
On Regenerating Codes and Proactive Secret
Sharing: Relationships and Implications

Karim Eldefrawy1, Nicholas Genise2, Rutuja Kshirsagar3, and Moti Yung4

1 SRI International, USA,
karim.eldefrawy@sri.com,

2 Duality Technologies??, USA,
ngenise@dualitytech.com,

3 Virginia Tech, USA,
rutujak@vt.edu,

4 Google and Columbia University, USA
motiyung@google.com

Abstract. We look at two basic coding theoretic and cryptographic
mechanisms developed separately and investigate relationships between
them and their implications. The first mechanism is Proactive Secret
Sharing (PSS), which allows randomization and repair of shares using in-
formation from other shares. PSS enables constructing secure multi-party
computation protocols that can withstand mobile dynamic attacks. This
self-recovery and the redundancy of uncorrupted shares allows a system
to overcome recurring faults throughout its lifetime, eventually finishing
the computation (or continuing forever to maintain stored data). The
second mechanism is Regenerating Codes (RC) which were extensively
studied and adopted in distributed storage systems. RC are error cor-
recting (or erasure handling) codes capable of recovering a block of a
distributively held codeword from other servers’ blocks. This self-healing
nature enables more robustness of a code distributed over different ma-
chines. Given that the two mechanisms have a built-in self-healing (lead-
ing to stabilizing) and that both can be based on Reed Solomon Codes, it
is natural to formally investigate deeper relationships between them. We
prove that a PSS scheme can be converted into an RC scheme, and that
under some conditions RC can be utilized to instantiate a PSS scheme.
This allows us, in turn, to leverage recent results enabling more efficient
polynomial interpolation (due to Guruswami and Wooters) to improve
the efficiency of a PSS scheme. We also show that if parameters are not
carefully calibrated, such interpolation techniques (allowing partial word
leakage) may be used to attack a PSS scheme over time. Secondly, the
above relationships give rise to extended (de)coding notions. Our first
example is mapping the generalized capabilities of adversaries (called
generalized adversary structures) from the PSS realm into the RC one.
Based on this we define a new variant of RC we call Generalized-decoding
Regenerating Code (GRC) where not all network servers have a uniform
sub-codeword (motivated by non-uniform probability of attacking differ-
ent servers case). We finally highlight several interesting research direc-

?? This work was done entirely at SRI International.

1

tions due to our results, e.g., designing new improved GRC, and more
adaptive RC re-coding techniques.

1 Introduction

Many times in the past, it was found that different areas and concepts in com-
puting are related in some fashion. Uncovering such relations, in turn, led to
information flowing and ideas transferring across areas. In this work we deal
with two areas that are fundamental to major aspects of safe (and secured) self-
healing distributed computing. The first area, Coding Theory, is one of the oldest
and most fundamental branches of modern computing and communication, deal-
ing with keeping integrity of data in various situations (originally communication
channels, then storage media, and finally distributed fault tolerant storage). In
the context of modern distributed computing (clusters, storage systems, cloud
computing, etc.), a fundamental mechanism to perform fault-tolerant distributed
storage is to encode the data to be stored using regenerating codes (RC) [1] (our
first area’s concentration). RC are a class of error correcting codes (ECC) in-
vented in 2010, which, besides the traditional task of ensuring reliability of data
recovery, also provide for efficient repair (regeneration) of failed nodes (hold-
ing blocks of the codeword) in a distributed storage system, where recovery is
from information stored at other nodes, assuring better maintenance capability
of the distributed codeword. We note that most RC work is in the erasure codes
model, where servers can fail-stop, but some are in the error correcting mode
where servers’ memory can be maliciously modified.

The second area is Secret Sharing Schemes: given that data in distributed
cryptographic systems may be sensitive (e.g., a redundant storage of crypto-
graphic keys), these systems may be the target of byzantine/malicious corrup-
tion (not only random or fail-stop faults) which attempt to violate confidentiality
of the stored data and its availability. To that end, (threshold) secret sharing
(SS) was originally proposed as a fundamental cryptographic defense technique
in the late 70s. It distributes a secret with redundancy into shares, where, in
order to recover the secret, one needs a threshold of shares, while less than the
threshold of shares reveals no information about the secret; the mechanism was
employed heavily in security protocols. The security of the standard, and first,
SS technique (known as Shamir’s SS [2]) is based on polynomial interpolation,
and is closely related to Reed-Solomon codes [3]. This relation was the first hint
regarding certain connections between coding theoretic methods and sharing
secrets procedures, yet this, early uncovered relationship did not continue to
attract much attention since then.

In 1991, motivated by malicious adversaries being mobile as in the spread of
malware, SS was extended to what became known as Proactive Secret Sharing
(PSS) [4]. PSS (our second area’s concentration), in fact, protects against a
mobile adversary that can change the subset of corrupted nodes overtime and
thus may eventually compromise all involved nodes over a long period of time
(while the standard SS notion only assumes that a subset of the nodes can

2

be corrupted, even over a long period of time). PSS, in fact, adds to SS the
ability to t-wise randomize the information held by the sharing servers, and
allows for the recovery of the current state held by a server in case a share has
been previously destroyed by the adversary which moved away. Since then, PSS
was extended [5, 6] to more generic settings, beyond threshold adversaries, i.e.,
what is often called general adversary structures. PSS has also been employed in
developing secure multi-party computations against mobile adversaries [6], and
for building threshold cryptosystems, say, for supporting distributed certification
authorities, and in recent years in various Blockchain based protocols, e.g., [7].

In this paper, renewing connections between coding theory and distributed
secret sharing methods, we explore fundamental connections between RC and
PSS. It is a natural question to ask, due to the fact that both notions involve
reconstruction of information (shares or codewords) held by servers using infor-
mation (shares or codewords) held at other servers , and that some schemes in
both areas are, in fact, related to Reed Solomon (or other algebraic) codes. We
also suggest (and demonstrate) utilization of the observed connections to im-
ply new useful paradigms and extensions in one area (RC), building on related
paradigms existing in the second area (PSS).

Our Contributions: This paper is the first systematic study of the close
relation between proactive secret sharing (PSS) and regenerating codes (RC),
and makes the following concrete contributions:

1. We show how security of common PSS schemes (treating/restricting leakage
as/to full shares only leakage) fails to hold in simple generalized leakage mod-
els – models allowing leaks of smaller pieces of shares. This is accomplished
by developing a new generalized model (Section 4) to reason about PSS and
analyze its relation to RC. This new model takes into account partial leak-
age of information about shares of non-compromised nodes as opposed to
complete information leaked (all or nothing) from compromised nodes.

2. We demonstrate a (conditional5) equivalence between PSS and RC. We pro-
vide two main theorems (Theorems 1 and 2 in Section 5) as a simple starting
point demonstrating a conditional equivalence between PSS and RC. This
allows for a flow of ideas and constructions between the two areas.

3. As a first demonstration of a flow of constructions and ideas from RC to
PSS, we show that due to our result proving the equivalence between the
two notions, recent techniques for efficient polynomial interpolation due to
Guruswami and Wootters [8] may improve efficiency of several bottleneck
sub-protocols in PSS. We also show that such efficient interpolation may
cause a threat if parameters are not carefully calibrated, i,e., such inter-
polation technique may be used to attack PSS over a long period of time,
(Corollary 1 in Section 5); further studying such attacks may be of indepen-
dent interest.

5 Our condition is that an RC code is MDS. This is to simplify this first treatment of
the topic, we note that there is more work required to understand what conditions
on the RC side imply certain types of security on the PSS side.

3

4. Conversely (i.e., considering ideas flowing in the other direction), we map
(in Section 6) adversarial capabilities – called general adversary structures –
from the PSS realm into the RC realm by defining a new notion of RC, called
Generalized-decoding Regenerating Code (GRC). In a GRC, the decoding
structure is captured by a collection of specific subsets of nodes that may
decode, as opposed to the usual case where any set larger than a given
threshold can decode. We also show how to construct a GRC scheme based
on PSS and Theorem 1. We emphasize a general decoding structure is needed
in many applications since network nodes often differ greatly in reliability,
trust, and connections.

Paper Outline: Section 2 provides the necessary background and notation,
whereas Section 3 overviews related work in PSS and RC; Section 4 describes a
new generalized model to reason about PSS and which allows us to analyze its
relation to RC; Section 5, in turn, contains the main technical results mapping
RC to PSS and PSS to RC, while Section 6 discusses how relationships between
the PSS and RC notions can further give rise to new extended notions in the RC
realm. Our first example of such implications is mapping the generalizations of
the capabilities of adversaries (called general adversary structures) from the PSS
realm into the RC one, and define a new notion of RC which we call Generalized-
decoding Regenerating Code (GRC). Finally, we conclude in Section 7 with a
discussion of open questions and future research directions.

2 Background and Notation

In this section we define the underlying mathematical and protocol notions em-
ployed in this work. Due to space constraints, we have further background ma-
terial in the Appendix.

Finite Fields. We denote finite fields as F , L always such that F is a finite
extension of L (L ≤ F). Let GF (p) be the underlying prime field and let t = [F :
L] be F ′s degree over L. The ring of polynomials with coefficients in F is denoted
as F [x] and the subset of polynomials with degree at most k − 1 is denoted as
F [x]≤k−1. The latter is a k-dimensional vector space over F . Whenever we need
the fields’ cardinalities, we say F = GF (qt) and L = GF (q) (where q = pd such
that d is some positive integer).

Definition 1. Let F = GF (qt) be a field extension of L = GF (q) with degree t.
Then, the field trace is defined as

trF/L(α) = α+ αq + αq
2

+ · · ·+ αq
t−1

.

4

2.1 Reed-Solomon Codes

Definition 2. An (n, k) Reed-Solomon code with distinct evaluation points A =
{α1, . . . , αn} ⊂ F is the subspace of Fn defined as

RS(A, k) := {(f(α1), . . . , f(αn))|f ∈ F [x]≤k−1}.

We call n the block-length and k the dimension of the code. Reed-Solomon
codes are Maximal Distance Separable (MDS) codes since they achieve the Sin-
gleton bound. That is, their minimum distance is n−k+ 1 and any collection of
k code symbols, f(αi), can be used to efficiently recover the original message, f .
One can also efficiently decode Reed Solomon codes in the presence of k < n/3
errors using the Berlekamp-Welch algorithm [9].

2.2 Regenerating Codes

An (n, k, d, α, β) regenerating code [1] distributes a file, represented as a poly-
nomial f in F [x]≤k−1, by encoding it and sending elements of the encoding to n
nodes where each node stores α bits of data. A failed node can recover (repair)
its share by accessing size β data from d surviving nodes, and we denote the
repair bandwidth as γ = dβ. Any k nodes are able to reconstruct the original file
f when using their collective stored data. For example, an (n, k) Reed-Solomon
code gives α = log2 |F | at each node and using the trivial reconstruction to re-
pair a node yields d = k, β = log2 |F |, and γ = k log2 |F |. We give the formal
definition in Definition 3 for completeness.

Definition 3. Let P1, . . . ,Pn be labeled as nodes and S be labeled as a share-
generator. An (n, k, d, α, β) regenerating code is a tuple of three protocols (En-
code, Repair, Decode) defined as follows:

– Encode: This protocol has S take a file/string, represented by f ∈ F [x]≤k−1,
as input and distributes a codeword c = (c1, . . . , cn) ∈ Fn to the storage
nodes according to their index (ci to Pi).

– Repair: Here, a failed node Pj contacts d other nodes, each of which sends
it β bits of data. Then, the node computes a function on their sent data
(δ1, . . . , δd) to generate its new local storage.

– Decode: This protocol accesses any k nodes to reconstruct the original file/string.

It is clear from the construction that each failed node can be reconstructed
by accessing full data from at least k other nodes. However, this does not provide
the optimum bandwidth. Regenerating codes facilitate the failed nodes to access
fewer bits (β) from more than k surviving nodes for reconstruction.

2.3 Secret Sharing Schemes

Here we assume that all secret sharing schemes operate over finite fields. In
general, we use the term secret sharing (SS) scheme to denote the following:

5

Definition 4. Let F be a finite field. A (k, n, F) information-theoretically se-
cure secret threshold sharing scheme over F is a pair of protocols used between
servers labeled as, the unique and fixed sharing node S and the set of storage
nodes A := {P1, . . . ,Pn}:

Share(s0): On input s0 ∈ F , S randomly generates n shares x1, . . . , xn ∈ F
and returns xi to server Pi.
Reconstruct(s): Any k+1 nodes combine their shares, represented as a vector
x ∈ F k+1, to reconstruct the secret s′ ∈ F .

Let H(·) be the classical Shannon entropy function. For information-theoretic se-
curity, we assume s0 is a non-trivial random variable over F . Then, the scheme’s
correctness and security is defined as follows:

Security: If x ∈ F k is any (k)-sized subset of shares xj1 , . . . , xjk , then
H(s0|x) = H(s0) > 0.
Correctness: If x ∈ F k+1 is any (k+ 1)-sized subset of shares xj1 , . . . , xjk+1

,
then H(s0|x) = 0.

In the following definition, we break up the timeline into distinct phases once
the shares are distributed. Each phase is represented by a positive integer σ.

Definition 5. A proactive secret sharing scheme (PSS) is a secret sharing scheme
as in definition 4 with the following additional algorithms:

Refresh: All storage nodes P1, . . . ,Pn use their respective shares from phase

t to generate new random shares; x
(t+1)
1 , . . . , x

(t+1)
n (for the same secret).

Then, it distributes x
(t+1)
i to Pi.

Recover: A corrupted node, Pr, contacts d uncorrupted nodes which combine
their shares to compute (potentially with new randomness).

Next, we define Shamir’s secret sharing scheme and its accompanying proac-
tive protocols [2, 10]6. We assume the finite field is at least the size of the number
of storage nodes plus one, |F | ≥ n + 1. We denote the set of nodes needing
to recover their share as B, with |B| ≤ k, and the non-corrupted nodes as
D := A \ B. The set of evaluation points A = {α1, . . . , αn} ⊂ F is fixed before-
hand and known to all nodes.

Definition 6. The proactive (n, k) Shamir secret sharing scheme over a finite
field F with evaluation points A = {α1, · · · , αn} ⊆ F is defined as follows:

Share(s0): On input s0 ∈ F , S randomly generates a degree k polynomial f

over F conditioned on f(0) = s0. Then, S sends x
(0)
i := f(αi) ∈ F to Pi.

Reconstruct(x): Any k + 1 nodes interpolate their shares, represented as a
vector x ∈ F k+1, to reconstruct the secret s′ ∈ F .

6 There are more efficient PSS schemes, [11] for example, but we describe the scheme
in [10] for its clear relation to Reed-Solomon codes.

6

Refresh: Each storage node Pi generates a random polynomial δi of degree
k conditioned on δi(0) = 0 and sends δi(αj) to Pj for all j 6= i. Then, each
storage node Pi updates their share as xt+1

i ← xti +
∑
j δj(αi) (and erases

all intermediate values used to compute xt+1
i).

Recover: For each corrupted node Pr ∈ B, each Pi ∈ D does the following.
Generate a uniformly random polynomial of degree k, ξi, such that ξi(αr) =
0. Then, send ξi(αj) to Pj for all Pj ∈ D. Each Pj ∈ D updates their share
as xtj ← xtj +

∑
i,Pi∈D ξi(αj). Finally, each Pi ∈ D sends its updated share

xti to Pr and Pr interpolates them to get its original share, xtr.

2.4 Leakage Model

Leakage is fundamental to modeling secret sharing schemes. Here we define leak-
age functions using the terminology of [12]. We restrict the output of the leakage
function to field elements, either in some large field F or some subfield L ≤ F .

Definition 7. Let L ≤ F such that t = [F : L], and fix a secret sharing scheme
over F , denoted by Share : F → Fn. We denote LeakL = (LeakL1 , . . . , Leak

L
n) for a

length l L-leakage function with l < t, where Leaki : F → Ll is a leakage function,
possibly randomized, defined for each node. When (x1, . . . , xn) ← Share(s0),
we denote the collection of leakage outputs as (b1, . . . , bn) ← LeakL(x1, . . . , xn)
where bi = LeakL(xi). In addition, for any S ⊆ [n] we define RevealS : Fn → Fn

as revealing an entire share at node i if i ∈ S. That is, RevealS(i) = 1i∈S ·Sharei
where 1i∈S is the indicator function for S.

For epoch i, we denote F (i) ⊂ [n] as the set of nodes which leak full shares
and L(i) as the set of nodes which leak partial shares (elements in Ll).

3 Related Work

Now that we have introduced the basic notions and mechanisms we need and
employ, let us review further related earlier work.

Proactive Secret Sharing. The notion of proactive security was first proposed
by Ostrovsky and Yung [4], and subsequently utilized to protect cryptographic
keys by secret sharing them and computing RSA signatures in a distributed man-
ner [10]. Specifically, Proactive Secret Sharing (PSS) aims to protect against a
mobile adversary that can change the subset of corrupted parties over time and
therefore may eventually compromise all involved parties over a long period of
time; the model assumes that such a mobile adversary is limited to simultane-
ously corrupting no more than t parties during the same period though. PSS
initially only considered static groups and for settings with honest majorities,
Dynamic Proactive Secret Sharing (DPSS) schemes are both proactively secure
and allow the set of parties to dynamically change over time. The dynamic
group problem has been addressed [13–19], but mostly for the honest majority
and non-proactive settings, and only in [20] in the proactive setting.

7

In the dishonest majority setting most of the PSS literature [21, 22] assumes
a static group of parties, i.e., unchanged during the secret lifetime. PSS protocols
for dynamic groups with dishonest majorities were only recently constructed [23,
6]. As for any secret sharing against dishonest majorities, security is only com-
putational. In addition to efficiently handling dynamic groups, recent work [23]
introduces a notion of batched PSS that retain fairness against mixed (passive
and active) adversaries and reduces the communication complexity of DPSS from
O(n4) to O(n2) when batching is used and O(n3) in the single secret setting.

Regenerating Codes. A large file can divided into pieces, each of which is stored
at a different node using distributed storage. Server corruption can lead to loss
of information. Error-correction coding7 techniques allow the recovery of infor-
mation stored in a corrupted node using the information stored in other nodes.
Regenerating codes were first introduced by Dimakis et al. in [1] to improve the
repair bandwidth for distributed storage systems. The aim is to recreate the
information stored in a corrupted node without recreating the entire encoded
information. Given a file of size M, it can be divided into k pieces of size M/k
which are stored in n nodes using an (n, k) MDS code. Each node stores α sym-
bols. Information stored in a corrupted node can be recovered by accessing β
sub-symbols from d surviving nodes. This can be done in the following three
ways.

– Exact repair: The encoded block is regenerated exactly as before.
– Functional repair: The corrupted nodes are regenerated such that the new

system represents an MDS code of length n.
– Exact repair of systematic parts: This is a hybrid between the above two

repair schemes. The code contains exactly one replica of the information.
Systematic parts of the code are regenerated using the exact repair scheme
and the non-systematic parts are regenerated using the functional repair
scheme.

The trade-off between storage efficiency and repair bandwidth is a point of in-
terest. Two special cases of regenerating codes are given by the optimal cases:
minimum-storage regenerating (MSR) codes and minimum-bandwith regenerat-
ing (MBR) codes.

Other works. Though there are other works combining regenerating codes and
secret sharing, we emphasize that this paper is the first to do so in the proactive
secret sharing setting. First, Huang and Bruck [24] apply the GW paradigm to
threshold secret sharing schemes and prove optimality. They stay in the simplest
security model, ignoring leakage, and are not concerned with proactive schemes.
A previous work by Huang et al. [25] studies the communication complexity of
threshold secret schemes and presents a scheme with optimal decoding band-
width based on Reed-Solomon codes. However, [25] does not concern repairing

7 Regenerating codes are studied from the point of view of erasure recovery in coding
theory literature. However, here we refer to it as a subset of error-correction because
we also care about corruption of nodes along with node failures.

8

in secret sharing schemes, leakage, randomizing shares (proactive schemes), or
generalized decoding structures.

4 Leakage and Reconstruction: Old Models, New Lens

This section is to show how considering a simple leakage model affects the se-
curity of proactive secret sharing (PSS) schemes across epochs. We show the
connection between repairing Reed-Solomon codes (Subsection 2.1) and PSS
schemes using the leakage model described in (Subsection 2.4). In other words,
we show how the algorithms comprised in [8] can be used to attack an incorrectly-
implemented PSS scheme.

Model. Let (Share,Reconstruct,Refresh,Recover) be a Shamir-based (n, k, F) PSS
scheme (Definition 6) with evaluation points A′ ⊂ F . Our model is simple. Dur-
ing each epoch of a PSS scheme an adversary A receives either nothing, a collec-
tion of l < t small field elements (α ∈ Ll), or a full field element from each node.
Let l(i) be the number of subfield elements leaked in epoch i, and let f (i) be the
number of full field elements leaked during epoch i. The key notion throughout
this section is that the linear transformations used in [8]’s reconstruction al-
gorithms are independent of the polynomial f representing the distributed data
(potentially secret). In the notation of Definition 7, the polynomials µζ,α(x) only
depend on A8. Lastly, we extend the evaluation points to include 0 in order to
bridge Definitions 6 and 7: A := A′ ∪ {0}.

4.1 Static Leakage.

Here we look at the case to where the leakage function LeakL is static between
epochs.

Proposition 1. Let b be the repair bandwidth of the Reed-Solomon linear exact
repair scheme also being used as a Shamir-based PSS scheme. There is an ef-
ficient adversary which receives l(i) leaked subfield elements and f (i) leaked full
field elements which needs b−(tf (i)+ l(i)) subfield elements during a single epoch
to reconstruct the secret s0 ∈ F for a static leakage function between epochs.

The above proposition shows how an adversary can be under the security
threshold for whole shares, f (i) < k, during each epoch but can still reconstruct
the secret!

8 For example, Corollary 9 in [8] constructs these polynomials as µζ,α(α∗) = p(α) ·∏
β∈A\{α∗}(β−α

∗)∏
β∈A\{α}(β−α)

where p is a polynomial dependent only on the evaluation points

A.

9

4.2 Dynamic Leakage.

Here we consider a leakage function that changes between epochs. This setting
represents the case where storage nodes fail to completely erase some data used
in computing the Refresh protocol.

Proposition 2. Let b be the repair bandwidth of the Reed-Solomon linear exact
repair scheme also being used as a Shamir-based PSS scheme. Then, there is an
efficient adversary which needs b leaked subfield elements in order to reconstruct
the secret across epochs assuming the leaked nodes store a non-zero value.

Note that this is a strong leakage model. However, updating the leakage
function via multiplying and inverting finite field elements at each node is a
plausible scenario which should be known to those utilizing and implementing
PSS schemes.

5 On the Equivalence of Regenerating Codes and
Proactive Secret Sharing

In this section we prove the equivalence between Regenerating Codes (RC) and
threshold Proactive Secret Sharing (PSS) under certain conditions. Theorem 1
treats the PSS to RC direction, while Theorem 2 treats the reverse one, restricted
to linear, MDS codes. These properties of the RC are required for threshold
security and to construct a simple Refresh protocol.

Theorem 1. For each (t, n) proactive secret sharing scheme represented as a
tuple of algorithms (Share,Reconstruct,Recover,Refresh) which stores α bits at
each node and contacts d nodes in the RecoverPSS protocol (Definition 5),
each sending β bits of data to the failed node, there is an erasure (n′ = n, k′ =
t+1, d′ = d, α′ = α, β′ = β) regenerating code represented as a tuple of algorithms
(Encode, Decode, Repair), as in Definition 3.

Remark 1. We note that the rate given implicitly in Theorem 1 is only 1/n.
However, there are clear ways to achieve a better rate. The first is when the PSS
scheme is linear. Here, the encoding procedure usually involves a linear code of
dimension t+ 1 and t of the input symbols are uniformly random elements in F .
This randomness is only for security so we can replace these t symbols with data
elements. The second is the case of batching [20], employing a basic technique
from [26], where the PSS scheme takes a secret as an element in F l. The proof
of Theorem 1 for the batching case is the same except s, s′ ∈ F l.

The other direction, from RC to PSS only makes sense if we are able to show
threshold security. This was proven for non-proactive secret sharing schemes
with repair in [24, Theorems 1 and 2]. Here we extend this result to the proactive
setting.

10

Theorem 2. For every (n+ 1, k+ 1, d, α, β) MDS linear regenerating code over
F , there is a (k, n) proactive secret sharing scheme whose RecoverPSS protocol
contacts d nodes, each sending β bits to the damaged node.

Theorem 2 and the result of Guruswami and Wootters [8], Theorem 4 in
the special case where the number of parties equals the degree of the exten-
sion, together imply the existence of an alternative RecoverPSS protocol that
only receives symbols in a subfield for the Shamir-based PSS scheme. This may
be advantageous in settings with restricted communication during the recovery
phase. This is summarized in the following Corollary.

Corollary 1. The Shamir-based PSS scheme, Definition 6 [2, 10], over a finite
field F with subfield L ≤ F with degree t = [F : L] has an alternative RecoverPSS
protocol which contacts the remaining n − 1 nodes and receives t symbols in L
from each node in order to recover the lost share.

We emphasize that Corollary 1’s efficient recover protocol is information-
theoretically secure in the setting illustrated by Theorem 4, without leakage. This
is because Theorem 4’s repair algorithm only sends a user t subfield elements
and its secret is exactly comprised of t subfield elements.

6 From General Adversary Structures to General
Decoding Structures

In this section we demonstrate how, due to the relationships between the notions,
an interesting useful paradigm in one area (PSS) can induce an interesting new
notion in the other area (RC). Secret sharing (SS) schemes, and proactive SS
(PSS) in particular, can be extended [20, 23, 22, 6] to accommodate for different
adversaries beyond a threshold one (i.e., more general secure subsets of shares),
and to deal with dynamic change of the servers holding the shares (dynamic
groups). Such extensions make sense in the case of a network of nodes/processors,
holding shares jointly. Since RC is a coding theoretic technique for a network
of nodes/processors to hold sub-codewords, the extended notions make sense in
storage-oriented RC codes. Here we demonstrate such translation of a relevant
extension.

The most generic adversarial capabilities are captured (since PODC’97 [5])
using the general adversary structure (GAS) in the secure computation litera-
ture. The GAS notion is a more general (and practically motivated via different
availability of different types of servers in a network) and more flexible one when
modeling adversaries, compared to only the threshold limitation on corruptions.
GAS applies to various scenarios, for example when only special combinations
of nodes is required to reconstruct a secret, when some nodes are authorized by
some authority and others by another authority and combination of authorities
is required, etc.

Let 2P denote the set of all the subsets of nodes (P) involved in a secret
sharing scheme. A subset of 2P is qualified if nodes in the subset can reconstruct

11

the secret, while a subset of 2P that nodes in the set obtain no information about
the secret is called ignorant. Every subset of P is either qualified or ignorant9.
The secrecy condition is stronger: even if any ignorant set of nodes hold any
kind of partial information about the shared value, they must not obtain any
additional information about the shared value.

The access structure Γ is the set of all qualified subsets of P and the secrecy
structure Σ is the set of all ignorant subsets of P. Naturally, Γ includes all
supersets of each element in it (so often called monotone access structure), while
Σ includes all subsets of each element in it. We call such minimum or maximum
sets as basis structure, and denote it with ·̃. i.e., the basis access structure Γ̃ is
the set of all minimal subsets in Γ , and the basis secrecy structure Σ̃ is the set
of all maximal subsets in Σ.

The adversary structure ∆ ⊆ Σ is a set of subsets of nodes that can be
potentially corrupted. The adversary can choose a set in ∆ and corrupt all the
nodes in the set. Note that the adversary structure in t-threshold SS is the set
of all subsets of P of at most t nodes and GAS extends this to non-threshold
models. A GAS includes all of these structures, (Γ,Σ,∆). We define a family of
security properties on the sets ∆ by a covering condition: ∆ ∈ Qk(P, ∆) if for
all distinct A1, . . . , Ak ∈ ∆, A1 ∪ · · · ∪ Ak 6= P [5, 28]. That is, no k different
adversary patterns can cover the set of nodes in the protocol. Further, we are
focused on the Q2(P, ∆) setting: ∀ A,B ∈ ∆,A ∪B 6= P.

One can extend the definition of secret sharing for the threshold structure
(see Definition 4) to the GAS as follows:

Definition 8 (Secret Sharing for GAS). Let F be a finite set. An (n, F)
information-theoretically secure secret threshold sharing scheme over F for a
GAS (Γ,Σ,∆) is a pair of protocols used between servers labeled as the, unique
and fixed, sharing node S and the set of storage nodes A := {P1, . . . ,Pn}:

Share(s0): on input s0 ∈ F , S randomly generates n shares x1, . . . , xn ∈ F
and returns xi to server Pi.
Reconstruct(s): Any set of nodes in Γ can combine their shares, represented
as a vector of elements x, to reconstruct the secret s′ ∈ F .

For information-theoretic security, we assume s0 is a non-trivial random variable
over F . Then, the scheme’s correctness and security is defined as follows:

Security: if x is any subset of shares corresponding to a set in Σ, then
H(s0|x) = H(s0) > 0.
Correctness: if z is any subset of shares with indices corresponding to a set
of nodes in Γ then H(s0|z) = 0.

When extending the definition to the proactive setting, we break up the
timeline into distinct phases once the secret shares are distributed. Each phase
is represented by a positive integer σ (analogous to Definition 5).

9 That is, we only consider perfect secret sharing schemes [27, Definition 11.59].

12

Definition 9 (Proactive Secret Sharing for GAS). A proactive secret-
sharing scheme for a GAS (Γ,Σ,∆) is a secret-sharing scheme as in definition 8
with the following additional algorithms:

Refresh: All storage nodes P1, . . . ,Pn use their respective shares from phase

t to generate new random shares (for the same secret), x
(t+1)
1 , . . . , x

(t+1)
n .

Then, it distributes x
(t+1)
i to Pi.

Recover: A corrupted node, Pr, contacts d uncorrupted nodes which combine
their shares to compute (potentially with new randomness) a new share for
the corrupted node. Pr receives their new (recovered) share.

Lemma 1. There exists a proactive secret sharing (PSS) scheme for general
adversary structures (GAS) as defined in Definition 9 with Q2(P, ∆) adversaries.

Proof. This follows a constructive proof, from a PSS for a GAS given in [6].

6.1 Generalized Decoding in Regenerating Codes

Let P be a set of all servers involved in distributed storage and 2P all its subsets.
A subset of 2P is available if servers in the subset can be accessed to reconstruct
the original data, while a subset of 2P that cannot be used for data reconstruction
is called unavailable. Every subset of P is either available or unavailable. Therefore,
let ΓRC be the sets of servers which can decode when available. We call ΓRC the
decoding structure. Any decoding structure is monotone, i.e., it is closed under
taking supersets.

The analogy between Γ on the secret sharing side and ΓRC on the regen-
erating code side is clear: these are the sets which can decode the secret. So,
there must remain one which is not tampered with, or, equivalently, an erasure
pattern, υ, can come from P as long as there exists B ∈ Γ such that υ∩B = ∅.
On the other hand, the coding analogy of the sets of tolerable active adver-
saries, ∆, is more subtle. It is, however, the sets of error patterns which the
code can withstand and still decode. In addition, we define the error property
QkRC(P, ∆) analogously in the coding setting: For all distinct A1, . . . , Ak ∈ ∆RC ,
A1 ∪ · · · ∪Ak 6= P.

Definition 10 (Generalized-decoding Regenerating Code (GRC)). Let
P1, . . . ,Pn be labeled as servers and S be labeled as a share-generator. Let F be
a finite set. An (n, k, d, α, β) general error and erasure regenerating code for a
decoding structure for (ΓRC , ∆RC), ∅ 6= ΓRC , ∆RC ⊂ 2P and ΓRC∩∆RC = ∅, is
a tuple of three protocols (Encode, Repair, Decode) which are defined as follows:

Encode: This protocol has S take a file, represented by f ∈ F [x]≤k−1, as
input and distributes a codeword c = (c1, . . . , cn) ∈ Fn.
Repair: Here, a failed node Pj contacts d other uncorrupted, each of which
sends it β bits of data. Then, the node computes a function on their sent
data (δ1, . . . , δd) to generate its new local storage.

13

Decode: This protocol accesses any set of servers in ΓRC to reconstruct the
original file.

Moreover, we require the following correctness constraints:

Errors: for all error patterns in ∆RC , Decode correctly decodes to the original
message.
Erasures: for all erasure patterns υ such that there exists a B ∈ ΓRC such
that υ ∩B = ∅, Decode correctly decodes to the original message.

Now we show the existence of any GRC with Q2
RC error patterns via the

mapping applied in Theorem 1’s proof. We emphasize that the following theorem
is an existence result and not optimized for parameters. We leave optimization
open for future works.

Theorem 3. For every (ΓRC , ∆RC) with property Q2
RC(P, ∆RC), there exists

a linear GRC as defined in Definition 10 over a finite field F . Moreover, all
erasure patterns, υ, such that there is a B ∈ ΓRC such that υ ∩ B = ∅ can be
correctly decoded.

7 Conclusion and Future Directions

In this paper we conduct, to the best of our knowledge, the first systematic study
of the relationship between Regenerating Codes (RC) and Proactive Secret Shar-
ing (PSS), two subareas with meaningful applications in distributed computing
(fault tolerant storage, and secure multi-party computation protocols, resp.). We
show that a PSS scheme can be converted to a RC, and that under some condi-
tions a RC can be utilized to instantiate a PSS scheme. Proving this connection
allows us to leverage recent results for repairing codes (i.e, efficient polynomial
interpolation) to improve efficiency of bottlenecks in PSS. We also show that if
parameters are not carefully calibrated, these new interpolation techniques may
be used to attack PSS when secrets are maintained, and thus the scheme also
attacked, for a long period of time. We also demonstrate how the relationships
we uncover allow one to translate extensions of PSS to relevant novel extensions
in the RC realm. Our work, being the first to point out these relationships, paves
the way for several interesting research directions, among them: (1) further in-
vestigating the new notion of Generalized-decoding Regenerating Code (GRC),
and developing more efficient coding schemes satisfying this notion (especially
under specific structures that are most relevant to networks underlying storage
systems), and ideally understanding the limits on achievable rates for GRC; (2)
defining and realizing GRC with generalized repair structures that are different
than the generalized decoding sets; and finally, (3) dealing with dynamic groups
for both threshold and the general adversaries cases in the context of GRC (most
relevant when network nodes move in and out of the storage system), and other
possible extensions, e.g., verifiable RC as an analogue notion to verifiable Secret
Sharing [29].

14

References

1. A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” IEEE Trans. Inf. Theory, 2010.

2. A. Shamir, “How to share a secret,” Commun. ACM, 1979.
3. R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-solomon codes,”

Commun. ACM, 1981.
4. R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks (extended

abstract),” in PODC, 1991.
5. M. Hirt and U. M. Maurer, “Complete characterization of adversaries tolerable in

secure multi-party computation (extended abstract),” in PODC, IEEE, 1997.
6. K. Eldefrawy, S. Hwang, R. Ostrovsky, and M. Yung, “Communication-efficient

(proactive) secure computation for dynamic general adversary structures and dy-
namic groups,” in SCN, 2020.

7. S. K. D. Maram, F. Zhang, L. Wang, A. Low, Y. Zhang, A. Juels, and D. Song,
“Churp: Dynamic-committee proactive secret sharing,” CCS ’19, 2019.

8. V. Guruswami and M. Wootters, “Repairing reed-solomon codes,” in STOC, 2016.
9. E. R. Berlekamp, “Bounded distance+1 soft-decision reed-solomon decoding,”

IEEE Trans. Inf. Theory, 1996.
10. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or:

How to cope with perpetual leakage,” in CRYPTO, 1995.
11. J. Baron, K. Eldefrawy, J. Lampkins, and R. Ostrovsky, “How to withstand mobile

virus attacks, revisited,” in PODC, ACM, 2014.
12. J. B. Nielsen and M. Simkin, “Lower bounds for leakage-resilient secret sharing,”

in EUROCRYPT, 2020.
13. I. Damg̊ard and J. B. Nielsen, “Scalable and unconditionally secure multiparty

computation,” in CRYPTO, 2007.
14. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith, “Scalable multi-

party computation with nearly optimal work and resilience,” in CRYPTO, 2008.
15. I. Damg̊ard, Y. Ishai, and M. Krøigaard, “Perfectly secure multiparty computation

and the computational overhead of cryptography,” in EUROCRYPT, 2010.
16. Y. Desmedt and S. Jajodia, “Redistributing secret shares to new access structures

and its applications,” Technical Report ISSE TR-97-01, George Mason University,
July 1997.

17. D. Schultz, Mobile Proactive Secret Sharing. PhD thesis, Massachusetts Institute
of Technology, 2007.

18. T. M. Wong, C. Wang, and J. M. Wing, “Verifiable secret redistribution for archive
system,” in IEEE Security in Storage Workshop, 2002.

19. L. Zhou, F. B. Schneider, and R. van Renesse, “Apss: proactive secret sharing in
asynchronous systems,” ACM Trans. Inf. Syst. Secur., 2005.

20. J. Baron, K. Eldefrawy, J. Lampkins, and R. Ostrovsky, “Communication-optimal
proactive secret sharing for dynamic groups,” in ACNS (T. Malkin, V. Kolesnikov,
A. B. Lewko, and M. Polychronakis, eds.), 2015.

21. S. Dolev, K. Eldefrawy, J. Lampkins, R. Ostrovsky, and M. Yung, “Proactive secret
sharing with a dishonest majority,” in SCN.

22. K. Eldefrawy, R. Ostrovsky, S. Park, and M. Yung, “Proactive secure multiparty
computation with a dishonest majority,” in SCN, 2018.

23. K. Eldefrawy, T. Lepoint, and A. Leroux, “Communication-efficient proactive se-
cret sharing for dynamic groups with dishonest majorities,” in ACNS (M. Conti,
J. Zhou, E. Casalicchio, and A. Spognardi, eds.), 2020.

15

24. W. Huang and J. Bruck, “Secret sharing with optimal decoding and repair band-
width,” in ISIT, IEEE, 2017.

25. W. Huang, M. Langberg, J. Kliewer, and J. Bruck, “Communication efficient secret
sharing,” IEEE Trans. Inf. Theory, 2016.

26. M. K. Franklin and M. Yung, “Communication complexity of secure computation
(extended abstract),” in STOC, 1992.

27. R. Cramer, I. Damg̊ard, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. Cambridge University Press, 2015.

28. M. Hirt and U. M. Maurer, “Player simulation and general adversary structures
in perfect multiparty computation,” J. Cryptol., 2000.

29. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract),” in FOCS,
1985.

A Additional Background

General background A protocol is any efficient (polynomially-bounded number
of rounds in the input’s bit-length) joint computation between probabilistic
polynomial-time (PPT) Turing machines. Protocols will be written in sans serif
font (Share, for example). A scheme is a collection of protocols, often with a
set order of when the protocols are executed. We denote the protocol’s par-
ticipants as P1,P2, . . . ,Pn and we may use S to denote a special participant
(e.g. secret-share generator). We denote a random variable being sampled from
some distribution as Y ← D. When D is a finite set, Y ← D represents Y
being sampled from the uniform distribution over D. Shannon entropy is repre-
sented as H(Y) := −

∑
log2(p(y)) where the sum is over the domain of Y and

p(y) = Pr{Y = y}.

Communication Model We assume participants have access to a universal clock
(i.e., a synchronous model) throughout protocols and each server can access a
broadcast channel as well as a channel to another server. Bilateral channels are
modeled as private and they send messages instantly. When needed, we will
break up the timeline into phases or epochs.

A.1 Repairing Reed-Solomon Codes

Given any (n, k) Reed-Solomon code, classical erasure correction requires ac-
cess to k codeword symbols to determine f(αi). Guruswami and Wootters in-
geniously showed in [8] that the bandwidth can be improved by accessing fewer
sub-symbols of more than k codeword symbols. Consider the following definition
of a linear exact repair scheme.

The following theorem summarizes the result for Reed-Solomon codes over
general field extensions.

Theorem 4 (Lemma 4 in [24], Implicit in [8]). Let F be a t-degree extension
of a finite field L, let f be a polynomial of degree at most k − 1 over F , and let
f(α1), . . . , f(αn) be evaluations of f on n distinct points α1, . . . , αn. Let α0 be an

16

element in F and let g1(x), . . . , gt(x) be t distinct polynomials over F of degree
at most n− k such that {gi(α0)}i∈[t] is a basis for F over L. Then, it suffices to
know the set of values

⋃
i∈[n]{trF/L(gj(αi)f(αi))}j∈[t] in order to recover f(α0).

Definition 11. [8, Definition 5] Let C be a linear code over F of length n and
dimension k, given by a set of function F (F = F [x]≤k−1 in the Reed-Solomon
case) and a set of evaluation points A ⊆ F . A linear exact repair scheme for C
over a subfield L ≤ F consists of the following.

– For each α∗ ∈ A, and for each α ∈ A\{α∗}, a set of queries Qα(α∗) ⊆ F .

– For each α∗ ∈ A, a linear reconstruction algorithm that computes f(α∗) =∑
λiνi, for coefficients λi ∈ L and a basis ν1, ν2, . . . , νt for F over L, so that

the coefficients λi are L-linear combinations of the queries:⋃
α∈A\{α∗}

{trF/L(γf(α)) : γ ∈ Qα(α∗)}.

The repair bandwidth,

b = max
α∗∈A

∑
α∈A\{α∗}

|Qα(α∗)|,

of the exact repair scheme is the total number of sub-symbols in L returned by
each node α.

Given input set A of points of evaluation, α∗ ∈ A a failed node, and for some
f ∈ C, access to linear queries of the for trF/L(γf(α)) the Guruswami-Wootters
algorithm outputs f(α∗). The algorithm is summarized in [8, Algorithm 1].

B Missing Proofs

Here we give the proofs for the accompanying statements in the paper.

B.1 Proof of Proposition 1

Proof. In terms of the leakage model, the function

LeakLi (f (i)(αi)) = (trF/L(γ1f
(i)(αi)), trF/L(γ2f

(i)(αi)), . . .

. . . , trF/L(γlf
(i)(αi)))

for γj ∈ Q̃α(α∗) and α∗ = 0. Each full symbol f(αj) allows the adversary to
compute the queries {trF/L(γf(αj)) : γ ∈ Qα(α∗)} locally. The proposition
follows from the adversary receiving the remaining queries in Qα(α∗).

17

B.2 Proof of Proposition 2

Proof. Fix an epoch h. In terms of the leakage model, the function

LeakLi (f (i)(αi)) = (trF/L(γh1 f
(i)(αi)), trF/L(γh2 f

(i)(αi)), . . .

. . . , trF/L(γhl f
(i)(αi)))

for l ∈ Q̃α(α∗), α∗ = 0, and γhj := γj · f (0)(αi)(f (i)(αi))−1 if f (i)(αi) 6= 0.

B.3 Proof of Theorem 1

Proof. We prove this by computational reduction on the scheme/protocols.

– EncodeRC : Let S be the encoding/sharing node in regenerating code. It has
oracle access to the SharePSS protocol from the PSS scheme. On input s, it
calls SharePSS(s), collects the n shares and distributes them as codewords
to the n nodes.

– DecodeRC : Here, the protocol gathers t+1 shares/ codewords, x, and inputs
them into the ReconstructPSS protocol which outputs some s′ ∈ F .

– RepairRC : Lastly, the Repair protocol on input node i, the damaged node,
runs the RecoverPSS which contacts d uncorrupted nodes and outputs the
recovered share.

From the reduction, it is clear that n′ = n, k′ = t+1, d′ = d, α′ = α, β′ = β. Fur-
ther, correctness follows from the correctness of ReconstructPSS and RecoverPSS .

B.4 Proof of Theorem 2

Proof. Without loss of generality, assume the code is represented by a generator
matrix in systematic form: G = [Ik+1|P] ∈ F (k+1)×(n+1).

– SharePSS(s): Given s ∈ F , sample k uniformly random elements in F ,
denoted as ri, to form the vector y = (s, r1, . . . , rk). Then, encode the vector
y to get (x0, x1, . . . , xn)t ← ytG and distribute the shares as x1, . . . , xn to
the respective nodes.

– ReconstructPSS(z): Here we take z ∈ F k+1 representing k shares and call
DecodeRC(z) to get y. Return y0 = s.

– RecoverPSS(i): Run the RepairRC protocol. By definition, Pi has their share
restored after the protocol.

– RedistributePSS: node i runs (0, xi,1, . . . , xi,n) ← SharePSS(0) locally and
sends xj to node Pj . Then, each node Pi updates their share as xt+1

i ←
xti +

∑
xi,j where xi,j is the i-th entry of the vector generated by node Pj .

Security follows from the MDS property: any k coordinates of the code is iso-
morphic to F k. Therefore any k collection of shares are uniformly random. The
RedistributePSS protocol only works with passive adversaries. The new shares
after the Redistribute protocol form a uniformly random encoding of s by linear-
ity10.
10 The relationship between threshold secret sharing schemes and MDS codes is well-

established. See Section 11.12.3 of [27] for further details.

18

B.5 Proof of Theorem 3

Proof. We prove this by computational reduction on the scheme/protocols. First,
we take the existence of a PSS on the sets (Γ := ΓRC , Σ,∆ := ∆RC) from
Lemma 1.

– EncodeRC : Let S be the encoding node in GRC. It has oracle access to the
ShareGAS protocol from the PSS scheme with GAS. On input s ∈ F , it calls
ShareGAS(s), collects the n shares and distributes them to the n nodes.

– DecodeRC : Here, a decoding node calls the ReconstructGAS protocol which
outputs some s′ ∈ F .

– RepairRC : Lastly, the Repair protocol on input node i, the damaged node,
runs the RecoverGAS which contacts d uncorrupted nodes and outputs the
recovered share.

Correctness in error and erasure correction follows by contradiction. If there
were an error pattern in ∆RC which does not decode correctly, then there is an
active adversary which can break the underlying PSS scheme. For erasures, this
follows from the definition of Γ .

For RepairRC , the damaged node must be repaired, otherwise Definition 8
would be contradicted.

C Example

Consider a (4, 2, 3, 2, 1) regenerating code: ((A1, A2), (B1, B2), (A1 + B1, A2 +
B2), (A2 +B1, A1 +A2 +B2)). If the node (A1, A2) fails, it can be recovered by
accessing B2, A2 +B2, and A1 +A2 +B2 from the 3 other surviving nodes. The
above code can also be viewed as a (1, 4) secret sharing scheme. The corrupted
share, say (A1, A2) can be recovered by accessing the remaining 3 shares. Fur-
thermore, the information at each node can be modified in a timely manner so
that we obtain the same MDS code (by property of regenerating codes). That
is, the shares of each party can be updated regularly. The security follows from
[24, Theorems 1 and 2].

19

