
Lattice Signature can be as Simple as Lattice

Encryption

Dingfeng Ye, Jun Xu, Guifang Huang, Lei Hu

State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China

{yedingfeng, xujun, huangguifang, hulei}@iie.ac.cn

Abstract. Existing lattice signature schemes are much less efficient

than encryption schemes due to the rejection sampling paradigm. We give

a new construction which avoids rejection sampling by using temporary

public keys and structured secrets in a Bliss type scheme. Structured

secrets also improve existing lattice encryption schemes to nearly the

same extreme efficiency. Our signing algorithm is comparative with this

optimized encryption efficiency. Our signature scheme allows the same

key pair work as an encryption scheme. For lightweight implementation,

our techniques allow integrating of public-key encryption and signature

in a simple circuit which only needs to do small integer additions as the

main part of computation.

Keywords: Lattice Signature · Lattice Encryption.

1 Introduction

Lattice encryption and signature are two kinds of public key cryptography sup-

posed to stand with or even replace RSA and ECC, in light of its resistance

to quantum computing attacks, and also for its low computational cost and

speed advantage over the later two. Some problems with this technology trend

may arise, here are two: (1) Quantum computing remains a pure mathematical

notion whose physical feasibility might be excluded in future, the phrase “post-

quantum” may lose its power in supporting prevailing of lattice cryptography.

(2) At present, lattice signature is not compatible with lattice encryption in effi-

ciency: the former is much slower (even slower than ECC) and bigger in size than

the latter; this is another disadvantage besides the size issue compared with RSA

and ECC. To make lattice cryptography more widely applicable, it is desirable

to have a more efficient and light-weighted lattice signature scheme, and to make

2 D. Ye, J. Xu, G. Huang, L. Hu

extreme use of the speed and lightweight advantages of lattice suite algorithm-

s. There are two main approaches to obtain lattice signatures: one is trapdoor

sampling a short integer solution (SIS) to a hard SIS problem, such as [7, 14]; the

other is a Fiat-Shamir heuristic in proving knowledge of secrets associated with

the public key, such as [12]. The main efficiency obstacle with both approach-

es is that the plain treatment is insecure: signing leaks secret information and

enough signatures may recover the secret key statistically. To remedy this, the

existing approach introduces a large uniform noise (for example Tesla [2]) or a

smaller Gaussian noise together with a computation-intensive rejection sampling

(for example, Bliss [4] and Dilithium [5]) to get a distribution independent of

the secret, which results in a large modular size and much less efficient signing

algorithm compared with the lattice encryption schemes. Our first objective is a

lattice signature scheme without the requirement of large noise and/or complex

sampling.

We follow the Fiat-Shamir approach, though our technique trivially applies

to the trapdoor sampling approach where the improved scheme is much less

efficient than the one given below. To explain our method, we use notations

in a RLWE context: all objects are elements of a ring R = Z[T]/(Tn + 1) or

Rq = Zq[T]/(Tn+1), n is a power of 2 or a prime, q is the modulus. We can view

a Fiat-Shamir signature as a proof of knowing the small secrets x1, x2 satisfying a

public linear relation. Typically such a proof has the form (Y = y1a+y2, z1, z2),

where z1 = y1 + cx1, z2 = y2 + cx2, c is the challenge. For ease of presentation

we omit the index i = 1, 2, and simply put it for one copy of variables x, y, z. We

call such a scheme plain if y is drawn from uniform or Gaussian distribution. It

is well-known that plain scheme is not secure under various statistical attacks.

An attack is called linear (resp. quadratic) if it exploits a statistical variable

which is linear (resp. quadratic) on z [9, 8, 17, 13]. In the previous version [18] of

this work, we use temporary public key to stop linear attacks, and structured

y to prevent quadratic ones. But the later fails (Thanks to AsiaCrypto 2021

referees). We observe that Bliss type signatures have been immune to linear

attacks, and with structured secrets they are safe within a bound SN on the

number of allowed signatures. SN grows rapidly with the effective noise size D.

For suitable parameters the temporary public key trick can increase such D for

each certification step. Now in theory we can use a certification path and/or key

evolving technique to allow unbounded signing times. In practice, we can use

only one certification step to achieve a good SN for practical application even

for extremely light weight parameters.

Lattice Signature can be as Simple as Lattice Encryption 3

Structured secrets are the key ingredients of our scheme. At security respec-

t, they act as statistical noises of various statistical attacks which are the only

known threats to plain lattice signatures. So we regard this a more natural securi-

ty patch of the plain schemes than the rejection sampling approach. At efficiency

respect, this is an efficient way to produce approximate Gaussian distribution-

s. Known attacks on lattice cryptography can not distinguish exact Gaussian

distributions and approximate ones, except in the case of rejection sampling.

In particular, existing lattice encryption schemes would greatly be improved on

efficiency at no price.

Next, we consider integrating both encryption and signature in a simple

computing module. The key pair of our signature scheme contains the key pair of

a standard LWE encryption scheme, so the encryption function can be integrated

into the signature module almost for free. The certification step and verification

of the signature involves multiplication (or division) of general elements in the

ring, which would be delegated to the environment. Such delegation needs to be

carried out even when the environment is not trusted. We give a simple protocol

for this task. As a result, we can integrate the whole public key functionalities

in an extremely light weighted hardware (just simple circuit) which mainly adds

up signed integers.

In summary: our signing algorithm is even faster than the fastest previous

lattice encryptions, and is comparable in speed with lattice encryptions opti-

mized with structured secrets. It can also be integrated with lattice encryption

in extremely light-weight hardware implementation.

2 Preliminary Notations

2.1 Algebra

For any vectors a, b of length l, a · b denotes the inner product of a, b, and

|a| = (a · a)1/2 denotes the Euclidean norm.

Let R = Z[T]/(Tn + 1), and Rq = R/(qR), where n is a power of 2 or a

prime, q = 2q′ is a positive integer called the modulus. Elements of R or Rq

are also viewed as vectors of length n: a =
∑
i aiT

i = (a0, a1, · · · an−1). We also

use capital letters X,Y,A,B · · · to denote elements of R or Rq. Let ∗ denote

the automorphism of R : T 7→ T−1, then a∗a ≈ |a|2 for any random variable a

(considered in this work) in the ring, where ‘≈’ means the difference of the two

sides has zero mean value.

4 D. Ye, J. Xu, G. Huang, L. Hu

2.2 Distributions

For any distribution χ, x ← χ means sampling x according to χ. When S is a

set, x← S refers to the uniform distribution of S. Sd denotes the set of vectors

of length n with exactly d non-zero entries of {−1, 1}.
A Gaussian distribution χσ with parameter σ over Z is defined as:

Pr[x] = ex
2/2σ2

/
∑
i∈Z

ei
2/2σ2

≈ χσ(x),

where χσ(x) = e−x
2/2σ2

/(
√

2πσ) is the density function of continuous Gaussian.

It is well-known that

E(|x|2 : x← χσ) = σ2, V (|x|2 : x← χσ) = 21/2σ2,

where E(·) means mean value, and V (·) means variation.

For any integer c, denote by χσ,c the distribution

r + (−1)bc : r ← χσ, b← {0, 1}.

We say a distribution semi-Gaussian with parameter σ, if it is balanced (with

mean value 0) and has mean square value σ2, and not too far away from χσ.

A distribution of vector is called semi-Gaussian if its components all are semi-

Gaussian with the same parameter σ, such a distribution will be denoted as

[σ]. Algebraic operation of (semi-)Gaussian distributions in R results in (semi-

)Gaussian distribution:

[σ1] + [σ2] = [(σ2
1 + σ2

2)1/2] and [σ1] · [σ2] = [(nσ2
1σ

2
2)1/2].

We also model complex algebraic combinations of semi-Gaussian distributions

over R as Gaussian.

Algebraic combinations of Sd’s will be abbreviated as follows: S(a× b+ c×
d+ · · ·) will denote Sa × Sb + Sc × Sd + · · · , and it has the Gaussian parameter

((a× b+ c× d+ · · ·)/n)1/2.

2.3 Statistics

For any two distributions X,Y on a finite set, denote by ρY/X(θ) the density of

x such that

Pr[Y = x]/Pr[X = x] = θ.

Lattice Signature can be as Simple as Lattice Encryption 5

(X,Y) is called a (k, k0)-pair where |k0| << 1 if

ρY/X(exp(t+ k0)) ≈ χk(t)

A (X,Y, ρ, θ)-distinguisher is any algorithm A satisfying:

Pr[A(z) = 1 : z ← X] = ρ, Pr[A(z) = 1 : z ← Y] ≤ ρθ.

(X,Y) is said to be (c, θ)-close if there is no (Y,X, ρ, θ)-distinguisher for ρ < c.

We use the following function over real c for probability:

ef(c) =

∫
t≥c

(2π)−1/2 exp(−t2/2)dt

For a constant positive integer c, χσ,u denotes the random variable which is

half time u+χcσ, half time −u+χcσ for any vector u of length c; and 1c denotes

the all 1 vector.

Lemma 1. For σ >> 1

– ((χσ)t, ρ(1+χσ)t) is approximately a (t1/2/σ,−t/(2σ2))-pair, for positive in-

teger t < σ2.

– ((χsσ)m, (χσ,1s)
m) is approximately a (m1/2(s + 1)/σ2, 0)-pair, for positive

integers s,m, and m >> σ.

Lemma 2. If (X,Y) is a (k, k0)-pair, (X ′, Y ′) is a (k′, k′0)-pair; then (X ×
X ′, Y × Y ′) is a ((k2 + k′2)1/2, k0 + k′0)-pair.

Lemma 3. A (k, k0)-pair is (ef(c), exp(−k0+k2)ef(c+k)/ef(c))-close, for any

c > 0.

2.4 Hard Problems

RLWE: given a, b ← Rq, b = as + e, where s, e ← K for some distribution K,

to find s, e.

NTRU: given a = f/g in Rq, where f, g ← K for some distribution K, to find

f, g.

RSIS: given a, b, c ∈ Rq, to find u, v ∈ R, such that au+bv = c and |u|2 < (D)2n,

|v|2 < (D)2n for some bound D.

RSIS(l): given a = (a1, · · · , al) ∈ Rlq, and a0 ∈ Rq, to find u = (u1, · · · , ul) ∈
Rlq, such that a · u =

∑
i aiui = a0 and |ui|2 < (D′)2n, for 1 ≤ i ≤ l and some

bound D′. For parameter sets of this work, we always let D′ = D.

6 D. Ye, J. Xu, G. Huang, L. Hu

We are not concerning the hardness of RLWE (NTRU, RSIS) asymptoti-

cally, instead, we would like to evaluate the concrete security level (in bits) of

the problem at specific parameters according to known attacks. We regard the

security level is equally good as long as it exceeds the claimed number of bits,

and it is only measured with known algorithms; that is, large security margin is

not favoured, low resource consumption is the top concern of this work.

For n = 512, q = 256, and λ = 80-bit security, we set D = 32 in the RSIS

problem which is associated with the problem to forge a lattice signature or

a certificate. According to known attacks: lattice reductions [10, 15, 3, 1] (BKZ

block size 340, 200 is regarded ok for security level 128, 80 bits respectively),

brute force attacks at scarce secrets [16], statistical tests in this work, we assume

K = Sk with k = 45 is ok for the NTRU (RLWE) problem (which is associated

with the basic security assumption of both encryption and signature) even with

additional information on secrets obtained from statistical attacks. Similarly for

q = 1024, n = 512, λ = 128, we set D = 100, and k = 127; for q = 216, n = 1024,

λ = 128, we set D = 212, and k = 65.

2.5 Σ protocols

A Σ protocol (may not be secure in this work) means the process to prove

knowledge of a witness w satisfying a relation R(x,w) which works as follows:

the prover first computes a commitment u = COM(x,w, r); the verifier gives a

random challenge c; the prover then computes a respond a = RES(x,w, r, c);

and the verifier computes Verify(u, c, a, x), such that there is an algorithm to

extract a valid w′ for x given several (u, ci, ai, x) with different ci that verifies. A

Σ protocol is called zero knowledge (ZK) if (u, c, a) is statistically independent

of w; witness hiding with bound B if no useful (with respect to any attacks)

information of w can be derived from B samples of (u, c, a). Any ZK Σ protocol

can be transferred to a signature scheme by the FS (Fiat-Shamir) heuristic:

c = h(u,m), whose security can be proved if the cryptographic hash function

h is modeled as a random oracle. We assume FS heuristic also works for any

witness hiding protocol: the bound B is preserved as the number of signatures

allowed.

When w, r is in a ring, and R is a linear relation over the ring, then the basic

form of RES(x,w, r, c) is r − wc. We use the following variation of the basic

form in this work. Given a vector a = (a1, · · · , al) ∈ Rlq, a0 ∈ Rq, a witness

u = (u1, · · · , ul) ∈ Rlq, and a sampling algorithm A, we denote the FS protocol

Lattice Signature can be as Simple as Lattice Encryption 7

to prove knowledge of the solution to RSIS(l) by

FS(a, u,A) :=


(r1, r2)← A;Y 1 = a · r1;Y 2 = a · r2;

(c1, c2) = h(Y 1, Y 2, a, · · ·); z = u+ c1r1 + c2r2;

return (Y 1, Y 2, z)

 ,

where h is a cryptographic hash function to the distribution S2
dc

, where dc = 19

(13) for 128 (80) bits security respectively.

2.6 Cryptography

By public-key cryptography (PKC) we refer to two main functions: encryption

and signature. In both cases, there is a key generating algorithm:

KeyGen(para)→ (sk, pk)

where para is the system parameter, sk, pk are the private and public key respec-

tively. With public-key, anyone can encrypt a message m or verify a signature τ

on m:

Enc(pk,m)→ c

Verify(pk,m, τ) = 0 or 1

The problem to retrieve sk from pk is called the trapdoor problem on the key

pair. The security requirement is that the trapdoor problem is hard, and without

the secret key, one can not get any information about m from the ciphertext c,

or produce a signature τ on m accepted by the verification process. Formal

definitions are referred to [6].

3 The new lattice signature scheme

Our signature consists of two parts: a plain signature with a temporary key

and a certificate of the temporary key, where the certificate part is common for

all signatures by the same temporary key. Our scheme consists of the following

algorithms:

–

Keygen(a) :=


x1, x2 ← K;

rs← Rgen();

sk = (x1, x2, rs);

pk = X = ax1 + x2;

 ,

8 D. Ye, J. Xu, G. Huang, L. Hu

where a ∈ Rq is the system parameter, K is a distribution over Rq defined by

scheme, Rgen() is the algorithm which generates the secret rs for sampling

structured random numbers.

–

Cert(sk, pk) :=



w1, w2 ← K;

b = (q′ −Xw1)−1w2;X ′ = Xb; b′ = q′b;

a = (aX ′, a,X ′, 1);

u = (x1w1, x1w2, x2w1, x2w2);

(Y 1, Y 2, z) = FS(a, u, rSample(rs));

tpk = (X ′, b, b′); tsk = (w1, w2, rs);

cert = (pk, tpk, a, Y 1, Y 2, z);


,

where the omitted argument of the hash function (implicit in FS()) should

include b′; (tpk, tsk) is the temporary key pair; the requirements on the

sampler rSample() will be explained later.

–

CertVerify(cert) :=



parse cert = (pk, tpk, a, Y 1, Y 2, z),

where pk = (a,X), tpk = (X ′, b, b′);

a = (a1, a2, a3, a4); z = (z1, z2, z3, z4);

if {
|zi|2 ≤ n ∗ D2 for 1 ≤ i ≤ 4;

X ′ = Xb; b′ = q′b;

a1 = aX ′; a2 = a; a3 = X ′; a4 = 1;

a · z = Xb′ + c1Y 1 + c2Y 2;

where (c1, c2) = h(Y 1, Y 2, a)};
Return 1

else Return 0



.

The algorithms Cert() and CertVerify() can be modified to certificate and

verify a new long-term key pair generated by Keygen(), which means the

scheme support key-evolving almost for free.

–

Sign(tsk, tpk,m) :=


parse tsk = (w1, w2, rs); tpk = (X ′, b, b′);

y ← {1,−1}; a = (X ′, 1);u = (yw1, yw2);

(Y 1, Y 2, z) = FS(a, u, sSample(rs));

τ = (Y 1, Y 2, z);

 ,

where the argument of the implicit hash function should include the message

m, τ is the signature on m; and sSample() will be explained later.

Lattice Signature can be as Simple as Lattice Encryption 9

–

Verify(τ,m, tpk) :=



parse τ = (Y 1, Y 2, z); tpk = (X ′, b, b′);

where z = (z1, z2);

if {
|zi|2 ≤ n ∗ D2 for i = 1, 2;

X ′z1 + z2 = b′ + c1Y 1 + c2Y 2;

where (c1, c2) = h(Y 1, Y 2, (X ′, 1),m)};
Return 1

else Return 0


.

Note that the signing algorithm is of Bliss type, so the trapdoor problem is

NTRU. This makes linear attacks harder than the LWE case. We will consider

general statistic attacks and decide the requirements on the samplers next.

4 Security Analysis and Design of The Samplers

The signature part of the scheme is a plain Bliss type signature, and the cer-

tificate part is a Σ-protocol on proving knowledge of short integer solutions of

an equation which indicates the knowledge of the private keys. So we suppose

that the only weakness of the scheme is that the z part of both the certifi-

cate and signature leaks information about secrets which might be derived by

statistical methods. Our design aims to restrict such leaked information in an un-

exploitable form: either highly noised or outcome of a one-way function over the

large set of secret variables. Known statistical attacks include: linear, quadratic,

and guess-and-determine. Our secret samplers prevent the attacks by introducing

corresponding noises and (or) making the statistic problem more demanding on

the number of samples. We next explain these attacks and the counter-measures

of the samplers. It will be verified that our scheme is secure against general s-

tatistics attacks assuming the Gaussian of algebraic expression of large numbers

of semi-Gaussian variables.

4.1 Linear and guess-and-determine attack

Consider the random variable z = u + r over R where r is Gaussian with pa-

rameter σ, u = xw for the certificate and u = (−1)iw for the signature, the

constant secrets are x,w in these two cases respectively. The linear attack can

be modeled as learning the constant secrets by investigating the components of

z individually given t samples of z. The guess-and-determine attack is to do so

by guessing correlations of the samples and the components, where the sample

10 D. Ye, J. Xu, G. Huang, L. Hu

statistics are used to verify the guess. Guessing the correlations of a subset of

samples is to make components of z have more exploitable distributions over

these samples; Guessing correlations of the components is to hit a subset of the

components which has exploitable joint distribution. The security level restricts

the space of guessing. An important issue is to estimate the bound of numbers

of samples for a successful attack. One kind of bound is to achieve a high enough

distinguishing advantage between the correct guess and wrong ones, which might

over-estimate the actual bound because of other attacks.

The following structural guessing space only needs small distinguishing ad-

vantage to success, so gives a bound hopefully for all attacks. A correct guess of

correlations of the components is a section w0 (consecutive components) of the

secret up to a shift (multiplication by (−1)bT j for some j, b). The attack works

as follows: first searches the whole set of candidates w0 (polynomials with a fixed

degree bound, fixed constant term 1, s− 1 other non-zero terms), excludes some

according to statistical analysis on w∗0z; then searches connections among re-

maining candidates. A connection means two candidates can be shift-jointed to

a larger section with large overlap. As long as sufficiently large portion of wrong

guesses can be excluded, then w may be recovered by a connecting-process among

the remaining candidates: if enough sections of w are included in the candidate

sets to allow connecting while wrong candidates are much harder to connect,

then the attack works. It is not hard to understand that the connecting-process

tolerates exponentially many candidates. To resist the attack, we need that the

portion of remaining wrong guesses is comparative with the portion of remaining

correct guesses.

The case u = xw: Both u and r are modeled as Gaussian, so is z. Since

each component of z has identical distribution, linear attack gets nothing. For

guess-and-determine, there are no correlations between samples. Consider

z′ = w∗0z = (w∗0u) + (w∗0r) = u′ + r′.

Again all z′, u′, r′ are Gaussian, and for correct guess, the mean value E(|u′|2) is

k|w0|2 greater than usual, if r were independently Gaussian. This would be dis-

tinguishing. Our structure of r make E(|r′|2) has variation E(|r′|2)/(4|w0|n1/2)

with respect to w0, which is far greater than k|w0|2, thus there is no way to

exclude any false guesses. So guess-and-determine attack does not work.

The case u = (−1)iw: Each component of z has distribution χσ,1 or χσ

according to w is non-zero or zero at the position. Linear attack is meant to

distinguish χσ,1 with χσ with σ = D. For guess-and-determine, suppose we

Lattice Signature can be as Simple as Lattice Encryption 11

guess the i in t samples and a section with s non-zero entries. A correct guess

results in a sample in distribution X = (1 + χD)st × (χD,1s)
m corresponding to

some component of z′ = w∗0z; and n− 1 samples for distributions corresponding

to the other components, which are no more apart than the distribution Y =

(χD)st × (χsD)m, where m is the number of signatures by w. For a wrong guess,

what we get is no more apart than n samples of Y . Thus the ability of any

algorithm to exclude wrong guesses is bounded by probability to exclude sets

of n samples of Y while trying to let sets consisting of n − 1 samples of Y and

1-sample of X remain. The following is some computations for formulating the

requirements to defeat the attack.

1. Bounding st: to test all candidates of w0 we need a workload of

2s−1
(

(s− 1)n/k

s− 1

)
the whole complexity in bits of the attack is

t+ (s− 1) + (s− 1) log(((n/k)− 1) exp(1)) = λ+ o(1)

So we get st ≤ (λ + 8)2/(4(log((n/k) − 1) exp(1) + 1)) << D2, which will

indicate that guessing i is not helpful for our parameter sets.

2. Bounding s: set t = 0, we get s ≤ λ/(log((n/k)− 1) exp(1) + 1) + o(1).

3. To allow connecting of remained correct guesses, the portion of them should

be above 1/s.

4. If (Y,X) is (1/s′, θ(s′))-close, and s′nθ(s′) > 5 for 1 ≤ σ′ ≤ s, then the

portion of wrong guesses remained is very close to that of the correct guesses,

and the attack fails.

These condition easily give a bound tSN for the number of times that a tempo-

rary key can be used.

4.2 Quadratic Attacks

Quadratic statistical attacks are first introduced in [17, 13]. This kind of attacks

exploit correlations over the whole component set, and can be formulated as

follows: given two random variables z = yw + r, z′ = yw′ + r′ over R, where

w,w′ are constant (but unknown), r, r′ are Gaussian with parameter σ, and y is

a variable called the intersection of z, z′. Note that

z∗z′ = |y|2w∗w′ + r′′

12 D. Ye, J. Xu, G. Huang, L. Hu

which means w∗w′ becomes the target of linear attacks as long as r′′ is balanced.

To deal with this attack, we simply let the pair r, r′ share correlated secrets so

that r′′ contains structured bias to flood w∗w′. One way to do this is as follows.

Let (ri : 1 ≤ i ≤ l), (r′i : 1 ≤ i ≤ l) be two secret but fixed sequence over Rq,

r0 =
∑

1≤j≤l

rjyj , r
′
0 =

∑
1≤j≤l

r′jyj ,

where the shared yjs are variables from some distributions. Let r = r0 + y,

r′ = r′0 + y′ where y, y′ are independent. Now it is easy to see that the mean

value of z∗z′ is a linear combinations of w∗w′ and the r∗j r
′
js. We let l = 16 to

make such a function un-exploitable. Note that this technique works for the pair

(z, z) too, where we let the two sequence be identical.

Our samplers play the trick to all intersected pairs of zs in Cert() and Sign():

all reflexive pairs (z, z); (z1, z2) in Sign() and (z1, z3), (z2, z4) in Cert(). To reduce

secret size, we let all sequences share the same set {si : 1 ≤ i ≤ 16}, and the

distribution of yjs varies for each pair. In samplers sSample() and rSample(),

the whole r1 part treat non-reflexive pairs and whole r2 part treat reflexive pairs.

The pairs across the Cert() and Sign() are not treated, they do not harm

security as long as the number of total signatures for the long term key is re-

stricted below a bound SN . For example, the two z1s in Cert() and Sign() may

result in

|w1|2(−1)ix1 + r

where we may model r as Gaussian with parameter σ = D2n1/2. Divided by

k = |w1|2, it becomes

(−1)ix1 + r′

where r′ can be modeled as Gaussian with parameter D′ = D2n1/2/k. This is the

previous guess-and-determine problem with the effective noise size D multiplied

by a factor Dn1/2/k; so the bound SN is much larger than the bound for the

temporary key, and is easily computable. Note that there are two copies of the

same problem, the s should be doubled in computation of SN . In our examples,

we don’t let tSN, SN assume their maximal values according to above condi-

tions, one can verify that the values we recommend satisfy the above conditions

for the attack to fail. The actual D we used in these computations is about 10%

lower than specified, this makes implementation of the sampling easier.

This completes the specification of our scheme for the security part, the

remaining details are only relevant to parameter choice or efficiency.

Lattice Signature can be as Simple as Lattice Encryption 13

5 Structured Multiplications

Next, we consider the techniques to optimize implementation of lattice public

key cryptography, since we aim to give a light-weight integration of all functions.

Note that the most computation-intensive operation in lattice PKC is polyno-

mial multiplication if our signature scheme is used. A simple fact is that, using

structured secret (and/or noise) will avoid multiplication of general elements in

the ring in the whole encryption scheme and the signing algorithm (only verifica-

tion of signatures need such operation). Multiplication by a structured element

will be done by tens of shift-additions in R: a shift-addition is of the form a+T ib,

where the shift T i is cheap in software and free in hardware. We will count the

computation cost in number of shift-additions, and say the cost of an element

(denoted as c()) meaning the cost of multiplication by it.

Note that elements in Sd have cost d, and c(a+ b) = c(ab) = c(a) + c(b). The

structure we pose on the secrets and random numbers is that they are algebraic

expressions of some Sd. We have the following observation:

In RLWE problem in PKC: (a, as + e) the distribution K can be replaced

with a structure S(K) of cost in tens (< 2dc). No known attacks on RLWE can

make uses of this structure except: the (birthday) exhausting of s (or e).

To see this, note first that the Gaussian parameter of K (< 10 in lattice

PKC) can be approximated by a structure of extremely low cost (consider the

product of (S2s and S3s) which is weak for the exhausting attack. We can lower

the algebraic degree and use the sum of products and using other small Sds

to adjust the attack cost to the security level. Usually, we can get the desired

structure of cost < 2dc.

Example. The structure S(2 × 12 + 3 × 10 + 3 × 9) has the same Gaussian

parameter as S81, and has cost 35, and birthday complexity |S2|S5||S3||S9| >
2128.

For any distribution K, the distribution S(K) means a structure of such

low cost but high enough birthday complexity, and with approximate Gaussian

parameter as K, and we denote S(N) as the structured elements of R with

Euclidian norm square N , for example, S(2× 12 + 3× 10 + 3× 9) ∈ S(81).

This observation will make encryption schemes with different Gaussian pa-

rameters all achieve the same level of extreme efficiency.

6 Implementation Techniques

To optimize our scheme towards extreme speed and light-weight, we recommend

additional techniques in our structured secrets and samplers.

14 D. Ye, J. Xu, G. Huang, L. Hu

6.1 Rgen()

The objective of this algorithm is to generate the secrets {si : 1 ≤ i ≤ 16}.
We need multiplication by si is simple. One way to do this is to let it randomly

chosen from S(Ns), where Ns is the desired euclidian norm square. We guess that

this is not secure. So we use the following algorithm: Suppose Ns ≈ 2l13l25l3 .

{si : 1 ≤ i ≤ 16} is initialize as random elements of weight 1. Then it goes rounds

of updates according to the norm factorization Ns ≈ 2l13l25l3 : each round each

element gets the norm multiplied by the corresponding factor d by a replacement

with signed-shifts sum of d previous round elements, until the desired norm Ns is

obtained. Meanwhile, the whole process is recorded as the structure of the final

elements in a list rsl, which makes multiplication by these elements structured.

In the description of the following algorithms, all variables are global and static.

RGen() :=



rsl = {};
y = (y1, y2, · · · y16) = 0;

for (1 ≤ j ≤ 16)

sj ← S1; append sj to rsl;Bs = 1;

end-for;

repeat l1 times Round(2);

repeat l2 times Round(3);

repeat l3 times Round(5);


,

where Round(·), round(·) is defined as

Round(i) :=



for (1 ≤ j ≤ 16)

repeat s′j = round(i) until 0.95iBs ≤ |s′j |2 ≤ 1.05iBs;

append y to rsl;

end-for;

for (1 ≤ j ≤ 16)

sj = s′j ;

end-for;

Bs = i×Bs;


,

round(i) :=


sample random integers dj ≥ 0 for 1 ≤ j ≤ 16,

such that
∑
j dj = i;

sample yj ∈ Sdj for 1 ≤ j ≤ 16;

return (
∑
j yjsj)

 .

Lattice Signature can be as Simple as Lattice Encryption 15

Note that the list rsl can be compressed by encoding.

6.2 Sampling of r1

Let dy be the integer such that 0.8D2n ≈ 2dcdyNs (in fact we should first choose

dy then decide Ns), and

rd1(i) :=


sample random integers dj ≥ 0 for 1 ≤ j ≤ 16,

such that
∑
j dj = dy;

sample yj ∈ Sdj for 1 ≤ j ≤ 16;

return (
∑
j yjsj ,

∑
j yjsj+i (mod 16))

 .

In rSample(), suppose r1 = (r11, r12, r13, r14), we let

(r11, r13) = rd1(1); (r12, r14) = rd1(2).

In sSample(), we let

(r11, r12) = rd1(3).

6.3 Sampling of r2

Let pi = 1/16 + (2i − 1)/256 for 1 ≤ i ≤ 8, and pi+8 = 1/16 − (2i − 1)/256 for

1 ≤ i ≤ 8.

rd2(i) :=


sample random integers dj ≥ 0 for 1 ≤ j ≤ 16,

according to the distribution E(dj) = dypj+i and such that
∑
j dj = dy;

sample yj ∈ Sdj for 1 ≤ j ≤ 16;

return (
∑
j yjsj)

 .

We let the 6 components of r2 in rSample() and sSample() be generated by

rd2(i) : 1 ≤ i ≤ 6 respectively. This makes the counter-measures for the reflexive

pairs in quadratic attacks do not cancel each other.

6.4 Efficiency

What is required about dy? First consider its impact on security of commitments

Y s, which are RLWE instances with quite large gaussian parameter. A safe way

is to let the components of r1s and r2s never repeat (too small dy may results in

such repeats), i.e. each RLWE instance is fresh. But it seems that such repeat is

not so harmful: firstly repeats are hard to detect; and secondly even few repeats

16 D. Ye, J. Xu, G. Huang, L. Hu

at problem instances with the same coefficients are known, the large gaussian

parameter makes them remain hard. Now look at how dy affects zs. Each z is an

instance of the assumed-hard problem (nonlinear equations of scarce variables

with number of variables far greater than equations). These instances share

some common variables (the secrets x, s, w, and at present we don’t know how

to exploit this. We select dy to keep these instances at least λ-bit information-

theoretic apart from each other. This implies the entropy of each component of

r2 is greater than λ/2. For λ = 128, 80, we set dy = 7, 4 respectively.

Another implementation issue is how to ensure the norm of the zs within the

desired bound. If the signing device has the resources to compute norm squares

(which needs integer multiplications), we may choose to append (before return)

a loop to the FS() function to ensure this by just refreshing the hash values:

ensure() :=



i = 0;

while there’s z violating norm bound, do

i+ +;

(c1, c2) = hi(Y 1, Y 2, · · ·);
z = u+ c1r1 + c2r2;

end-while

ih = i;


,

where hi(Y 1, Y 2, · · ·) can be implemented as consecutive output of a stream

cipher initialized using (Y 1, Y 2, · · ·) (h0 = h), and the integer ih is included as

a part of the signature (or certificate). When the signing device does not support

integer multiplication, we may choose to let the caller do the check and let the

device redo when this fails. We may choose the above parameters to make the

average repeating times < 0.1.

Now it is easy to see that the cost of the algorithm Sign() is under 1.1(4dc +

6dy). The cost of Cert() is much higher since it does too much: key generation and

pre-computations for the signing algorithm; yet when shared by each signature, it

is much lower. Note that the computations in Cert() are mainly integer additions

together with few general multiplications and 1 inversion in the ring.

6.5 Examples

We let n = 512, q = 256, k = 45, D = 32, dc = 13, dy = 4 for 80 bits security.

Let Ns = 212, i.e. l1 = 12, l2 = l3 = 0. In sampling of rs, we ensure their norm

squares do not exceed 1.1dyNs. The average cost of each signature is about 80;

while each encryption of LAC [11] cost 256 plus complex coding overhead. If we

Lattice Signature can be as Simple as Lattice Encryption 17

choose the random secrets in encryption drawn from S(2 × 7 + 2 × 8 + 2 × 8),

then the integrated encryption costs 52, and without any encoding the decryption

virtually never fails. We recommend the bound of number of signatures for each

temporary key is tSN = 212, and for the long term key SN = 225.

For 128 bits security, in the light-weight domain, we recommend n = 512,

q = 1024, k = 127, D = 100, dc = 19, dy = 7, Ns = 23×34×52. The distribution

for random secrets in encryption is S(6× 7 + 6× 7 + 7× 7). Each signature cost

about 130, each encryption cost 74. We can set tSN = 215, and SN = 230.

If we wish a huge bound SN , we have to make n larger. For n = 1024, we can

set q = 216, k = 65, D = 212. We can set tSN = 240, SN = 280. In this case, we

can use the basic form of the Fiat-Shamir protocol to make the size of signature

about 1 ring element. The resulted effective noise size is D = 212/(18)1/2, it is

safe to set tSN = 232 and SN = 264. Each signature costs < 100 in this case.

7 Applications

Note that transporting and verification of the temporary keys may be imple-

mented using a public directory which functions as in common PKI, this makes

the signer only need to send signatures to the verifier, and the verifier only need

to verify the signature if the public service is trusted (its misbehavior is easy to

detect). This greatly reduces the workload both for signer and verifier. If the veri-

fier is resource-limited, the main workload in Cert(),CertVerify(),Verify() which

involve multiplication/division of general elements in Rq, can also be delegated

efficiently.

To compute AB for any public random A,B: Pick v, v′ ← S(K) and send

the helper (A,B, vB + v′), who returns (u = AB, u′ = A(vB + v′)), and now

u′ = vu+v′A means u is the right answer: any success cheating means the helper

can recover v, v′, contradicting the RLWE hardness.

To compute w/A for sensitive general A and w ∈ Sk: Pick v, v′, v0, v1, v2 ←
S(K), let A′ = Av, delegate-compute A′′ = A′X, let B′ = v(w + A′′v2) +

A′v′, B = v0A
′ + v1B

′, and send the helper (A′, B,B′), who returns (u =

B/A′, u′ = B′/A′). Now verify u = v0 + v1u
′, then accept u′ − v2X − v′ as

the right answer.

Now that the whole public key functions are realized using only very limited

computations, so allow a simple integrated circuit implementation. Together

with construction of integrated symmetric key functionalities similar as [19], we

could get a small but full-fledged crypto circuit (co-chip).

18 D. Ye, J. Xu, G. Huang, L. Hu

Acknowledgments: This work was supported by the National Natural Science

Foundation of China (Grants 61732021).

References

1. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postleth-

waite, E.W., Virdia, F., Wunderer, T.: Estimate all the {LWE, NTRU}
schemes! In: Catalano, D., Prisco, R.D. (eds.) Security and Cryptogra-

phy for Networks - 11th International Conference, SCN 2018, Amalfi, Italy,

September 5-7, 2018, Proceedings. Lecture Notes in Computer Science, vol.

11035, pp. 351–367. Springer (2018). https://doi.org/10.1007/978-3-319-98113-

0 19, https://doi.org/10.1007/978-3-319-98113-0 19

2. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: tightly-secure efficient

signatures from standard lattices. IACR Cryptol. ePrint Arch. 2015, 755 (2015),

http://eprint.iacr.org/2015/755

3. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: Lee, D.H.,

Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. pp. 1–20. Springer

Berlin Heidelberg, Berlin, Heidelberg (2011)

4. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bi-

modal gaussians. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, US-

A, August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer Science,

vol. 8042, pp. 40–56. Springer (2013), https://doi.org/10.1007/978-3-642-40041-4 3

5. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:

CRYSTALS - dilithium: Digital signatures from module lattices. IACR Cryptol.

ePrint Arch. p. 633 (2017), http://eprint.iacr.org/2017/633

6. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge U-

niversity Press (2012), https://www.math.auckland.ac.nz/%7Esgal018/crypto-

book/crypto-book.html

7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices

and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of

the 40th Annual ACM Symposium on Theory of Computing, Victoria,

British Columbia, Canada, May 17-20, 2008. pp. 197–206. ACM (2008). http-

s://doi.org/10.1145/1374376.1374407, https://doi.org/10.1145/1374376.1374407

8. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:

NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.)

Topics in Cryptology - CT-RSA 2003, The Cryptographers’ Track at the R-

SA Conference 2003, San Francisco, CA, USA, April 13-17, 2003, Proceed-

ings. Lecture Notes in Computer Science, vol. 2612, pp. 122–140. Springer

(2003). https://doi.org/10.1007/3-540-36563-X 9, https://doi.org/10.1007/3-540-

36563-X 9

Lattice Signature can be as Simple as Lattice Encryption 19

9. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: an NTRU lattice-based signature

scheme. In: Pfitzmann, B. (ed.) Advances in Cryptology - EUROCRYPT 2001,

International Conference on the Theory and Application of Cryptographic Tech-

niques, Innsbruck, Austria, May 6-10, 2001, Proceeding. Lecture Notes in Com-

puter Science, vol. 2045, pp. 211–228. Springer (2001). https://doi.org/10.1007/3-

540-44987-6 14, https://doi.org/10.1007/3-540-44987-6 14

10. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational co-

efficients. MATH. ANN 261, 515–534 (1982)

11. Lu, X., Liu, Y., Zhang, Z., Jia, D., Xue, H., He, J., Li, B.: LAC: practical Ring-

LWE based public-key encryption with byte-level modulus. IACR Cryptol. ePrint

Arch. p. 1009 (2018), https://eprint.iacr.org/2018/1009

12. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Jo-

hansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture Notes in Comput-

er Science, vol. 7237, pp. 738–755. Springer (2012). https://doi.org/10.1007/978-

3-642-29011-4 43, https://doi.org/10.1007/978-3-642-29011-4 43

13. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis

of GGH and NTRU signatures. J. Cryptol. 22(2), 139–160 (2009),

https://doi.org/10.1007/s00145-008-9031-0

14. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V.,

Pornin, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech.

rep., National Institute of Standards and Technology (2020), available at

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions

(2020)

15. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algorithm-

s and solving subset sum problems. Math. Program. 66, 181–199 (1994). http-

s://doi.org/10.1007/BF01581144, https://doi.org/10.1007/BF01581144

16. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse and ternary

secret lwe. Cryptology ePrint Archive, Report 2019/1019 (2019), http-

s://eprint.iacr.org/2019/1019

17. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signa-

tures. In: Biham, E. (ed.) Advances in Cryptology - EUROCRYPT 2003, Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Warsaw, Poland, May 4-8, 2003, Proceedings. Lecture Notes in Computer Science,

vol. 2656, pp. 433–448. Springer (2003), https://doi.org/10.1007/3-540-39200-9 27

18. Ye, D.: Can lattice signature be as efficient as lattice encryption? IACR Cryptol.

ePrint Arch. p. 2 (2021), https://eprint.iacr.org/2021/002

19. Ye, D., Shi, D., Wang, P.: Lightweight AE and HASH in a single

round function. Cryptology ePrint Archive, Report 2018/1126 (2018), http-

s://eprint.iacr.org/2018/1126

