the degree.

Lemma 2.5 ([52], [47, Theorem 3.5], [30, Section 5.1]). Vélu’s formulas for an isogeny of degree d compute

the isogeny in time Õ(dM(pd
2

)).

By Lemma 2.2, the isogeny created via Vélu’s formulas has coefficients in the field Fp12 .

Lemma 2.6. Let ϕ : E → E′ and ψ : E′ → E′′ be isogenies represented as rational maps, of respective degrees
d and d′, where E,E′, E′′, ϕ and ψ are defined over some finite field F. Then computing the composition

ψ ◦ ϕ : E → E′′ as a rational map takes time Õ(dd′M(#F)).

Proof. As usual, write ϕ =
(
u(x)
v(x) ,

s(x)
t(x) y

)
where u(x), v(x), s(x), t(x) ∈ F[x] are polynomials of degree O(d)

with gcd(u, v) = gcd(s, t) = 1. Similarly, write ψ =
(
u′(x)
v′(x) ,

s′(x)
t′(x) y

)
with analogous conditions on u′(x), v′(x),

s′(x), t′(x) ∈ F[x]. Then

ψ ◦ ϕ =

u′(u(x)
v(x) )

v′(u(x)
v(x) )

,
s′(u(x)

v(x) )

t′(u(x)
v(x) )

s(x)

t(x)
y

 .

Obtaining ψ ◦ϕ requires computing four compositions of the form f(u(x)
v(x) ) where f ∈ {u′, v′, s′, t′} has degree

O(d′). Writing f(x) =
∑n
i=0 fix

i with n = O(d′), we have

f

(
u(x)

v(x)

)
=
F (u(x), v(x))

v(x)n
where F (x, y) =

n∑
i=0

fix
iyn−i .

The computation of F (u(x), v(x)) is dominated by computing the powers of u(x) and v(x) which can be

accomplished in time Õ(dd′M(#F)) using fast polynomial multiplication [29]. An alternative way to compute
F (u(x), v(x)) that is slightly faster but has asymptotically the same runtime is via the Horner-like recursion

Fn(x) = fn , Fi−1(x) = fi−1v(x)n−i+1 + Fi(x)u(x) (n ≥ i ≥ 1) ,

where it is easy to see that F0(x) = F (u(x), v(x)). �

Lemma 2.7. Let E be an elliptic curve defined over some finite field F, θ ∈ End(E) an endomorphism
represented as a rational map, and N an integer. Then computing the endomorphism θ + [N ] ∈ End(E) as

a rational map takes time Õ(max{deg θ,N2}M(#F)).

Proof. By [48, Exercise 3.7, pp. 105f.], we have

[N ](x, y) =

(
φN (x)

ψN (x)2
,
ωN (x, y)

ψN (x, y)3

)
,

where φN = xψ2
N −ψN+1ψN−1, ωn = (ψN+2ψ

2
N−1 −ψN−2ψ

2
N+1)/4y and ψn is the n-th division polynomial

on E. The required division polynomials have degree O(N2) and can be computed in O(log(N)) steps using
the recursive formulas

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 , ψ2n =

1

2y
ψn(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1) .

Using the point addition formulas on E and fast polynomial multiplication techniques [29], the rational map

θ + [N ] can be computed using Õ(max{deg θ,N2}) operations in F. �



8 ARPIN, CHEN, LAUTER, SCHEIDLER, STANGE, TRAN

Throughout the paper, we will assume that all endomorphisms are provided with a trace and
norm (which is the same as the degree) that carries through computations; see Section 5.1. If the trace is
not provided, then it can be computed using [57, Lemma 1], [25, Lemma 4], [4, Theorem 3.6].

3. Oriented isogeny graphs

In this section, we recall and strengthen basic results about oriented isogeny graphs, mainly based on
work of Colò-Kohel [15] and Onuki [42], and provide some minor new extensions of the general theory.

3.1. Orientations. Fixing a curve E, we have End0(E) ∼= Bp,∞. The field K embeds into Bp,∞ if and only
if p does not split in K. There may be many distinct such embeddings. We define a K-orientation of E to
be an embedding ι : K → End0(E). If O is an order of K, then an O-orientation is a K-orientation such
that ι(O) ⊆ End(E). We say that a K-orientation ι is a primitive O-orientation if ι(O) = End(E) ∩ ι(K).
It will often be expedient to have a local notion of primitivity: for a prime `, we say that a K-orientation ι
is an `-primitive O-orientation if it is an O-orientation and the index [End(E)∩ ι(K) : ι(O)] is coprime to `.
In particular, a primitive O-orientation is exactly one which is `-primitive for all primes `.

If ϕ : E → E′ is an isogeny of degree `, where ι is a K-orientation of E, then there is an induced
K-orientation ι′ = ϕ∗(ι) on E′ defined to be ϕ∗(ι)(ω) := 1

`ϕ ◦ ι(ω) ◦ ϕ̂ ∈ End0(E′).

A K-oriented elliptic curve is a pair (E, ι) where ι : K → End0(E) is a K-orientation. An isogeny of
K-oriented elliptic curves ϕ : (E, ι)→ (E′, ι′) is an isogeny ϕ : E → E′ such that ι′ = ϕ∗(ι); we call this a K-
oriented isogeny and write ϕ·(E, ι) = (ϕ(E), ϕ∗(ι)). One verifies directly that ϕ2 ·ϕ1 ·(E, ι) = (ϕ2◦ϕ1)·(E, ι).
A K-oriented isogeny is a K-isomorphism if it is an isomorphism of the underlying curves.

3.2. Oriented isogeny graphs. Fixing a quadratic field K, we define the graph GK of K-oriented super-
singular curves over Fp. This is the graph whose vertices are K-isomorphism classes of pairs (E, ι) and for

which an edge joins (E, ι) and (E′, ι′) for each K-oriented isogeny (defined over Fp) of degree ` between
these oriented curves. If ϕ : (E, ι) → (E′, ι′) is a K-oriented isogeny, then ϕ̂ : (E′, ι′) → (E, ι) is also one
(since ϕ̂∗(ι

′) = ϕ̂∗(ϕ∗(ι)) = [`]∗(ι) = ι). Therefore the edges may be taken to be undirected by pairing
isogenies with their duals, when the vertices involved are not j = 0 or 1728. Also, isogenies are taken up to
equivalence, meaning we quotient by the same isomorphisms as for the vertices; see [42, Definition 4.1]. The
graph GK has (out-)degree `+ 1 at every vertex. (Note that our graph differs slightly from the definition in
[42, Section 4], where only the images of curves over a number field with complex multiplication are included;
we discuss this distinction in the next section.) This graph was first studied in [15].

Every K-orientation is a primitive O-orientation for a unique order O := ι(K) ∩ End(E). Therefore, the
set of vertices of GK is stratified by the order O by which a vertex is primitively oriented.

Definition 3.1. Let SSprO denote the set of isomorphism classes of K-oriented supersingular elliptic curves
for which the orientation is a primitive O-orientation.

This set is non-empty if and only if p is not split in K and does not divide the conductor of O [42,
Proposition 3.2]. As mentioned in Section 2.1, we make those assumptions throughout the paper.

Let ϕ : (E, ι)→ (E′, ι′) be a K-oriented `-isogeny. Suppose that ι is a primitive O-orientation and ι′ is a
primitive O′-orientation. There are exactly three possible cases:

(1) O = O′, in which case we say ϕ is horizontal,
(2) O ) O′, in which case [O : O′] = ` and we say ϕ is descending,
(3) O ( O′, in which case [O′ : O] = ` and we say ϕ is ascending.

Example 3.2 (Introducing our running example). To illustrate the algorithms in this paper, we consider
supersingular elliptic curves defined over Fp for p = 179. As p ≡ 3 (mod 4), the curve E : y2 = x3 − x with
j(E) = 1728 is supersingular. This curve is well-known to have extra automorphisms, and its endomorphism

ring is generated by the endomorphisms [1], [i],
[1]+πp

2 ,
[i]+[i]◦πp

2 , where [i](x, y) := (−x, iy) and πp is as defined

in Section 2.1. We define K := Q(
√

∆) with ∆ = −47 and ω = 1+
√
−47

2 . We consider the oriented 2-isogeny
graph of supersingular elliptic curves with respect to this imaginary quadratic field K.
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Figure 1. On the left hand side is a component of GK for p = 179, ` = 2 and K =
Q(
√
−47). On the right hand side is the supersingular 2-isogeny graph over Fp2 . Here

j1 = 64i + 5, j2 = 99i + 107, j3 = 5i + 109, where i denotes a root of −1 in Fp2 . Since
the oriented graph is undirected while the supersingular isogeny graph is directed, we have
undirected edges in the left graph and directed edges in the right graph. Note that the green
5-cycle represents the rim of the volcano.

3.3. Frobenius and class group actions. Let O be a quadratic order of K. Next we define an action of
Cl(O) on SSprO . For an invertible ideal a of O embedded into End(E) via a K-orientation ι, there exists a
horizontal isogeny ϕa defined by the kernel E[ι(a)] := ∩θ∈ι(a) ker(θ) [15, Section 3][42, Proposition 3.5], and
we write

a · (E, ι) := ϕa · (E, ι).
A different choice of ϕa with the same kernel gives an isomorphic oriented curve [42, Section 3.3], so this is
well-defined on the oriented `-isogeny graph GK . The action of Cl(O) is free, but not necessarily transitive;
it may have as many as two orbits [42, Proposition 3.3]. In particular,

(1) # SSprO ∈ {hO, 2hO}.

Consider the effect of the Frobenius isogeny on an oriented curve, namely πp · (E, ι) = (E(p), ι(p)) where

ι(p) := (πp)∗(ι). For any isogeny ϕ, we have πp ◦ ϕ(x, y) = ϕ(p)(xp, yp) = ϕ(p) ◦ πp(x, y). Hence, one

has (πp)∗(ι)(α) = 1
pπp ◦ ι(α) ◦ π̂p = 1

p ι(α)(p) ◦ πp ◦ π̂p = ι(α)(p). Since ϕ 7→ ϕ(p) gives an isomorphism

End(E) ∼= End(E(p)), we see that πp is horizontal, so this gives an action on SSprO for any O by the two-
element group {1, πp} = 〈πp〉. In fact, it is an action on the graph GK , not just the vertices, i.e. it preserves
adjacency. Onuki shows that when there are two orbits of the action of Cl(O) on SSprO , then the second orbit
can be reached from the first by the action of Frobenius [42, Proposition 3.3]. In [2], a complete classification
of when there are two (instead of one) orbit is given.

For our algorithms, we will sometimes need to compute the action of O on SSprO without actually know-
ing O. We can define and use an action of a suborder O′ ⊆ O as a proxy. To accomplish this, define, for
[a′] ∈ Cl(O′), that a′ · (E, ι) := ∩θ∈ι(a′) ker(θ). Observe that there is a homomorphism ρ : Cl(O′) → Cl(O).
Using the previous proposition, this gives a group action of Cl(O′) on SSprO . The following proposition states
that these two definitions agree. Although it implements the action of O, using the kernel intersection
formula does not require knowledge of O.

Proposition 3.3. Let O′ ⊆ O with relative index f . Let a′ be an ideal of O′ which has norm coprime to f .
Suppose that E has a K-orientation ι which is O-primitive. Let ϕa′ be defined as the isogeny with kernel
∩θ∈ι(a′) ker(θ). Let a := a′O be the extension of a′ to O. Then a · (E, ι) = ϕa′(E, ι).
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Proof. We have ι(a′) ⊆ ι(a) ⊆ End(E). We will show ∩θ∈ι(a′) ker(θ) = ∩θ∈ι(a) ker(θ). From that, we can
complete the proof, since

a · (E, ι) = ϕa(E, ι) = ϕa′(E, ι).

We immediately have ∩θ∈ι(a′) ker(θ) ⊇ ∩θ∈ι(a) ker(θ). We will show the index between these two groups
must divide a power of f . But the larger of the groups has cardinality coprime to f by hypothesis. So this
would imply they are equal.

Write a′ = α1O′ + α2O′ and O = Z + gωZ using the notation of Section 2.1. Then

∩θ∈ι(a′) ker(θ) = ker(ι(α1)) ∩ ker(ι(α2)) ∩ ker(ι(α1fgω)) ∩ ker(ι(α2fgω)),

∩θ∈ι(a) ker(θ) = ker(ι(α1)) ∩ ker(ι(α2)) ∩ ker(ι(α1gω)) ∩ ker(ι(α2gω)).

We have ker(ι(αigω)) ⊆ ker(ι(αifgω)) with index f2. Thus the index of ∩θ∈ι(a) ker(θ) inside ∩θ∈ι(a′) ker(θ)
must divide a power of f . �

3.4. Volcano structure. Any component of the oriented `-isogeny graph GK has a volcano structure (see
Figure 1), which is made precise by the following statement. (This behaviour is similar to the ordinary
`-isogeny graph, except here volcanoes have no floor; they descend forever.) Here we remind the reader that
p 6= ` throughout the paper.

Proposition 3.4 ([42, Proposition 4.1]). Consider a vertex (E, ι) of the oriented `-isogeny graph associated
to K, a quadratic field of discriminant ∆. Suppose that ι is a primitive O-orientation for E. If ` does not
divide the conductor of O, then the following hold.

(1) There are no ascending edges from (E, ι).
(2) There are

(
∆
`

)
+ 1 horizontal edges from (E, ι).

(3) There remaining edges from (E, ι) are descending.

If ` divides the conductor of O, then the following hold.

(1) There is exactly one ascending edge from (E, ι).
(2) The remaining edges from (E, ι) are descending.

When O has unit group {±1}, i.e. except for the Gaussian and Eisenstein integers, the out-degree of (E, ι)
is `+ 1. For the out-degree in these special cases, see [2, Proposition 2.11].

Proposition 3.4 implies that each connected component of the oriented `-isogeny graph GK is a volcano,
containing a rim comprised of the vertices with no ascending edges. Each vertex on a rim is the root of a tree
that radiates infinitely downward and in which each node other than the root generically has one parent and
` children. The vertices at altitude r are precisely those pairs (E, ι) for which ι is a primitive O-orientation
such that the conductor of O has `-adic valuation r. Specifically, the vertices at the rims are exactly those for
which O is `-fundamental. For any fixed `-fundamental order O, we define the O-cordillera to be subgraph
of GK comprised of only those volcanoes whose rims are pairs (E, ι) with ι a primitive O-orientation. The
vertices at the rims of the O-cordillera are exactly SSprO .

The action of an ideal class [a] ∈ Cl(O) gives a permutation on SSprO , which we can visualize as a directed
graph. This consists of cycles, all of which are the same size, given by the order of [a] in Cl(O). Applying
this to a prime ideal l of O lying above `, the rims of the O-cordillera are exactly these cycles. All these
rims have the same size dividing hO, and each of them is either a single vertex, a single or double edge or
a cycle. If ` is inert, they are each singletons. If ` is ramified, they are each of size 2 with one connecting
edge (the isogeny and its dual are identified). If ` splits into two classes of order 2, we obtain a rim of size
two with two connecting edges. Otherwise, the rims are non-trivial cycles in the oriented `-isogeny graph,
of size equal to the order of [l] ∈ Cl(O). We summarize the discussion as follows.

Proposition 3.5. Let O be `-fundamental. Let R` be the order of [l] ∈ Cl(O), for l a prime ideal of O lying
above `. The O-cordillera consists of # SSprO /R` volcanoes of rim size R`.

3.5. From oriented isogeny graph to isogeny graph. There is a graph quotient GK → G induced by
forgetting the orientation.

Proposition 3.6. Under this quotient, every component of GK (i.e. every volcano) covers G.

Proof. Fix a volcano V ⊂ GK . Choose a vertex (E, ι) ∈ V. The image E under the quotient map lies on G.
Since both V and G are regular of degree `+ 1 at every vertex, the image of V must be all of G. �
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As a corollary, every j-invariant occurs on every volcano infinitely many times. Given p, a result of
Kaneko [31, Theorem 2’] implies that the multiple occurrences of a given j-invariant cannot occur too
quickly as one descends the oriented `-isogeny volcano. In fact, there is at most one occurrence in the range
|∆| < p (here ∆ is the discriminant at a certain altitude in the volcano).

3.6. Graph statistics and heuristics. In the `-isogeny graph G, two vertices are at distance d if the
shortest path between them in the graph consists of d edges. The distance between two arbitrary vertices is
known to be at most 2 log p [43, Theorem 1]. In fact, for most pairs of vertices, the distance between them
is at most (1 + ε) log p (see [45, Theorem 1.5] for a precise statement).

We will use the following heuristic to justify the runtimes in the paper. One expects the number of
occurrences of a j-invariant in a volcano to be governed by the number of trees emanating from the rim of
the volcano. The heuristic in essence asserts a uniform behaviour within any cordillera. Specifically, the
proportion of occurrences of any j-invariant in any individual volcano of a cordillera approaches the overall
proportion of trees (or equivalently, of edges descending from a rim). A more precise statement is given in
Heuristic 3.7. In a follow-up paper [2], we discuss this and some related heuristics in more detail.

Heuristic 3.7. Let O be an `-fundamental quadratic order. Consider the finite union SSO of O′-cordilleras
in the oriented supersingular `-isogeny graph for all O′ ⊇ O. Let d(v) denote the distance of a vertex v to
the rim of its volcano. Let j(v) denote its j-invariant. Define:

• RV , the number of edges descending from the rim of the volcano V ∈ SSO;
• RSSO , the sum of the number of edges descending from all rims in SSO.

Then for any j-invariant j0 and any volcano V ∈ SSO, the ratio

#{v ∈ V : j(v) = j0, d(v) ≤ t}
#{v ∈ SSO : j(v) = j0, d(v) ≤ t}

approaches RV/RSSO as t→∞.

Briefly, one expects this because sufficiently long random walks from any rim vertex will visit all vertices
with a uniform distribution [28, Theorem 1]. This observation suffices to prove the case the rims are
singletons; other cases should behave similarly.

The following lemma is useful for runtime analyses of our main algorithms (Propositions 8.1 and 10.1).
It states that sum of the class numbers of all the orders containing O (approximately the cardinality of the
union of the sets SSprO involved in SSO in Heuristic 3.7) is only marginally bigger than just the class number
hO (approximately the size of the largest SSprO in the union).

Lemma 3.8. Let O be an imaginary quadratic order of conductor f in some quadratic field K with class
number hO, and put

(2) HO =
∑

O⊆O′⊆OK

hO′ ,

where the sum ranges over all the quadratic orders O′ containing O and hO′ denotes the class number of O′.
Then HO ≤ hO O((log log f)2) as f →∞.

Proof. Let O′ be a quadratic order of discriminant D′ containing O and f ′ = [O′ : O] the index of O in O′.
Then f ′ divides f . By [18, Corollary 7.28], we have

hO =
f ′hO′

w′/w

∏
q|f ′

q prime

(
1−

(
D′

q

)
1

q

)
,

where w,w′ ∈ {2, 4, 6} are the sizes of the unit groups of O and O′, respectively. Thus,

hO′ ≤
w′

wf ′
hO

∏
q|f ′

q prime

(
1− 1

q

)−1

=
w′

wϕ(f ′)
hO,
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were ϕ(·) denotes Euler’s phi function. It follows that

HO ≤
∑

O⊆O′⊆OK

w′

wϕ(f ′)
hO =

w′

w

∑
f ′|f

1

ϕ(f ′)

 hO .

By [1, Exercise 3.9 (a)], we have

n

ϕ(n)
<
π2

6

σ(n)

n

for all integers n ≥ 3, where σ(·) is the sum of divisors function. From Robin’s Theorem [44], we obtain
σ(n)/n < c log log n for all n ≥ 3 and some constant c. Therefore,∑

3≤f ′|f

1

ϕ(f ′)
<
cπ2

6

∑
3≤f ′|f

log log f ′

f ′
<
cπ2

6
(log log f)

∑
f ′|f

1

f ′
=
cπ2

6
(log log f)

σ(f)

f
<

(cπ)2

6
(log log f)2 ,

and hence HO = hO O((log log f)2). �

4. Navigating the K-oriented `-isogeny graph

In this section, we will show how to transform a given endomorphism of a supersingular elliptic curve into
a suitable orientation, and then use it to navigate the oriented `-isogeny graph.

4.1. Conjugate orientations and orientations from endomorphisms. Motivated by our computa-
tional goals, we replace the abstract data of an orientation with the more computational data of an endo-
morphism. Given an element θ ∈ End(E) along with its minimal polynomial mθ(x), we can infer a unique
Z[θ]-orientation only up to conjugation. Namely, if α is a quadratic irrational root of mθ(x), then we define

ιθ(α) = θ and extend to a ring homomorphism. The conjugate orientation is defined by ι̂θ(α) = θ̂, or equiva-
lently, by ι̂θ(α) = θ. An example in [42, Section 3.1] demonstrates a pair of Gal(K/Q)-conjugate K-oriented
curves which are not isomorphic. In other words, given ϕ ∈ End(E), one may be in either of two locations
in the oriented `-isogeny graph: (E, ι) or (E, ι̂). However, locally at least, navigating from either location
looks the same, in the sense of ascending/descending/horizontal edges and j-invariants.

Lemma 4.1. The map (E, ι) 7→ (E, ι̂) is a graph isomorphism and an involution, taking SSprO back to itself

for each O. If ϕ : (E, ι) → (E′, ι′) is a K-oriented `-isogeny, then ϕ : (E, ι̂) → (E′, ι̂′) is a K-oriented
`-isogeny, and the type (ascending, descending, or horizontal) is the same.

Proof. The map is clearly a bijection on vertices. Observe that the dual of ϕ̂ ◦ ι ◦ ϕ is ϕ̂ ◦ ι̂ ◦ ϕ. From this,
it follows that the map is a graph isomorphism. The observation about type follows from the fact that SSprO
is taken back to itself. �

As consequences of this lemma, for two vertices (E, ι) and (E, ι̂), we have the following:

(1) the j-invariant is the same at both vertices;
(2) both vertices are at the same altitude in the volcano;
(3) if the vertices are not at a rim, the ascending isogeny from either vertex is the same;
(4) if the vertices are at the rim, the pair of horizontal isogenies from either vertex is the same;
(5) if we apply any fixed sequence of `-isogenies from both vertices, the sequence of j-invariants appearing

on the resulting paths is the same.

For these reasons, it will not, in practice, be necessary for us to know which of two conjugate orientations
we are dealing with. Therefore, we do not make any choice between the two. In the remainder of the paper,
we will not dwell on this distinction and will work with endomorphisms instead of orientations.

Remark 4.2. It is a natural question to ask when a subset of the four oriented curves (E, ι), (E(p), ι(p)),
(E, ι̂) and (E(p), ι̂(p)) coincide. This question may have importance to a more detailed runtime analysis than
we present in this paper, for example. It is considered in [2].
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4.2. `-primitivity, `-suitability, and direction finding. Having associated an endomorphism to an ori-
entation, we can now define the following.

Definition 4.3. Let θ ∈ End(E) be an endomorphism and α the corresponding quadratic element (up
to conjugation). Then θ (as well as α) is called `-primitive if the associated orientations ιθ : α 7→ θ and
ι̂θ : α 7→ θ are `-primitive Z[α]-orientations. Moreover, θ (as well as α) is called N -suitable, for an integer N ,
if α is of the form fω + kN where k is some integer, f is the conductor of Z[α], and fω is the generator of
Z[α] as described in the conventions of Section 2.1.

The purpose of this definition is made clear by the following lemma.

Lemma 4.4. If θ ∈ End(E) is `-suitable, then θ is not `-primitive if and only if θ/` ∈ End(E).

Proof. The endomorphism θ is not `-primitive if and only if there exists a (unique) order O′ ⊆ End(E) of
index ` = [O′ : Z[θ]]. But this happens if and only if θ/` ∈ End(E), since under the `-suitability hypothesis,
Z[θ/`] is precisely this order O′. �

Lemma 4.5. Let α ∈ OK\Z with trace t. Let f be the conductor and ∆K the fundamental discriminant of
Z[α]. Then

{T ∈ Z : α+ T is N -suitable} =

{
f−t

2 +NZ if ∆K ≡ 1 (mod 4)

−t
2 +NZ if ∆K ≡ 0 (mod 4)

.

In our algorithms, we sometimes choose an optimal T in the sense of the following definition.

Definition 4.6. If α+T has the smallest possible non-negative trace amongst all N -suitable translates of α,
we say that α+ T is a minimal N -suitable translate.

Knowing just one suitable endomorphism θ on an elliptic curve E, we can determine the type (ascending,
descending or horizontal) of isogenies originating at (E, ιθ).

Proposition 4.7. Suppose ψ : E → E′ is an `-isogeny and θ ∈ End(E) is an `-suitable `-primitive endo-
morphism. Then, with regards to the orientation ιθ induced by θ,

(1) ψ is ascending if and only if [`]2 | ψ ◦ θ ◦ ψ̂ in End(E′).

(2) ψ is horizontal if and only if [`] | ψ ◦ θ ◦ ψ̂ but [`]2 - ψ ◦ θ ◦ ψ̂ in End(E′).

(3) ψ is descending if and only if [`] - ψ ◦ θ ◦ ψ̂ in End(E′).

Proof. Let ιθ be the orientation on E associated to θ. Let ι′ be the induced orientation on E′ by ιθ via
ψ. Let O, O′ ⊆ K be two orders such that ιθ is O-primitive and ι′ is O′-primitive. The three cases in
the proposition correspond to the cases when O ( O′, O = O′ and O ) O′, respectively. Therefore, ψ is
ascending, horizontal and descending correspondingly. �

The previous proposition demonstrates that it is enough to check the action of ψ ◦ θ ◦ ψ̂ on E[`] to
determine whether ψ is ascending, horizontal or descending. However, we can also write down the ascending
or horizontal endomorphisms directly by analysing the eigenspaces of θ on E[`], as follows. Note that a
version of this for Frobenius is used in CSIDH [8] to walk horizontally, earlier used in [32, Section 3.2] and
[23, Section 2.3].

Proposition 4.8. Suppose θ ∈ End(E) is `-suitable and `-primitive. For each P ∈ E[`] of order ` let ψP
denote the degree ` quotient isogeny induced by 〈P 〉. Let λ1, λ2 ∈ F`2 be the eigenvalues of θ acting on E[`].
Consider the oriented curve (E, ιθ).

(1) If λ1, λ2 ∈ F`2\F`, then all ψP ’s are descending.
(2) If λ1, λ2 ∈ F`, and

(2a) λ1 = λ2 = 0, then there is a unique eigenspace 〈Q〉 and that gives rise to an ascending
isogeny ψQ; the rest ψP ’s are descending.

(2b) λ1 = λ2 6= 0, then there is a unique eigenspace 〈Q〉 and that gives rise to a horizontal
isogeny ψQ; the rest ψP ’s are descending.

(2c) λ1 6= λ2, then there are two eigenspaces 〈Q1〉, 〈Q2〉 that correspond to λ1, λ2 respectively.
The two isogenies ψQ1

, ψQ2
are horizontal, and the rest ψP ’s are descending.
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Proof. Suppose α 7→ θ gives a K-orientation of E, for K = Q(α). Define O to be Z[α]. Let f(x) ∈ Z[x]
denote the minimal polynomial of α over Q, then f(x)(mod `) is the characteristic polynomial of the action
of θ on E[`]. From this one can show that Case (2a) appears if and only if α is divisible by ` as an algebraic
integer. Since α is `-suitable, this is equivalent to O being non-maximal at `. Therefore we divide the proof
into two cases. In both cases, the statements on the number of descending isogenies follow from the volcano
structure as described in Proposition 3.4.

Case I : O is not maximal at `. The eigenspace corresponds to 0 is one-dimensional as otherwise it
violates the fact that α is `-primitive, denote the eigenspace by 〈Q〉. Then 〈Q〉 = E[l] where l := (α, `)O is
a non-invertible ideal in O. According to [42, Proposition 3.5], the corresponding isogeny ψQ is ascending.

Case II : O is maximal at `.

• Case (1) is equivalent to ` being inert in K, there are only descending isogenies.
• Case (2b) is equivalent to ` ramifying in K. In this case, the eigenspace is again one-dimensional,

we denote it by 〈Q〉. Let λ := λ1 = λ2, then 〈Q〉 = E[l] where l := (α− λ, `)O is an invertible ideal
in O. According to [42, Proposition 3.5], the corresponding isogeny ψQ is horizontal.

• Case (2c) is equivalent to ` splitting in K. In this case, there are two distinct F`-eigenvalues and
two eigenspaces 〈Q1〉, 〈Q2〉. For i = 1 or 2, 〈Qi〉 = E[li] where li := (α− λi, `)O are invertible ideals
in O. They give rise to two horizontal isogenies.

�

Remark 4.9. Observe from the proposition that in order to detect which outgoing `-isogeny at an oriented
curve (E, θ) is ascending or horizontal, we only need to know how θ acts on E[`]. Indeed, we can formalize
as follows. Let T`(E) have basis P = (Pn), Q = (Qn), where Pn, Qn ∈ E[`n]. Let θ ∈ End(E) have matrix

Mθ =

(
α β
γ δ

)
∈M2(Z`) with respect to that basis. Let φa have kernel 〈P1− [a]Q1〉 for 0 ≤ a < ` and kernel

〈Q1〉 for a =∞. We determine a basis P ′, Q′ for the codomain T`(φa(E)) as follows: take any P ′ satisfying
[`]P ′ = φa(P − [a]Q) and take Q′ = φa(Q), in the case a 6= ∞. In the case a = ∞, we take P ′ = φ∞(P )
and take Q′ to be any point satisfying [`]Q′ = φ∞(Q). With the setup as described above, for any `-isogeny
φ : E → E′, we have that φ = φa for some a ∈ {0, 1, . . . , ` − 1,∞}. Furthermore, for any endomorphism

θ ∈ End(E), with respect to bases P , Q and P ′, Q′ as described above, φaθφ̂a ∈ End(E′) has `-adic matrix
representation (

` 0
a 1

)
Mθ

(
1 0
−a `

)
∈M2(Z`) or

(
1 0
0 `

)
Mθ

(
` 0
0 1

)
∈M2(Z`),

depending upon whether a 6=∞ or a =∞ respectively. Furthermore, as a consequence of Proposition 4.8,

(1) Suppose (E, θ) is not at the rim in the oriented isogeny graph. Then, the ascending isogeny is given
by φa for a ≡ α/β (mod `) (where a =∞ if β ≡ 0 (mod `)).

(2) Suppose instead that (E, θ) is at the rim. Then, the two horizontal isogenies are given by the two
values of a satisfying βa2 − (α− δ)a− γ ≡ 0 (mod `), if such exist (if β ≡ 0 (mod `), the solutions
are a =∞ and a ≡ γ/(δ − α) (mod `)).

These observations show that one can navigate in the oriented graph, one can perform a Waterhouse transfer
(see the next section), divide by `, and translate by integers, using the matrix representation. In fact, the
algorithms presented in this paper for finding a path to j = 1728 can be adapted (using the observations
just mentioned) to work for an endomorphism given as an approximate element of T`(E). Note that one
loses precision every time one divides by `, so that one’s precision limits the number of steps one can take.
A situation where one may be provided with such an endomorphism is the situation of the cryptographic
SIDH problem (the subject of recent attacks [7, 39]), where an unknown isogeny ϕ : E → Einit to a starting
curve gives rise to various endomorphisms ϕ̂θϕ for θ ∈ End(Einit) whose action on certain torsion groups is
known.

5. Representing orientations and endomorphisms

In this section, we will introduce several ways to represent isogenies and endomorphisms and then provide
functionality for each type of representation.
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5.1. Representations and functionality. We remind the reader that throughout the paper, isogenies
and endomorphisms will be assumed separable unless otherwise stated (see Section 2.1). In this section, we
discuss two types of representations of an endomorphism. The first is the most basic.

Definition 5.1. A rationally represented isogeny is an isogeny given by a rational map. A rationally
represented endomorphism is an endomorphism which is rationally represented as an isogeny.

We may also represent endomorphisms of large degree (e.g. not polynomial in log p) by writing them as
a chain of isogenies of manageable degree.

Definition 5.2. An isogeny chain isogeny ϕ : E0 → Ek is an isogeny which is given in the form of a sequence
of rationally represented isogenies (ϕi : Ei−1 → Ei)

k
i=1 which compose to ϕ, i.e. ϕk ◦ϕk−1 ◦ · · · ◦ϕ2 ◦ϕ1 = ϕ.

Let B > 0. Recall that an integer is called B-smooth (or B-friable) if its largest prime factor is at most
B. It is called B-powersmooth (or B-ultrafriable) if its largest prime power factor is at most B. In order
to handle isogeny chain endomorphisms, we will generally refactor them, meaning we will replace the chain
with another chain representing the same endomorphism, but whose component isogenies have coprime prime
power degrees. Moreover, we also fix a powersmooth bound B for the prime power degrees. In Section 5.3.4,
we explain our choice of B for the best algorithm runtime.

Definition 5.3. An isogeny chain whose component isogenies have coprime prime power degrees is called
a prime-power isogeny chain. Moreover, it is called a B-powersmooth prime-power isogeny chain if its
component isogenies have coprime prime power degrees at most B.

For isogenies represented in any manner, we will need the following functionality:

(1) Evaluation at `-torsion: Given θ ∈ End(E), and P ∈ E[`], compute θ(P ) ∈ E[`]. (See Lemma 2.4.)
(2) `-suitable translation: Given θ ∈ End(E), compute θ + [t] ∈ End(E), for some t ∈ Z, so that

θ + [t] is `-suitable (Definition 4.3) and again separable. (See Lemma 2.7 for rational represen-
tations and Algorithm 5.3 for isogeny chains.) Note that for powersmooth prime power isogeny
chains, by computing an `-suitable translation, we always mean that we compute a translate that
is a B-powersmooth prime power isogeny chain unless otherwise specified. This is exactly what
Algorithm 5.3 does.

(3) Division by `: Given θ ∈ End(E) such that θ = [`] ◦ θ′, compute θ′ ∈ End(E). (See Algorithm 12.2
for rational representations and Algorithm 5.2 for isogeny chains.)

(4) Waterhouse transfer: Given θ ∈ End(E) and ϕ : E → E′ an `-isogeny, compute ϕ◦θ◦ϕ̂ ∈ End(E′).
(See Lemma 2.6 for rational representations and Algorithm 5.1 for isogeny chains.) The terminology
is based on [56].

We have endeavoured to write the paper in a modular fashion, so that these two types of representations
– or another unforeseen type of representation, as long as it provides these functionalities – can be used at
will. In particular, we write our algorithms (Sections 7.1 onwards) in terms of these functionalities (writing
for example θ ← θ/[`] for division by `, to be implemented according to the endomorphism representation
chosen).

Although isogeny chain endomorphisms may have large degree, we assume that for any type of endo-
morphism representation, the overall degree, trace and discriminant are polynomially bounded
in p.

As discussed in Section 2.2, it can be rather involved to compute the trace of an endomorphism. However,
the manipulations we perform in our algorithms transform the trace predictably. Therefore, it is to our
advantage to attach the trace data to all endomorphisms under consideration and update it as needed. For
either rationally represented or isogeny chain endomorphisms, our data type will be the following.

Definition 5.4. A traced endomorphism is a tuple of data (E, θ, t, n) where θ ∈ End(E) is either rationally
represented or an isogeny chain, and t and n are the reduced trace and norm (degree) of θ, respectively.

5.2. Functionality for rationally represented endomorphisms. In the case of a rationally represented
endomorphism, we can evaluate at `-torsion directly (Lemma 2.4). We can translate by an integer by adding
the rational maps under the group law (Lemma 2.7). We can Waterhouse transfer by composing the maps
(Lemma 2.6). However, division by ` requires a dedicated algorithm. In Section 12, we describe the algorithm
of McMurdy [41] for exactly this purpose, and analyse its runtime in greater detail. For the completeness
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of this section, we record here that the runtime of dividing an isogeny ϕ : E → E′ of supersingular elliptic
curves defined over Fp2 (Algorithm 12.2) is O(deg2(ϕ)M(p)).

5.3. Functionality for isogeny chain endomorphisms. An isogeny chain representation of an endo-
morphism can be more space efficient than its rational representation, and more efficient to compute with.
Computing the Waterhouse transfer of an isogeny chain endomorphism is essentially trivial: include the
transfer isogenies in the chain. To evaluate at `-torsion, we evaluate the sequence of maps one-by-one
(Lemma 2.4); the runtime depends polynomially on the largest degree of their component isogenies.

In this section, we give algorithms for the more onerous tasks of division-by-` and translation by integers.
Their runtimes will depend polynomially on the largest prime power appearing in the degree of the endo-
morphism, which must therefore be kept small for efficiency. To address this problem, which arises when
translating to something `-suitable, we use a search step to find a translate of powersmooth degree.

In order to keep the largest prime power in the degree below a certain bound, we will be interested in
B-powersmooth prime power isogeny chains. In the last subsection of this section, we balance the runtime
considerations by choosing a subexponential powersmoothness bound B for the degree of an isogeny chain
endomorphism. Thus, working with a general such endomorphism is a subexponential endeavour.

Although our concern is with endomorphisms, both Algorithm 5.1 and Algorithm 5.2 work for isogenies
in general.

5.3.1. Refactoring an isogeny chain. If an endomorphism is not in the prime power isogeny chain form, we
can refactor it. To achieve this, one factors the degree, then builds the new chain from scratch kernel-by-
kernel, as described in Algorithm 5.1. In fact, any endomorphism that can be evaluated at arbitrary points
on the curve can be converted to an isogeny chain representation using this algorithm.

Remark 5.5. In principle, it is possible to refactor into degrees that are primes as opposed to prime powers.
However, this doesn’t circumvent the need for powersmoothness (in practice, it would provide some savings,
e.g. in Vélu’s formulas, but it wouldn’t avoid the overall polynomial dependence on the powersmoothness
bound). During refactoring, for any prime power factor qk of the degree, the endomorphism needs to be
evaluated on the qk-torsion, which should therefore be defined over a field of manageable size. See [10, Section
5.2.1] for a nice discussion of this issue in another context.

Algorithm 5.1: Refactoring an isogeny chain

Input: A traced endomorphism (E, θ, t, n) in any form in which it can be evaluated (such as
rationally represented or a translation of an isogeny chain), of degree coprime to p.

Output: The same traced endomorphism (E, θ, t, n) ∈ End(E) in prime-power isogeny chain form.

1 H ← []

2 E0 ← E

3 Write n =
∏u
j=0 q

kj
j by factoring.

4 For j = 0, . . . , u do

5 Compute a basis for E[q
kj
j ].

6 Compute Gj = ker(θ) ∩ E[q
kj
j ] by evaluating θ on E[q

kj
j ].

7 Compute a rationally represented isogeny ϕj : Ej → Ej+1 given by the kernel ϕj−1 ◦ . . . ◦ ϕ0(Gj),

using Velu’s formulas.

8 Append (ϕj : Ej → Ej+1) to H.

9 Return (E, θ, t, n) where θ is given by the isogeny chain H.

Proposition 5.6. Let B be the largest prime power dividing deg θ. Then Algorithm 5.1 is correct and has

runtime O(log deg θ) times the maximum of the following three runtimes: O(B2(log p)), O(B2(logB)M(pB
2

))
and the runtime of evaluation of θ on O(B)-torsion. The space requirement of Algorithm 5.1 is O(B2 log p).
In particular, if θ is an integer translate of an isogeny chain with B-powersmooth degree, then the runtime

is O((log deg θ)B2M(pB
2

)).
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Proof. The For loop builds an isogeny chain for θ. One can see this by induction: assuming θ = ν′ ◦ν where
ν := ϕj−1 ◦ . . . ◦ ϕ0, we have by construction that ν(Gj) vanishes under ν′. Hence θ factors through ϕj ◦ ν.

To write the factorization of n is at worst O(B log2B) in time (by trial division), but O(log n) in space. For
each prime power factor (so at most log n times), we must do each of the following: (i) Compute a basis for
the torsion subgroup in time and space O(B2 log p) by Lemma 2.3. (ii) Evaluate θ on the basis (iii) List the
elements of the kernel Gj ; this involves computing all linear combinations of the basis images and recording
those combinations which vanish; and then computing the corresponding linear combinations of the original

torsion points, a total of B2 +B linear combinations; by Lemma 2.1, this takes time O(B2(logB)M(pB
2

)).

(iv) Apply Vélu’s formulas in time O(BM(pB
2

)) by Lemma 2.5. Writing down the resulting isogeny takes
O(B) coefficients in a subfield of Fp12 (Lemma 2.2), hence we use O(B log p) space for each isogeny of the
chain.

If θ is a translate of an isogeny chain whose component degrees are bounded by B, we can further estimate
the time taken to evaluate θ on the torsion basis. This involves one evaluation for each component isogeny

(at most log n such). Each evaluation of a component ϕi takes time O((degϕi)M(pB
2

)) by Lemma 2.4.
(Evaluation of the integer translation is of smaller runtime by Lemma 2.1; since the integer is taken modulo
the torsion, its size is irrelevant.) �

Remark 5.7. The exponent of the dependence on B can surely be improved here; for example, if deg θ
is prime, then our bound on the number of linear combinations on which to evaluate θ is a substantial
overestimate.

5.3.2. Division by `. In this section, we demonstrate in Algorithm 5.2 how to divide an isogeny chain endo-
morphism by [`].

Algorithm 5.2: Dividing-by-[`] for an endomorphism given as a prime-power isogeny chain.

Input: A traced endomorphism (E, θ, t, n) in prime-power isogeny chain form , such that
θ(E[`]) = {OE}.

Output: A traced endomorphism (E, θ′, t′, n′) ∈ End(E) such that θ = [`] ◦ θ′, in prime-power isogeny
chain form.

1 i← the index at which the chain has `-power degree.

2 Modify the chain for θ by replacing ϕi with ϕi/[`] using Algorithm 12.2.

3 t← t/`

4 n← n/`2.

5 Return (E, θ, t, n).

Proposition 5.8. Let B be an upper bound on the degrees of the prime powers in θ. Then Algorithm 5.2 is
correct and runs in time O(B2 poly(log p)).

Proof. The runtime is negligible except for the call to Algorithm 12.2. By Proposition 12.6, that algorithm
runs in time O(deg2(ϕi)M(p)) (and we bound M(p) by poly(log p) as discussed in Section 2.1). �

5.3.3. Finding a B-powersmooth `-suitable translate. As discussed earlier, we wish to keep the powersmooth-
ness bound B on the degree of an isogeny chain endomorphism low when translating by an integer. Since our
goal is to find `-suitable endomorphisms, and translation by ` preserves `-suitability, we may search amongst
nearby translates for one which is B-powersmooth for our desired bound B. This is done in Algorithm 5.3.

Proposition 5.9. Algorithm 5.3 is correct, and the runtime is that of Algorithm 5.1 plus the time taken for
Step 2.

Proof. The `-suitability of the output is guaranteed by Lemma 4.5. �

5.3.4. Choosing a powersmoothness bound B. In practice, we need to balance the runtimes of the various
functionalities of an isogeny chain endomorphism by choosing an appropriate powersmoothness bound B.

The number of B-smooth and B-powersmooth numbers below a bound X is asymptotically the same,
provided that B/ log2X →∞ [50] (another reference shows they are asymptotically proportional, provided
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Algorithm 5.3: Computing a B-powersmooth `-suitable translate in prime-power isogeny-chain form.

Input: A traced endomorphism (E, θ, t, n) in prime-power isogeny chain form, and a
powersmoothness bound B (where B =∞ is acceptable).

Output: A traced endomorphism (E, θ′, t′, n′) which satisfies Z[θ′] = Z[θ] but where θ′ is `-suitable,
and is given as a separable prime-power isogeny chain, with prime powers ≤ B.

1 Compute the minimal `-suitable translate T for θ (Lemma 4.5).

2 Try values n(b) = n+ (T + b`)t+ (T + b`)2 for small integers b, to find b such that n(b) is
B-powersmooth and coprime to p.

3 θ′ ← a refactored prime-power isogeny chain for θ + T + b`, using Algorithm 5.1.

4 t′ ← t+ 2T + 2b`

5 n′ ← n+ (T + b`)t+ (T + b`)2.

6 Return (E, θ′, t′, n′)

logB/(log logX) → ∞ [16, Section 3.1]). In our situation, we expect to handle endomorphisms which may
have degree as much as exponential in log p. Fortunately, we can, at least heuristically, find subexponentially
smooth translates in subexponential time [16, Section 3.1].

Heuristic 5.10. Given integers n, t, and T , values of the function n(b) = n + (T + b`)t + (T + b`)2, as
b→∞, are powersmooth with the same probability as randomly chosen integers of the same size.

This is the powersmooth analogue of the heuristic assumption underlying the quadratic sieve; see [19].

Proposition 5.11. Assume Heuristic 5.10. Let θ ∈ End(E) have degree d such that Ld(1/2) > poly(log p),
and assume that its trace t is polynomial in d. Then Algorithm 5.3 produces an Ld(1/2)-powersmooth prime
power isogeny chain of total degree O(d). Furthermore, on Ld(1/2)-powersmooth prime power isogeny chains
of total degree O(d), the maximum runtime of Algorithm 5.1, Algorithm 5.2 and Algorithm 5.3 is Ld(1/2),
and the output of these algorithms is again an Ld(1/2)-powersmooth prime power isogeny chain of total
degree O(d).

Proof. We have seen that all the runtimes in Algorithms 5.1 through 5.3 are polynomial inB, log d (= O(log p)
by the assumptions of Section 5.1), and log p, with the exception of Step 2 in Algorithm 5.3. Hence, taking
B = Ld(1/2), the runtime (except for this step) will be Ld(1/2).

As far as Step 2, under Heuristic 5.10, we can call on [16, Section 3.1] (note that the L-notation in
the reference differs from ours here). According to [16, Section 3.1], the probability that a random integer
between 1 and d is B-powersmooth is 1/Ld(1/2). Testing values of b between 1 and Ld(1/2), we do indeed
have n(b) < d. Thus, we expect to find a B-powersmooth integer, by Heuristic 5.10. For each b-value, to
see whether n(b) is B-powersmooth, we use näıve division in time O(B log2B). Therefore, in total, one will
find Ld(1/2)-powersmooth integers in time Ld(1/2). In Step 5, n′ = n+O(b2`2) (since |t+ 2T | ≤ 1), so the
total degree of the output is O(d). �

A few important notes for the remainder of the paper: we will assume B = Ldeg θ(1/2), where θ
is the initial input endomorphism, when dealing with isogeny chains, and that whenever we
perform an `-suitable translation on an isogeny chain, we choose a B-powersmooth prime power
`-suitable translate.

Example 5.12 (Computing an `-suitable translation via Algorithm 5.3). We continue with our running
example, computing an `-suitable translate of a degree 47 endomorphism θ on the curve E1728 : y2 = x3 − x
for ` = 2. Here θ is given as a rational map:

θ(x, y) =

(
99x47 + 22x46 + · · ·+ 77

x46 + 40x45 + · · ·+ 77
,

113ix69 + 157ix68 + · · ·+ 63i

x69 + 60x68 · · ·+ 158
y

)
.

The traced endomorphism is (E1728, θ, 0, 47). In Step 1, we compute the minimal 2-suitable translate T using
Lemma 4.5. From the traced endomorphism, we compute ∆θ = t2 − 4n = 02 − 4 · 47 = −188. This implies
that the fundamental discriminant is −47 and the conductor is 2. Therefore, the 2-suitable translates are of
the form θ+T for T in 1+2Z, and the minimal 2-suitable translate is obtained for T = 1. In Step 2, we find
b = 0 produces n(b) = 24 · 3, which is B-powersmooth for B = 50. In Step 3, we factor θ+ 1 into an isogeny
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chain θ′ = ϕ171 ◦ ϕ1728 where deg(ϕ1728) = 16 and deg(ϕ171) = 3, which requires a call to Algorithm 5.1.
Here,

ϕ1728(x, y) =

(
x16 + (156i+ 63)x15 + · · ·+ 56i+ 36

x15 + (156i+ 63)x14 + · · ·+ 10i+ 71
,
x23 + (55i+ 95)x22 + · · ·+ 105i+ 82

x23 + (55i+ 95)x22 + · · ·+ 26i+ 87
y

)
and

ϕ171(x, y) =

(
x3 + (102i+ 30)x2 + (31i+ 74)x+ 10i+ 158

x2 + (102i+ 30)x+ 98i+ 130
,
x3 + (153i+ 45)x2 + (3i+ 88)x+ 102i+ 108

x3 + (153i+ 45)x2 + (115i+ 32)x+ 45i+ 174
y

)
.

The quantities in Steps 4 and 5 can be computed immediately from the values of t, n, T, b, and `, yielding
t′ = 2 and n′ = 48. The algorithm returns (E1728, θ

′, t′, n′).

5.4. Poly-rep runtime. In the last two sections, we computed the runtimes of the basic operations for
rationally represented and isogeny chain endomorphisms. We summarize here.

Proposition 5.13. Suppose θ is an isogeny whose trace t, norm n and discriminant ∆ are all at most
polynomial in p. If θ is rationally represented, then:

(1) Evaluating at `-torsion takes time O(npoly(log p)) (Lemma 2.4).

(2) Waterhouse transfer by an `-isogeny takes time Õ(npoly(log p)) (Lemma 2.6).
(3) Dividing by ` takes time O(n2 poly(log p)) (Proposition 12.6).

(4) Computing an `-suitable translate takes time Õ(max{n, t2}poly(log p)) (Lemma 2.7).

If θ of degree d is represented as a B-powersmooth prime power isogeny chain with B = Ld(1/2) as described
in Section 5.3.4, then, assuming Heuristic 5.10 (see Proposition 5.11):

(1) Evaluating at `-torsion takes time Ld(1/2) (Lemma 2.4).
(2) Waterhouse transfer takes time Ld(1/2) (Proposition 5.6).
(3) Dividing by ` takes time Ld(1/2) (Proposition 5.8).
(4) Computing a B-powersmooth `-suitable translate takes time Ld(1/2) (Proposition 5.9).

Of course, in individual situations, these runtimes may be much lower (for example, dividing an isogeny
chain by [`] may depend only on the power of ` if no refactoring is necessary).

In the following algorithms, we will need to call all of these operations many times. It will be convenient
to set the following definition.

Definition 5.14. We define the representation runtime of a given representation (rationally represented or
isogeny chain) to be the maximum runtime of implementing the following operations: evaluating at `-torsion,
`-suitable translation, division-by-`, and Waterhouse transfer by an `-isogeny. We say that an algorithm has
poly-rep runtime if its runtime is bounded above by a constant power of log p times the relevant representation
runtime.

Note that our definition above means that, throughout the paper poly(log p) ≤ poly-rep.

6. Orientation-finding for j = 1728

For many cryptographic applications, a supersingular elliptic curve with known endomorphism ring is
assumed. Most commonly used is the curve with j = 1728, which is supersingular when p ≡ 3 (mod 4). For
simplicity, this is the curve we will consider here, but our algorithm can be modified to suit other situations
(see Section 6.3). We will use the model given by Einit : y2 = x3 − x, which has endomorphism ring with a
Z-basis 〈

1, i,
i + k

2
,

1 + j

2

〉
, i2 = −1, j2 = −p, k = ij.

In particular, i is given by (x, y) 7→ (−x,
√
−1 y) and j is the Frobenius endomorphism2 (x, y) 7→ (xp, yp).

Let O be an imaginary quadratic order of conductor coprime to ` such that O embeds into Bp,∞. In this
section we give an algorithm for finding an endomorphism θ ∈ End(Einit), generating a suborder O′ ⊆ O of
discriminant `2r∆O for the minimal possible r. In other words, we wish to find an `-primitive orientation

2Note that some papers use the model y2 = x3 + x, such as [25, Section 5.1]; this model is a quartic twist of ours and under
the induced isomorphism of the endomorphism rings, the element which is realized as Frobenius is not preserved. The model

we choose for this paper has 2-torsion conveniently defined over Fp. See [49].
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by a suborder O′ of O. Or, rephrased again, we want to find an orientation for Einit placing it as near to
the rim as possible in the oriented supersingular isogeny graph cordillera with rims at O. Alternatively,
the algorithm can be run continuously, to return all `-primitive orientations by suborders of O in order of
increasing r.

The algorithm we provide (Algorithm 6.1) has similarities to [34, Integer Representation, Section 3.2],
where the difference arises because we seek a given discriminant instead of a given norm. In fact, this
algorithm applies more generally to curves over Fp satisfying the hypotheses of [34, Section 3.2]; in Section 6.3
we make some comments on adapting this algorithm for other initial curves of known endomorphism ring.

An algorithm for a similar problem appears in [57, Section 4.3]. However, that algorithm finds the
‘smallest’ quadratic order only: it requires the discriminant be bounded above by 2

√
p− 1. We wish to find

orientations by more general orders.

6.1. In terms of 1, i, j, k. The goal of Algorithm 6.1 is to find such an endomorphism as a linear
combination of 1, i, j, k.

The idea is to solve a norm equation for Einit under extra conditions that guarantee that the result is an
element of the desired quadratic order. The algorithm depends on Cornacchia’s algorithm, which is discussed
in [14, Section 1.5.2] and [27, Section 3.1]. It solves the equation x2 + y2 = n when a square root of −1
modulo n is known (e.g., such a square root can be found if n is factored).

Remark 6.1. Algorithm 6.1 can be adapted to run continuously, finding many K-orientations of 1728. Simply
continue the loops instead of breaking them, returning an endomorphism θ every time one is found.

Remark 6.2. If one wishes to find all possible solutions, remove the requirements that D be a prime congruent
to 1 (mod 4), although this will adversely affect runtime (Cornacchia’s algorithm will require factoring D).
Furthermore, we must make sure Cornacchia’s algorithm returns all solutions, and we must include solutions
obtained by changing the sign of x on each solution already obtained. We must also be aware that later
solutions may fail to be `-primitive; these can be discarded. With these adjustments, every orientation of
the form specified will eventually be found by the algorithm (not every θ, but every embedding of O′ into
End(Einit) for all O′) – see the proof of Proposition 6.3 for relevant details.

Because of the primality testing step, the algorithm terminates only heuristically. We separately prove
its correctness (if it returns) and then give a heuristic runtime.

In what follows, write ∆ := ∆O for convenience.

Proposition 6.3. Any output returned by Algorithm 6.1 is correct.

Proof. We attempt to find an endomorphism θ for each fixed r increasing from r = 0.
If the order O′ of index `r in O has even discriminant (namely ∆`2r), then we seek an element of reduced

trace zero and reduced norm −∆`2r/4. Such an element must generate O′, and O′ must contain a generator
of this form. Write the element as θ = x

2 i + y
2 j + z

2k. Then, simplifying the equation, the norm condition is

x2 + py2 + pz2 = −∆`2r.

Any solutions must have x2 <
√
−∆`2r, and for a valid x, solutions y and z are found by Cornacchia’s

algorithm applied to

y2 + z2 = (−∆`2r − x2)/p.

In order to be contained in End(Einit), we require x ≡ z (mod 2) and y is even. The variable r is incremented
if no solution exists, or if Cornacchia’s algorithm is not applied because D is not a prime congruent to 1
(mod 4) (in which case we may miss solutions).

If ∆`2r is odd, we instead seek an element of reduced trace 1 and reduced norm (−∆`2r + 1)/4. Such
an element will again necessarily generate O′, and O′ must contain a generator of this form. Writing the
element as θ = 1

2 + x
2 i + y

2 j + z
2k, after slightly simplifying the norm equation, we must solve the same

equation as before:

x2 + py2 + pz2 = −∆`2r.

However, in order to lie in End(Einit), such an element must satisfy the conditions that x ≡ z (mod 2) and
y is odd (note the parity difference). The rest of this case is as above.

If θ is not `-primitive, the algorithm will translate and divide by ` until it is. �
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Algorithm 6.1: Computing an orientation for the initial curve.

Input: A discriminant ∆O coprime to p, which is the discriminant of an `-fundamental quadratic
order O that embeds into Bp,∞.

Output: (θ, r) where θ ∈ End(Einit) is represented as a linear combination of 1, i, j, k, with
Z[θ] = O′ ⊆ O where [O : O′] = `r. Furthermore, θ is `-primitive. (Here Einit and i, j and k
are as in the introduction to this section, namely the specified model of j = 1728.)

1 r ← −1.

2 repeat
3 r ← r + 1.

4 Find the smallest positive x such that x2 ≡ −∆O`
2r (mod p).

5 While x <
√
−∆O`2r do

6 D ← (−∆O`
2r − x2)/p.

7 If D ≡ 1 (mod 4) then
8 If D is prime then
9 Find a square root of −1 modulo D.

10 Use the output of Step 9 and Cornacchia’s algorithm to find y and z such that

y2 + z2 = D.

11 If y is odd then
12 Swap y and z.

13 If x is even then
14 θ ← 1

2 + x
2 i + z

2 j + y
2k.

15 else
16 θ ← x

2 i + y
2 j + z

2k.

17 break the While loop

18 x← x+ p

19 until θ is defined

20 c← 0

21 While c < r do
22 Translate θ to be minimally `-suitable (Lemma 4.5).

23 If θ/` ∈ End(Einit) then
24 θ ← θ/`.

25 c← c+ 1

26 else
27 break the While loop

28 Return θ as a linear combination, r − c

For the runtime analysis, and the assertion that the algorithm returns an output at all, we need a heuristic
similar to that used for torsion-point attacks [24, Heuristic 1] and the KLPT algorithm [34, Section 3.2].

Heuristic 6.4. Fix integers D > 0, b > 0, and a prime p coprime to Db that splits in the real quadratic
field Q(

√
D). Ranging through pairs{

(r, x) : 0 < x, x2 < Db2r, 0 ≤ r,Db2r − x2 ≡ 0 (mod p)
}
,

consider the value

N(r, x) =
Db2r − x2

p
.

The probability that N(r, x) is a prime congruent to 1 modulo 4 is at least O(1/(logD logN(r, x))), where
the implied constant is independent of p, D, and b.
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We now give a brief justification for this heuristic by passing to the real quadratic field Q(
√
D). Write

D = f2d where d > 0 is squarefree. We have N(r, x) = q if and only if ±pq = N(x + fbr
√
d). Hence we

need to estimate the probability, given that N(x + fbr
√
d) is divisible by p, that it is of the form ±pq for

some other prime q. We analyse instead the probability, for α ∈ OQ(
√
d) (having no assumptions on the form

of α), given that N(α) is divisible by p, that it is of the form ±pq for some prime q. Heuristically, we assume
that this will be the same probability.

Given that p splits, there is a prime ideal p above p in the maximal order of Q(
√
d). Hence N(α) has the

form ±pq if and only if there is a prime ideal q of norm q satisfying pq = (α) (or pq = (α)). If p | N(α), then
replacing p with p if necessary, this occurs if and only if the integral ideal (α)p−1 ∈ [p]−1 has norm q.

Therefore, we estimate the probability that integral elements in [p]−1 of size X have prime norm. This is
bounded below by the probability that integers of size X have a norm which is a prime represented by the
class [p]−1. This in turn is bounded below by 1

h logX where h is the class number of Q(
√
d). We apply this

estimate with X = N(r, x).
Finally, following the Cohen-Lenstra heuristics for real quadratic fields, it may be reasonable to expect

the class number hQ(
√
d) to have an expected value bounded by O(log d), since the number of prime factors

of d is around log log d (see [59] for a result for prime discriminants and recall that the 2-part of the class
group is controlled by the number of prime factors of d).

Heuristic 6.4 has been confirmed numerically in some small cases; we will consider this heuristic in more
detail in [2]. The corresponding heuristic, in the case of the KLPT norm equation, has been verified by
Wesolowski [58]; it would be nice to know if similar methods apply here.

Proposition 6.5. Suppose Heuristic 6.4 holds and ∆ is coprime to p. If |∆| < p2, then Algorithm 6.1 returns
a pair (θ, r) of norm at most p2 log2+ε(p) with r = O(log p) in time O(log6+ε(p)). If instead |∆| > p2, then

the algorithm will return a pair (θ, r) with r = O(1) and norm O(|∆|) in time O(
√
|∆| log4+ε(∆)(log p)p−1).

Running the algorithm continuously, subsequent pairs (θ, r) should be found in the same runtime, with r
expected to increase by 1, and their norms expected to increase by a constant factor of `2 at each subsequent
pair.

Proof. Suppose r ≤ u log` p, where u is positive (otherwise r is not positive). Then
√
−∆`2r ≤ |∆|1/2pu.

Thus, we expect to iterate the While loop at Step 5 at most X(∆, u) := d|∆|1/2pu−1e + 1 times. Each
time we enter the loop, we obtain a value D = (−∆`2r − x2)/p of size ≤ pX(∆, u)2. The probability that
D is prime and 1 (mod 4) is heuristically 1/(4 log(p1/2X(∆, u))) (Heuristic 6.4). Hence we expect to reach
Cornacchia’s algorithm once u is large enough such that

X(∆, u) ≥ 4 log(p1/2X(∆, u)) > 1.

Reaching it will terminate the algorithm. This is a mild condition, satisfied asymptotically when X(∆, u) ≥
(log p)1+ε. In fact, it suffices to take

√
|∆|pu ≥ p log1+ε(p), or equivalently,

(3) u log p ≥ log p− 1

2
log |∆|+ (1 + ε) log log p.

In particular, u > 1 is always enough, and if |∆| > p2+ε, then any positive value for u will suffice. (An
informal explanation of this behaviour: even for a volcano with a trivial rim, distance (1 + ε) log p down
its sides is enough to capture all j-invariants. At the same time, if ∆ is large enough that the rim likely
captures all j-invariants, then we needn’t descend the volcano at all.) This shows that the algorithm needs
to increase r at most O(log p) times before it reaches Cornacchia’s algorithm.

For |∆| ≤ p2+ε, the optimal value of u is given by (3). However, since u cannot be negative, when

|∆| > p2+ε, the optimal value of u is 0. (Again, informally: the class group will be of size ≈
√
|∆| > p, and

we will find all ≈ p
12 supersingular j-invariants already on the rim of an isogeny volcano.)

We first determine the overall runtime in terms of X(∆, u) and p. The primality test can be run in time
O(log4+εD) for example, using the Miller-Rabin algorithm [46, Section 2]. This algorithm is probabilistic,
so there is a negligible possibility that Cornacchia’s algorithm may fail on false positives.

Once D is a prime congruent to 1(mod 4), we must find a square root of −1 with which to run Cornacchia’s
algorithm. There is a nice analysis of this exact situation in [27, Section 3.1], which concludes that it takes

probabilistic time Õ(log2D), which is negligible compared to the primality testing.
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Thus, for the final runtime, we increment r at most O(log p) times, running a primality test of cost
O(log4+εD) at most O(X(∆, u)) times for each r, before reaching a point where Cornacchia’s algorithm is
invoked. Using D ≤ pX(∆, u)2, this gives runtime O(X(∆, u)(log p)(log p+ 2 logX(∆, u))4+ε).

In the case of large |∆| > p2+ε, we put u = 0 and obtain X(∆, u) = O(
√
|∆|/p) and asymptotically

X(∆, u) > pε. This yields a runtime of O(
√
|∆| log4+ε(∆)(log p)p−1). In this case r = O(1) and the norm

of the solution found by Cornacchia’s algorithm is bounded by O(|∆|).
In the case of small |∆| ≤ p2, we optimize u according to (3) and obtain X(∆, u) = O(log1+ε(p)) and

asymptotically X(∆, u) < p. This gives O(log6+ε(p)). At the same time, the norm of the solution found is
bounded by |∆|`2r ≤ p2X(∆, u)2 ≤ p2 log2+2ε(p).

Once r has reached O(log p), we expect solutions for each r with high probability. Therefore, running
the algorithm continuously, subsequent solutions should be found in the same runtime as the first, and their
sizes should be increasing by an expected constant factor of `2 at each subsequent solution. �

Example 6.6 (Computing an orientation for the initial curve via Algorithm 6.1). We return to our
working example p = 179, ∆ = −47, ` = 2, and E1728 : y2 = x3 − x. Note that log`(p) ≈ 7.48, so we
expect the algorithm to succeed reliably once r = 7 or 8, if not earlier. Beginning with r = 0, in Step 4 we
compute the smallest positive x such that x2 ≡ 47(mod 179), namely x = 88. As x = 88 exceeds

√
47 ≈ 6.9,

we return to Step 3 and increment r to r = 1. This reflects the fact that the curve E1728 does not admit
a Q(

√
−47)-orientation on the rim. Continuing, we find the smallest positive integer x such that x2 ≡ 188

(mod 179), namely x = 3. As x = 3 <
√

47 · 4 ≈ 13.7, we define D = (47 · 4 − 32)/179 = 1 in Step 6.
Cornacchia’s algorithm returns 12 + 02 = 1. We obtain the element 3i+k

2 ∈ End(E1728). This indicates

(correctly) that E1728 admits an orientation at r = 1 of the Q(
√
−47)-oriented 2-isogeny volcano, see the

node with j-invariant 1728 in Figure 1. If we continue to run the algorithm, looking for pairs (r, θ) for r up
to 8, it returns three more pairs:(

r = 7, θ =
371

2
i + 29j +

13

2
k

)
,

(
r = 8, θ =

153

2
i + 27j +

119

2
k

)
,

(
r = 8, θ =

511

2
i + 41j +

95

2
k

)
.

We now formalize a heuristic about the behaviour of Algorithm 6.1 needed for what follows. This is a
version of Heuristic 3.7 specific to the algorithm we use.

Heuristic 6.7. Let O be a quadratic order. Let SSO be the finite union of O′-cordilleras where O′ ⊇ O.
Write RSSO for the sum of the number of descending edges from all rims of SSO. Fix a volcano V having RV
edges descending from its rim. Then Algorithm 6.1 running continuously will (i) eventually produce solutions
on every volcano of SSO, and (ii) produce solutions on the fixed volcano V with probability approaching
RV/RSSO .

If SSO has only one volcano, this heuristic is immediate as long as the algorithm produces infinitely many
solutions (which happens by Proposition 6.5, under heuristic assumptions from Section 3.6). If Algorithm 6.1
returned all orientations of 1728, then this heuristic would follow directly from Heuristic 3.7. The difficulty
is that it finds only those solutions where the primality testing step succeeds. In other words, we cannot
rule out the unlikely possibility that the primality condition causes all the orientations of 1728 to be missed
on some individual volcano. Thus, we seem to require a version of Heuristic 6.4 which asserts that the
primality is independent of whether the eventual solution is on any fixed volcano of the cordillera. We
consider Heuristic 6.7 more closely in the companion paper [2].

6.2. As an isogeny chain endomorphism. Since i and j are known endomorphisms which can be eval-
uated at points, any combination of these can also be evaluated at points. Therefore the output of Al-
gorithm 6.1 can be input into Algorithm 5.3, and an `-suitable isogeny chain endomorphism will result.
Thus, in poly-rep time (that is, depending on B, the powersmoothness bound), we can obtain the output of
Algorithm 6.1 as an isogeny chain endomorphism.

6.3. Curves other than j = 1728. Algorithm 6.1 can be adapted to work for certain curves Einit other
than the curve with j = 1728. In particular, if the endomorphism ring End(E) of a curve E defined over Fp is
of the form O+ jO, where j is the Frobenius endomorphism and O is a quadratic order, then the adaptation
of Algorithm 6.1 is clear, where we use the principal norm form of O in place of x2 + y2. As before, this
will reduce to Cornacchia’s algorithm. Instead of primes that are 1(mod 4), we seek primes that split in the
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field and are coprime to the conductor of O; this requires a Legendre symbol computation. The runtime is
essentially unchanged provided that ∆O < p (so Cornacchia’s applies; see [27, Section 3.1]). This adaptation
follows the discussion in [34, Section 3.2], which also discusses good choices for Einit and O.

7. Supporting algorithms for walking on oriented curves

Given a suitable endomorphism, we will present algorithms for walking on an oriented `-isogeny graph.

7.1. Computing an `-primitive endomorphism. Recall from Definition 4.3 that an endomorphism θ is
`-primitive if the associated orientation is `-primitive. If θ is chosen to be `-suitable, then equivalently, θ is
`-primitive if and only if it is not divisible by [`] in End(E) (Lemma 4.4). Therefore, given θ, we can translate
it to become `-suitable and then divide by [`] as often as possible to obtain an `-primitive endomorphism.

Algorithm 7.1: Computing an `-primitive endomorphism given an endomorphism.

Input: A traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1.
Output: A traced endomorphism (E, θ′, t′, n′) which is `-primitive, and the `-valuation of the index

[Z[θ′] : Z[θ]].

1 If t2 − 4n is `-fundamental then
2 Return (E, θ, t, n) and 0.

3 (E, θ, t, n)← an `-suitable translate of (E, θ, t, n)

4 c← 0

5 While [`] | θ do
6 (E, θ, t, n)← (E, θ/[`], t/`, n/`2)

7 c← c+ 1

8 If t2 − 4n is `-fundamental then
9 Return (E, θ, t, n) and c.

10 (E, θ, t, n)← an `-suitable translate of (E, θ, t, n)

11 Return (E, θ, t, n) and c.

Proposition 7.1. Algorithm 7.1 is correct, and runs in poly-rep time (see Definition 5.14).

Proof. If t2 − 4n is `-fundamental, then the conductor of the quadratic order generated by θ is not divisible
by `; in this case θ is already `-primitive. In order to check if any order of superindex ` contains Z[θ] within
End(E), we first translate θ to be `-suitable, and then check whether it is divisible by [`] within End(E). If
it is, we divide it by ` and repeat.

For runtime, the algorithm translates to an `-suitable translate, tests for divisibility by `, and divides by
`, at most a polynomial number of times (since we assume that the discriminant of Z[θ] is bounded by a
power of p; see Section 5.1). �

Example 7.2 (Computing an `-primitive endomorphism via Algorithm 7.1). We apply Algorithm 7.1
to the output of Example 5.12, namely (E1728, θ

′, t′, n′) where θ′ = ϕ171 ◦ ϕ1728, t
′ = 2, n′ = 48. This is not

at the rim, but is already `-suitable. We find [2] - θ′ by evaluating on E1728[2]; hence we return the input
unchanged.

7.2. Rim walking via the class group action. In the case that an orientation is available, one can walk
the rim of the oriented `-isogeny volcano using the class group action. Walking a cycle generated by the
class group action was first described in Bröker-Charles-Lauter [6] in the case of ordinary curves, which
carry an orientation by Frobenius. This was later used in CSIDH [8], and it was remarked that it extends
to orientations by Q(

√
−np) in Chenu-Smith [11]. In this section we provide a generalization of the same

algorithm to arbitrary orientations. The algorithm walks the rim from a specified start curve in an arbitrary
direction until it encounters a specified end curve. This path is computed using the action of the class group
on the oriented curves in the rim of the oriented volcano. As such, it requires knowledge of the orientation,
so the steps of the algorithm must pull the orientation (i.e. the endomorphism) along with them.
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More precisely, the ideal we wish to apply to (E, θ) is given in terms of θ, so that one can use the methods
of Bröker-Charles-Lauter [6, Section 3] with θ in place of Frobenius. One can apply the Waterhouse transfer
of θ, and divide by ` to carry along θ in the computation.

The algorithm works by applying the action of Cl(O) to a rim of elements primitively oriented by a
quadratic order O. In fact, using Cl(O) works just as well if the rim is primitively oriented by O′ ⊇ O,
where ` - [O′ : O]. This allows us to walk on any rim associated to an `-fundamental discriminant ∆, without
knowing for sure that the orientation is primitive with respect to ∆. See Proposition 3.3.

Algorithm 7.2: Walking along the rim of the oriented supersingular `-isogeny graph

Input: An `-primitive traced endomorphism (E1, θ1, t1, n1) providing the functionality of Section 5.1,
and a target curve E2.

Output: If E1 and E2 are on the same volcano rim in the oriented isogeny graph for the field Q(θ),
with discriminant coprime to `, the algorithm returns a path of oriented horizontal
`-isogenies from (E1, θ1, t1, n1) to a vertex with curve E2. Otherwise returns FAILURE.

1 If ` | t2 − 4n then
2 Return FAILURE.

3 H ← [].

4 If j(E1) = j(E2) then
5 Return H.

6 Compute O ∼= Z[θ1], the quadratic order generated by θ1 (using trace and norm), together with an

explicit isomorphism given in the form of αθ1 ∈ O corresponding to θ1.

7 If ` is inert in O then
8 Return FAILURE.

9 Compute τ ∈ O such that l = (`, τ)O is a prime ideal of O above `.

10 Compute a, b ∈ Z so that τ = a+ bαθ1 .

11 (E, θ, t, n)← (E1, θ1, t1, n1).

12 repeat
13 Compute E[`].

14 Compute E[l]← E[`] ∩ ker(a+ bθ) by evaluating a+ bθ on E[`].

15 Use Vélu’s algorithm to compute the `-isogeny ν : E → E′ with kernel E[l].

16 (E, θ, t, n)← (E′, ν ◦ θ ◦ ν̂, t`, n`2).

17 (E, θ, t, n)← (E, θ/[`], t/`, n/`2).

18 Append (ν, (E, θ, t, n)) to H.

19 until (j(E), θ, t, n) = (j(E1), θ1, t1, n1) or j(E) = j(E2)

20 If j(E) = j(E2) then
21 Return H

22 else
23 Return FAILURE

Calling Algorithm 7.2 without lines 4 and 5 on identical input curves (i.e. (E1, ι1) = (E2, ι2) yields the
entire rim of the `-oriented isogeny graph.

Proposition 7.3. Algorithm 7.2 is correct. Each step of the rim walk has poly-rep runtime. The number of
steps is bounded O(hO). Furthermore, if θ is in prime power isogeny chain form with any powersmoothness
bound B, then each step of the rim walk has runtime polynomial in B.

Proof. If ` | t2 − 4n, then either we are not at the rim, or the field discriminant is not coprime to `. If
j(E1) = j(E2), we have already completed our task. Assuming neither of those cases, we compute the
quadratic order O generated by θ using its minimal polynomial, and associate an element αθ to θ. The
volcano rim in question is contained in SSO′ for some O′ ⊇ O, where the relative index f = [O′ : O] is
coprime to ` (by `-primitivity). If ` is inert in O, then it is also inert in O′. Hence the rim of the associated
volcano is trivial; since j(E1) 6= j(E2), this indicates there is no valid path to be found. Otherwise, ` is
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split or ramified in O, so we factor it and compute a and b and τ as in the algorithm. Namely, we have the
factorization `O = (`, τ)O(`, τ)O in O. Then `O′ = (`, τ)O′(`, τ)O′ in O′. Therefore, the isogeny computed
is the action of the ideal l lying above ` in O′ on SSO′ as desired, which is thus a horizontal isogeny. The
repeat clause walks the rim step by step.

We stop if we meet E2 or return to our (oriented) starting point. The latter occurs only if we have walked
the entire rim, which means E2 was not on that rim.

For runtime, all individual steps are polynomial, except for calls to evaluate at `-torsion points, Waterhouse
transfer and divide by `. The number of repeats is equal to the path length from E1 to E2 along the rim.
The size of the rim is O(hO) (Section 3.4).

For the final statement of the proposition, note that no `-suitable translation is needed in the algorithm.
In fact, the norm of the endomorphism remains constant as one walks the rim. �

Example 7.4 (Walking along the rim of the oriented supersingular `-isogeny graph via Algorithm
7.2). As before, we have K = Q(

√
−47). We use Algorithm 7.2 on input ` = 2, (E22, θ22, t22, n22) and target

curve E22 to compute the entire rim of the oriented 2-isogeny volcano for purposes of demonstration. The
endomorphism θ22 is a primitive OK-orientation, so the curve E22 lies on the rim of an OK-oriented isogeny
volcano. Step 9 computes the prime ideal l = (2, ω)OK

. In Step 13, we compute E22[2] = {OE22
, (2, 0), (156i+

178, 0), (23i+ 178, 0)}. We obtain E22[l] = 〈(156i+ 178, 0)〉 in Step 14. Velu’s formulas in Step 15 compute
the isogeny ϕ22 : E22 → E99i+107. The codomain of ϕ22 is E99i+107 : y2 = x3 + (26i+ 88)x+ (141i+ 104). In
Step 16, we compute the traced endomorphism (E99i+107, θ99i+107, t99i+107, n99i+107) with θ99i+107 := 1

2 ϕ22 ◦
θ22 ◦ ϕ̂22, an endomorphism of degree 12. Step 18 appends the isogeny ϕ22 and the traced endomorphism
(E99i+107, θ99i+107, t99i+107, n99i+107) to H.

In the next rim step, starting with (E99i+107, θ99i+107, t99i+107, n99i+107), we compute the isogeny ϕ99i+107 :
E99i+107 → E5i+109. The isogeny ϕ99i+107 and traced endomorphism (E5i+109, θ5i+109, t5i+109, n5i+109) are
appended to H in Step 18.

In the next rim step, we find the isogeny ϕ5i+109 : E5i+109 → E174i+109 and corresponding traced endo-
morphism (E174i+109, θ174i+109, t174i+109, n174i+109) with θ174i+109 = 1

2 (ϕ5i+109) ◦ θ5i+109 ◦ ϕ̂5i+109.
A fourth step along the rim produces the isogeny ϕ174i+109 : E174i+109 → E80i+107 and traced endomor-

phism (E80i+107, θ80i+107, t80i+107, n80i+107).
The final step along the rim produces the isogeny ϕ80i+107 : E80i+107 → E′22 with codomain E′22 : y2 =

(125i + 98)x + (84i + 152) and induced traced endomorphism (E′22, θ
′
22, t

′
22, n

′
22). The codomain E′22 is

isomorphic to E22 via an isomorphism ρ, and we use the same isomorphism ρ to confirm that E′22 and E22

are in fact isomorphic as oriented curves by computing θ′22 = ρ ◦ θ22 ◦ ρ−1.
Algorithm 7.2 terminates and returns the rim cycle

E22
ϕ22−−−−→ E99i+107

ϕ99i+107−−−−−−−→ E5i+109
ϕ5i+109−−−−−−−→ E174i+109

ϕ174i+109−−−−−−−−→ E80i+107
ϕ80i+107−−−−−−−→ E′22

∼= E22

of length 5 (see the green rim cycle in Figure 1). Indeed, K has class number 5, and the ideal class of l
generates the class group of K.

7.3. Ascending to the rim using an orientation. The other major component of navigating the super-
singular `-isogeny graph using an orientation is to walk to the rim. We can use Proposition 4.8 to determine
the ascending direction and walk up. This is described in Algorithm 7.3. The number of steps to the rim is
expected to be log(p) in general; see Section 3.6.

Proposition 7.5. Algorithm 7.3 is correct and has poly-rep runtime times the distance to the rim.

Proof. The number of steps to the rim is given by the number of times `2 divides the discriminant of θ (we
assume θ is `-primitive); this is k in Step 2. We translate θ to be `-suitable, which implies that ν ◦ θ ◦ ν̂
can be divided by [`] twice when ν is ascending. Since there is no horizontal direction (by the choice of k
in Step 2), there exists a non-trivial P ∈ E[`] ∩ ker(θ). This gives the ascending isogeny by Proposition 4.8.
Once we have found the ascending isogeny, we divide the Waterhouse transfer of θ by [`]2 (Step 11), and the
result is `-primitive, in preparation for the next loop iteration. For each iteration of the For loop, the work
is clearly poly-rep. �

Example 7.6 (Walking to the rim of the oriented `-isogeny graph for rationally represented
endomorphisms via Algorithm 7.3 ). We apply Algorithm 7.3 to the output of Step 4 of Example 8.3,
namely E120 and θ120 having t120 = 0, n120 = 188. We find that we expect to take two steps to the rim. Since
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Algorithm 7.3: Walking to the rim of the oriented `-isogeny graph.

Input: An `-primitive traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1.
Output: The shortest path from (E, θ, t, n) to the rim of the oriented `-isogeny volcano upon which

(E, θ, t, n) lies.

1 H ← [].

2 k ←
⌊
ν`(t2−4n)

2

⌋
.

3 If ` = 2 and (t2 − 4n)/22k 6≡ 1 (mod 4) then
4 k ← k − 1

5 For j = 1, . . . , k do
6 Compute E[`].

7 (E, θ, t, n)← an `-suitable translate of (E, θ, t, n).

8 Compute a generator P for E[`] ∩ ker(θ).

9 Use Vélu’s algorithm to compute the `-isogeny ν : E → E′ with kernel 〈P 〉.
10 (E, θ, t, n)← (E′, ν ◦ θ ◦ ν̂, t`, n`2)

11 (E, θ, t, n)← (E, θ/[`2], t/`2, n/`4)

12 Append (ν, (E, θ, t, n)) to H.

13 Return H

θ120 is already 2-suitable, we evaluate it on E120[2] and obtain the kernel 〈(121i + 4, 0)〉 for the ascending
isogeny. The codomain is E171. Computing the Waterhouse transfer and dividing by [2] twice, we obtain
an endomorphism θ′ which is not 2-suitable, but Lemma 4.5 shows that θ171 := θ′ + [1] is 2-suitable. The
second ascending step is similar; this has kernel 〈(121i+ 131, 0)〉 and codomain E5i+109. The two ascending
steps are in blue in Figure 1.

Example 7.7 (Walking to the rim of the oriented `-isogeny graph for isogeny chain endomor-
phisms via Algorithm 7.3 ). We begin with input (E1728, ϕ171 ◦ ϕ1728, 2, 48), from Step 8 of Example 8.3.
This will require one step to the rim and is already [2]-suitable. Evaluating on E1728[2], we obtain a kernel of
〈(178, 0)〉 for the ascending isogeny; the codomain is E22. Waterhouse transfer yields an isogeny-chain which

is not prime-power refactored, namely ϕ′1728 ◦ ϕ171 ◦ ϕ1728 ◦ ϕ̂′1728 having component degrees 2, 3, 16, 2,
respectively. We could apply Algorithm 5.1, but we proceed in a slightly more expedient manner. We rewrite
ϕ′1728 ◦ ϕ171, having degrees 2 and 3, respectively, in a form having degrees 3 and 2, respectively. Thus, we
evaluate ϕ′1728◦ϕ171 on the 2-torsion to obtain the kernel 〈(29i+50, 0)〉 determining ϕ′171 : E171 → E174i+109.
Then we apply ϕ′171 to the generator of ker(ϕ′1728 ◦ ϕ171) ∩ E171[3] = 〈(128i + 164, 28i + 90)〉 to ob-
tain a kernel for which Vélu gives ϕ174i+109 : E174i+109 → E22. We obtain the refactored isogeny chain

ϕ174i+109 ◦ ϕ′171 ◦ ϕ1728 ◦ ϕ̂′1728. We can then divide the 2-power degree component ϕ′171 ◦ ϕ1728 ◦ ϕ̂′1728 by

[2] twice and let ϕ′22 := ϕ′171 ◦ ϕ1728 ◦ ϕ̂′1728/[4]. Replacing this in our isogeny chain above, we now have an
isogeny that gives the one step up to the rim (see the red step in Figure 1):

(E1728, ϕ171 ◦ ϕ1728, 2, 48)
ϕ′1728−−−−−→ (E22, ϕ174i+109 ◦ ϕ′22, 1, 12).

7.4. Ascending and walking the rim using the endomorphism ring. When we find an orientation of
j = 1728, we have more information than just the specified orientation: we also know the endomorphism ring.
This extra information allows us to navigate the oriented graph in polynomial time using known algorithms.

Specifically, with Algorithm 7.4 given here, we can walk up the volcano and traverse the rim (being careful
not to back-track by comparing to our previous steps), where each step is polynomial in log p and the length
of the representation of θ. To get started, we use Einit as the curve defining Bp,∞ as in [58], and take the
path P to be the trivial path.

Proposition 7.8. Under GRH, Algorithm 7.4 is correct and runs in expected polynomial time in the following
quantities: log p, the size of the representation of θ, and the length of the path P .

Proof. Each of the cited algorithms runs in the time specified under GRH. We determine which steps are
ascending or horizontal by testing whether β/`s+1, β/`s+2 ∈ O, by Proposition 4.7. Since β is represented
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Algorithm 7.4: Extending a path from Einit by an ascending or horizontal step.

Input: A fixed endomorphism θ ∈ End(Einit). An elliptic curve E and path P from Einit to E, with
no descending steps, and s equal to the number of ascending steps in the path P .

Output: For each of the available horizontal or ascending steps E → E′ (with regards to the
orientation induced by θ), returns the data (E′, P ′, s′), where P ′ is the path obtained from
P by extending it by the extra step, and s′ is the number of ascending steps in the path P ′.

1 H ← []

2 For each `-isogeny ν : E → E′ departing E do
3 P ′ ← the path formed by appending ν to P .

4 (ϕ : Einit → E′)← the isogeny associated to the path P ′.

5 Compute a Z-basis of the maximal quaternion order O of E′ and connecting ideal I between Einit

and E′ using [58, Algorithm 3] from the path P ′.
6 Compute End(E′) together with an isomorphism Ψ : End(E′)→ O, using [58, Algorithm 6].

7 β ← Ψ(ϕ ◦ θ ◦ ϕ̂) (The ability to evaluate Ψ(ϕ ◦ θ ◦ ϕ̂) for θ ∈ End(Einit) is also obtained when

[58, Algorithm 6] is performed in the last step.)

8 β ← β + T where T ∈ Z is chosen so that β + T is the minimal `s-suitable translate of ϕ ◦ θ ◦ ϕ̂
using Lemma 4.5.

9 If β/`s+1 ∈ O then
10 s′ ← s

11 If β/`s+2 ∈ O then
12 s′ ← s′ + 1

13 Append (E′, P ′, s′) to H.

14 Return H.

as a linear combination of a basis of End(E′), this involves dividing the coefficients, which is polynomial
time. �

8. Classical path-finding to j = 1728

We now present an algorithm which, given a suitable endomorphism on a curve in the supersingular graph,
will find a path to the initial curve, under heuristic assumptions. An illustration of the method is given in
Figure 1: we walk from the initial endomorphism to its rim; find an orientation of E1728 and walk from that
orientation of E1728 to its rim; and hope to collide on the same rim.

If one wishes to adapt this algorithm to find a path to a more general initial curve, one would need a
replacement to Algorithm 6.1 that works for that initial curve (see Section 6.3 for a discussion of how this
may be done). For this reason, we restrict ourselves to considering the j = 1728 curve.

Proposition 8.1. Assume GRH, Heuristic 6.4, and the assumptions of Section 5.1. Consider an endomor-
phism θ ∈ End(E) in rationally-represented or prime-power isogeny-chain form as described in Section 5.4,
whose discriminant is coprime to p and has `-fundamental part ∆ satisfying |∆| < p2. Write O∆ for the
order of discriminant ∆. Algorithm 8.1 produces a path of length O(log p + hO∆

) to E1728 in the supersin-
gular `-isogeny graph, under Heuristic 6.7 part (i). The runtime is expected poly-rep times O(hO∆

), under
Heuristic 6.7 part (ii). Furthermore, the following hold:

(1) If ` is inert in K, then the runtime improves to hO∆ poly(log p)+poly-rep, and the path length im-
proves to O(log p).

(2) If ` is inert in K and the discriminant of θ is already `-fundamental, then the runtime improves to
hO∆

poly(log p) and the path length improves to O(log p).
(3) If ∆ is a fundamental discriminant, ` is split in K and a prime above ` generates the class group

Cl(O∆), then the dependence on Heuristic 6.7 is removed.

Proof. Let θ be the input to the algorithm. The pair (E, ιθ), where ιθ : K → End(E) is the orientation
given by θ, lies somewhere on the oriented `-isogeny graph associated to K. More specifically, it lies on a
volcano of the O-cordillera for some order O whose discriminant divides the `-fundamental discriminant ∆
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Algorithm 8.1: Finding a path to E1728.

Input: A traced endomorphism (E, θ, t, n) providing the functionality of Section 5.1, where the
discriminant of θ is coprime to p.

Output: A path in the `-isogeny graph between E and E1728.

1 (E, θ, t, n)← (E, θ/[`k], t/`k, n/`2k) which is `-primitive, using Algorithm 7.1.

2 ∆θ ← t2 − 4n.

3 ∆← the `-fundamental part of ∆θ.

4 Call Algorithm 7.3 on input (E, θ, t, n) to produce an ascending path H2 from (E, θ, t, n) to

(E1, θ1, t1, n1) on the rim, i.e. where Z[θ1] ⊆ End(E1) is `-fundamental.

5 Call Algorithm 7.2 on input (E1, θ1, t1, n1) to walk the rim until we encounter E1 again, storing the

j-invariants encountered as a list L.

6 repeat
7 Call Algorithm 6.1 on input ∆, to obtain a new solution θ1728 = a+ bi + cj + dk. (Algorithm 6.1

can be suspended and then resumed to find subsequent solutions; see Remark 6.1)

8 Using the methods of Section 7.4, produce an ascending path H1 from E1728 with endomorphism
θ1728 up to the rim, i.e. to a traced endomorphism (E0, θ0, t0, n0) having `-fundamental order
Z[θ0] contained in End(E0).

9 until E0 ∈ L or E
(p)
0 ∈ L

10 Compute Hrim, the path from E1 to E0 or E
(p)
0 , using L.

11 If Hrim joins E1 to E0 then
12 H ← H2H

−1
rimH

−1
1 , a path from E1728 to E.

13 else

14 From H1, compute the conjugate path H
(p)
1 from E1728 to E

(p)
0 .

15 H ← H2H
−1
rim(H

(p)
1 )−1, a path from E1728 to E.

computed in Step 3. In other words, if we write O∆ for the order of discriminant ∆, then O ⊇ O∆. Since all
endomorphisms throughout the paper are taken to have norm and discriminant at worst polynomial in p, the
distance of (E, ιθ) to the rim is at worst polynomial in log p, and so walking to the rim (Step 4) is poly-rep
by Proposition 7.5. Next, we walk around the rim; the runtime depends on the size of the rim and we defer
that question to later in the proof.

When ∆ is passed on to Algorithm 6.1 in Step 7, the result (which is returned in polynomial time by
Proposition 6.5 under Heuristic 6.4) is an endomorphism of End(E1728) which gives an oriented elliptic
curve lying somewhere on a volcano in an O′-cordillera, where again O′ ⊇ O∆. (We do not necessarily have
O = O′.) This has norm polynomial in p by Proposition 6.5. By Proposition 6.5 again, the distance to the
rim is O(log p), so walking to the rim is expected polynomial time by Proposition 7.8. Hence each repeat
iteration has expected polynomial time.

Walking to the rim in Step 8, E0 lies on the rim of a volcano. This volcano is somewhere in the set of
volcanoes SSO defined as the finite union of the O-cordilleras for all O ⊇ O∆ in Heuristic 3.7. Note that

its conjugate E
(p)
0 also lies on a rim in SSO. Now E1 also lies on a rim of SSO. If E0 (or E

(p)
0 ) and E1 lie

on the same rim, the algorithm will discover this. If not, then one continues the calls to Algorithm 6.1, and
another endomorphism will be found. Under Heuristic 6.7 part (i), eventually one of these will produce E0

or E
(p)
0 on the same rim as E1. The algorithm will then succeed.

Let R denote the number of descending edges from the rim containing E0, referred to in this paragraph
as the adjusted rim size (which is bounded above and below by a constant multiple of the rim size). The
sum of the adjusted rim sizes of all rims of SSO∆

is O(HO∆
), with HO∆

given by (2) (Equation (1) and
Proposition 3.5). By Lemma 3.8, this is O(hO∆

(log log |∆|)2)) = O(hO∆
)(log log p)2 (using |∆| < p2). By

Heuristic 6.7 part (ii), the number of times we must repeat is therefore O(hO∆/R)(log log p)2. Each iteration
performs Steps 7 and 8 and then checks membership in L. By Proposition 6.5, under GRH, Step 7 runs
in polynomial time in log p and provides a solution θinit of norm at most p2 log2+ε p. Then θinit can be
written as a linear combination of the Z-basis of End(E1728) with integer coefficients of size O(log p). Hence
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Step 8 requires a runtime polynomial in log p by Proposition 7.8; we store the j-invariant of the output for
comparison to L. Thus, each iteration takes expected polynomial time times O(R) (to check membership
in L). The walk to produce L in Step 5 takes at most O(R) steps, each of which is poly-rep. Hence the
runtime is poly-rep (for Step 4) plus O(hO∆

) · poly(log p) +O(R) · (poly-rep).
This runtime is overall bounded by O(hO∆

) times poly-rep. But if ` is inert, then E0 lies on a rim of
size 1, so we don’t need Step 5, and we have poly-rep plus hO∆ poly(log p). If θ is already at the rim, then
we don’t need Step 4. Combined with inertness, this gives runtime hO∆ poly(log p).

Finally, if ∆ is a fundamental discriminant, ` is split and a prime above ` generates Cl(O∆), then there
is only one volcano, obviating the need for Heuristic 6.7. �

The restriction that |∆| < p2 is required to ensure that Algorithm 6.1 is heuristically polynomial time.
If |∆| is larger, and ` is inert, this failure of polynomial time could become the bottleneck. On the other
hand, suppose ` is split in K. Under the Cohen-Lenstra heuristics, class groups are usually cyclic, and most
elements of a cyclic group are generators, so with high probability, Heuristic 6.7 will not be necessary.

It is also possible to use Algorithm 7.3 at Step 4, instead of the methods of Section 7.4. This results in a
worse runtime, but removes the dependence on GRH.

Remark 8.2. One might hope to modify Algorithm 8.1 to produce a shorter path along with a square-root
runtime improvement, by removing Step 5, and in each repeat, attempting to solve a vectorization problem
(see Section 9.1) between E0 and E1728. Unfortunately, we cannot: the problem is that we do not know
the correct quadratic order O with respect to which these oriented curves are primitively oriented. To
overcome this, one might try to factor ∆ and ascend with respect to any square factors, to guarantee that
∆ is fundamental. Ascending would be polynomial in the largest square prime factor of ∆, which could be
very costly. An alternative that would usually work may be to try guessing ∆, working backward from the
largest (and hence most likely) divisors. Just assuming ∆ is fundamental would work much of the time.

Example 8.3 (Finding a path to E1728 via Algorithm 8.1). We again let p = 179, ∆ = −47, ` = 2, and
Einit = E1728 : y2 = x3 − x. As input, we consider the curve E120 : y2 = x3 + (7i+ 86)x+ (45i+ 174) with
j(E120) = 120, and a trace endomorphism given as (E120, θ120, t120, n120) with t120 = 20, n120 = 25 · 32 and

θ120(x, y) =

(
(122i+ 167)x288 + (17i+ 68)x287 + · · ·+ 174i+ 157

x287 + (78i+ 156)x286 + · · ·+ 16i+ 54
,

(69i+ 109)x431 + (60i+ 178)x430 + · · ·+ 98i+ 124

x431 + (146i+ 53)x430 + · · ·+ 44i+ 89
y

)
.

We apply Algorithm 8.1 to find a path from E120 to E1728 (see Figure 1). Step 1 on input (E120, θ120, t120, n120)
produces the `-suitable and `-primitive traced endomorphism θ120 ← θ120 + [−10] with t120 ← 0 and
n120 ← 188. Here ∆′ = t2120 − 4n120 = −752 and its `-fundamental part is ∆ = −47. Step 4 calls Al-
gorithm 7.3 on input (E120, θ120, t120, n120) to produce the following ascending path H2 to the rim, see
Example 7.6:

H2 : (E120, θ120, 0, 188)
ϕ120−−−−−→ (E171, θ171, 0, 47)

ϕ171−−−−−→ (E5i+109, θ5i+109, 1, 12).

Now we apply Algorithm 7.2 on input (E5i+109, θ5i+109, t5i+109, n5i+109) to walk the rim in Step 5 as in
Example 7.4. The list of all the j-invariants is L = {5i+ 109, 174i+ 109, 80i+ 107, 22, 99i+ 107}. In Step 7,
calling Algorithm 6.1 on input ∆, we obtain θ1728 = (3i + k)/2 as in Example 6.6. For simplicity in this
example, we use Algorithm 7.3 in Step 8, instead of the methods of Section 7.4. We apply Algorithms 5.3
and 7.1 (see Section 6.2) to (E1728, θ1728, 0, 47) to obtain an `-primitive isogeny chain endomorphism θ′1728 =
ϕ171◦ϕ1728 where deg(ϕ1728) = 16, deg(ϕ171) = 3 and with t1728 = 2, n1728 = 48 as in Example 5.12. We call
Algorithm 7.3 on input (E1728, ϕ171 ◦ϕ1728, 2, 48) to produce the following ascending path (see Example 7.7):

H1 : (E1728, ϕ171 ◦ ϕ1728, 2, 48)
ϕ′1728−−−−−→ (E22, ϕ174i+109 ◦ ϕ′22, 1, 12).

Finally, since j(E22) = 22 ∈ L, joining the previous paths, we obtain a path from E1728 to E120 (see the
whole path in Figure 1) as

H : E1728
ϕ′1728−−−−−→ E22

ϕ22−−−−→ E99i+107
ϕ99i+107−−−−−−−→ E5i+109

ϕ̂171−−−−−→ E171
ϕ̂120−−−−−→ E120.

9. Quantum algorithms for Vectorization and PrimitiveOrientation Problems

We will introduce two hard problems: the oriented vectorization and the primitive orientation problems
and then provide quantum algorithms to solve them.
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9.1. Vectorization. Since the class group acts on the rim, a problem closely related to walking along the
rim is the following, where we use the terminology vectorization in analogy with [17] and [11, Section 6.1].
This problem was also recently introduced in [57, Section 3.1].

Problem 9.1 (OrientedVectorization(∆)). Let O be the quadratic order of discriminant ∆. Suppose
(E1, ι1), (E2, ι2) ∈ SSprO . Find an ideal class [b] ∈ Cl(O) such that [b] · (E1, ι1) = (E2, ι2).

Remark 9.2. This problem is somewhat related to the uber isogeny assumption, which asks for [b] without
knowledge of ι2; the difficulty of this problem is shown to be crucial for a variety of supersingular isogeny-
based schemes [22].

The following result was implied without details in a more restricted case in [11, Section 6.1]. A variation
also appears in [57, Proposition 4].

Heuristic 9.3. The values of a definite binary quadratic form f(x, y), as x, y → ∞, are powersmooth and
coprime to the first N primes with the same probability as randomly chosen integers of the same size.

Proposition 9.4. Assume Heuristic 9.3. Suppose (E1, ι1) and (E2, ι2) are given by ιi := ιθi for some
endomorphisms θi ∈ End(Ei) which can be evaluated on Ei(Fpk) in time Tθi(k, p) ≥ poly(k log p). Define
Tθ1,θ2(k, p) := max{Tθ1(k, p), Tθ2(k, p)} and d := max{deg θ1,deg θ2}. Then OrientedVectorization(|∆|)
can be reduced to a hidden shift problem and solved in quantum time Tθ1,θ2(O(log2 d), p)L|∆|(1/2) under GRH,

where, furthermore, the ideal class is L|∆|(1/2)-smooth and of size O(
√
|∆|).

Proof. The approach is based on that in Childs-Jao-Soukharev [13], who developed a subexponential means
of evaluating the action of the class group (by finding a smooth representative of the needed ideal class), and
then applying Kuperberg’s algorithm, which requires subexponentially many evaluations. The difference is
that we need to apply the class group action, in the form of isogenies, to oriented curves, i.e. carry along the
orientation.

The reduction to the hidden shift problem is formalized in [36, Theorem 3.3]; the malleability oracle in the
sense of [36, Definition 3.2], with respect to their notation, is given in terms of I = G = Cl(O), O = SSprO ,
and f : I → O defined by f([a]) = [a] · (E1, ι1). Then to find [b] ∈ Cl(O) such that [b] · (E1, ι1) = (E2, ι2),
we observe that f is malleable, because we can compute [a] 7→ f([ab]) = [ab] · (E1, ι1) = [a] · (E2, ι2) (this is
the malleability oracle at (E2, ι2)).

To evaluate the action of [a] on Ei takes time poly(log p)L|∆|(1/2) using the methods of [13] or [5] and
involves finding an L|∆|(1/2)-smooth integral representative a which can be evaluated as a composition chain
of isogenies. Unfortunately, to evaluate the action of [a] on θi, we require a powersmooth representative
instead. Calling on Heuristic 9.3 and [16, Section 3.1] (similarly to the proof of Proposition 5.11), we
can find a representative with norm L|∆|(1/2)-powersmooth and coprime to the first log deg θi primes, by
random search. The time taken is L|∆|(1/2), because by Mertens’ Theorem, the probability of satisfying the
coprimality hypothesis is

∏
p<O(log deg θ)

p prime

(1 − 1/p) ∼ O(1/ log log deg θi). Having done this, write the result

as a :=
∏

ak, where the N(ak) are coprime prime powers.
We also need to evaluate the action of a on θi in some way that is distinguishable (since isogeny chains

are not unique for a given endomorphism). For each j-invariant we choose a fixed model. We replace the
data of θ with the data of its linear action on the O(log deg θi) smallest prime-torsion subgroups E[q], as
well as all the prime-power N(ak)-torsion subgroups. By Chinese Remainder Theorem, this is enough to
distinguish different results, since if θ − θ′ vanishes on all of the prime-power subgroups, then it vanishes
on a subgroup (generated by all of the subgroups together), whose size exceeds a fixed multiple of d, which
implies that θ = θ′ (this method is inspired by the Schoof algorithm, as adapted for example in [35, Theorem
81], [25, Lemma 4]).

To compute the action on θi, we first need to compute ϕak
. This is done as in Algorithm 7.2, where we

consider the linear action of a + bθi on the N(ak)-torsion to find the kernel of ϕak
. In order to compute

the linear action of ϕak
◦ θi ◦ ϕ̂ak

/[N(ak)] on the prime or prime-power torsion subgroups E[q] described in
the last paragraph, we proceed as follows. If q is coprime to N(ak), then to find this action, we evaluate
ϕak
◦ θi ◦ ϕ̂ak

on E[q] and then apply the action of [n′] where n′ ≡ N(ak)−1 (mod q). Otherwise we store
null for that value of q (by assumption, this occurs only for q larger than log deg θi).
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This gives a way to evaluate the function f suitable for quantum computation. Taken together, the
time taken for evaluating [ak] is poly(log deg θi) times the time taken to evaluate θi and ϕak

, namely

Tθ1,θ2(O(log2 d), p) + poly(log p)L|∆|(1/2).
There is a small caveat that the action of Frobenius may take us out of the orbit of Cl(O), so this will

only work when the oriented curves E1 and E2 are in the same Cl(O)-orbit. Of course, there are at most
two orbits, so in the case of failure, we can apply Frobenius to one of the curves and try again.

The evaluation algorithm of [13] runs in time L|∆|(1/2) under GRH and results in an L|∆|(1/2)-smooth

isogeny of size O(
√
|∆|) [13, Proposition 3.2]. Our modification above results in the stated runtime. �

Remark 9.5. If we wish to avoid the coprimality aspect of Heuristic 9.3, then we can take subexponentially
many prime power torsion subgroups, at an increased cost in runtime and memory (thanks to Benjamin
Wesolowski for this and other helpful observations and corrections to this proof).

Remark 9.6. If we wish to avoid Heuristic 9.3 in Proposition 9.4, we could first transform θi into a pow-
ersmooth isogeny chain (using Algorithm 5.3 at a runtime cost of Tθ1,θ2(Ldeg θi(1/2), p)) and then use the
method for horizontal stepping of Algorithm 7.2 to evaluate [a] prime-by-prime. This depends on Heuris-
tic 5.10 instead. This allows for the representative a to be chosen as smooth, not necessarily powersmooth,
but incurs an additional runtime cost to the algorithm as a whole.

9.2. Primitive orientation computation. The vectorization problem 9.1 requires knowledge of the order
with respect to which (E, ι) is a primitive orientation. This requirement naturally leads to the following
problem:

Problem 9.7 (PrimitiveOrientation). Given an supersingular elliptic curve E, and an endomorphism
θ ∈ End(E), determine the quadratic order O such that ιθ is O-primitive.

We briefly describe two classical algorithms here for solving Problem 9.7. Let f be the conductor of Z[θ],
we compute a B-powersmooth f -suitable translation and factorize f = Πfi

ri . For any prime power factor
fi
ri of f , one needs to check whether the translated endomorphism is divisible by fi

ri , which amounts to
checking whether θ vanishes on the fi

ri-torsion of E. We take B to be Ld(1/2) with d = deg θ, as discussed
in the proof of Theorem 11.1, using Algorithm 5.3, computing the translation takes time Tθ(Ld(1/2), p)
assuming Heuristic 5.10 with ` replaced by f in Heuristic 5.10. Furthermore, evaluating the translated

endomorphism on f̃ r̃-torsion takes time poly(log p)Ld(1/2)M(plcm(12,f̃2r̃)) where f̃ r̃ = max{firi}. Alterna-
tively, one can compute an integer T with smallest absolute value such that θ + T is f -suitable translation
instead of a B powersmooth translation. Checking whether θ vanishes on the fi

ri-torsion of E takes time
poly(log p)Tθ(f̃

2r̃, p) where f̃ r̃ = max{firi}. Both methods have runtimes polynomial in f̃ri .
Quantumly we give the following algorithm that runs in subexponential time. Our method for solving

Problem 9.7 has similarities to that of Proposition 9.4, with a hidden subgroup problem in place of the
hidden shift problem. The subexponential runtime in ∆ still arises from the need to evaluate the action of
the class group.

Proposition 9.8. Assume Heuristic 9.3. Suppose θ can be evaluated on E(Fpk) in time Tθ(k, p). Then there

is a quantum algorithm to solve PrimitiveOrientation in time Tθ(O(log2 deg θ), p)+poly(log p)L|∆|(1/2).

Proof. Let Oθ := Z[θ]. Compute Cl(Oθ) as a product of cyclic groups with given generators, using the
quantum algorithm [12, Algorithm 10], as described in [13, Proof of Theorem 4.5 ]. It is possible to solve the
PrimitiveOrientation problem by computing the kernel of the map Cl(Oθ)→ Cl(O) (where we do not a
priori know O). This can be done by solving a hidden subgroup problem. Namely, we consider the action of
Cl(Oθ) on SSprO , defining f([b]) = [b] · (E, ιθ). We evaluate the action of b on θ as described in the proof of
Proposition 9.4.

Once the kernel G has been computed in the form of generators g1, . . . , gn, one writes each gi as principal
in the maximal order via a generator gi = (gi). Then O is by definition the order generated from Oθ by
adjoining the gi’s. One computes the conductor of this order by taking the gcd of the conductors of the Z[gi]
and Z[θ], and hence computing the discriminant ∆O. These last computations are polynomial in log |∆θ|. �

An improvement is available: to evaluate the action of [b] on E takes time poly(log p) exp(Õ(log1/3 |∆θ|))
using the methods of Biasse-Iezzi-Jacobson [5]; they also improve on the computation of Cl(O).
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10. Quantum algorithm for finding a smooth isogeny to j = 1728

The problems of computing the endomorphism ring of an elliptic curve E, computing an `-power isogeny
to an initial curve (such as j = 1728), and computing a smooth isogeny to an initial curve, are all equivalent
[58]. In this section, we modify Algorithm 8.1 to find a smooth isogeny, using the quantum algorithms of
the previous section (Propositions 9.4 and 9.8). The resulting quantum algorithm is Algorithm 10.1.

Algorithm 10.1: Finding a smooth isogeny to Einit (quantum)

Input: A traced endomorphism (E, θ, t, n) which can be evaluated on arbitrary points, where the
discriminant of θ is coprime to p.

Output: A smooth isogeny E → Einit.

1 ∆← t2 − 4n

2 Choose the smallest prime ` so that `2 does not divide ∆ or n.

3 ∆∗ ← the discriminant of the solution to PrimitiveOrientation for (E, θ) via Proposition 9.8.

4 repeat
5 Call Algorithm 6.1 on input ∆∗, to obtain a new traced endomorphism (Einit, θinit, tinit, ninit).

(Algorithm 6.1 can be suspended and then resumed to find subsequent solutions; see
Remark 6.1.)

6 Walk from (Einit, θinit, tinit, ninit) to produce an ascending path H1 from (Einit, θinit, tinit, ninit) to

(E0, θ0, t0, n0) on the rim, i.e. where Z[θ0] ⊆ End(E0) is `-fundamental (methods of Section 7.4).

7 ∆∗∗ ← the discriminant of the solution to PrimitiveOrientation for (E0, θ0) via Proposition 9.8.

8 until ∆∗ = ∆∗∗

9 Use a quantum computer to solve OrientedVectorization(∆′) as described in Proposition 9.4, to

find an ideal class [a] ∈ Cl(O∆′) such that [a](E1, ιθ1) is (E0, ιθ0) or (E
(p)
0 , ι

(p)
θ0

) (try both).

Proposition 10.1. Assume GRH, Heuristic 6.4, 6.7, and 9.3, and the assumptions of Section 5.1. Suppose θ
can be evaluated on E(Fpk) in time Tθ(k, p) ≥ poly(k log p). Let d = max{deg θ, |∆|}. Suppose |∆| < p2 and

∆ is coprime to p. Algorithm 10.1 is correct and succeeds in heuristic expected time Tθ(O(log2 d), p)L|∆|(1/2).

The resulting L|∆|(1/2)-smooth isogeny has norm O(
√
|∆|).

Proof. The algorithm determines ∆∗ so that ιθ is O∆∗ -primitive. In the repeat loop, it finds an orientation
of j = 1728 and a path from that oriented curve to an oriented curve (E0, ιθ0) which is primitive with respect
to the same order. Thus vectorization applies, and finds a smooth isogeny between (E, ιθ) and (E0, ιθ0).
Combining the path and isogeny, we find a smooth isogeny between E and the initial curve.

The first two steps take time O(log |∆|). The third step takes time Tθ(log deg θ, p) + poly(log p)L|∆|(1/2)
by Proposition 9.8. Steps 5 and 6 take polynomial time in log p and log |∆| by Proposition 6.3 and Propo-
sition 7.8. Step 7 again takes time Tθ(log deg θ, p) + poly(log p)L|∆|(1/2). To determine how often we must
repeat, we compute that the probability that ∆∗ = ∆ is equal to hO/HO, with HO given by (2) (by
consideration of the sizes of SSprO (Equation (1) and Proposition 3.5) and using Heuristic 6.7). Thus, by
Lemma 3.8, the expected number of iterations is poly(log p).

Note that the endomorphism found by Algorithm 6.1 is of norm O(|∆|). Therefore the rim endomor-
phism θ0 is also of normO(|∆|). Thus, OrientedVectorization in Step 9 takes time Tθ(O(log2 d), p)L|∆|(1/2)
(Proposition 9.4). Note that the evaluation time for θ0 on small torsion is O(log p) since we have expressed θ0

as a linear combination of basis elements, each of which can be evaluated via the chain down to j = 1728. �

11. Proofs of Main Theorems and Special Cases

11.1. Proof of main theorems.

Theorem 11.1. Choose a small prime ` and assume the heuristic assumptions of Proposition 8.1. Let
θ ∈ End(E) be an endomorphism of degree d, such that Ld(1/2) ≥ poly(log p). Suppose θ can be evaluated
on points P ∈ E(Fpk) in time Tθ(k, p). Let ∆′ be the `-fundamental part of the discriminant ∆ of θ,

and assume that |∆′| ≤ p2. There is a classical algorithm that, given any such θ, finds an `-isogeny path
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of length O(log p + h∆′) from E to the curve Einit of j-invariant j = 1728 in runtime Tθ(Ld(1/2), p) +
h∆′Ld(1/2) poly(log p).

The runtime comes as a sum of two terms because the algorithm has two steps: first, evaluate the
endomorphism on points in order to create a presentation of the endomorphism that meets the needs of the
main algorithm; and then second, use the result to walk in the oriented graph.

Proof of Theorem 11.1. Suppose θ is such an endomorphism. Then set B = Ld(1/2). We can apply Algo-
rithm 5.3 (having Algorithm 5.1 as a subroutine) to θ, whose runtime depends on the evaluation of θ on
inputs in a field FpO(B2) . The runtime for this conversion is therefore Tθ(Ld(1/2), p). The result is a prime-

power isogeny-chain representation of θ. We can then use Algorithm 8.1, with the representation runtime
being Ld(1/2), by Proposition 5.13. The classical runtime follows from Proposition 8.1. �

Theorem 11.2. Assume GRH, Heuristic 6.4, 6.7, and 9.3, and the assumptions of Section 5.1. Let θ ∈
End(E) be an endomorphism which can be evaluated on points P ∈ E(Fpk) in time Tθ(k, p), where Tθ(k, p) ≥
poly(k log p). Suppose θ has discriminant ∆ coprime to p with |∆| ≤ p2. Let d = max{deg θ, |∆|}. There is

a quantum algorithm that, given any such θ, finds an L|∆|(1/2)-smooth isogeny of norm O(
√
|∆|) from E

to j = 1728 in runtime Tθ(O(log2 d), p)L|∆|(1/2).

Proof of Theorem 11.2. We use Algorithm 10.1, with no need to pre-process θ. Runtime follows from Propo-
sition 10.1. �

11.2. Special cases. In this section, we refer to an endomorphism as insecure if access to such an endo-
morphism allows for a polynomial time path-finding algorithm. Endomorphisms of small size are known to
be insecure [38]. We obtain a version of this from our methods also.

Theorem 11.3. Assume the situation of Theorem 11.1. In the following special cases, the runtime and path
length of Algorithm 8.1 are polynomial in log p:

(1) The input endomorphism is rationally represented in polynomial space.
(2) hO∆

= poly(log p) and ` is coprime to ∆ and inert in K. In this case, the endomorphism is not
even needed as input; only its existence, trace and norm are needed.

Proof. The second case is a consequence of Algorithm 8.1 and Proposition 8.1, in which the hypotheses imply
Steps 4 and 5 are unnecessary. The first is a consequence of the observation that such endomorphisms have
polynomially sized discriminants and class numbers. �

The following result demonstrates for all curves the existence of non-small endomorphisms which are
insecure under our algorithm. (Recall that most curves do not have small endomorphisms. It is known that
there are curves having no endomorphisms of norm smaller than p2/3−ε (see [37, Proposition B.5], [26, Section
4], [60, Proposition 1.4]).)

Theorem 11.4. Suppose ∆ = f2∆∗ where ∆∗ is a discriminant of poly(log p) size, f is poly(log p)-smooth,
and θ is f -suitable with poly(log p)-powersmooth norm, and represented in some fashion so that it can be
evaluated in poly(log p) time on points of poly(log p) size. Then there is a classical algorithm to find an
O(log p)-powersmooth isogeny to Einit in time poly(log p).

Proof. The dependence on ` throughout the paper has been suppressed by assuming ` = O(1), but it is
at worst polynomial throughout. We refactor θ in poly(log p) time (this is possible by Proposition 5.6 and
the evaluation runtime assumption), to obtain an isogeny chain. Taking each prime ` dividing f in turn,
we ascend as for as possible on the oriented `-isogeny volcano. By f -suitability, we can ascend without
any further translation or refactoring. Having ascended, we obtain an endomorphism of discriminant ∆∗ of
poly(log p) size and trace zero, and hence call on Theorem 11.3 with respect to some suitable `. �

In fact, every elliptic curve has insecure endomorphisms: one can provide an endomorphism in the form
of a closed walk in the `-isogeny graph that passes through 1728. Such a path is guaranteed to exist by
the diameter of the graph. In that case, one hardly needs the algorithms of this paper, as the path to 1728
is already explicit. A variation on this theme is to provide a poly(log p)-powersmooth isogeny chain whose
endomorphism has minimal polynomial x2+L2 (i.e., L is powersmooth). Such a chain will be insecure because
it explicitly passes through 1728 and also under the algorithms provided in this paper (by Theorem 11.4).
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More interestingly, examples of such endomorphisms exist whose minimal polynomial places them in any
field Q(ω) with poly(log p) discriminant (not just the Gaussian field as above); indeed one can take any
element of the form L(ω + k) for k ∈ Z and a poly(log p)-powersmooth L such that the norm N(ω + k) is
poly(log p)-powersmooth.

Finally, we remark on one more special case. When the norm of θ is well-behaved, and we are already
at the rim with respect to ` (perhaps by choosing ` judiciously), then we have improved dependence on p.
Note that in the following theorem, there is no requirement on the factorization of ∆.

Theorem 11.5. Suppose the norm of θ has powersmoothness bound B(p), and suppose that ∆ is coprime
to `. Then there is a classical algorithm to find an `-isogeny path of length O(log p + hO) to Einit in time
hO poly(B(p) log p).

Proof. Use Algorithm 8.1. By the assumption on ∆, we need not ascend with θ (that is, we skip Step 4).
We only walk horizontally, and those steps are polynomial in B(p) by Proposition 7.3. �

12. Division by [`]

We conclude with a detailed description and analysis of McMurdy’s algorithm (Algorithm 12.2) which can
be used to divide any isogeny (not just an endomorphism) by [`] if it is a multiple of [`]. Given a rationally
represented traced endomorphism, we apply Algorithm 12.2 and then adjust the trace and norm accordingly.

We follow the notation of McMurdy [41]. Let E1 and E2 be two supersingular elliptic curves given by
respective short Weierstrass equations

E1 : y2 = W1(x), E2 : y2 = W2(x).

with W1(x),W2(x) ∈ Fp2 [x]. Denote by ψE1,` the `-division polynomial of E1, made monic, and let
Xi(x) and Yi(x) be the rational functions representing the multiplication-by-` map on Ei, i.e. [`]Ei

(x, y) =
(Xi(x), Yi(x)y) for i = 1, 2. For a polynomial P (x) = (x − r1) · · · (x − rn) with coefficients in some field F
whose roots ri lie in some field extension F′ of F, and a rational function T (x) over FF ′, define

P (x)
∣∣T := (x− T (r1)) · · · (x− T (rn)) .

Given [`]ϕ : E1 → E2 as a pair of rational maps, where ϕ : E1 → E2 is an isogeny, the rational maps of ϕ
are obtained as follows.

Proposition 12.1 ([41, Proposition 2.6]). Suppose that ϕ : E1 → E2 is a separable isogeny such that
([`]ϕ)(x, y) = (F (x), G(x)y) for rational functions F (x), G(x). Write F (x) in lowest terms, i.e. as either
cF ·P (x)

W1(x)Q(x) when ` = 2 or cF ·P (x)
(ψE1,`(x))2Q(x) when ` 6= 2, with monic polynomials P (x), Q(x). Set

p(x) = P (x)
∣∣X1, q(x) = Q(x)

∣∣X1.

Then p(x) = p0(x)`
2

and q(x) = q0(x)`
2

for monic polynomials p0(x), q0(x). Moreover, we have ϕ(x, y) =

(f(x), g(x)y), where f(x) = cF `
2 · p0(x)

q0(x) and g(x) = G(x)
Y2(f(x)) .

Algorithm 12.1 computes the polynomials p(x) and q(x) as given in Proposition 12.1. The main division-
by-[`] process (Algorithm 12.2) then calls Algorithm 12.1 twice.

Division by ` = 2 has been implemented by McMurdy [41] (code available at [40]). Division by odd primes
` > 2 is complicated by the non-vanishing of the y-coordinates of the `-torsion points. Fix an odd prime
` > 2. In order to compute p(x) = P (x)

∣∣X1 and q(x) = Q(x)
∣∣X1 in Steps 3 and 4 of Algorithm 12.2, we

compute the rational map NP =
∏
i P (xi) as a function of the variable x only. In contrast to the case of

2-torsion points, the `-torsion points on E1 have non-zero y-coordinates, so some xi depend not only on x
(as in the case ` = 2) but also on y and yi for i ≤ (`2 − 1)/2. As a consequence, NP also depends on these
variables. To overcome this obstruction, we employ a new technique presented in Steps 5–11 of Algorithm
12.1. In these steps, we compute the products xi · x̄i, and hence the products P (xi) · P (x̄i). Each product
P (xi) ·P (x̄i) is a rational map in x, y2, and y2

i (i ≤ (`2 − 1)/2) by Lemma 12.4. We replace y2 (respectively
y2
i ) with W1(x) (respectively W1(xi)) to obtain rational maps in the variable x only.

Example 12.2 (Computing the polynomial P (x)
∣∣X1 via Algorithm 12.1). Let ` = 3, p = 179, and

E1728 : y2 = x3 − x the supersingular elliptic curve over Fp with j = 1728. Let X1(x), Y1(x) be associated
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Algorithm 12.1: Computing the polynomial P (x)
∣∣X1

Input: An elliptic curve E1, a monic polynomial P (x) defined over Fpm , and the rational map X1(x)
associated to E1.

Output: P (x)
∣∣X1.

1 Compute a root ζ (in some field extension of Fp2) of X1.

2 Compute the x-coordinates xi (in some field extension of Fp2) of the points Si = (xi, yi) ∈ E1[`],

indexed by i = 1, . . . , `2 − 1 so that x
i+ `2−1

2

= xi, using the `-th division polynomial (note that we do

not compute the yi here). Let S0 = OE1
.

3 Compute the x-coordinates xi(x, y, yi) for 1 ≤ i ≤ `2−1
2 of the maps representing point addition

(x, y) + Si on E1, using the values of xi computed in step 2 but leaving yi’s as indeterminates. Set
x̄i(x, y, yi) = xi(x, y,−yi) which is the x-coordinate of the point addition (x, y) + (−Si).

4 N(x)← P (x) and D(x)← 1.

5 For i = 1, . . . , `
2−1
2 do

6 Compute P (xi(x, y, yi)) and P (x̄i(x, y, yi)) (as rational functions in x, y and yi) using Horner’s
algorithm.

7 Compute the numerator Ni and denominator Di of P (xi)P (x̄i) as polynomials in x, y and yi.

8 Replace y2 with W1(x) and y2
i with W1(xi) in Ni. Denote the result by Ni(x), as no y’s or yi’s

should remain.
9 Replace y2

i with W1(xi) in Di. Denote the result by Di(x), as no y’s or yi’s should remain.

10 N(x)← N(x) ·Ni(x), and D(x)← D(x) ·Di(x).

11 NP (x)← N(x)
D(x) , i← 0, p(x)← 0.

12 For i = 0, . . . ,deg(P (x)) do
13 ai ← NP (ζ).

14 p(x)← p(x) + aix
i.

15 NP (x)← NP (x)− aixi.
16 NP (x)← NP (x)/X1(x).

17 Return p(x).

Algorithm 12.2: Division by [`].

Input: Elliptic curves E1, E2, rational maps F (x) and G(x) where ([`]ϕ)(x, y) = (F (x), G(x)y) for
some isogeny ϕ : E1 → E2.

Output: Rational maps f(x) and g(x) such that ϕ(x, y) = (f(x), g(x)y).

1 Determine cF , and the monic polynomials P (x) and Q(x) such that F (x) = cF ·P (x)
W1(x)·Q(x) (` = 2) or

F (x) = cF ·P (x)
(ψE1,`(x))2·Q(x) (` 6= 2).

2 Compute X1(x) and Y2(x).

3 Compute p(x)← P (x)
∣∣X1 using Algorithm 12.1 on input E1, P (x), X1(x).

4 Compute q(x)← Q(x)
∣∣X1 using Algorithm 12.1 on input E1, Q(x), X1(x). In this step we can skip

Steps 1–4 in Algorithm 12.1 since they were already performed in Step 3 of this algorithm.

5 Compute p0(x)← p(x)1/`2 and q0(x)← q(x)1/`2 using a truncated variant of Newton’s method.

6 f(x)← cF `
2 · p0(x)

q0(x) , g(x)← G(x)
Y2(f(x)) .

7 Return f(x), g(x).

to multiplication-by-3, i.e.

[3]E1728
(x, y) = (X1(x), Y1(x)y) where X1(x) =

20x9 + 61x7 + 63x5 + 175x3 + x

x8 + 175x6 + 63x4 + 61x2 + 20
.
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Let P (x) = x18 + 122x16 + 136x14 + 65x12 + 29x10 + 150x8 + 114x6 + 43x4 + 57x2 + 178. We compute
p(x) = P (x)

∣∣X1 using Algorithm 12.1 as follows.

In Steps 1 and 2, we may choose ζ = 0. Let Fp4 be generated by a having minimal polynomial x4 + x2 +
109x + 2. We obtain S0 = OE1728 , S1 = (103, y1), S2 = (76, y2), S3 = (24a3 + 39a2 + 119a + 102, y3), S4 =
(155a3 +140a2 +60a+77, y4), S5 = −S1, S6 = −S2, S7 = −S3, S8 = −S4. In Steps 3, we compute xi(x, y, yi)
and x̄i(x, y, yi) as x0 = x, x̄i(x, y, yi) = xi(x, y,−yi),∀i, 1 ≤ i ≤ 4 where

x1(x, y, y1) =
−x3 + y2 − 2yy1 + y2

1 − 76x2 + 48x+ 68

x2 − 27x+ 48
,

x2(x, y, y2) = (−x3 + y2 − 2yy2 + y2
2 + 76x2 + 48x− 68)/(x2 + 27x+ 48),

x3(x, y, y3) =
−x3 + y2 − 2yy3 + y2

3 + (24a3 + 39a2 − 60a− 77)x2 − 46x+ (30a3 + 4a2 − 75a + 38)

(x2 + (−48a3 − 78a2 − 59a− 25)x− 46)
,

x4(x, y, y4) =
−x3 + y2 − 2yy4 + y2

4 + (−24a3 − 39a2 + 60a + 77)x2 − 46x+ (−30a3 − 4a2 + 75a− 38

x2 + (48a3 + 78a2 + 59a + 25)x− 46
.

In Steps 4–11: We compute the norm NP (x) of P (x) by first computing P (xi) ·P (x̄i) = Ni

Di
, 1 ≤ i ≤ 4. We

then have N(x) = P (x)
∏
iNi = 14x162 + 157x160 + · · ·+ 22x2 + 165 and D(x) =

∏
iDi = x144 + 107x142 +

· · · + 90x2 + 75. Hence NP (x) = N(x)
D(x) . Finally, we compute all the coefficients of p(x) by repeating Steps

13–16. The result is

p(x) = x18 + 170x16 + 36x14 + 95x12 + 126x10 + 53x8 + 84x6 + 143x4 + 9x2 + 178.

Example 12.3 (Division by ` = 3 via Algorithm 12.2). As before, let p = 179 and E1728 : y2 = x3 − x
the supersingular elliptic curve over Fp of j-invariant j(E1728) = 1728 as in Example 12.2. Then the
endomorphism ring of E1728 contains the endomorphism [i] defined as [i](x, y) := (−x, iy) with i ∈ Fp2 and
i2 = −1.

The map θ = 1 + [i] is a separable endomorphism and we have ([3]θ)(x, y) =
(
F1(x)
F2(x) ,

G1(x)
G2(x)y

)
, defined over

Fp2 , with

F1(x) = 169ix18 + 33ix16 + 72ix14 + 66ix12 + 68ix10 + 111ix8 + 113ix6 + 107ix4 + 146ix2 + 10i,

F2(x) = x17 + 8x15 + 45x13 + 124x11 + 110x9 + 124x7 + 45x5 + 8x3 + x,

G1(x) = (58i+ 58)x26 + (170i+ 170)x24 + · · ·+ (170i+ 170)x2 + 58i+ 58,

G2(x) = x26 + 12x24 + 2x22 + 66x20 + 128x18 + 44x16 + 171x14 + 44x12 + 128x10 + 66x8 + 2x6 + 12x4 + x2.

We apply Algorithm 12.2 to divide [3]θ by 3 to obtain θ = [f(x), g(x)y] as follows.

In Step 1, we write F (x) = cF ·P (x)
(ψE1728,3(x))2·Q(x) where cF = 169i, ψE1728,3(x) = x4 + 177x2 + 119 and

P (x) = x18 + 122x16 + · · · 57x2 + 178, Q(x) = x9 + 12x7 + 30x5 + 143x3 + 9x.

In Step 2, we compute X1 and Y2 using the formula for multiplication by 3 map on E1728. Here, X1 is as
given in Example 12.2 and

Y2 =
126x12 + 92x10 + 153x8 + 136x6 + 139x4 + 63x2 + 159

x12 + 173x10 + 11x8 + 175x6 + 56x4 + 59x2 + 53
.

Then we compute p(x) = P (x)
∣∣X1 and q(x) = Q(x)

∣∣X1 in Steps 3 and 4 using Algorithm 12.1 to obtain

p(x) = x18 + 170x16 + · · · + 9x2 + 178, and q(x) = x9. In Step 5, computing 9-th roots of p(x) and q(x)
yields p0(x) = x2 + 178 and q0(x) = x. The final output is

f(x) = cF `
2 · p0(x)

q0(x)
=

89ix2 + 90i

x
, g(x) =

G(x)

Y2(f(x))
=

(134i+ 134)x2 + 134i+ 134

x2
.

To determine the complexity of Algorithm 12.1, we first prove the following lemma which is needed in the
proof of Proposition 12.5.

Lemma 12.4. Fix 0 ≤ i ≤ `2−1
2 , the products xix̄i and P (xi)P (x̄i) are rational functions in x, y2, and y2

i .
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Proof. By direct computation, both xi + x̄i and xix̄i are rational functions in x, y2, and y2
i . As a symmetric

polynomial in xi and xi, the quantity P (xi)P (xi) is a polynomial in xi + x̄i and xix̄i, hence also a rational
function in x, y2 and y2

i . �

Proposition 12.5. Algorithm 12.1 is correct and has runtime O(deg2(P )M(pm)).

Proof. Algorithm 12.1 is correct by [41, Pages 8–9] and Lemma 12.4. Steps 1-3 are negligible because they
require a fixed number of operations in an extension of Fp2 of degree O(`2). Since P (x) ∈ Fpm [x] and E1[`]
is defined over an extension of Fp2 of degree at most `2 by Lemma 2.3, all the arithmetic in the remaining
steps takes place in a field extension of Fp2 of degree lcm(`2,m) = O(m).

In the first loop (Steps 5-10), the most costly steps are 7 and 10 which both require O(deg2(P )) operations;
the remaining steps are linear in degP when Horner’s algorithm is used. In the second loop (Steps 12-11),
p(x) is computed as described in [41, Page 9]. Step 13 requires O(degP ) field operations using Horner’s
algorithm again. Since X1 has degree O(`2), Step 11 also takes O(degP ) operations. Hence the second loop
takes O(deg2(P )) field operations. �

Proposition 12.6. Algorithm 12.2 is correct and has runtime O(deg2(ϕ)M(p)).

Proof. The correctness of Algorithm 12.2 follows from [41, Proposition 2.6]. By Lemma 2.2, ϕ is defined
over Fp12 , so all the rational functions appearing in the algorithm belong to Fp12(x). We also note that P (x)
and Q(x) have degree O(degϕ), hence so do p(x), q(x), p0(x) and q0(x).

Since ψE1,`(x) and W1(x) have fixed degree, Step 1 requires O(degϕ) field operations. Steps 5 and 6 take

Õ(degϕ) operations using fast polynomial arithmetic; see [29, Theorem 1.2]. Here, to extract an `2-th root
of p(x), we apply a truncated variant of Newton’s method (see [54, Sections 9.4 and 9.6]) to the polynomial

H(y) = y`
2 − p(x) and compute the sequence of polynomials

f0(x) = xdeg p , fi+1(x) = fi(x)−
⌊
H(fi(x))

H ′(fi(x)

⌋
(i ≥ 0)

to obtain p0(x) after at most dlog2(deg p)e iterations; similarly for q0(x).
The runtime of Algorithm 12.2 is thus dominated by Steps 3 and 4, which have runtimeO(deg2(ϕ)M(p12)) =

O(deg2(ϕ)M(p)). �
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Supersingular Encryption from Torsion Attacks, pages 249–278. Advances in Cryptology – ASIACRYPT 2021. Springer

International Publishing, Cham, 2021.

[23] L. De Feo, J. Kieffer, and B. Smith. Towards practical key exchange from ordinary isogeny graphs. In Advances in
cryptology—ASIACRYPT 2018. Part III, volume 11274 of Lecture Notes in Comput. Sci., pages 365–394. Springer, Cham,

2018.

[24] V. de Quehen, P. Kutas, C. Leonardi, C. Martindale, L. Panny, C. Petit, and K. E. Stange. Improved Torsion-Point
Attacks on SIDH Variants, pages 432–470. Advances in Cryptology – CRYPTO 2021. Springer International Publishing,

Cham, 2021.
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63(2):187–213, 1984.
[45] N. T. Sardari. Diameter of Ramanujan graphs and random Cayley graphs. Combinatorica, 39(2):427–446, 2019.

[46] R. Schoof. Four primality testing algorithms. In Algorithmic number theory: lattices, number fields, curves and cryptogra-

phy, volume 44 of Math. Sci. Res. Inst. Publ., pages 101–126. Cambridge Univ. Press, Cambridge, 2008.
[47] D. Shumow. Isogenies of elliptic curves: a computational approach. Master’s thesis, University of Washington, 2009.

https://arxiv.org/abs/0910.5370.

https://ia.cr/2006/291
https://arxiv.org/abs/1711.04062
https://hal.archives-ouvertes.fr/hal-02070816/document
https://hal.archives-ouvertes.fr/hal-02070816/document
https://arxiv.org/pdf/1804.10128.pdf
https://arxiv.org/abs/1910.03180
https://arxiv.org/abs/1910.03180
https://phobos.ramapo.edu/~kmcmurdy/research/SAGE_ssEndos/
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://phobos.ramapo.edu/~kmcmurdy/research/McMurdy-ssEndoRings.pdf
https://arxiv.org/abs/0910.5370


40 ARPIN, CHEN, LAUTER, SCHEIDLER, STANGE, TRAN

[48] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht,
second edition, 2009.

[49] K. E. Stange. Frobenius and the endomorphism ring of j = 1728, 2021. http://math.colorado.edu/~kstange/papers/

1728.pdf.
[50] G. Tenenbaum. On ultrafriable integers. Q. J. Math., 66(1):333–351, 2015.

[51] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.4), 2022. https://www.sagemath.org.
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