
Timing leakage analysis of non-constant-time
NTT implementations with Harvey butterflies

Nir Drucker and Tomer Pelleg

IBM Research - Haifa

Abstract. Harvey butterflies and their variants are core primitives in
many optimized number-theoretic transform (NTT) implementations,
such as those used by the HElib and SEAL homomorphic encryption li-
braries. However, these butterflies are not constant-time algorithms and
may leak secret data when incorrectly implemented. Luckily for SEAL
and HElib, the compilers optimize the code to run in constant-time.

We claim that relying on the compiler is risky and demonstrate how a
simple code modification can cause leakage, which can reduce the hard-
ness of the ring learning with errors (R-LWE) instances used by these
libraries, for example, from 2128 to 2104.

Keywords: NTT, Harvey’s Butterflies, Constant-time code, Compiler Opti-
mizations, Ring-LWE, Side-Channel Attacks

1 Introduction

Constant-time implementations are today considered a requirement for crypto-
graphic libraries that provide production-level code. Commonly, an implementa-
tion is considered “constant-time” if code branches and memory access patterns
are independent of secret information. Efficiently achieving this property is not
always easy, and the literature is full of examples that exploit optimized code
that does not run in constant-time, for example, [12, 14,22].

The number-theoretic transform (NTT) algorithm is used by many crypto-
graphic implementations to achieve fast polynomial multiplications. Some ex-
amples include post-quantum schemes such as Kyber [24], NTTRU [21], and
Dilithium [11], or homomorphic encryption (HE) libraries such as SEAL [18],
HELib [15], Palisade [27], and HEAAN [7]. Despite the performance benefits
provided by NTT, it is still the bottleneck in many of these implementations,
which makes it an ideal target for optimization. The list of works that deal with
NTT optimizations in hardware and software is large. In this work, we analyze
the constant-time property in the optimizations of [16,19] that are also used by
SEAL, HElib, and other software [3, 16, 17] and hardware [10, 23] implementa-
tions. Specifically, we consider Harvey butterflies [16] that involve branches for
performing fast modular reduction and therefore are not considered constant-
time algorithms. Nevertheless, some constant-time implementations for them

https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0001-7609-1138

exist, such as the implementation of [19] [Section 5] and the vectorized imple-
mentations of [3].

SEAL uses the following C macro to perform the modular reduction branch
of Harvey’s butterfly:

1 #define SEAL_COND_SELECT(cond ,if_true ,if_false) (cond ? if_true:if_false)

and states that “This is a temporary solution that generates constant-time code
with all compilers on all platforms.” We tested this claim on Linux for all the
supported compilers “Clang++ (≥ 5.0) or GNU G++ (≥ 6.0)” and observed that
the Assembly code generated by the compiler indeed always used a conditional
move (CMOV) instruction.

The same ternary pattern used in SEAL COND SELECT is used in NTL [26],
an optimized mathematical library that HElib uses for its NTT implementation.
However, unlike SEAL, NTL also includes a branch-less implementation that
is controlled by the flag NTL AVOID BRANCHING. The reason for including the
flag seems to be related to performance and not to security. This is indicated in
the code comment:

“On some modern machines, this is usually faster and NTL uses this
non-branching strategy. However, on other machines (modern x86’s are
an example of this), conditional move instructions can be used in place
of branching, and this code can be faster than the non-branching code.
NTL’s performance-tuning script will figure out the best way
to do this.”

or in the comment

“With this option, branches are replaced at several key points with equiv-
alent code using shifts and masks. It may speed things up on machines
with deep pipelines and high branch penalties.”

As a final example, we consider the Palisade code [27], which does not seem to
implement Harvey’s butterflies but still uses a simple if-else code.

Despite requests (e.g., [5]) to include a built-in directive-API in GCC that
will force compilers to use a conditional move, it does not yet exist. Conse-
quently, SEAL’s assumption could be wrong in new compilers and OSs. With-
out continuous integration tests to test this assumption, secret information
can be leaked. In fact, this may already happen today. The SEAL function
multiply plain normal performs multiplication of plaintext by HE cipher-
text, with cases where the plaintext is a secret as indicated therein: “Optimiza-
tions for constant/monomial multiplication can lead to the presence of a timing
side-channel in use-cases where the plaintext data should also be kept private”.
This function uses the macro SEAL COND SELECT, but its translation to As-
sembly involves branches, which contradicts the original comment.

A side-channel analysis of the NTT algorithm in the context of ring learning
with errors (R-LWE) was presented, for example, by [22]. Specifically, this attack

2

relies on a Hamming-weight leakage model, where the data for the model was col-
lected from real traces using electromagnetic (EM) measurements. In contrast,
our attack targets high-end CPUs (e.g., x86-64), where collecting EM data is
rarely possible. Instead, we rely only on timing differences and specifically the
binary knowledge of whether a branch was taken or not. This knowledge can be
collected for example when the code is called from within Intel R©SGX R©by using
the SGX-step framework [25]. Another difference between our work and [22] is
that our attack focuses on NTT implementations with Harvey butterflies, as
in the case for SEAL and HElib code. The work of [22] assumed the following

modular reduction operation a (mod q) = a− q
⌊
a
q

⌋
, which allowed them to col-

lect leakage information from the variable-time DIV instruction on Cortex-M4F.
This knowledge allowed them to report a full key recovery attack on NTT. In
contrast, we are restricted to a smaller leakage and therefore report only partial
key extraction. Still, this partial key extraction can lead to a reduction in the
hardness of the R-LWE instances and should be taken into account by security
researchers who evaluate potential risks for using a certain implementation.

Our contribution. This work identifies places in the code of SEAL, HElib and
other HE libraries that depend on the compiler for generating a constant-time
code. We show why this assumption is risky and analyze the security loss caused
by the potential leakage in the key generation code of SEAL, which uses NTT
with Harvey butterflies. Our analysis shows that if the generated Assembly is
not a constant-time code, we can extract more than 9% of the secret key, which
reduces the hardness of the R-LWE instance by more than 10%. For example,
from 2128 to 2104 security estimation.

Organization. The document is organized as follows. Section 2 provides some
background and describes our notation. We describe the risk of depending on
the compiler in Section 3. Section 4 analyzes the leaked data in the case of a
sparse secret and reports our results. We conclude in Section 6.

2 Background and notation

Let Fq be a finite field of characteristic q with residue classes represented as
elements from Z ∩ [0, q). The elements in the polynomial quotient ring Rq =
Fq[X]/(XN+1) are polynomials of a degree at mostN−1 with integer coefficients
in Fq, where q ≡ 1 (mod 2N) and N is a power of two. We may refer to a
polynomial a =

∑
aix

i by its coefficients i.e., a = (a0, . . . , aN−1). For a specific
platform, we denote its word-size with β. For example, for typical CPUs β = 232

or β = 264. We use ∧ to denote logical-and.

2.1 Distribution of an HE secret key

Modern HE schemes rely on the R-LWE assumption [20]. The plaintext, key,
and error domains are the polynomials ring Rq, where the keys and errors are

3

randomly derived from the χkey, χerr distributions, respectively. Let Ruq ⊂ Rq
be the set of all polynomials from Rq with coefficients in {0,±1}N , then the
commonly used options for χkey are the

1. uniform distribution over Ruq
2. uniform distribution over Ruq with Hamming weight h, for a positive integer
h

3. distribution over Ruq , where each coefficient has a probability α
2 ,

α
2 , 1− α of

being +1,−1, 0, respectively

The χerr distribution is commonly a Gaussian distribution. We target the residue
number system (RNS) variant of CKKS [6] and its key generation method, where
a secret key s is sampled from χkey. The original CKKS variant [6] sets χkey
according to option #2 with h = 64. In contrast, SEAL implements option
#1 and HElib implements option #3 with α = 0.5. In SEAL, the function
generate sk calls the function sample poly ternary and in HElib, the
function SecKey::GenSecKey calls sampleSmallBounded. We demonstrate
the potential leakage on SEAL and set χkey according to option #1, which
simplifies the attack computations. We conjecture that similar exploits can be
generated for the other distributions. After generating the secret key s, the
SEAL generate sk function invokes the NTT algorithm on s. This behavior
is common to other libraries as well.

2.2 NTT

The NTT algorithm is a variant of the fast Fourier transform (FFT) algorithm
over Rq. It receives a polynomial a = (a0, . . . , aN−1) ∈ Rq and a fixed N ’s
primitive root of unity ω as inputs; it outputs ã = (ã0, . . . , ãN−1) ∈ Rq, where

ãi =
∑N−1
j=0 ajω

ij . The inverse function a = InvNTTω(ã) is given by ai =
1
N

∑N−1
j=0 ãjω

−ij . The powers of ω are called twiddles.
Appendix A presents one variant of the NTT and inverse-NTT (InvNTT)

algorithms as specified in [19]. These algorithms are implemented in different
libraries such as SEAL. Variants of these algorithms are available in NTL and
inherently in HElib. The main bottleneck of these algorithms is the Cooley-
Tukey (CT) [8] and Gentleman-Sande (GS) [13] butterflies, respectively. These
are implemented in SEAL using Harvey butterflies [16], which we present in

Algorithm 1. For brevity, we use ShoupModMul(t, ω, ω′, q) = ωt − q
⌊
ω′t
β

⌋
to

denote Shoup’s multiplication [16], which performs a lazy reduction and leaves
the output in the range [0, 2q − 1]. Here, β is a fixed global parameter, and

ω′ =
⌊
ωβ
q

⌋
is a precomputed value.

3 Compiler optimizations

The compiler’s decision to use a conditional move or branch depends on the
penalty that the compiler believes a program hits when it executes the specific

4

Algorithm 1 Harvey’s Butterflies [16]

Global parameters: A word-size β, a modulus q < β
4

; ω ∈ Fq; ω′ =
⌊
ωβ
q

⌋
< β

Input: 0 ≤ x, y < 4q
Output: x = x+ ωy, y = x− ωy (mod 4q)

1: procedure HarveyFwdButterfly(x, y, ω, ω′, q, β)
2: if x ≥ 2q then x = x− 2q

3: t =ShoupModMul(y, ω, ω′, q)
4: return (x+ t, x− t+ 2q)

Input: 0 ≤ x, y < 2q
Output: x = x+ y, y = ω(x− y) (mod 2q)

1: procedure HarveyInvButterfly(x, y, ω, ω′, q, β)
2: x′ = x+ y
3: if x′ ≥ 2q then x′ = x′ − 2q

4: t = x− y + 2q
5: y′ =ShoupModMul(t, ω, ω′, q)
6: return x′, y′

branch. Controlling this penalty and observing the changes in the compiler out-
put is possible using the compiler’s target flag -mbranch cost=x, where x is
in {0, . . . , 5}. Indeed, when setting x ≤ 2 and compiling the SEAL code, the
output Assembly does not include conditional moves.

The reasons that led the compiler to add conditional moves to begin with,
are performance-related and not security-related. Thus, other flags may affect
its decision. For example, the following GCC optimization flags -O0, -fno-if-
conversion, -fno-if-conversion2, -fno-tree-loop-if-convert,
and -fno-tree-loop-if-convert-stores may turn off this optimization.

Someone may inadvertently compile a cryptographic library using the above
flags, for example in debug mode. It can also be the case that an adversary
intentionally injects these compilation flags in order to convert the code be non
constant-time. Putting these two options aside, it is still interesting to explore
some examples where the compiler simply does not know how to compute the
branch penalty and thus even when using the default optimization mode, it uses
branches because this is its default behavior. Consider the next example:

1 uint64_t foo(uint32_t *a) {
2 uint64_t i = 0;
3 while (i < 5) {
4 i = (i >= a[i]) ? i+2 : i;
5 }
6
7 return i;
8 }

Here, the compiler does not know the content and size of a and thus the
generated Assembly (using Clang-10) is

5

1 0: 31 c0 xor %eax ,%eax
2 2: eb 12 jmp 16 <foo+0x16 >
3 4: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax ,%rax ,1)
4 b: 00 00 00
5 e: 66 90 xchg %ax ,%ax
6 10: 48 83 f8 05 cmp $0x5 ,%rax
7 14: 73 0e jae 24 <foo+0x24 >
8 16: 8b 0c 87 mov (%rdi ,%rax ,4) ,%ecx
9 19: 48 39 c8 cmp %rcx ,%rax

10 1c: 72 f2 jb 10 <foo+0x10 >
11 1e: 48 83 c0 02 add $0x2 ,%rax
12 22: eb ec jmp 10 <foo+0x10 >
13 24: c3 retq

which involves the jb branch on line 10, instead of a conditional move. An-
other, perhaps simpler example, is the function

1 uint64_t foo2(uint32_t a, uint32_t b) {
2 return (a > b ? a : b);
3 }

which when compiled with GCC-9 uses conditional moves (cmovb).

1 44: 39 fe cmp %edi ,%esi
2 46: 0f 42 f7 cmovb %edi ,%esi
3 49: 89 f0 mov %esi ,%eax
4 4b: c3 retq

However, once we perform a simple modification to it

1 uint64_t foo3(uint32_t a, uint32_t b) {
2 if (b < 100000) return b;
3 return (a > b ? a : (a < 2*b ? b : a));
4 }

the output assembler involves branches.

1 54: 39 f7 cmp %esi ,%edi
2 56: 77 10 ja 68 <foo3+0x18 >
3 58: 8d 04 36 lea (%rsi ,%rsi ,1) ,%eax
4 5b: 39 f8 cmp %edi ,%eax
5 5d: 76 09 jbe 68 <foo3+0x18 >
6 5f: 89 f0 mov %esi ,%eax
7 61: c3 retq
8 62: 66 0f 1f 44 00 00 nopw 0x0(%rax ,%rax ,1)
9 68: 89 f8 mov %edi ,%eax

10 6a: c3 retq

Note that the logic in foo3 is the same logic as in foo2. The false condition
of the first ternary operator should be considered only when a ≤ b; in which
case it also follows that a ≤ 2b. In this example, for the logic to stay the same,
it is important that the 2 · b operation does not result in an integer overflow.
To accommodate this, we added the first if statement to bound b. Another
example involves lookup tables where the key is a secret, as in [9].

The above examples show that even a small code modification may break
SEAL’s assumption as already happened for the function multiply plain
normal. Therefore, even if a code is currently compiled with a conditional

6

move, it is important to understand the consequences of a compilation mistake
that leads to leaking secret information.

4 Exploiting NTT over secret keys

We already saw how a simple code modification or a simple malicious injection
of a compilation flag can result in a variable time implementation that may
leak secret information. In this section, we provide an example that exploits a
faulty NTT implementation. Specifically, we target the NTT transformation that
SEAL applies to every secret key. We focus on this scenario for two reasons. First,
the distribution of the key is over polynomials with small coefficients, hereafter
denoted sparse polynomials. Second, this example uses the forward NTT of [19],
which involves a smaller number of twiddles in its first few iterations. This is in
contrast to analyzing the inverse NTT of [19], which is more complex since it
involves a different twiddle for every butterfly.

Although we focus on the SEAL code, the methods we apply here should
work with minor modifications on other key distributions, butterflies, or NTT
implementations. For example, we could have performed the same analysis to
extract data on the encryption error, which is derived from a somewhat wider
distribution.

(a) NTT (b) InvNTT

Fig. 1: The first few iterations of the NTT (panel a) and invNTT (panel b)
algorithms over polynomials of degree N = 16. Yellow circles (x) demonstrate
values that will go through the branch x > 2q ? x : x − 2q in a subsequent
iteration.

7

In this demonstration, we analyze, measure, and accumulate the leakage
knowledge after every NTT iteration. We use analytical methods for the first
and second iterations and empirical methods for the other iterations, in which
the number of options to analyze grows exponentially. Figure 3 shows the first
few iterations of the NTT and InvNTT algorithms over polynomials of degree
N = 16. The yellow circles (x) demonstrate values that go through the branch
x > 2q ? x : x− 2q from which we attempt to extract information.

Observation 1 For a sparse polynomial input, no information is leaked from
the branches of the first NTT iteration.

Proof. The NTT inputs are always in {0, 1, q − 1} < 2q. ut

Second iteration. For the second iteration, we first define the variable s =ShoupModMul(q− 1, ω, ω′, q)
and observe some of its properties in Lemmas 1, 2. Note that s 6= 0, q by defini-
tion.

Lemma 1. For a given set of parameters β, ω, q of the NTT algorithm (Alg. 3).
When

ωβ (mod q) <
(q − ω)

(q − 1)
β

s < q otherwise q < s ≤ 2q.

Proof. First, we compute

(q − 1)ω′

β
=

(q − 1)
⌊
ωβ
q

⌋
β

=
q
⌊
ωβ
q

⌋
β

−

⌊
ωβ
q

⌋
β

=
ωβ − (ωβ (mod q))

β
− ωβ − (ωβ (mod q))

βq

= ω −
[
ωβ + (q − 1)(ωβ (mod q))

βq

]
= ω − η

and observe that
⌊
(q−1)ω′

β

⌋
= ω − 1 when 0 ≤ η ≤ 1 as in our assumption,

ωβ (mod q) <
(βq − βω)

(q − 1)
=

(q − ω)

(q − 1)
β

We obtain the first claim by

s = ShoupModMul(q − 1, ω, ω′, q) = ω(q − 1)− q
⌊
ω′(q − 1)

β

⌋
= ω(q − 1)− q(ω − 1) = q − ω < q

When 1 < η < 2 we have
⌊
(q−1)ω′

β

⌋
= ω− 2 and q ≤ s = 2q−w < 2q. Note that

η < 2; otherwise s > 2q, which contradicts Harvey’s proof [16][Theorem 1]. ut

8

Lemma 2. For a positive integer γ, when q < β
γ and ω < γ−1

γ q + 1
γ , it follows

that s < q.

Proof. Lemma 1 states that s < q when

ωβ (mod q) <
(q − ω)

(q − 1)
β (1)

but ωβ (mod q) < q, which implies that s < q at least for q < (q−ω)
(q−1) β. Because

q < β
γ , the previous equations holds when

β

γ
<

(q − ω)

(q − 1)
β

which after rearrangement becomes

ω <
(γ − 1)

γ
q +

1

γ

ut

Example 1. For HarveyFwdButterfly, q < β
4 . Thus, ω < 0.75q + 0.25⇒ s < q.

Example 2. For β = 264 and q < 232, it holds that ω < 232−1
232 q + 1

232 ⇒ s < q.

The last example emphasizes that in SEAL, where the implementation uses
64-bit scalars (β = 264), for primes that are orders of magnitude smaller than
264 we will rarely encounter the q < s < 2q case.

Algorithm 2 Second iteration exploit

Input: s (see text), branches parameters brk, brk+2m−1 .
Output: Possible input pairs for the coefficients at position k and k + 2m−1

1: procedure SecondIterExploit(s, brk, brk+2m−1):
2: out = {0, 1, q − 1} × {0, 1, q − 1}
3: if brk is taken: then
4: return {(q − 1, q − 1)}
5: if brk+2m−1 is taken then
6: out = {(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)}
7: if s < q then
8: out = out ∪ {(q − 1, q − 1)}
9: if brk+2m−1 is not-taken then

10: out = {(0, 1), (0, q − 1), (1, 1), (1, q − 1)}
11: if s > q and brk is unknown then
12: out = out ∪ {(q − 1, q − 1)}
13: return out

9

Theorem 1. Given the NTT parameters q, ω, ω′, β and N = 2m, and k ≤ 2m−1,
for the input variable s =ShoupModMul(q−1, ω, ω′, q) and the branches brk and
brk+2m−1 , Algorithm 2 returns a list of the possible coefficients at position k and
k + 2m−1 after applying HarveyFwdButterfly on a sparse polynomial.

Proof. Let xk, xk+2m−1 be the inputs to HarveyFwdButterfly and denote by
x′k, x

′
k+2m−1 its output. Table 1 shows the possible outputs of the HarveyFwdButterfly

after the first NTT iteration.

Table 1: Possible x′k (left) and x′k+2m−1 (right) values.

xk

xk+2m−1 0 1 q − 1

0 0 1 q − 1

1 ω ω + 1 ω + q − 1

q − 1 s s+ 1 s+ q − 1

xk

xk+2m−1 0 1 q − 1

0 2q 2q + 1 2q + q − 1

1 2q − ω 2q − ω + 1 2q − ω + q − 1

q − 1 2q − s 2q − s+ 1 2q − s+ q − 1

First, recall that ω 6∈ {1, q − 1} as there are no primitive roots of unity
for primes bigger than 3 and that 0 < ω, s < 2q. Then, by looking at the
table, we see that the only case for bk to be taken (x′k > 2q, Step 3) is when
(xk, xk+2m−1) = (q−1, q−1) and q < s < 2q. We continue the analysis assuming
that brk is not taken or is unknown. Here,

(xk, xk+2m−1) ∈ {(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)} ⇒ (x′k+2m−1 ≥ 2q)

⇒ bk+2m−1 is taken

(xk, xk+2m−1) ∈ {(0, 1), (0,−1), (1, 1), (1,−1)} ⇒ (x′k+2m−1 < 2q)

⇒ bk+2m−1 is not taken

((xk, xk+2m−1) = (q − 1, q − 1)) ∧ (s < q)

⇒ bk+2m−1 is taken

((xk, xk+2m−1) = (q − 1, q − 1)) ∧ (q < s < 2q)

⇒ (bk+2m−1 is not taken) ∧ (bk is unknown)

The correctness of the algorithm follows. ut

4.1 Extracted leakage after the second iteration

Algorithm 2 provides us with a way to reduce the number of options for the
inputs xk and xk+2m−1 of the NTT algorithm. Theorem 2 summarizes the ex-
pected leakage and Figure 2 illustrates it. The theorem uses the following four
intervals I0 = [0, N4), I1 = [N4 ,

N
2), I2 = [N2 ,

3N
4), I3 = [3N4 , N).

10

Theorem 2. Let the input to Algorithm 3 be a sparse polynomial and let 0 ≤
ρ ≤ 1 be the percentage of the extracted branches (distributed uniformly).

1. The probability that a coefficient (xk, k ∈ I0 ∪ I2) has only one option when
q < s < 2q is P1 = ρ

9 .
2. The probability for a coefficient (xk) to have only two options is

P2 =

4ρ
9 (s < q) ∧ (k ∈ I0 ∪ I2)
4ρ2

9 (q ≤ s < 2q) ∧ (k ∈ I0)
3ρ2+5ρ

9 (q ≤ s < 2q) ∧ (k ∈ I2)

Proof. We define the following events:

E1 := (brk+2m−1 is not taken) | (0 < s < q)

E2 := (brk is taken) | (q < s < 2q)

E3 := (brk is not taken) ∧ (brk+2m−1 is not taken) | (q < s < 2q)

E4 := (brk is not taken) ∧ (brk+2m−1 is taken) | (q < s < 2q)

E5 := (brk is unknown) ∧ (brk+2m−1 is not taken) | (q < s < 2q)

where Algorithm 2 outputs

{(0, 1), (0, q − 1), (1, 1), (1, q − 1)} for E1, E3

⇒ xk ∈ {0, 1} and xk+2m−1 ∈ {1, q − 1}
{(0, 0), (1, 0), (q − 1, 0), (q − 1, 1)} for E4

⇒ xk+2m−1 ∈ {1, q − 1}
{(0, 1), (0, q − 1), (1, 1), (1, q − 1), (q − 1, q − 1)} for E5

⇒ xk+2m−1 ∈ {1, q − 1}
{(q − 1, q − 1)} for E2

⇒ xk = xk+2m−1 = q − 1

The coefficients of sparse polynomials are uniformly distributed and independent
of ρ. Thus, the above events will happen with probability

Pr(E1) =
4ρ

9
Pr(E2) =

ρ

9
Pr(E3) = Pr(E4) =

4ρ2

9
Pr(E5) =

5ρ(1− ρ)

9
.

At the second iteration we only perform branches over inputs at positions
I0 ∪ I2 (see illustration in Figure 3), which limits the leakage to the coefficients
xk, k ∈ I0 ∪ I2 of the original input polynomial to the NTT algorithm. When
q < s < 2q, the probability that a coefficient (xk, k ∈ I0 ∪ I2) has only one
option is P1 = Pr(E2) = ρ

9 .
The probability of a coefficient having two options is

P2 =

Pr(E1) = 4ρ

9 (s < q) ∧ (k ∈ I0 ∪ I2)

Pr(E3) = 4ρ2

9 (q ≤ s < 2q) ∧ (k ∈ I0)

(Pr(E3) + Pr(E4) + Pr(E5)) = 3ρ2+5ρ
9 (q ≤ s < 2q) ∧ (k ∈ I2)

ut

11

Let X1, X2 denote the number of coefficients with only one or two options,
respectively, for a given ρ. In addition, for a polynomial of degree N and ρ = 1,
we define Y1 = E(X1)/N , Y2 = E(X2)/N to be the portion of coefficients we
identified to have a reduced number of options (one or two, respectively).

Corollary 1. For an input of a sparse polynomial of degree N , and a fixed ρ,

E(X1) =

{
0 s < q
ρ
18N q < s < 2q

E(X2) =

2ρ
9 N s < q(
1
4 ·

4ρ2

9 + 1
4 ·

3ρ2+5ρ
9

)
N = 7ρ2+5ρ

36 N q < s < 2q

(a) When 0 < s < q (b) When q < s < 2q

Fig. 2: Second iteration leakage for a given branch extraction probability ρ. The
orange triangles show the portion of coefficients (out of N) that are completely
identified (Y1). The blue dots show the portion of coefficients (out of N) that
now have only two options out of three (Y2).

Third iteration. The input to the third iteration is the output of the sec-
ond iteration, which we can view as the output of a radix-4 NTT, where every
branch depends on a coefficients-quartet of the original polynomial xk, xk+2m−2 ,
xk+2·2m−2 , xk+3·2m−2 for k ∈ I0. For every such quartet we may know two branch
results from the second iteration. In addition, at the third iteration, for half the
quartets 0 ≤ k < 2m−3, we add the knowledge of all four branches, while for the
other half, we learn nothing.

Using an analytical approach, as we did for analyzing the leakage at the
second iteration, is more complex because the number of cases increases expo-
nentially. For example, in the second iteration, we only had two cases where we
needed to consider whether or not s < q.

To assess the complexity of analyzing the third iteration, we performed an
exploratory empirical experiment, which revealed more than 80 cases that need

12

to be analyzed. We note that, unlike post-quantum schemes where a prime is
usually fixed by design, many HE implementations generate the required prime
numbers on-the-fly and according to the users’ needs. For these reasons, we
decided to use an empirical approach to demonstrate the potential data leakage
from the third iteration. We stress that this can be fine-tuned when the set of
primes is predefined (fixed).

Our experiment involves a program, which for a given modulo N and a prime
q, computes the minimal 2N primitive root of unity ω. It then executes the first
three iterations of the NTT, brute-forcing over all possible quartet inputs. The
program generates a branching table as we did for the second iteration (Table
2) and outputs the answers to the following questions:

1. What is the probability of this branch combination occurring, assuming uni-
form distribution of the original coefficients?

2. How many coefficients does it reduce to one or two options (Y1, Y2)?

(a) Y1 (b) Y2

Fig. 3: Third and fourth iterations leakage extraction (Y1, Y2). Blue and orange
box-plots show the distribution results when using information up to the third
and fourth iteration, respectively.

We repeated the above process for the fourth iteration, where every branch
affects eight inputs at a time.

For our experiments we generated 1, 000 NTT-friendly primes using the code
from Appendix B, and fixed N = 215. Figure 3 shows the portion of coefficients
we identified as having a reduced number of options (one or two). As these
numbers depend on the values of q and N , we use box-plots to demonstrate
the resulting distributions. The left and right box-plots show the distributions
after the third and fourth iterations, respectively. As expected, at the fourth
iteration, Y1 increases on average while Y2 decreases. This phenomenon is also

13

(a) Third Iteration (b) Fourth Iteration

Fig. 4: Correlation between Y1 and Y2, using the information from the third and
fourth iterations. The number of dots indicates the number of cases to consider
for the experimented primes.

demonstrated in Figure 4, where we see a negative correlation between Y1 and
Y2.

Moving into deeper iterations. It is possible to extend the search to deeper
iterations. However, the number of options that our program checks grows super-
exponentially. In the ith iteration, it considers 2i−1 coefficients per one of the
two tables, with three options per coefficient. Thus, the total number of options
to consider is 32

i−1

. For example, for i = 5 and i = 6 the number of options per
table to consider is ∼ 225 and ∼ 250, respectively.

4.2 Hardness of RLWE instances after the leakage

Modern HE libraries follow the HE standard [1] when considering security pa-
rameters. The standard, in turn, uses the LWE estimator [2] to compute the
relevant values. We followed the standard and re-evaluated the security guaran-
tees provided when using the same values of N and log2 q. Specifically, we used
the command

n = 2048; q = 2^54; alpha = 8/q; m = 2*n

estimate_lwe(n, alpha , q, secret_distribution =(-1,1),

reduction_cost_model=BKZ.sieve , m=m)

from [2], which is designed for SEAL. To assess the security impact, we only
considered the coefficients that we completely extracted by replacing n with
n − nY1 in the script above. Table 2 summarizes the results. For the second

14

iteration, we used Y1 = ρ
18 from Theorem 2. For the third and forth iterations,

we first evaluated the entropy per experiment using the equation

(Y2 + log2 3 · (1− Y1 − Y2))

log2 3

and then chose the pairs (Y1, Y2) that yielded the minimal and maximal entropy
per iteration. Specifically, we used (0.0555556, 0.259259) and (0.146605, 0.2824075)
for the third iteration, and (0.08916325, 0.2458845) and (0.17332525, 0.35162325)
for the fourth iteration. It can be observed that when including the leakage from
the fourth iteration, the security estimate drops from 2128 to around 2104−2115,
an 18% gap. Taking Y2 into consideration will result in an even higher estimation
for the drop in security.

Table 2: Estimated security level of HE instances after combining data from our
extracted leakage. For our baseline we use N and q for 2128 classical bits security
from [1].

N log2 q Security estimation

2nd iter. 3rd iter. 4th iter.

1, 024 27 2124 2111 - 2124 2107 - 2119

2, 048 54 2121 2109 - 2121 2105 - 2117

4, 096 109 2120 2107 - 2120 2103 - 2115

8, 192 218 2120 2107 - 2120 2104 - 2115

16, 384 438 2120 2108 - 2120 2104 - 2115

32, 768 881 2120 2108 - 2120 2104 - 2115

5 Responsible Disclosure

The paper was disclosed to the HEAAN, HELib, Palisade and SEAL teams
before its publication.

6 Conclusions

In this work, we identified a potential vulnerability that can occur in almost all
HE libraries, where the NTT algorithm and specifically the Harvey butterflies
can be compiled to have a non constant-time Assembly. While there is, currently,
no vulnerability when the libraries are used as intended, we explained how a
simple code modification or even a simple misuse of the library (e.g., compiling
and using it in debug mode) can flip the situation. Specifically, we evaluated the
potential leakage of a secret from the NTT implementation of SEAL and showed
the hardness degradation of the R-LWE instances used therein.

15

While it is not always possible to control the compiler results, we recommend
that library owners either use hand-written Assembly for critical code paths
or modify the code so it won’t use branches. Such code exists, for example, in
HElib when compiled with the flag NTL AVOID BRANCHING or in the vectorized
implementation of [3, 4].

A NTT algorithms

Algorithms 3 and 4 are the forward and inverse NTT algorithms from [19],
respectively.

Algorithm 3 CT radix-2 NTT [19]

Input: a ∈ Rq, N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψrev, which
holds the powers of ψ in bit-reversed order.
Output: ã = NTTψ(a) in bit-reversed order.

1: procedure CT radix-2 NTT(a,N, q, ψrev)
2: t = N , ã = a
3: for (m = 0; m < N ; m = 2m) do
4: t = t/2
5: for i = 0; i < m; i++ do
6: w = ψrev[m+ i]
7: for (j = 2it; j < (2i+ 1)t; j++) do
8: (X,Y) = (ãj , ãj+tw)
9: (ãj , ãj+t) = (X + Y,X − Y) (mod q)

10: return ã

Algorithm 4 Gentleman-Sande (GS) Radix-2 InvNTT [19]

Input: ã ∈ Rq, N a power of 2, q a prime satisfying q ≡ 1 (mod 2N), ψ−1
rev, which

holds the powers of ψ−1 in bit-reversed order.
Output: a = InvNTT (ã) in bit-reversed order.

1: procedure Gentleman-Sande (GS) Radix-2 InvNTT(ã, N, q, ψ−1
rev)

2: t = 1, a = ã
3: for (m = N/2; m > 0; m�= 1) do
4: for (i = 0; i < m; i++) do
5: w = ψ−1

rev[m+ i]
6: for j = 2it; j < (2i+ 1)t; j++) do
7: (X,Y) = (aj , aj+t)
8: (aj , aj+t) = (X + Y,w(X − Y)) (mod q)

9: t = 2t
10: for (j = 0; j < N ; j++) do
11: aj = aj ·N−1

12: return a

16

B Generating the primes

For reproduction purposes, we provide the SageMath script we used to generate
the primes in Section 4.

import numpy as np

import math

import random

Generate a random prime p in [n+1, n^3+1] ,

where p = 1 mod n

def primeGen(n):

i=0;

while True:

x = randrange(n^2);

if is_prime(x*n +1):

return x*n+1

random.seed (120)

primes = [primeGen (2^16) for i in range (1000)]

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi,
S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, D., Moody, D.,
Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic encryption security
standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November
2018), https://homomorphicencryption.org/standard/

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learn-
ing with errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015).
https://doi.org/doi:10.1515/jmc-2015-0016

3. Boemer, F., Kim, S., Seifu, G., de Souza, F.D., Gopal, V.: Intel HEXL : Accel-
erating Homomorphic Encryption with Intel AVX512-IFMA52. Tech. rep. (2021),
https://eprint.iacr.org/2021/420

4. Bradbury, J., Drucker, N., Hillenbrand, M.: NTT software optimization using
an extended Harvey butterfly. Tech. rep. (2021), https://eprint.iacr.org/2021/
1396

5. gcc bugs: [Bug c++/98801] New: Request for a conditional move built-in function
(2021), https://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg676288.html

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A Full RNS Variant of Approx-
imate Homomorphic Encryption. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected
Areas in Cryptography – SAC 2018. pp. 347–368. Springer International Publish-
ing, Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 16

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology –
ASIACRYPT 2017. pp. 409–437. Springer International Publishing, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 15

8. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of Computation 19(90), 297–301 (1965).
https://doi.org/10.2307/2003354

17

https://homomorphicencryption.org/standard/
https://doi.org/doi:10.1515/jmc-2015-0016
https://eprint.iacr.org/2021/420
https://eprint.iacr.org/2021/1396
https://eprint.iacr.org/2021/1396
https://www.mail-archive.com/gcc-bugs@gcc.gnu.org/msg676288.html
https://doi.org/10.1007/978-3-030-10970-7_16
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.2307/2003354

9. Daan, S.: LLVM provides no side-channel resistance (2019), https://

dsprenkels.com/cmov-conversion.html

10. Dai, W., Sunar, B.: cuHE: A Homomorphic Encryption Accelerator Library.
In: Pasalic, E., Knudsen, L.R. (eds.) Cryptography and Information Security
in the Balkans. pp. 169–186. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-29172-7 11

11. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: CRYSTALS-Dilithium Algorithm Specifications and Supporting
Documentation (2017), https://pq-crystals.org/dilithium/data/dilithium-
specification.pdf

12. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-Channel Attacks on
BLISS Lattice-Based Signatures: Exploiting Branch Tracing against StrongSwan
and Electromagnetic Emanations in Microcontrollers. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. p.
1857–1874. CCS ’17, Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3133956.3134028

13. Gentleman, W.M., Sande, G.: Fast fourier transforms—For fun and profit. AFIPS
Conference Proceedings - 1966 Fall Joint Computer Conference, AFIPS 1966 pp.
563–578 (1966). https://doi.org/10.1145/1464291.1464352

14. Guo, Q., Johansson, T., Nilsson, A.: A key-recovery timing attack on post-
quantum primitives using the fujisaki-okamoto transformation and its application
on frodokem. In: Micciancio, D., Ristenpart, T. (eds.) Advances in Cryptology
– CRYPTO 2020. pp. 359–386. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 13

15. Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 8616, pp. 554–571. Springer (2014).
https://doi.org/10.1007/978-3-662-44371-2 31

16. Harvey, D.: Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation 60, 113–119 (2014). https://doi.org/10.1016/j.jsc.2013.09.002

17. Jung, W., Lee, E., Kim, S., Lee, K., Kim, N., Min, C., Cheon, J.H., Ahn,
J.H.: HEAAN Demystified: Accelerating Fully Homomorphic Encryption Through
Architecture-centric Analysis and Optimization (2020)

18. Laine, K.: Simple Encrypted Arithmetic Library 2.3.1. Tech. rep., Microsoft, WA,
USA (2017), https://www.microsoft.com/en-us/research/uploads/prod/2017/
11/sealmanual-2-3-1.pdf

19. Longa, P., Naehrig, M.: Speeding up the Number Theoretic Transform for Faster
Ideal Lattice-Based Cryptography. In: Foresti, S., Persiano, G. (eds.) Cryptol-
ogy and Network Security. pp. 124–139. Springer International Publishing, Cham
(2016). https://doi.org/10.1007/978-3-319-48965-0 8

20. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with
Errors over Rings. J. ACM 60(6) (nov 2013). https://doi.org/10.1145/2535925

21. Lyubashevsky, V., Seiler, G.: NTTRU: Truly Fast NTRU Using NTT 2019,
180–201 (May 2019). https://doi.org/10.13154/tches.v2019.i3.180-201

22. Primas, R., Pessl, P., Mangard, S.: Single-Trace Side-Channel Attacks on Masked
Lattice-Based Encryption. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2017. pp. 513–533. Springer International
Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 25

18

https://dsprenkels.com/cmov-conversion.html
https://dsprenkels.com/cmov-conversion.html
https://doi.org/10.1007/978-3-319-29172-7_11
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification.pdf
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/1464291.1464352
https://doi.org/10.1007/978-3-030-56880-1_13
https://doi.org/10.1007/978-3-662-44371-2_31
https://doi.org/10.1016/j.jsc.2013.09.002
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2017/11/sealmanual-2-3-1.pdf
https://doi.org/10.1007/978-3-319-48965-0_8
https://doi.org/10.1145/2535925
https://doi.org/10.13154/tches.v2019.i3.180-201
https://doi.org/10.1007/978-3-319-66787-4_25

23. Sadegh Riazi, M., Laine, K., Pelton, B., Dai, W.: HEAX: An architecture for
computing on encrypted data. International Conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS pp. 1295–1309
(2020). https://doi.org/10.1145/3373376.3378523

24. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck M., J., Seiler, G., Stehle, D.: CRYSTALS-KYBER (2020), https:

//pq-crystals.org/kyber/
25. Van Bulck, J., Piessens, F., Strackx, R.: SGX-Step: A practical attack frame-

work for precise enclave execution control. In: 2nd Workshop on System
Software for Trusted Execution (SysTEX). pp. 4:1–4:6. ACM (Oct 2017).
https://doi.org/10.1145/3152701.3152706

26. Victor, S.: NTL – a library for doing numbery theory – version 11.5.1, com-
mit 91acd5b3a7df709c0d8bf88a99a24bc340dc34f7 (2021), https://github.com/
libntl/ntl

27. Yuriy, P., Kurt, R., Gerard, R.W., Dave, C.: PALISADE Lattice Cryptography
Library, commmit d76213499af44558170cca6c72c5314755fec23c (2021), https://
gitlab.com/palisade/palisade-release

19

https://doi.org/10.1145/3373376.3378523
https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/
https://doi.org/10.1145/3152701.3152706
https://github.com/libntl/ntl
https://github.com/libntl/ntl
https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release

	Timing leakage analysis of non-constant-time NTT implementations with Harvey butterflies

