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Abstract

The homogeneous continuous LWE (hCLWE) problem is to distinguish samples of a specific
high-dimensional Gaussian mixture from standard normal samples. It was shown to be at least
as hard as Learning with Errors, but no reduction in the other direction is currently known.

We present four new public-key encryption schemes based on the hardness of hCLWE, with
varying tradeoffs between decryption and security errors, and different discretization techniques.
Our schemes yield a polynomial-time algorithm for solving hCLWE using a Statistical Zero-
Knowledge oracle.

Keywords: public-key encryption, continuous learning with errors, statistical zero-knowledge,
hypercontractivity, statistical-computational gaps, discrete gaussian sampling

1 Introduction

Existing public-key encryption schemes are based on relatively few hard computational problems,
all from the domains of number theory [32, 29, 13], coding theory [25], lattices [1, 30], and noisy
linear algebra [2, 3]. Each of these domains yields to different tradeoffs between functionality,
security, and efficiency.

In this work we explore public-key encryption based on a new type of assumption: computational
hardness in statistical inference. The input of a statistical inference problem is a sequence of
independent samples coming from some distribution with unknown parameters. The search (or
estimation) task is to identify the parameters; the easier distinguishing (or hypothesis testing) task
is to distinguish the samples from ones coming from a fixed null distribution.

Our statistical inference problem of interest is one that has attracted much algorithmic at-
tention: learning Gaussian mixtures in high dimension. A mixture is a convex combination of k
Gaussians with different means and possibly different covariance matrices. When k is constant
polynomial-time learning algorithms are known [22, 4] assuming sufficiently many samples are
available. Diakonikolas et al. [10] showed that in general the learning problem is intractable for
statistical query algorithms. Bruna et al. [9] proved that even the task of distinguishing mixtures of
Gaussians from standard normal samples is intractable assuming the hardness of short vectors and
short bases in lattices (the GapSVP and GapSIVP problems). Gupte et al. [20] recently showed
the stronger claim that the hardness can be based on the Learning with Errors (LWE) problem.
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The hard Gaussian mixture of [9, 20], called the homogeneous Continuous Learning with Errors
(hCLWE) distribution, consists of samples in Rn that have a standard normal distribution in every
direction perpendicular to a secret direction w ∈ Rn. The distribution in direction w is a noisy
discrete Gaussian, i.e. a mixture of ”Gaussian pancakes” of standard deviation β/

√
β2 + γ2 ≈ β/γ

and spacing γ/(β2 + γ2) ≈ 1/γ (Figure 1.a). The (decision) hCLWE problem is to distinguish
hCLWE samples from purely normal ones.

1.1 Our contributions

In this work we construct public-key encryption that is at least as hard to break as hCLWE. The
hCLWE problem not only inherits advantages of LWE (such as reduction to worst-case hardness
and resistance to known quantum attacks), but is potentially more secure: hCLWE is certainly no
easier than LWE and can be potentially harder.

Our constructions imply limits on the hardness of hCLWE: just as LWE, hCLWE is tractable
in Statistical Zero-Knowledge. It follows that hCLWE is unlikely to be helpful for constructing
encryption as secure as NP (unless NP is contained in coAM).

Four Public-Key Encryption Schemes: We present four public-key encryption schemes that
offer varying tradeoffs between decryption and security errors, and use different techniques when
discretizing continuous values.

The third cryptosystem of Ajtai and Dwork [1] already contains essentially all the ingredients
needed to obtain hCLWE-based public-key encryption. Our most efficient scheme—discretized
encryption—is largely based on it. We believe that our other schemes are simpler to describe, more
intuitive to analyze, and offer the potential of wider applicability to other Gaussian mixtures.

Some of our schemes are based on a variant of hCLWE called (0, 1/2)-hCLWE. In the 1/2-
hCLWE distribution, the mode in the hidden direction w is shifted by a relative phase of 1/2
(Figure 1.b). The hidden direction in (0, 1/2)-hCLWE is a labeled mixture of hCLWE and 1/2-
hCLWE (Figure 1.c). Technically, (0, 1/2)-hCLWE is at least as hard as LWE and no harder than
hCLWE.

−3 0 3 −3 0 3

−3 0 3

Figure 1: Probability density function of the hidden direction in the (a) hCLWE, (b) 1/2-hCLWE,
and (c) (0, 1/2)-hCLWE distributions with parameters β = 0.05 and γ = 2
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Scheme Assumption Decryption error Security error PK size SK size

Pancake hCLWE O(1/n) 1/4 Õ(n3) n

Bimodal (0, 1/2)-hCLWE 0 1/2 Õ(n3) n

Discretized (0, 1/2)-hCLWE 0 2−n+2 Õ(n2) n

Baguette hCLWE(`) O(1/n`) 1/4 Õ(n3) n`

Table 1: Comparison of our encryption schemes. If the assumption holds against time t(n) + nO(1)

and advantage Ω(ε(n)) adversaries then the corresponding scheme is resilient against time t(n) and
advantage (security error + ε(n)) adversaries.

Our first scheme (“pancake”) is based on hCLWE. It has inverse polynomial decryption and
constant security errors. These parameters, along with the specifics of the scheme, already suffice to
prove that hCLWE can be solved in Statistical Zero-Knowledge (SZK), and therefore is in coAM.1

The discretization step in the scheme can be performed during encryption, and so the public key
is continuous. Arguing security then necessitates proving an analog of the leftover hash lemma for
Gaussian matrices, which may be of independent interest.

One could in principle rely on standard techniques to reduce decryption and security errors in
the first scheme [23] , albeit at the price of a significant loss in efficiency. Instead, we present three
different ideas to reduce the errors directly.

In the second scheme (“bimodal”), we achieve perfect decryption error by publishing (0, 1/2)-
hCLWE samples as the public key. To encrypt a 0, Bob uses samples with z = 0 and to encrypt a
1, he uses samples with z = 1/2. This eliminates the probability that a random normal ciphertext
of 1 is of the form of an hCLWE sample and thus makes decryption perfect.

The third scheme (“discretized”) achieves negligible security error by mapping the samples into
a parallelpiped spanned by hCLWE samples; a technique due to Ajtai and Dwork [1]. Here the
discretization step takes place already in public-key generation, allowing for the use of the standard
leftover hash lemma and yielding favorable security error in comparison with the other schemes.

In the fourth scheme (“baguette”) we achieve negligible decryption error assuming only hCLWE.
Instead of publishing samples that have a “pancake” distribution in one direction, we sample vectors
that have a pancake distribution in ` hidden directions. In [9] the authors give a reduction from
hCLWE to this hCLWE(`) distribution.

The parallelepiped technique can also be applied to the fourth scheme, yielding an hCLWE-
based scheme with negligible decryption and security error. We omit a formal analysis of this step
as it is similar to the discretized scheme.

1.2 Related work

Bruna et al. [9] show a worst-case to average-case reduction from Discrete Gaussian Sampling
(DGS) to hCLWE. Their reduction factors through an intermediate problem called Continuous
LWE (CLWE).

A sample from the CLWE distribution [9] is of the form (a, z), where a ∈ Rn is a vector
with individual entries sampled independently from the standard normal distribution N (0, 1), and

1A distinguishing problem is in class C if there is an algorithm in C that accepts at least 2/3 of the yes instances
and rejects at least 2/3 of the no instances.
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Figure 2: Reductions between problems and encryption schemes (new results are in bold).

z := γ〈a,w〉+ e mod 1. Here e is the noise drawn from a Gaussian distribution with mean 0 and
variance β2 for some β > 0, γ > 0 is a fixed parameter and w ∈ Rn is a secret unit vector. CLWE
is the problem of distinguishing multiple CLWE samples from an equal number of samples of the
form (a, u), where u is uniform over [0, 1) and independent of a.

An hCLWE sample is a CLWE sample conditioned on z = 0; Bruna et al.’s reduction from
CLWE to hCLWE is based on this property. We obtain an analogous reduction from CLWE to
(0, 1/2)-hCLWE by modifying the condition on z. It is not known if there is a reduction in the
opposite direction.

The CLWE problem can be viewed as a continuous analog of Regev’s LWE problem [30] and is
at least as (quantumly) hard as the same worst-case lattice problems underlying LWE [9]. Gupte
et al. [20] recently showed a reduction from LWE to CLWE. They in fact showed that LWE is
equivalent in hardness to a variant of CLWE with a different distribution over the secrets that is
supported on a discrete subset of the unit sphere. CLWE is at least as hard as this variant.

1.3 CLWE, SZK, and Statistical-Computational Gaps

Several works [5, 21, 8] uncover that hypothesis testing tasks in statistical inference tend to exhibit
statistical-computational gaps: There is a range of sample complexities m ∈ [mstat,mcomp] for which
hypothesis testing is possible, but no efficient (in terms of the length of a single sample) algorithm
is known.

A striking feature of the hCLWE problem is that it is potentially intractable even when the
sample complexity is unbounded, i.e., mcomp is infinite. Our Theorem 9.2 shows that when m ≥
Õ(n2) samples are available hCLWE becomes solvable in SZK. Thus, in a world in which SZK =
BPP, the computational threshold mcomp for hCLWE is at most Õ(n2).

In contrast, the statistical threshold for CLWE is mstat = O(n). It is an intriguing open question
whether a statistical-computational gap for hCLWE exists assuming SZK = BPP. One approach
for ruling out this possibility is to design a more efficient hCLWE-based PKE scheme.

Applying the reduction from CLWE to hCLWE of Bruna et al., our result also implies that
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CLWE is in SZK. As their reduction does not preserve sample complexity, the resulting SZK
algorithm for CLWE requires a larger number of samples.

2 Technical Overview

The messages in our encryption schemes are single bits. The distributions of encryptions of zero
and one, respectively, are efficiently distinguishable with the secret key but not without it. The
public keys are independent samples of the hCLWE or (0, 1/2)-hCLWE distributions and the secret
key is the hidden direction w of the corresponding yes instances.

As can be seen in Figure 1, the hCLWE samples used to generate the public-key have a periodic
discrete structure along the secret direction w. Encryption is designed to retain this discrete
structure in the ciphertext even though the sender is oblivious to it. Decryption calculates the
correlation between the secret key w and the ciphertext. This correlation is close to an integer
multiple of the period for encryptions of zero and (typically) far from it for encryptions of one.

2.1 “Pancake” Encryption

The first scheme (Section 4) is based on the hCLWE problem. The secret key is a random unit
vector w and the public key is an n×m matrix A that consists of m hCLWE samples conditioned
on the secret direction w. To encrypt a 0, sample a uniform vector t ← {1/

√
m,−1/

√
m}m and

compute At. To encrypt a 1, sample a standard normal vector. The ciphertext c is a discretization
of the resulting vector using a rounding function that divides the real line into intervals (“buckets”)
of equal Gaussian measure.2 To decrypt a ciphertext c, compute γ

√
m〈w, c〉 and output 0 if the

result is close to an integer. Otherwise output 1.
The scheme has inverse polynomial decryption error since the probability of γ

√
m〈w, c〉 being

close to an integer is inverse polynomial for a random choice of c. The main technical contribution
in this scheme is the security proof, in particular Proposition 4.5. This result is an analog of the
leftover hash lemma for the multiplication of Gaussian matrices with vectors with uniform vectors
t← {1/

√
m,−1/

√
m}m which shows that the security error is 1/2 for our choice of parameters.

2.2 “Bimodal” Encryption

In the second scheme (Section 6) we introduce the following changes: We base the scheme on the
(0, 1/2)-hCLWE problem and publish two matrices (A0,A1) as the public key. The matrix A0

consists of hCLWE samples conditioned on w and A1 consists of 1/2-hCLWE samples conditioned
on w. To encrypt a 0, do the same as in the pancake scheme with the matrix A0. To encrypt a
1, do exactly the same with A1. To decrypt, check if γ

√
m〈w, c〉 mod 1 is closer to 0 or to 1/2.

Replacing one hCLWE matrix by two (0, 1/2)-hCLWE matrices yields perfect decryption error for
all but negligibly many choices of the public key. The security error however remains constant.

2.3 “Discretized” Encryption

The third scheme (Section 7) has perfect decryption for all but an inverse polynomial fraction
of public keys and negligible security error. To achieve this we make use of the parallelepiped

2In the body of the paper we use the notation 1/γ′ = γ/(β2 + γ2) for the period of the hCLWE hidden direction.
As the difference between 1/γ′ and 1/γ is small we make no distinction between the two in this overview.
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technique due to Ataj and Dwork [1] to obtain uniform matrices from (0, 1/2)-hCLWE samples.
We change the secret key to BTw, where B is a square matrix whose columns are hCLWE

samples. The public key (A0,A1) again consists of 2 matrices: A matrix A0 that is obtained
by mapping hCLWE samples into the parallelepiped P(B) spanned by the columns of B, and a
matrix A1 that is obtained in the same way but with 1/2-hCLWE samples mapped to P(B). This
mapping into the parallelepiped transforms Gaussian vectors in R into uniform vectors in P(B),
while preserving the pancakes in the secret direction. An additional rounding step discretizes the
matrices A0,A1.

To encrypt a bit b, sample a vector t with uniform entries in {−1, 1} and set c := Abt mod q.
To decrypt, check if γ〈BTw, c/q〉 mod 1 is closer to 0 or to 1/2. For all but an inverse polynomial
fraction of choices of the matrix B this scheme has perfect correctness. Security follows from the
classical leftover hash lemma [24] since the matrices A0 and A1 are uniform and discrete.

2.4 “Baguette” Encryption

The fourth scheme (Section 8) is based on the hCLWE(`) problem, which is potentially harder than
(0, 1/2)-hCLWE. We achieve negligible decryption error by modifying our first scheme as follows:
Instead of publishing samples that have a pancake distribution in only one hidden direction, we
publish a matrix A of samples that have a pancake distribution in logn many hidden directions,
i.e. we replace the Gaussian pancakes with “Gaussian Baguettes”. To encrypt 0, sample a uniform
t ← {1/

√
m,−1/

√
m}m and compute At, and to encrypt 1, sample a standard normal vector.

Discretization is identical to the first scheme.
To decrypt, multiply the ciphertext with a matrix that consists of all hidden directions. If all

of the entries in the resulting vectors are close to an integer, output 0, otherwise output 1. While
the probability that the inner product of the ciphertext of 1 with one secret direction is close to an
integer is polynomial, the probability that this happens for all of the log n directions is negligible.
The security error of this scheme remains constant but could be amplified either by a standard
approach or by the above parallelepiped method.

2.5 SZK membership

Our SZK membership proof of hCLWE is established by reduction to the complete problem statis-
tical distance: hCLWE samples are mapped to a distribution that is far from uniform over some
discrete set, while standard normal samples are mapped to a distribution that is close to uniform.
The two distributions are obtained by pancake encrypting a zero under an actual public key and
a random placebo. Completeness and soundness then follow from the functionality and security of
pancake encryption.3

We find it instructive to directly describe the distributions resulting from this reduction. Our
Proposition 4.5 can be interpreted as saying that random ±1/

√
m linear combinations of m = Θ̃(n2)

standard Gaussian samples fill up space evenly: For every set of sufficiently large Gaussian measure,
the fraction of linear combinations that lands in the set is approximately equal to its measure. Thus
if Rn is partitioned into suitably many regions of equal Gaussian measure, the induced distribution
on the regions is close to uniform. In contrast, if there are periodic gaps in some (unknown)

3By relying on discretized encryption instead we can prove the stronger claim of coNISZK membership [16] and
improve the sample complexity. Details will be spelled out in the final version.
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direction like in the hCLWE distribution, the linear combinations of samples are concentrated on
few regions and the induced distribution is far from uniform.

An intriguing question left open by our work is if SZK membership also holds for aperiodic
mixtures of Gaussians such as the ones underlying the statistical query lower bound of Diakonikolas
et al. [10].

3 Preliminaries

3.1 Public Key Encryption

We focus on encryption schemes with binary message space. Some of our encryptions schemes will
decrypt incorrectly with bounded probability δ, and will sometimes also have noticeable (but still
bounded) statistical distance ε between the distribution of encryptions of zero and those of one.
Once such schemes are attained it is possible to invoke standard polarization methods to amplify
security and correctness errors to be negligible [23].

Definition 3.1 (Syntax). A public key encryption scheme is a tuple of algorithms (Gen,Enc,Dec)
such that for λ ∈ N, Gen(1λ) outputs a pair of keys (sk, pk); Enc(pk,m) encrypts a message m
with the public key pk and outputs a ciphertext c; Dec(sk, c) decrypts a ciphertext c using the secret
key sk and outputs a message m.

Both key-generation, Gen, and encryption, Enc, are randomized. We will allow for the decryp-
tion algorithm, Dec, to make errors.

Definition 3.2 (δ-correctness). A public key encryption scheme (Gen,Enc,Dec) is correct with
probability δ if

Pr [Dec(sk,Enc(pk,m)) = m] ≥ δ,

where probability is taken over the randomness of Gen and Enc. We call 1−δ the decryption error.

Security is defined through indistingushability of encryptions [17]. To this end, we rely on the
notion computational indistinguishability (defined next), which is also used more generally in our
proofs of security.

Definition 3.3 (ε-indistinguishability). We say that two distributions X,Y are ε-indistinguishable
if for any probabilistic polynomial time algorithm A:

|Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ ε.

Sometimes we quantify over size s distinguishers A, in which case we say that the distributions
X,Y are (s, ε)-indistinguishable. By (∞, ε)-indistinguishable we mean that the distributions X,Y
have statistical distance ε.

Definition 3.4 (ε-security). A public key encryption scheme (Gen,Enc,Dec) is said to have secu-
rity error ε ∈ [0, 1] if the distributions (pk,Enc(pk, 0)) and (pk,Enc(pk, 1)) are ε-indistinguishable,
where probabilities are taken over the randomness of Gen and Enc.
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3.2 Singular values and matrix norms

We use the notation 〈x,y〉 =
∑n

i=1 xiyi for the inner product in Rn and ‖x‖ =
√
〈x,x〉 for the

Euclidean norm in Rn.
Given a norm ‖·‖p on Rn and a norm ‖·‖q on Rm, the operator norm ‖·‖p,q on the space of

matrices Rm×n is defined as

‖A‖p,q := sup
0 6=x∈Rn

‖Ax‖q
‖x‖p

where A ∈ Rm×n.
We are mainly interested in the case when the vector norms on Rn and Rm are just the Euclidean

norm. In this case, we use the notation ‖A‖.

Fact 3.5. For all vectors x,y ∈ Rn and matrices A ∈ Rm×n, B ∈ Rn×m:

1. 〈x,y〉 ≤ ‖x‖ · ‖y‖,

2. ‖Ax‖ ≤ ‖A‖ · ‖x‖,

3. ‖AB‖ ≤ ‖A‖ · ‖B‖.

Given a matrix A ∈ Rm×n the singular values of A are the square roots of the eigenvalues of
ATA. We use the notation si(A) for the i-th singular value and we order them in descending order,
that is, s1(A) denotes the largest singular value of A.

Fact 3.6. Let A ∈ Rn×m and s1(A) its largest singular value. We have that

s1(A) = ‖A‖ ≤
√∑
i∈[m]

∑
j∈[n]

|aij |2.

Fact 3.7 ([12]). Let B ∈ Rn×n be a matrix with entries independently sampled from N (0, σ2) and
sn(B) be its smallest singular value. We have that for every ε > 0

Pr[sn(B) ≤ ε] ≤ σ−1√nε.

3.3 Normal Distribution

We consider both the continuous normal distribution and the discrete one. We refer to them as nor-
mal or Gaussian and we use these two words interchangeably. The continuous normal distribution
in Rn, denoted by Nn(µ,Σ), has probability density function at x ∈ Rn given by

1√
(2π)n det Σ

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ ∈ Rn is the mean vector and Σ ∈ Rn×n is a positive definite matrix called the covariance

matrix. We usually work with vectors with i.i.d. entries from N (0, 1), which we denote by Nn(0, 1)
instead of Nn(0, In), where In is the n-dimensional identity matrix.
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Let µ ∈ Rn×s, U ∈ Rn×n and V ∈ Rs×s such that both U and V are positive definite. We say
that a n× s random matrix A has a matrix normal distribution, denoted by MN n×s(µ,U,V), if
and only if vec(A) follows a Nns(vec(µ),V ⊗U) distribution .

In the case of the discrete Gaussian we only consider covariance matrices of the form Σ = σ2In
for some σ > 0 and µ = 0. This allows us to simplify the notation for the discrete Gaussian
distribution, DL,σ2 , where L denotes its support. If x ∈ L, the probability mass function at x is
proportional to the value of the probability density function at x ∈ Rn of N (0, σ2In).

Fact 3.8. Pr[N (0, 1) > t] ≤ 1√
2πt
e−t

2/2 for t > 0.

Fact 3.9. Pr[N (0, 1) > t] ≥ e−t2 for t ≥ 1.91.

Proof. Fact 3.8 and the following lower bound are well-known [19]:

Pr[N (0, 1) > t] ≥ t√
2π(t2 + 1)

e−t
2/2

The inequality t/
√

2π(t2 + 1) ≥ e−t2/2 for t ≥ 1.91 gives Fact 3.9.

Fact 3.10. For a random variable X with distribution N (0, σ2) it holds that:

Pr [|X| > s] ≤
√

2σ2/π
e−s

2/(2σ2)

s
.

Corollary 3.11. For a vector x ∈ Rn with entries independently sampled from N (0, σ2) we have

‖x‖ ≤ nσ

with probability at at least 1−
√
ne−n.

Proof. By Fact 3.10 we have that the absolute value of a fixed entry of x is larger than
√
nσ with

probability at most e−n/(
√
n). Applying the union bound yields that all entries are bounded by√

nσ with probability ne−n/(
√
n) =

√
ne−n. It follows that ‖x‖ ≤

√
n · (
√
nσ)2 = nσ with the

same probability.

Fact 3.12. Let X be a random variable with Pr[|X| > t] ≤ 2e−t
2/(2σ2) then we have

E[|X|k] ≤ (2σ2)k/2kΓ(k/2).

Proof. We have

E[|X|k] =

∫ ∞
0

Pr[|X| > t1/k]dt ≤ 2

∫ ∞
0

e−t
2/k/2σ2

dt = (2σ2)k/2kΓ(k/2),

where the last equality follows from replacing t with u = t2/k/(2σ2).
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3.4 Gaussian hypercontractivity

In the proof of our analog of the leftover hash lemma we will use a Gaussian hypercontractivity
result. For the sake of completeness we introduce some concepts that are only needed to understand
the general hypercontractivity theorem and the proof of Corollary 3.16. Later on we will only use
the result in Corollary 3.16.

Definition 3.13. Let Lk(Rn, γ) denote the space of Borel functions f : Rn → R that have finite
k-th moment ‖f‖kk under the Gaussian measure, i.e. ‖f‖kk = Ez∼N (0,1)n [|f(z)|k] is finite.

Definition 3.14. Let X = (X1, . . . , Xn), X ′ = (X ′1, . . . , X
′
n) be two n-dimensional standard Gaus-

sian variables. We call X and X ′ ρ-correlated if each pair (Xi, X
′
i) is a correlated Gaussian pair

with covariance matrix E[X2
i ] = E[X ′2i ] = 1, E[XiX

′
i] = ρ and the n pairs are mutually independent.

Theorem 3.15. [27, Gaussian hypercontractivity Theorem, p. 333] Let f, g ∈ L1(Rn, γ), r, s ≥ 0,
0 ≤ ρ ≤

√
rs ≤ 1 and Z,Z ′ be ρ-correlated n-dimensional Gaussian variables. Then we have that

E(Z,Z′)[f(Z)g(Z ′)] ≤ ‖f‖1+r‖g‖1+s.

Corollary 3.16. Let S ⊆ Rn be any event and X = (X1, . . . , Xn), X ′ = (X ′1, . . . , X
′
n) be ρ-

correlated n-dimensional standard variables. We have that

Pr[X ∈ S and X ′ ∈ S] ≤ Pr[X ∈ S]1/(1+|ρ|) Pr[X ′ ∈ S]1/(1+|ρ|).

Proof. First assume that ρ ≥ 0. Theorem 3.15 with r = s = ρ and f, g being indicators of the set
S gives the statement:

Pr[X ∈ S and X ′ ∈ S] = E[1S(X)1S(X ′)]

≤ ‖1S‖21+ρ

= EZ∼N (0,1)[1S(Z)1+ρ]2/(1+ρ)

= Pr[X ∈ S]1/(1+ρ) Pr[X ′ ∈ S]1/(1+ρ).

In the case where ρ < 0 we apply the statement to X and −X ′ since then X and −X ′ are (−ρ)-
correlated and hence

Pr[X ∈ S and X ′ ∈ S] = Pr[X ∈ S and −X ′ ∈ −S] ≤ Pr[X ∈ S]1/(1−ρ) Pr[X ′ ∈ S]1/(1−ρ).

The two cases together give the claim of the corollary.

3.5 Lattices

Given a basis B = {b1, . . . ,bn} of Rn we define the lattice L(B) as the set of all integer linear
combinations of B, i.e.,

L(B) :=

{∑
i=1

zibi

∣∣∣∣∣ z1, . . . , zn ∈ Z

}
.

The minimum distance of a lattice L is λ1(L) := min06=x∈L ‖x‖. We say that L ⊂ Rn is a
(full-rank) lattice if there exists a basis B of Rn such that L = L(B). The dual lattice of L is the
set
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L∗ := {y ∈ Rn | ∀x ∈ L : 〈y,x〉 ∈ Z} .

The minimum distance of a lattice L is λ1(L) := min06=x∈L ‖x‖.
One parameter that is particularly useful to study the relation between normal distributions

and lattices is the smoothing parameter. It is defined as

ηε(L) := inf {r | fXr(L∗ \ {0}) ≤ ε}

where Xr is a random variable with distribution Nn(0n,
r2

2π In) and fXr its probability density
function.

The following result guarantees that under certain conditions the sum of two independent
random variables with a discrete normal distribution are statistically close to a random variable
with discrete normal distribution. This result appears as Lemma 4.12 in the complete version ([6])
of [7]. Here we state it in a simplified way and make the bound on the statistical distance explicit.

Lemma 3.17 (Special case of [6, Lemma 4.12]). Let L ⊂ Zn be a full rank lattice, ε ∈ R, σ ∈ R,
and X1, X2 two independent random variables with distribution DL+t,σ2. If σ > ηε(L), then the
statistical distance between a random variable with distribution DL+2t,2σ2 and X1 + X2 is at most
2ε

1−ε .

We will also need the following results:

Lemma 3.18 ([28, Lemma 2.5]). For any n-dimensional lattice L, real ε > 0, and r ≥ ηε(L), the

statistical distance between N (0, r
2

2π In) mod L and the uniform distribution over Rn/L is at most
ε/2.

Lemma 3.19 ([28, Lemma 2.6]). Let L ⊂ Rn be an n-dimensional lattice, c ≥ 1 and ε = exp(−c2n).

It holds that ηε(L) ≤ c
√
n

λ1(L∗) .

And as a special case;

Lemma 3.20. For any n-dimensional lattice L ⊂ Rn with basis B = {b1, . . . ,bn} we have
η2−n(B) ≤

√
nmaxi‖bi‖.

3.6 The (homogeneous) CLWE distribution

Definition 3.21 (CLWE Distribution). Given a dimension n and parameters β, γ > 0, and a unit
vector w ∈ Rn, samples (y, z) ∈ Rn × [0, 1) from the CLWE distribution Aw,β,γ,n are generated as
follows:

1. Sample y← Nn(0, 1).

2. Sample e← N (0, β2).

3. Output (y, γ〈w,y〉+ e mod 1).

Definition 3.22 (CLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N, the
(average-case) distinguishing problem CLWEβ,γ,n asks to distinguish between Aw,β,γ,n for a uniform
vector w ∈ Rn and Nn(0, 1)× U , where U is the uniform distribution on [0, 1).
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Definition 3.23 (hCLWE Distribution). Given a dimension n, parameters β, γ > 0, and a unit
vector w ∈ Rn, samples y ∈ Rn from the hCLWE distribution Hw,β,γ,n are generated as follows:

1. The pancake: Sample k ∈ Z with probability proportional to exp(−k2/(2γ2 + 2β2)).

2. The noise: Sample e from N (0, β′2), where β′2 = β2/(γ2 + β2).

3. The rest: Sample w⊥ as Nn−1(0, 1) on the subspace orthogonal to w.

4. Output w⊥ + (k/γ′ + e)w, where 1/γ′ = γ/(γ2 + β2).

Definition 3.24 (hCLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N, the
(average-case) distinguishing problem hCLWEβ,γ,n asks to distinguish between Hw,β,γ,n for a uni-
form vector w ∈ Rn and Nn(0, 1).

The (s, ε) homogeneous CLWE (hCLWE(s, ε)) assumption [9] postulates that for a random w,
a hCLWE oracle cannot be distinguished in size s from an oracle that outputs N (0, 1) samples on
Rn with advantage ε. As evidence Bruna, Regev, Song, and Tang show a polynomial-time quantum
reduction from the problem of sampling a discrete gaussian of width O(

√
n/β) times the smoothing

parameter assuming γ ≥ 2
√
n. Specifically, if γ and β are polynomial in n then it is plausible

that hCLWE holds with s and 1/ε exponential in n. Note that they define the standard normal
distribution as N (0, 1/(2π)) instead of N (0, 1).

It can be shown that all hCLWE versions with different variances are equivalent by rescaling
the samples and the problem parameters γ and β. In particular hCLWE with normal distribution
N (0, 1/(2π)) and problem parameters γ and β is equivalent to hCLWE with normal distribution
N (0, 1) and problem parameters γ/

√
2π and β/

√
2π. We will always work with the N (0, 1) distri-

bution for which γ ≥
√
n is sufficient.

4 Scheme 1: Pancake Encryption

The first encryption scheme relies on the hCLWE assumption and has polynomial decryption- and
constant security error. It is the basis for all of the following encryption schemes that achieve
better error bounds but either rely on an assumption that is potentially easier to break and/or
incur a blow-up in the key size. Furthermore, this scheme enables us to prove that hCLWE is in
the complexity class SZK. Before presenting the scheme, we define a rounding function that we will
need to discretize the ciphertexts of the scheme.

4.1 Rounding into buckets of equal measure

We use of the following Gaussian rounding function roundr : R→ {1, . . . , r} given by

roundr(x) = dr · µ((−∞, x))e,

where µ is the standard Gaussian measure on the line. In words, partition R into r inter-
vals (“buckets”) J1, J2, . . . , Jr of equal Gaussian measure, and set roundr(x) to be the unique i
such that x ∈ Ji. We extend the definition over Rn coordinate-wise, i.e. roundr(x1, . . . , xn) =
(roundr(x1), . . . , roundr(xn)).

Some of the buckets are very wide (at least two of them are infinite!) so the rounding will cause
encryption errors with some probability. We will argue that this is an unlikely event using the
following regularity property of roundr. The width of an interval J = (a, b) is b− a.
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Proposition 4.1. For every 0 < α < 1 and all r such that r1−α ≥ 19, the number of i for which
the width of Ji = round−1

r (i) exceeds r−α is at most 2rα/
√

ln r1−α + 2.

The k widest intervals capture a k/r fraction of the probability mass µ at the tails of the normal
distribution. If t is chosen so that µ((−∞, t)∪ (t,∞)) = k/r then the next widest interval is of the
form (t′, t) and t′ is uniquely determined by the constraint µ((t′, t)) = 1/r. Using suitable analytic
approximations for the normal CDF the maximum width t − t′ of all remaining intervals can be
bounded by r−α when k = b2rα/

√
ln r1−α + 2c.

Proof of Proposition 4.1. By monotonicity, the width of the intervals increases the farther the in-
terval is from zero. Assuming r is even or not all intervals have width exceeding r−α, there
are exactly two narrowest intervals of width exceeding r−α of the form Ji− = (−t,−t′) and
Ji+ = (t′, t) for some 0 < t′ < t. We will later justify the assumption. The intervals of width
at least r−α are then Ji−, Ji+, and all those contained in the set B = (−∞, t] ∪ [t,∞). As
µ(B) =

∑
i : Ji⊆B µ(Ji) =

∑
i : Ji⊆B 1/r, the number of intervals of width exceeding r−α must equal

r · µ(B) + 2. By Fact 3.8,

µ(B)

2
= Pr[N (0, 1) > t] ≤ e−t

2/2

√
2πt

,

from where,

1

r
= µ(Ji+) ≥ e−t

2/2

√
2π
· width(Ji+) >

e−t
2/2

√
2π
· r−α ≥ tµ(B)

2
· r−α. (1)

If t ≥ 2 then by Fact 3.9, µ(B)/2 ≥ e−t
2
, so t ≥

√
ln(2/µ(B)). Plugging into (1) we get

µ(B)
√

ln(2/µ(B)) ≤ 2rα−1, and hence

µ(B) ≤ 2rα−1√
ln(2/µ(B))

≤ 2rα−1

√
ln tr1−α

≤ 2rα−1

√
ln r1−α

.

We conclude that rµ(B) + 2 ≤ 2rα/
√

ln r1−α + 2 in this case. If t < 2 then by (1) we get
r1−α <

√
2πet

2/2 < 19.
If r is odd, at least 3, and all intervals including the middle one Ji = (−t, t) have width exceeding

r−α, then t < 0.5 and

1

r
= µ((−t, t)) ≥ e−t

2/2

√
2π
· r−α > r−α

3
,

so r1−α < 3.

4.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; r > 0 and n,m ∈ Z.

• The secret key is a uniformly random unit vector w ∈ Rn.

• The public key is a matrix A ∈ Rn×m whose columns are independent hCLWE samples from
Hw,β,γ,n.

• To encrypt a 0, sample a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at random and output

c := roundr(At).
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• To encrypt a 1, sample c← {1, 2, . . . , r}n at random and output c.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute γ′
√
m〈w, z〉 mod 1

and check if it is in the interval (−1/2n, 1/2n). If yes, output 0, else output 1.

Theorem 4.2. Let γ =
√
n,β = (40000n3/2 log(n))−1,r = (40000n3 log(n))5/3 and m = 108 log(n)2n2.

Assuming hCLWE(s, ε), the scheme has decryption error O(1/n) + ε and security error at most
1/4 + 2ε.

We prove correctness and security of the scheme separately. We will assume that w and A have
infinite precision. In Section 4.5 we argue that O(log n) bits of precision are sufficient.

4.3 Correctness

There are two sources of error in this encryption scheme: key generation error and encryption error.
While the key generation error is negligible, the encryption error may be noticeable.

We will call a public key A good if in all its column samples the noise e has magnitude at most√
nβ. By hCLWE(s, ε), Fact 3.10 and a union bound, a public key is good except with probability

m/en + ε.
The following two claims show that the scheme is correct.

Claim 4.3. Assuming hCLWE(s, ε) where s is the complexity of rounding, the probability that
Dec(w,Enc(A, 0)) 6= 0 is at most 1/2n+ ε for all but a fraction of m/en + ε choices of A.

Proof. Given a ciphertext c, the decryption chooses a vector z that satisfies roundr(z) = c and
outputs

γ′
√
m〈w, z〉 = γ′

√
m〈wA, t〉+ γ′

√
m〈w, z−At〉.

Since the public key is good, all entries of wA are
√
nβ-close to multiples of 1/γ′ (i.e. they are a

multiple of 1/γ′ plus an error term of magnitude at most
√
nβ) , so 〈wA, t〉 must be

√
mnβ-close

to a multiple of 1/γ′
√
m. By our choice of parameters we get |γ′

√
m〈wA, t〉 mod 1| ≤ 1/4n.

It remains to bound the absolute value of the term γ′
√
m〈w, z − At〉, which arises from the

rounding error. By the hCLWE(s, ε) assumption and the fact that ft(X) := roundr(Xt) is an
efficiently computable function, the probability that at least one entry of roundr(At) falls into an
interval of width more than r−3/5 is within ε of the probability of the same event when A is replaced
by a standard normal n×m matrix N. By Proposition 4.1 and a union bound, this probability is
at most 2nr−2/5 + 2n/r which is at most 1/2n by our choice of r. Assume this does not happen.
Since roundr(z) = roundr(Nt), the entries of z−Nt are bounded in magnitude by r−3/5, so∣∣γ′√m〈w, z−Nt〉

∣∣ ≤ ‖w‖ · ‖z−Nt‖ γ′
√
m ≤

√
nr−3/5γ′

√
m ≤ 1

4n

by our choice of parameters. By the triangle inequality |γ′
√
m〈w, z〉 mod 1| ≤ 1/2n as desired. As

this happens except with probability at most 1/2n+ ε, the claim follows.

Claim 4.4. The probability that Dec(w,Enc(A, 1)) 6= 1 is at most 3/2n.
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Proof. The ciphertext c := Enc(A, 1) is a vector with i.i.d. uniform entries in {1, 2, . . . , r}. The
decryption chooses a vector z that satisfies roundr(z) = c. By definition of the rounding function
this is a standard Gaussian g ∈ Rn plus the rounding error z− g. We have already seen that the
absolute value of γ′

√
m〈w, z− g〉 mod 1 is at most 1/4n except with probability 1/2n.

Since w is a unit vector, 〈w,g〉 is a standard normal random variable. By the smoothing prop-
erty of Gaussians modulo the integers (Lemmas 3.18 and 3.19) γ′

√
m〈w,g〉 mod 1 is exp(−γ′2m)-

close to a uniform random variable on the interval (−1/2, 1/2). The probability that its absolute
value is 1/2n or less is at most 1/n. It follows that the decryption error is at most 1/2n+1/n = 3/2n
in this case.

4.4 Security

We show that the above scheme has constant security error by the following argument:

1. Under the hCLWE(s, ε) assumption, (A,Enc(A, b)) is ε-indistinguishable from (N,Enc(N, b))
for both b = 0 and b = 1, where N is a n×m matrix with i.i.d. entries sampled from N (0, 1).

2. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically close.

3. It follows that the distributions (A,Enc(A, 0)) and (A,Enc(A, 1)) are at most (1/4 + 2ε)-
indistinguishable.

The first claim follows directly from the hCLWE assumption using the fact that the encryption
is an efficiently computable function of the public-key. To prove the second claim (Proposition 4.8)
we will argue that for each possible set (bucket) S that is the of the form round−1

r (c), the random
variable Pr[Nt ∈ S|N] is unlikely to deviate from its mean E [Pr[Nt ∈ S|N]] = Pr[g ∈ S] by much,
where g is a standard normal vector. Then by a union bound over all the buckets we can say that
with high probability over the choice of N the statistical distance between the two distributions is
small (given N). Recall that µ(S) = Pr[g ∈ S] is the standard Gaussian measure over Rn.

Proposition 4.5. Let N be an n ×m matrix of independent N (0, 1) random variables, t a ran-
dom m-dimensional {−1/

√
m,+1/

√
m} vector, and S be any event in Rn. Assuming µ(S) ≥

exp(−
√
m/4e), we have

Var [Pr[Nt ∈ S|N]] ≤ 4eµ(S)2 ln(1/µ(S))/
√
m.

Proof. Using the definition Var[Z] = E[Z2]− E[Z]2 for any random variable Z we get:

Var
[
Pr[Nt ∈ S|N]

]
= Pr[Nt ∈ S and Nt′ ∈ S]− Pr[Nt ∈ S] Pr[Nt′ ∈ S], (2)

where t, t′ are two independent copies of a random ±1/
√
m-valued m-dimensional vector. Let X =

(X1, . . . , Xn) = Nt and X = (X ′1, . . . , X
′
n) = Nt′. Conditioned on t and t′, each pair (Xi, X

′
i) is a

correlated Gaussian pair (independent of the others) with covariance matrix E[X2
i ] = E[X ′2i ] = 1,

E[XiX
′
i] = ρ, where ρ = 〈t, t′〉 is the inner product of the vectors t and t′. By Corollary 3.16 we

get
Pr[Nt ∈ S and Nt′ ∈ S] ≤ Pr[Nt ∈ S]1/(1+|ρ|) Pr[Nt′ ∈ S]1/(1+|ρ|)

for fixed choices of t and t′. The quantities Pr[Nt ∈ S] and Pr[Nt′ ∈ S] are simply the Gaussian
measure µ(S) of the bucket S, so (2) gives

Var
[
Pr[Nt ∈ S|N]

]
≤ E[µ(S)2/(1+|ρ|) − µ(S)2] = E

[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
µ(S)2. (3)
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The expectation here is taken over the choice of ρ = 〈t, t′〉 = (Z1 + · · ·+Zm)/m, where Zi are i.i.d.
±1. If we further use µ(S) ≤ 1 and |ρ| ≥ 0, we get that

E
[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
≤ E[µ(S)−2|ρ|]− 1.

We further bound this expression by using the following claim:

Claim 4.6. E[µ−2|ρ|] ≤
∑∞

k=0(es)k, where s = (2 ln 1/µ)/
√
m.

By our assumption µ(S) ≥ exp(−
√
m/4e), we have 0 ≤ es ≤ 1/2 so we get

∑
k(es)

k =
1/(1− es) ≤ 1 + 2es. Plugging into (3) we get the proposition.

Proof of Claim 4.6. The random variable |ρ|
√
m is subgaussian: Pr[|ρ|

√
m ≥ t] ≤ 2 exp(−t2/2),

but doesn’t have mean zero. Then

E[µ−2|ρ|] = E[exp(s |ρ|
√
m)]

=

∞∑
k=0

skE[(|ρ|
√
m)k]

k!

≤ 1 +

∞∑
k=1

sk · 2k/2kΓ(k/2)

k!
(by Fact 3.12)

≤ 1 +

∞∑
k=1

(es)k

kk/2−1
(Γ(k/2) ≤ (k/2)k/2 and k! ≥ (k/e)k)

≤
∞∑
k=0

(es)k (kk/2−1 ≥ 1 for k ≥ 1.)

Using Proposition 4.5 we can now bound the statistical distance between (N, roundr(Nt)) and
(N, roundr(g)) which are basically encryptions of 0 and 1 with a standard normal matrix instead of
a public key. Security of the scheme then follows from the fact that under the hCLWE assumption
N is indistinguishable from a public key.

Corollary 4.7. Let round be any discrete-valued function on Rn such that the value µ(round−1(c)) ≥
α for all c in the range of round. Then the statistical distance between (N, round(Nt)) and
(N, round(g)) is at most

√
4e ln(1/α)/

√
m.

Proof. We will assume α ≥ exp(−
√
m/4e) for otherwise

√
4e ln(1/α)/

√
m ≥ 1 and the claim is

true. Fix c and let S = round−1(c). Applying the Cauchy-Schwarz inequality to Proposition 4.5
we have

E
∣∣Pr[Nt ∈ S|N]− µ(S)

∣∣ ≤√4e ln(1/µ(S))√
m

· µ(S).
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In particular, if µ(round−1(c)) ≥ α ≥ exp(−
√
m/4e) for every c, then

∆((N, round(Nt)); (N, round(g)))

=
1

2
E

[∑
c

∣∣Pr[round(Nt) = c|N]− Pr[round(g) = c|N]
∣∣]

≤ 1

2

∑
c

√
4e ln(1/µ(round−1(c)))√

m
· µ(round−1(c))

≤

√
e ln(1/α)√

m

∑
c

µ(round−1(c)),

which is at most the desired expression as the summation equals µ(Rn) = 1.

Proposition 4.8. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically close
for a matrix N of independent standard Gaussians.

Proof. By construction, µ(round−1
r (b)) = r−n for all b. By Corollary 4.7 the statistical distance

between encryptions is then at most
√

4e ln rn/
√
m which is at most 1/4 by our choice of parameters.

Corollary 4.9. Assuming hCLWE(s, ε), (A,Enc(A, 0)) and (A,Enc(A, 1)) are (s−poly(n), 1/4+
2ε)-indistinguishable where A is the public key matrix.

Proof. Let N be a random normal matrix. By hCLWE(s, ε), (A,Enc(A, b)) and (N,Enc(N, b)) are
(s−poly(n), ε)-indistinguishable for both b = 0 and b = 1. By Proposition 4.8, (N,Enc(N, 0)) and
(N,Enc(N, 1)) are (∞, 1/4)-indistinguishable. The corollary follows from the triangle inequality.

4.5 Precision

As we are working with real numbers it is also necessary to discuss how precision can affect the
scheme. We denote by ρ the positive integer that determines the precision and show that for ρ =
ω(log n) the distance between the real value and the one obtained as a result of the approximation
errors is negligible. This guarantees that decryption is not affected (up to a negligible fraction).
We denote by EA the matrix that is obtained as the difference between the actual public key A
and the one stored in memory, and by ev the vector equal to the difference between the actual
vector v and the one stored in memory.

We now study how the error propagates to the encryptions of 0. We bound the norm of the
difference between (A + EA)(t + et) and A + t;

‖(A + EA)(t + et)−At‖ ≤ ‖Aet‖+ ‖EAt‖+ ‖EAet‖
≤ ‖A‖ ‖et‖+ ‖EA‖ ‖t‖+ ‖EA‖ ‖et‖
≤ 2−ρ

√
m ‖A‖+ ‖EA‖+ 2−ρ

√
m ‖EA‖

We can use the inequality between the Euclidean norm and the Frobenius norm for matrices to
obtain that ‖EA‖ ≤ 2−ρ

√
nm. By Fact 3.10 the norm of A is polynomial in n with overwhelming
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probability. Therefore, for ρ = ω(log n) the distance between (A + EA)(t + et) and A + t is
negligible.

An analogous argument guarantees that decryption is unaffected. Indeed,

|〈w + ew, z + ez〉 − 〈w, z〉| ≤ |〈w, ez〉|+ |〈ew, z〉|+ |〈ew, ez〉|
≤ ‖ez‖+ ‖ew‖ ‖z‖+ ‖ew‖ ‖ez‖
≤ 2−ρ

√
n+ 2−ρ

√
n ‖z‖+ 2−2ρn

where the second line is a direct application of Cauchy-Schwartz inequality.
The norm of z is polynomial in n since the parameter r is taken to be polynomial in n. Therefore,

for ρ = ω(log n) the distance between the real value and the one obtained as a result of the
approximation errors is negligible. This guarantees that decryption is not affected (up to a negligible
fraction).

5 The s-hCLWE and (0, 1/2)-hCLWE Distributions

In this section we introduce two distributions that are indistinguishable from Nn(0, 1) (i.e. n-
dimensional vectors with i.i.d. entries from N (0, 1)) by the CLWE assumption: the s-hCLWE and
the (0, 1/2)-hCLWE distributions. Samples from the s-hCLWE distribution are CLWE samples
(yi, zi) with zi = s. Note that by definition the 0-hCLWE distribution is just the hCLWE distribu-
tion. Samples from the (0, 1/2)-hCLWE distribution are CLWE samples (yi, zi) with zi ∈ {0, 1/2}.
We obtain them by flipping a coin and, depending on the outcome, generating either an hCLWE
sample or a 1/2-hCLWE sample. In the next two encryption schemes (“bimodal” in Section 6 and
“discretized” in Section 7) we use samples from the (0, 1/2)-hCLWE distribution to construct the
public key.

To argue that these two distributions are indistinguishable from Nn(0, 1), we give a reduction
from CLWE to both distributions. We also give a reduction from 1/2-hCLWE to hCLWE for
completeness even though it is not needed in the rest of the paper.

5.1 The s-hCLWE Distribution

We begin by formally defining the distribution and then we show that there exists a reduction from
CLWE.

Definition 5.1 (s-hCLWE Distribution). For a unit vector w ∈ Rn, real numbers β, γ > 0, n ∈ N
and s ∈ [0, 1], samples y ∈ Rn for the s-hCLWE distribution Hsw,β,γ,n are generated as follows:

1. Sample k ∈ Z + s with probability proportional to exp(−k2/(2γ2 + 2β2)).

2. Sample e← N (0, β′2), where β′2 := β2/(γ2 + β2).

3. Sample v as Nn−1(0, 1) from the subspace orthogonal to w.

4. Output y := v + (k/γ′ + e)w, where γ′ := (γ2 + β2)/γ.

It follows from the definition that hCLWE corresponds to the case s = 0. When s = 0, we
write Hw,β,γ,n instead of H0

w,β,γ,n. The s-hCLWE distinguishing problem is to distinguish between
s-hCLWE samples and standard normal ones.
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Definition 5.2 (s-hCLWE Distinguishing Problem). For real numbers β, γ > 0, n ∈ N and s ∈
[0, 1], the (average-case) distinguishing problem s-hCLWEβ,γ,n asks to distinguish between Hsw,β,γ,n
for a uniform unit vector w ∈ Rn and Nn(0, 1).

We do not consider the worst-case formulation of this problem as it is equivalent to the average-
case one. The proof is analogous to [9, Claim 2.22] for hCLWE and CLWE.

We now proceed to compare s-hCLWE to hCLWE and CLWE. First of all, using rejection
sampling it is possible to obtain s-hCLWE samples from CLWE samples. This result follows from
[9, Lemma 4.1], which shows this for the case s = 0. Let Aw,β,γ,n denote the distribution of CLWE
samples.

Lemma 5.3. For a unit vector w ∈ Rn, real numbers β, γ > 0, n ∈ N and s ∈ [0, 1], there exists a
probabilistic algorithm that runs in time poly(n, 1/δ) and that on input δ ∈ (0, 1) and samples from
Aw,β,γ,n, outputs samples from Hs

w,
√
β2+δ2,γ,n

.

Proof. The same proof as the one of Lemma 4.1 in [9] with g0(z) :=
∑

k∈Z ρδ(z + s+ k).

If we take δ = β/
√

2, we obtain as a corollary the following reduction:

Proposition 5.4. For s ∈ [0, 1], n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such that β is
the inverse of a polynomial in n, there exists a polynomial-time reduction from CLWEβ/

√
2,γ,n to

s-hCLWEβ,γ,n.

Now that we have given a reduction from CLWE to s-hCLWE it is a natural question to ask
whether there is a reduction from s-hCLWE to CLWE. However, we do not know if this is possible
for any value of s.

5.2 The (0, 1/2)-hCLWE Distribution

We now define the (0, 1/2)-hCLWE distribution, which is the distribution on which the following
two encryptions schemes are based. Afterwards we show that there is a reduction from CLWE to
(0, 1/2)-hCLWE.

Definition 5.5 ((0, 1/2)-hCLWE Distribution). For a unit vector w ∈ Rn and real numbers β, γ >

0, n ∈ N , samples (y, z) ∈ Rn×{0, 1/2} for the (0, 1/2)-hCLWE distribution H(0,1/2)
w,β,γ,n are generated

as follows:

1. Sample z ← {0, 1/2}.

2. Sample y← Hzw,β,γ,n.

3. Output (y, z).

Definition 5.6 ((0, 1/2)-hCLWE Distinguishing Problem). For real numbers β, γ > 0 and n ∈ N ,

the (average-case) problem (0, 1/2)-hCLWEβ,γ,n asks to distinguish between H(0,1/2)
w,β,γ,n for a uniform

unit vector w ∈ Rn and Nn(0, 1)× U({0, 1/2}).

Lemma 5.7. For a unit vector w ∈ Rn, n ∈ N and real numbers β, γ > 0 , there exists a
probabilistic algorithm that runs in time poly(n, 1/δ) and that on input δ ∈ (0, 1) and samples from

Aw,β,γ,n, outputs samples from H(0,1/2)

w,
√
β2+δ2,γ,n

.
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Proof. We first sample z ← {0, 1/2} uniformly at random. By Lemma 5.3 we can obtain a sample
y from Hz

w,
√
β2+δ2,γ,n

using samples from Aw,β,γ,n in time poly(n, 1/δ) and (y, z) is a sample from

H(0,1/2)

w,
√
β2+δ2,γ,n

.

If we take δ = β/
√

2, we obtain as a corollary the following result:

Proposition 5.8. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such that β is the
inverse of a polynomial in n, there exists a polynomial-time reduction from CLWEβ/

√
2,γ,n to

(0, 1/2)-hCLWEβ,γ,n.

5.3 A reduction from 1/2-hCLWE to hCLWE

Finally, we show that there exists a reduction from 1/2-hCLWE to hCLWE (with slightly different
parameters) to get a finer understanding of the relative hardness of these phased hCLWE problems.

We obtain the reduction by constructing samples from Hw,
√

2β,
√

2γ,n using samples from H1/2
w,β,γ,n.

Lemma 5.9. For a unit vector w ∈ Rn, n ∈ N, real numbers β, γ > 0 such that γ >
√
n, and

independent random variables Y1, Y2 with distribution H1/2
w,β,γ,n, the distribution of (Y1 − Y2)/

√
2 is

e1−n-statistically close to Hw,
√

2β,
√

2γ,n.

Proof. By definition, Yi = vi + (ki/γ
′ + ei)w for i = 1, 2 and

1√
2

(Y1 − Y2) =
1√
2

(v1 − v2) +

(
1√
2

k1 − k2

γ′
+

1√
2

(e1 − e2)

)
w

By standard properties of the normal distribution, it follows that (v1 − v2)/
√

2 has a Nn−1(0, 1)
distribution and (e1 − e2)/

√
2 has a N (0, β′2) distribution.

It remains to show that the distribution of k1 − k1 is statistically close to the discrete normal
distribution over Z with variance 2(γ2 +β2). In order to apply Lemma 3.17, we first need a bound
on the smoothing parameter of the lattice Z. From Lemma 3.19 with L = Z and ε = exp(−c2)
where c =

√
n, we get ηε(Z) ≤

√
n ≤ γ. By Lemma 3.17 with L = Z and t = 1/2, we get that

k1 − k2 is e1−n-statistically close to DZ,2(γ2+β2) as ηε(Z) ≤ γ ≤
√
γ2 + β2, which completes the

proof.

This gives the following result:

Proposition 5.10. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0, there exists a polynomial-
time reduction from 1/2-hCLWEβ/

√
2,γ/
√

2,n to hCLWEβ,γ,n.

6 Scheme 2: Bimodal Encryption

In this section we modify the “pancake” scheme from Section 4 to achieve perfect correctness.
Note that the decryption error in this scheme can be at least polynomial since the pancakes have
polynomial width in the secret direction. This is due to the fact that the hCLWE assumption can
be broken whenever the error distribution has exponentially small width as was shown in [9]. A
random normal vector therefore “hits” a pancake with probability 1/poly(n). If we encrypt a 1
with such a vector, decryption fails. A standard approach to amplify the decryption error is sending
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multiple independent ciphertexts of the same message [11]. This amplification increases the size
of the ciphertext and the security error since a potential adversary only needs to be successful in
decrypting one of the ciphertexts. Instead, we modify the encryption process of the bit 1. We
introduce the following two changes:

• The public key consists of two matrices. A matrix A0 whose columns are independent hCLWE
samples and a matrix A1 whose columns are independent 1/2-hCLWE samples. The samples
from both matrices are obtained from the same secret direction w.

• To encrypt a 0, take the matrix A0 and perform the same encryption as in the first scheme.
To encrypt a 1, do exactly the same but with the matrix A1.

In Section 4 we have already seen that the decryption of Enc(0) is 1/poly(n)-close to 0 mod 1.
We show that in our modified scheme the decryption of Enc(1) is 1/poly(n) to 1/2 so the scheme has
perfect correctness. Security of the scheme follows by Proposition 4.8 and the triangle inequality.

6.1 The encryption scheme

The scheme is parametrized by γ > 0, β > 0, n ∈ Z,r > 0 and m ∈ Z \ 2Z an odd integer.

• The secret key is a uniformly random unit vector w ∈ Rn.

• The public key is a pair of matrices (A0,A1) ∈ Rn×m × Rn×m. The columns of A0 are
independent hCLWE samples and the columns of A1 are independent 1/2-hCLWE samples.

• To encrypt a bit b ∈ {0, 1}, compute c := roundr(Abt), where t ← {−1/
√
m, 1/

√
m}m is

sampled uniformly at random. Check if all of the entries of c correspond to a bucket of width
less than 1/(5

√
nmγ′). If yes, output c. If no, output b.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute γ′
√
m · 〈w, z〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in the latter case
output 1.

The continuous quantities w,A0,A1 are represented with O(log n) bits of precision. As the
precision analysis is analogous to the one for pancake encryption we omit it.

Theorem 6.1. Let γ =
√
n, β = (40000n5/2 log(n)2)−1 , r = (40000n3 log(n))5/3 and m =

108n2 log(n)2. Assuming (0, 1/2)-hCLWE(s, ε) we have that for all but a fraction of 2−Ω(n) choices
of the public key the scheme has perfect correctness and security error at most 1/2 + 1/n2 + 3ε.

We prove correctness and security of the scheme separately.

6.2 Correctness

We call a public key good if the norm of the noise vector is less than mβ′ in both matrices. By
Corollary 3.11 this holds except with probability 2−Ω(n). During the construction of the public key
it can be efficiently tested if a public key is good by checking if the absolute value of the generated
noise value is small enough.

Claim 6.2. If the public key is good, the scheme has perfect correctness.
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Proof. A preimage of a ciphertext c is of the form z = Abt + er, where er denotes the rounding
error. To decrypt one computes

γ′
√
m〈w, z〉 = γ′

√
m〈w,Abt + er〉

= γ′
√
m(1/γ′k− eb + b/(2γ′) · 1)t + γ′

√
mwer

= (k− γ′eb + b/2 · 1)1 + γ′
√
mwer

= mb/2− γ′eb · 1 + γ′
√
mwer mod 1

= b/2− γ′eb · 1 + γ′
√
mwer mod 1,

for some integer vector k ∈ Zm. Here eb is the noise vector of the corresponding hCLWE or 1/2-
hCLWE samples and 1 is the m-dimensional vector of all 1’s. The second equality holds since
〈w,A0〉 is a vector of multiples of 1/γ′ minus the noise value and 〈w,A1〉 is a vector of multiples
of 1/γ′ minus the noise value plus 1/2. The last equality follows from the fact that m is an odd
integer.

In order to show that γ′
√
m〈w, z〉 is close to b · 1/2 we bound the above expression by using

Fact 3.5 and ‖w‖ = 1. We get that∣∣γ′√m〈w, z〉 − b · 1/2 mod 1
∣∣ ≤ ∑

i∈[m]

|(eb)i|+ γ′
√
m‖er‖.

Since our public key is good we have that |(eb)i| ≤
√
nβ′ so

∑
i∈[m] |(eb)i| ≤ m

√
nβ′. We also

know that each entry of er has absolute value less than 1/(5
√
nmγ′) since the encryption process

only outputs a ciphertext if this is the case. It follows that γ′
√
m‖er‖ < 1/5. By the choice of

parameters we have ∣∣γ′√m〈w, z〉 mod 1
∣∣ = b · 1/2± o(1/5 + 1/n),

which is closer to 0 if b = 0 and closer to 1/2 if b = 1.

6.3 Security

There are two sources of security error in this scheme:

1. If at least one of the entries of the ciphertext corresponds to a bucket of width larger than
1/(5
√
nmγ′), the encryption algorithm outputs the plaintext in the clear.

2. If the above event does not happen, the ciphertexts of 0 and of 1 are 1/2+2ε-indistinguishable.

Claim 6.3. Let Ab ∈ Rn×m be a matrix whose columns consist either of independent hCLWE-
samples or of independent 1/2-hCLWE samples. Let t← {−1/

√
m, 1/

√
m}m be sampled uniformly

at random. Assuming hCLWE(s, ε) and 1/2-hCLWE(s, ε), where s is the complexity of rounding,
the probability that any entry of the vector c := roundr(Abt) corresponds to a bucket of width larger
than 1/(5

√
mγ′) is at most 1/n2 + ε.

Proof. First consider a matrix A with i.i.d. entries from N (0, 1). Since ‖t‖ = 1 we get that At
is a vector with i.i.d. entries in N (0, 1). By Proposition 4.1 we know that the number of intervals
of length larger than 1/(5

√
nmγ′) is at most 10

√
nmγ′/

√
ln(r/(5

√
nmγ′)) + 2, so the probability

that any entry lands in such a bucket is at most

10n
√
nmγ′

r
√

ln(r/(5
√
nmγ′))

+
2n

r
≤ γ′n

√
nm+ 2n

r
≤ 1

n2
.
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The claim follows from the fact that the matrices A0 and A1 are ε-indistinguishable from A and
the rounding function being efficiently computable.

Remark 6.4. Note that we can avoid the above event by rejection sampling the public key. Since
t is a unit vector, the absolute value of the inner product of any vector a with t is bounded by the
norm of a. This means that we can avoid the event that an entry of the ciphertext c corresponds to
a wide bucket by rejection sampling the matrices A0,A1: As long as the rows of these matrices have
small enough norm, the entries of the vector Abt will not land in a wide bucket for both b ∈ {0, 1}.
We omit a formal analysis of this optimization because the main security issue is not the rounding
error but the probability of distinguishing ciphertexts of 0 and 1 as is shown by the next claim.

Claim 6.5. The distributions (N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are 1/2-statistically
close for matrices N0,N1 of independent standard Gaussians.

Proof. By Proposition 4.8 we have

∆((N0,N1,Enc(Nb, b)), (N0,N1,g)) ≤ 1/4,

where g is a vector with i.i.d. entries sampled uniformly from {1, 2, . . . , r} and b ∈ {0, 1}. By the
triangle inequality we follow that

∆((N0,N1,Enc(N0, 0)), (N0,N1,Enc(N1, 1))) ≤ 1/2.

Corollary 6.6. Assuming (0, 1/2)-hCLWE(s, ε), the distribution of (A0,A1,Enc(A0, 0)) and the
distribution of (A0,A1,Enc(A1, 1)) are (s− poly(n), 1/2 + 2ε)-indistinguishable where A0,A1 are
the public key matrices.

Proof. Let N0,N1 be standard normal matrices. By (0, 1/2)-hCLWE(s, ε), the distributions of
(A0,A1Enc(Ab, b)) and (N0,N1,Enc(Nb, b)) are (s − poly(n), ε)-indistinguishable for both b = 0
and b = 1. By Claim 6.5, (N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are (∞, 1/2)-indistinguishable.
The corollary follows from the triangle inequality.

7 Scheme 3: Discretized Encryption

In this section we describe an encryption scheme based on CLWE that has negligible soundness
error and perfect correctness for all but a fraction of 1/poly(n) many public keys. The scheme is
inspired by the encryption scheme in [1] which also achieves negligible soundness error but only
polynomial decryption error. We reduce this decryption error by applying their techniques to the
bimodal encryption scheme from Section 6 which is based on (0, 1/2)-hCLWE. Alternatively, it
could be applied to the baguette encryption scheme presented in Section 8 which would yield a
scheme based on hCLWE. An important concept from [1] is the parallelepiped technique which
enables us to transform continuous Gaussian samples into uniform ones. We first describe the
technique before we present the encryption scheme and prove its correctness and security.
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7.1 The parallelepiped technique and Zq
We will make use of the parallelepiped technique introduced by Ataj and Dwork in [1]. Let B =
(b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. We denote by P(B) the n-dimensional
parallelepiped that is defined by the columns of B, i.e.

P(B) :=

∑
i∈[n]

λibi : 0 ≤ λi < 1 for all i ∈ [n]

 .

We denote by Pq(B) the set we obtain by partitioning P(B) into qn smaller parallelpipeds of equal
volume, labelling them by vectors with entries from 0 to q − 1 and then identifying each vector
with the corresponding label, i.e.

Pq(B) :=
{
bqB−1cc : c ∈ P(B)

}
.

We will later need the following fact:

Fact 7.1. Let B = (b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. Then (Pq(B),+) is a
group isomorphic to Znq .

This can be seen by the following argument: We obtain Pq(B) by partitioning each vector bi
into q equal parts. Labelling the parts by {0, 1, 2, . . . , q−1} in the natural way gives an isomorphism
between the q parts of bi and Zq for any i ∈ [n]. Fact 7.1 follows by taking the direct product of
the labellings of the bi.

In the construction of our public key we essentially map continuous Gaussian vectors into P(B).
We will need the next lemma to show that this mapping transforms them into uniformly random
vectors. We denote by ηε(B) the smoothing parameter of the lattice with basis B.

Lemma 7.2 ([26, Lemma 4.1]). Let B ∈ Rn×n be a square matrix of rank n. For any ε > 0 and
any s > ηε(B) the statistical distance between Nn(0, s2) mod B and the uniform distribution over
P(B) is at most ε/2.

7.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; n,m, q ∈ Z \ 2Z odd integers. We set n to be an odd
integer only to clarify the description and the analysis, m and q however are always required to be
odd.

• The secret key is a vector BTw, where w ∈ Rn is a uniformly random unit vector and B is
a matrix whose columns consist of hCLWE samples, such that the smallest singular value of
B is larger than 1/m.

• The public key is a pair of matrices (A0,A1) ∈ Zn×mq × Zn×mq . The columns of A0 and A1

are of the form
B-round(nai mod B),

where B-round = B-roundq : Rn → Znq is defined as B-roundq(a) = bqB−1ac. In the case of
A0 the vectors ai are samples from the hCLWE distribution Hw.β,γ,n and in the case of A1

they are 1/2-hCLWE samples from H1/2
w,β,γ,n.
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• To encrypt a bit b ∈ {0, 1}, compute

c := Abt mod q,

where t← {−1, 1}m is sampled uniformly at random.

• To decrypt a ciphertext c, compute

γ′〈BTw, c/q〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in the latter case
output 1.

Remark 7.3. In the next section we will see that we require n to be an odd integer only because we
need that the inner product of w with 1/2-hCLWE samples scaled by a factor n is approximately
1/2 mod 1 and not 0. One can slightly change the scheme for even values of n: Scale the samples
by a factor n+ 1 instead of n. In the rest of the section we will assume that n is odd without loss
of generality.

Theorem 7.4. Set the parameters of the scheme to γ =
√
n,m = 8n log(n), β = 1/n10, q = n7.

Assuming (0, 1/2)-hCLWE(s, ε) we get that for all but a fraction of 1/(8n1/2 log(n)) +O(ε) choices
of the public key the scheme has perfect correctness and negligible soundness error.

We prove correctness and soundness of the scheme separately in the next two subsections.

7.3 Correctness

We show that for all but a fraction of at most 1/(8n1/2 log(n))+ε choices of the key pair decryption is
always correct. We denote by {b1, . . . ,bn} the columns of B, by {a0

1, . . . ,a
0
m} the hCLWE samples

used to construct A0 and by {a1
1, . . . ,a

1
m} the 1/2-hCLWE samples used to construct A1. We

define e := γ′wTB mod 1 which is the noise vector of the hCLWE samples bi. For b ∈ {0, 1} we
define

eTb := γ′wT
(
nab1, nab2, . . . , nabm

)
− b · (1/2, 1/2, . . . , 1/2) mod 1.

If b = 0 this is the vector where each entry is the noise value corresponding to the hCLWE sample
scaled by n during the construction of A0. If b = 1 this is the noise vector we get during the
construction of A1. We call a key pair (BTw, (A0,A1)) good if the following holds:

1. ‖e0‖, ‖e1‖ ≤ mnβ′;

2. ‖e‖ ≤ nβ′;

3. For all i ∈ [m] the entries of a0
i ,a

1
i lie in the interval

[
−n3/2, n3/2

]
;

4. For all i ∈ [n] the entries of bi lie in the interval [−n, n];

5. the smallest singular value of B is larger than 1/m.

Note that all of these conditions can be efficiently tested during the key generation.

Claim 7.5. If the (0, 1/2)-hCLWE(s, ε) assumption holds, a key pair (BTw, (A0,A1)) is good
except with probability 1/(8n1/2 log(n)) +O(ε).
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Proof. By Corollary 3.11 conditions 1 and 2 hold except with negligible probability. Next we
consider a hybrid where the matrices A0,A1,B are replaced by Ã0, Ã1, B̃ which are not obtained
from (0, 1/2)-hCLWE samples but from i.i.d. random Gaussian samples and bound the probability
that the rest of the conditions for a good public key hold. By Fact 3.10 condition 3 and 4 hold
except with negligible probability. To bound the probability that the smallest singular value sn(B̃)

is less than 1/m we use Fact 3.7. We get that Pr
[
sn(B̃) ≤ 1/m

]
≤
√
n/m = 1/(8n1/2 log(n)).

The claim follows from the observation that if the above probability bounds differed for our
matrices A0,A1,B by more than ε, we could efficiently distinguish between a random normal matrix
and matrices that consist of (0, 1/2)-hCLWE samples and therefore break the (0, 1/2)-hCLWE(s, ε)
assumption by checking the absolute values of the matrices A0,A1 and computing the Eigenvalues
of the matrix BTB.

Claim 7.6. If the key-pair (BTw, (A0,A1)) is good, decryption is correct with probability 1.

Proof. An encryption of a bit b is of the form

c = Abt mod q

= Abt− qs
= bqB−1(Ãb −BZ)ct− qs
= (qB−1(Ãb −BZ) + Eq)t− qs

for some s ∈ Zn,Z ∈ Zn×m. Here Eq is a matrix whose entries are rounding errors and Ãb :=
B(Ab − Eq)/q + BZ is a matrix whose columns are hCLWE samples scaled by n if b = 0 or 1/2-
hCLWE samples scaled by n if b = 1. In other words Ãb is the matrix we get in the construction
of the matrix Ab before rounding and before mapping to the parallelepiped P(B). To decrypt one
computes

γ′〈BTw, c/q〉 = γ′〈w,Bc/q〉
= γ′〈w,B((qB−1(Ãb −BZ) + Eq)t− qs)/q〉 mod 1

= γ′〈w, ((Ãb −BZ) + BEq/q)t−Bs〉 mod 1

= γ′〈w(Ãb −BZ + BEq/q), t〉 − γ′〈w,Bs〉 mod 1

= (b/2 · 1 + γ′eb − γ′eTZ + γ′wBEq/q)t− γ′〈e, s〉 mod 1

= b/2 + γ′(eb − eTZ + eEq/q)t− γ′〈e, s〉 mod 1,

where 1 is the m-dimensional vector of all 1’s. The last equality follows from the fact that m is
odd.

In order to show that 〈w,Bc/q〉 is close to b · 1/2 we bound the above expression by repeatedly
using Fact 3.5 and ‖w‖ = 1. We get that∣∣γ′〈BTw, c/q〉 − b · 1/2 mod 1

∣∣ ≤ γ′(‖eb‖+ ‖e‖ · ‖Z‖+ ‖e‖ · ‖Eq‖/q) · ‖t‖+ γ′‖e‖ · ‖s‖

Since our key pair is good we have that ‖eb‖ ≤ mnβ′ and ‖e‖ ≤ nβ′. We have ‖t‖ =
√
m since its

entries have absolute value 1. By Fact 3.6 we have ‖Eq‖ ≤
√
m ·maxi‖(Eq)i‖2 ≤

√
mn. It remains

to bound the norms of Z and s.

26



Claim 7.7. Let 1/α be the smallest singular value of B. We have ‖s‖ ≤
√
nm and ‖Z‖ ≤ 2αn3√m.

Plugging in these values we get∣∣γ′〈BTw, c/q〉 − b/2 mod 1
∣∣ ≤ β′γ′(nm√m+ 2n4αm+ n3/2m/q + n3/2m)

Since our key pair is good and by the choice of our parameters we have that α ≤ m, β = 1/n10,
γ =
√
n and q = n7. It follows that γ′〈BTw, c/q〉 = b · 1/2 + o(1/n) mod 1.

Proof of Claim 7.7. By definition we have s = (Abt − r)/q and Z = B−1(Ãb −R), where r ∈ Znq
and the columns of R are vectors in P(B). We have

|(Abt− r)i| ≤ mq/q = m

and hence ‖Abt− r‖ ≤
√
nm.

Since the smallest singular value of B is 1/α we have that the largest singular value of B−1 is
α so ‖B−1‖ = α. Furthermore, since our key pair is good the entries of the matrices Ãb are not
too large so ∣∣∣(Ãb −R)ij

∣∣∣ ≤ ∣∣∣(Ãb)ij

∣∣∣+
∑
j

|(B)ij | = n2(
√
n+ 1)

and get ‖Ãb −R‖ ≤ 2n3√m by Fact 3.6.

7.4 Security

We show that encryptions of 0 and 1 are indistinguishable under the (0, 1/2)-hCLWE assumption
by showing that the following distributions are indistinguishable for b ∈ {0, 1}:

1. Realb: (A0,A1,Abt mod q) is a public key of the encryption scheme together with an en-
cryption of b.

2. Hybridb: (A0,A1,Abt mod q) is a tuple where the columns of A0 and A1 are uniformly
random vectors in Zn×mq .

3. Ideal: (A0,A1, r) is the same as above but with r a uniformly random vector in Znq .

Realb and Hybridb are computationally indistinguishable under the (0, 1/2)-hCLWE assumption.
Hybridb and Ideal are statistically indistinguishable by the leftover hash lemma. In the rest of the
section we formally prove the above statements. We start by showing the first claim.

Claim 7.8. Under the (0, 1/2)-hCLWE(s, ε) assumption the distributions Realb and Hybridb are
(s− poly(n), 2−n+1 + ε)-indistinguishable.

Proof. Assume that there is a distinguisher D that decides if (A0,A1,Abt mod q) is from Realb
or from Hybridb with probability δ. We construct an algorithm D′ that distinguishes between
(0, 1/2)-hCLWE samples and random samples with probability δ − 2−n+1 as follows:

1. Given poly(n) many (0, 1/2)-hCLWE samples {(yi, zi)}i∈[poly(n)], define a matrix B by choos-
ing n samples with zi = 0 such that the corresponding vectors yi are linearly independent.
These vectors are the columns of B.
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2. Choose m samples of the form {(ŷi, 0)}i∈[m] and compute

y0
i = B-round (nŷi mod B)

and choose m samples of the form {(ỹi, 1/2)}i∈[m] and compute

y1
i = B-round (nỹi mod B) ,

where B-round = B-roundq : Rn → Znq is defined as -roundq(a) = BbqB−1ac.

3. Let A0 be the matrix with columns y0
i and A1 be the matrix with columns y1

i . Give
(A0,A1,Abt mod q) to the distinguisher D.

Note that in the case where the samples {(yi, zi)}i∈[poly(n)] are (0, 1/2)-hCLWE samples, (A0,A1)
is a public key of our scheme. It remains to prove that given samples {(yi, zi)}i∈[poly(n)], where the
yi are normal random vectors and the zi are uniform in {0, 1/2}, the resulting matrices A0,A1 are
statistically close to uniform matrices in Zn×mq . Lemma 7.2 says that if we sample a vector from
a Gaussian distribution with standard deviation larger than η2−n(B) and map it into Pq(B), the
resulting vector is statistically close to uniform in Pq(B) and hence in Znq .

Now we only need an upper bound on the smoothing parameter in order to prove that the
columns of A0 and A1 are sampled from a Gaussian with sufficiently large variance. By Corollary
3.11 the length of a vector with entries independently sampled from N (0, 1) is at most n except with
probability

√
ne−n. Hence, the smoothing parameter of B is at most n3/2 by Lemma 3.20 except

with probability
√
ne−n. The entries of A0 and A1 are sampled from N (0, n2). Since n2 > n3/2 we

follow from Lemma 7.2 that A0 and A1 are 2−n+1-statistically close to uniformly random matrices
in Zn×mq .

Next we show that Hybridb is statistically close to Ideal, which completes the proof of soundness.
This can be done using the classical leftover hash lemma [24]. To this end we need to show that
multiplication of a {−1, 1}m vector by a uniform matrix H ∈ Zm×nq is a universal family of hash
functions, i.e.:

Claim 7.9. For q odd, x,y ∈ {−1, 1}m such that x 6= y we have

Pr
H←Zm×nq

[Hx = Hy mod q] = q−n.

Proof. Since x 6= y we know that they differ in at least one coordinate. Without loss of generality
assume that xi = 1 and yi = −1. Choose all of H except for the i-th column hi. We have that
Hx = b + hi mod q and Hy = c− hi mod q for some fixed b and c. This means that Hx = Hy
if and only if b + hi = c−hi which is equivalent to 2hi = c−b. Since q is odd we can divide by 2
and get that Hx + Hy if and only if hi = 2−1(c− b) mod q. This holds for exactly one choice of
hi in Znq which concludes the proof.

The following is a special case of the leftover hash lemma [24, 30]:

Lemma 7.10. Let q be an odd integer. Let H ∈ Zn×mq be with columns chosen uniformly at random
from Znq and t← {−1, 1}m a uniformly random vector. Then the statistical distance of the uniform

distribution on Znq and the distribution given by multiplying H with t is at most (qn/2m)1/4 w.p.

1− (qn/2m)1/4.
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By our choice of parameters we have m = 8n log(n) and q = n7. We follow that the statistical
distance of Hybrid0 and Hybrid1 to Ideal is (n7n/2n

2
)1/4 ≤ 2−n for large enough values of n. Hence,

Hybrid0 is at least 2−n+1-close to Hybrid1. Together with Claim 7.8 this yields that an encryption
of 0 is 2−n+2 + 2ε-indistinguishable from an encryption of 1.

7.5 Precision

A precision value of ρ = O(log n) guarantees that decryption is unaffected as a result of the
approximations. The matrix entries of the public key are integer values.

Correctness of decryption remains unaffected and the proof is analogous to the one given for
the pancake scheme in Section 4.5.

8 Scheme 4: Baguette Encryption

We now present a second approach that reduces the decryption error of the pancake scheme. The
security error remains constant but could be reduced by the parallelepiped technique presented
in Section 7. Instead of publishing samples that have a pancake distribution in only one secret
direction, we publish samples that have a pancake distribution in multiple secret directions, i.e.
samples from the hCLWE(`) distribution. This is a distribution defined in [9] to which the authors
give a reduction from hCLWE. To decrypt we take the inner products of the ciphertext with all
secret directions. If the ciphertext is an encryption of 0 all of the results are polynomially close
to an integer. If the ciphertext is an encryption of 1, at least one of the results is not close to
an integer with high probability since taken modulo 1 they are uniformly random values in [0, 1).
Before presenting the encryption scheme we formally define the hCLWE(`) distribution.

8.1 The hCLWE(`) distribution

Both the hCLWE(`), distribution and the corresponding decision problem were introduced in [9].
This problem is the extension of hCLWE to the case of ` hidden orthogonal directions.

Definition 8.1 (hCLWE(`) Distribution). For a matrix W = (w1| . . . |w`) ∈ Rn×` such that
WTW = I`, real numbers β, γ > 0, n ∈ N and ` ∈ N with 0 ≤ ` ≤ n, samples y ∈ Rn for the
hCLWE(`) distribution HW,β,γ,n,` are generated as follows:

1. Sample k1, . . . , k` ∈ Z independently with distribution DZ,γ2+β2.

2. Sample e1, . . . , e` ← N (0, β′2) independently where β′2 := β2/(γ2 + β2).

3. Sample v as Nn−`(0, 1) from the subspace orthogonal to W.

4. Output y := v +
∑`

i=1(ki/γ
′ + ei)wi where γ′ := (γ2 + β2)/γ.

For ` = 0 we get the normal distribution with covariance matrix In and for ` = 1 we recover
the hCLWE distribution. We refer to the columns of W as the hidden directions. Note that they
are orthonormal vectors.

Definition 8.2 (hCLWE(`) Distinguishing Problem). For real numbers β, γ > 0, n ∈ N and
` ∈ N with 0 ≤ ` ≤ n, the (average-case) distinguishing problem hCLWEβ,γ,n(`) asks to distinguish
between HW,β,γ,n,` for a uniform matrix W ∈ Rn×` such that WTW = I`, and Nn(0, 1).
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The hCLWE(`)(s, ε) assumption postulates that the hCLWE(`) distinguishing problem cannot
be solved in size s with advantage ε. As shown in [9] (Lemma 9.3.), if n − ` = Ω(nk) for some
constant k > 0, there is an efficient reduction from hCLWEβ,γ,n−`+1 to hCLWEβ,γ,n(`).

8.2 Encryption scheme

We now give an encryption scheme that builds on the pancake scheme from Section 4. It achieves
negligible decryption error using more hidden directions instead of the (0, 1/2)-hCLWE distribution.

The scheme is parametrized by γ > 0; β > 0; r > 0, n, `,m ∈ N and a parameter a > 0 for
which we will only consider two possible values, namely, a = n and a = 100.

• The secret key is a uniformly random matrix W ∈ Rn×` such that WTW = I`.

• The public key is a matrix A ∈ Rn×m whose columns are independently sampled from
HW,β,γ,n,`.

• To encrypt 0, choose a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at random and output

c := roundr(At).

Check if all entries of c correspond to buckets of width less than 1/(4a
√
n
√
mγ′). If yes,

output c. Otherwise, output 0.

• To encrypt 1, choose a vector c ← {1, 2, . . . , r}n uniformly at random. Check if all entries
of c correspond to buckets of width less than 1/(4a

√
n
√
mγ′). If yes, output c. Otherwise,

output 1.

• To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′
√
mWT z mod 1

and check if all ` entries are in (−1/2a, 1/2a). If yes, output 0, else output 1.

The real matrices and vectors W,A, t are represented with O(log n) bits of precision. The
precision analysis is analogous to the one done in 4.5 for pancake encryption, so we omit it.

Theorem 8.3. Set the parameters of the scheme to γ =
√
n, β = (16 · 104n3 log(n))−1, ` = log n,

m = 108n2 log(n)2, r = (40001n3 log(n))5/3 and a = n. Assuming hCLWE(s, ε), the scheme has
negligible decryption error and security error at most 1/4 + 4ε.

We prove correctness and security of the scheme separately in the next two subsections.
We are also interested in using this scheme to prove that hCLWE and hCLWE(`) are in SZK

(statistical zero knowledge), what is shown in Section 9 for the following choice of parameters:

a = 100

β′γ′ ln γ′ < 1/(4 · 104Kn log n)

γ′ > 1

m = (Kn log n ln γ′)2

r = m10(γ′)5/3

(4)

where K = 4 · 9 · 10 · e · 2 · 5.
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8.3 Correctness

The following two claims assert that the scheme is correct.

Claim 8.4. The probability that Dec(W,Enc(A, 0)) = 0 over the joint choice of the public key and
encryption randomness is at least

1− `
√

2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a
.

In particular,

• for the choice of parameters made in Theorem 8.3, it is at least 1 − e−n, i.e., the error is a
negligible function.

• for the choice of parameters suggested in Equation 4, the probability is at least 1− e−5000.

Proof. For correctness we only need to consider the case when all entries of c correspond to buckets
of width less than 1/(4n3/2√mγ′). We write 〈wi, z〉 = 〈wi,At〉 + 〈wi, z − At〉 and bound each
inner product separately. We start by bounding the first inner product.

For each i ∈ {1, . . . , `}, γ′
√
m
∑m

j=1 eijtj follows a N (0, β′2γ′2m) distribution. By a union bound
and Fact 3.10,

Pr

∀i :
∣∣∣∣∣∣γ′√m

m∑
j=1

eijtj

∣∣∣∣∣∣ ≤ 1

4a

 =1− Pr

∃i :
∣∣∣∣∣∣γ′√m

m∑
j=1

eijtj

∣∣∣∣∣∣ ≤ 1

4a


≥1− `

√
2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a

By definition of the encryption scheme ‖z−At‖ <
√
n/(4a

√
n
√
mγ′), so∣∣γ′√m〈wi, z−At〉

∣∣ ≤ ‖z−At‖ γ′
√
m <

√
n

1

4a
√
n
√
mγ′

γ′
√
m ≤ 1

4a
.

Thus Dec(W,Enc(A, 0)) = 0.

Claim 8.5. If n ≥ 4, the probability that Dec(w,Enc(A, 1)) = 1 is at least 1−(3/2a)`−exp(−γ′2m).
In particular,

• for the choice of parameters made in Theorem 8.3, the probability is at least 1− (3/2n)logn−
exp(−n3), i.e., the error is negligible.

• for the choice of parameters suggested in Equation 4, the probability is at least 1− (3/200)`−
exp(−n2).

Proof. Encryptions of 1 can be seen as sampling g← Nn(0, In), rounding it and checking the width
of its entries as described in the definition of the encryption scheme. For correctness we only need
to consider the case when all entries correspond to buckets of width less than 1/(4a

√
n
√
mγ′). To
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decrypt we take any z such that roundr(z) = roundr(g). We write 〈wi, z〉 = 〈wi,g〉 + 〈wi, z − g〉
and consider each inner product separately.

From the bound on the width of the buckets it follows that∣∣γ′√m〈wi, z− g〉
∣∣ ≤ ‖z− g‖ γ′

√
m <

√
n

1

4a
√
n
√
mγ′

γ′
√
m ≤ 1

4a
.

By the reverse triangle inequality, it follows that∣∣∣∣ ∣∣γ′√m〈wi, z〉 mod 1
∣∣− ∣∣γ′√m〈wi,g〉 mod 1

∣∣ ∣∣∣∣ ≤ ∣∣γ′√m〈wi, z− g〉 mod 1
∣∣ .

Combining these two inequalities, we obtain that

− 1

4a
+
∣∣γ′√m〈wi,g〉 mod 1

∣∣ < ∣∣γ′√m〈wi, z〉 mod 1
∣∣ .

We now show that at least one entry satisfies |γ′
√
m〈wi,g〉 mod 1| ≥ 3/4a with probability at

least 1− (3/2a)` − exp(−γ′2m).
As g is a vector with distribution Nn(0, 1), WTg has distribution N`(0, 1). By the smooth-

ing property of Gaussians modulo Z` (Lemmas 3.18 and 3.19), the statistical distance between
γ′
√
mWTg mod Z` and a uniform random variable on (−1/2, 1/2)` is at most exp(−(γ′

√
m/
√
`)2`) =

exp(−γ′2m). This implies that the probability that at least one entry of γ′
√
mWTg mod Z` does

not belong to (−3/4a, 3/4a) is

1− Pr[γ′
√
mWTg mod Z` ∈ (−3/4a, 3/4a)`] ≥ 1−

(
3

2a

)`
− exp(−γ′2m)

This shows that Dec(W,Enc(A, 1)) = 1 with probability at least 1− (3/2a)`−exp(−γ′2m).

8.4 Security

In order to analyze the security of the scheme we have to take into account the possibility that at
least one of the entries of the ciphertext corresponds to a bucket of width larger than 1/(4a

√
n
√
mγ′)

as the encryption algorithm outputs the plaintext in the clear in that case.

Claim 8.6. Let r be such that the following inequalities are satisfied

r−3/5 ≤ 1

4a
√
n
√
mγ′

(5)

2nr−2/5

√
ln r2/5

+
2n

r
≤ δ(n). (6)

Let A ∈ Rn×m be a matrix whose columns consist of independent hCLWE(`) samples and as-
sume hCLWE(`)(s, ε) where s is the complexity of rounding and ε is a function of n. Let t ←
{−1/

√
m, 1/

√
m}m be sampled uniformly at random. The probability that any entry of the vector

c := roundr(At) corresponds to a bucket of width larger than 1/(4a
√
n
√
mγ′) is at most δ(n) + ε.

For the choice of parameters made in Theorem 8.3 and in Equation 4 both conditions are satisfied
for δ(n) = 1

24 .
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Proof. First consider a matrix N with i.i.d. entries from N (0, 1). Since ‖t‖ = 1 we get that At is a
vector with i.i.d. entries in N (0, 1). By Proposition 4.1 and condition 5 we know that the number
of intervals of length larger than 1/(4a

√
n
√
mγ′) is at most

2r3/5

√
ln r2/5

+ 2.

By a union bound and condition 6 the probability that any entry lands in such a bucket is at
most

2nr−2/5

√
ln r2/5

+
2n

r
≤ δ(n).

The claim follows from the fact that the matrix A is ε-indistinguishable from N.
For the choice of parameters made in Theorem 8.3, r−3/5 = (40001n3 log n)−1, while 1/(4a

√
n
√
mγ′) =

1/(40000n2√n log n(
√
n+ O(1/n6))). This proves that condition 5 holds. Condition 6 holds since

r−2/5 = (40001n3 log n)−2/3.
For the choice of parameters made in Equation 4, r−3/5 = m−6(γ′)−1 and r−2/5 = m−4(γ′)−2/3.

This proves that condition 5 and condition 6 hold.

The next claim follows directly from Proposition 4.8.

Claim 8.7. If the ciphertexts are not the messages, the distributions (N,Enc(N, 0)) and (N,Enc(N, 1))
are

√
4e ln rn/

√
m-statistically close for a matrix N of independent standard Gaussians. In partic-

ular,

• for the choice of parameters made in Theorem 8.3, the distance is at most 1/
√

50 < 1/4.

• for the choice of parameters suggested in Equation 4, the distance is at most 1/3.

Corollary 8.8. If hCLWE(`)(s, ε) holds, then the distributions (A,Enc(A, 0)) and (A,Enc(A, 1))
are (s − poly(n),

√
4e ln rn/

√
m + 4ε)-indistinguishable where A is the public key matrix. In par-

ticular,

• for the choice of parameters made in Theorem 8.3, and ε = 1/24, we get 1/4 + 4/24 < 1/2.

• for the choice of parameters suggested in Equation 4 and ε = 1/24, we get 1/3 + 4/24 = 1/2.

Proof. Let N ∈ Rn×m be a random standard normal matrix. By hCLWE(`)(s, ε), (A,Enc(A, b))
and (N,Enc(N, b)) are (s − poly(n), ε)-indistinguishable for both b = 0 and b = 1. By Claim 8.7
and Claim 8.6 for δ(n) = ε, (N,Enc(N, 0)) and (N,Enc(N, 1)) are (∞,

√
4e ln rn/

√
m + 2ε)-

indistinguishable. The result follows from the triangle inequality and the bound on the advantage
that we get is

√
4e ln rn/

√
m+ 4ε.

9 hCLWE and hCLWE(`) are in SZK

In this section we prove that hCLWE and hCLWE(`) are in SZK, which is the class of decision
problems that admit a statistical zero-knowledge proof [18]. Zero-knowledge is defined with respect
to honest verifiers.
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We say that a sampling problem is in SZK if there is a polynomial-time honest-verifier statistical
zero-knowledge protocol that accepts at least 2/3 of the YES instances and rejects at least 2/3 of
the NO instances. The choice of threshold 2/3 is operational.

Our proof consists in a reduction from hCLWE to the statistical difference problem (SD). Sahai
and Vadhan proved in [33] that SD is complete for SZK.

Definition 9.1 (SD Problem). The YES instances of the Statistical Difference (SD) problem are
pairs of circuits (C0, C1) such that ∆(C0, C1) > 2/3 and the NO instances are pairs of circuits
(C0, C1) such that ∆(C0, C1) < 1/3.

Here ∆ is the statistical (total variation) distance between the output distributions sampled by
the circuits when instantiated with a uniformly random seed. That is, if the output space of C0

and C1 is some finite set Ω,

∆(C0, C1) = sup
A⊆Ω
|Pr[C0 ∈ A]− Pr[C1 ∈ A]| = 1

2

∑
ω∈Ω

|Pr[C0 = ω]− Pr[C1 = ω]|

Since SD is a complete problem for the SZK class and SZK is a class closed under reductions
(see [33]), we can study the SZK class by considering reductions to SD instead of interactive proof
systems. This approach also removes any reference to zero-knowledge.

In order to show that hCLWE is in SZK, it suffices to define two circuits that satisfy the
conditions of Definition 9.1.

Theorem 9.2. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ < 1/(K ′n log n) and
γ′ is polynomially bounded, the hCLWEβ,γ,n problem with m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Equation 4, that is, K = 4 · 9 · 10 · e · 2 · 5 and r = m10(γ′)5/3. Let
K ′ = 4 · 104K. Let X be either a valid public key A ∈ Rn×m or a matrix N ∈ Rn×m with i.i.d.
entries sampled from N (0, 1). We define two circuits C0, C1 that take as input the pair (t,u) where
t ∈ {−1/

√
m, 1/

√
m}m and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0

using randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.
If X = A, by Claim 8.4 and Claim 8.5 and Claim 8.6 for ε(n) = 1/24 = δ(n), the decryption

error is at most e−5000 + 3/200 + exp(−n2) + 1/24 + 1/24. It follows that ∆(C0, C1) > 2/3.
If X = N, then the statistical distance between C0 and C1 is at most 1/3 by Proposition 4.8.

We also have an analogous statement for hCLWE(`).

Theorem 9.3. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ < 1/(K ′n log n), γ′ is
polynomially bounded and 1 ≤ ` ≤ n, hCLWEβ,γ,n(`) with m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Equation 4, that is, K = 4 · 9 · 10 · e · 2 · 5 and r = m10(γ′)5/3. Let
K ′ = 4 · 104K. Let X be either a valid public key A ∈ Rn×m or a matrix N ∈ Rn×m with i.i.d.
entries sampled from N (0, 1). We define two circuits C0, C1 that take as input the pair (t, u) where
t ∈ {−1/

√
m, 1/

√
m}m and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0

using randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.
If X = A, then the statistical distance between C0 and C1 is at least 2/3. By Claim 8.4 and

Claim 8.5 and Claim 8.6 for ε(n) = 1/24 = δ(n), the decryption error is at most e−5000 +(3/200)`+
exp(−n2) + 1/24 + 1/24, so

∆(C0, C1) > 1− e−5000 − (3/200)` − exp(−n2)− 1/12 > 2/3.

If X = N, then the statistical distance between C0 and C1 is at most 1/3 by Claim 8.7.

34



Acknowledgements

We are grateful to Devika Sharma and Luca Trevisan for their insight and advice and to an anony-
mous reviewer for helpful comments.

This work was supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement No. 101019547). The first
author was additionally supported by RGC GRF CUHK14209920 and the fourth author was addi-
tionally supported by ISF grant No. 1399/17, project PROMETHEUS (Grant 780701), and Cariplo
CRYPTONOMEX grant.

35



References

[1] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC
’97, page 284–293, New York, NY, USA, 1997. Association for Computing Machinery.

[2] M. Alekhnovich. More on average case vs approximation complexity. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Proceedings., pages 298–307, 2003.

[3] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assump-
tions. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC
’10, page 171–180, New York, NY, USA, 2010. Association for Computing Machinery.

[4] M. Belkin and K. Sinha. Polynomial learning of distribution families. SIAM Journal on
Computing, 44(4):889–911, 2015.

[5] Q. Berthet and P. Rigollet. Complexity theoretic lower bounds for sparse principal component
detection. In S. Shalev-Shwartz and I. Steinwart, editors, Proceedings of the 26th Annual
Conference on Learning Theory, volume 30 of Proceedings of Machine Learning Research,
pages 1046–1066, Princeton, NJ, USA, 12–14 Jun 2013. PMLR.

[6] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. Cryptology ePrint Archive, Report 2010/453, 2010. https:
//ia.cr/2010/453.

[7] D. Boneh and D. M. Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In Public Key Cryptography - PKC 2011 - 14th International
Conference on Practice and Theory in Public Key Cryptography, volume 6571 of Lecture Notes
in Computer Science, page 1. Springer, 2011. Full version in [6].

[8] M. S. Brennan and G. Bresler. Reducibility and statistical-computational gaps from secret
leakage. In J. D. Abernethy and S. Agarwal, editors, Conference on Learning Theory, COLT
2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings of Machine
Learning Research, pages 648–847. PMLR, 2020.

[9] J. Bruna, O. Regev, M. J. Song, and Y. Tang. Continuous lwe. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 694–707, New
York, NY, USA, 2021. Association for Computing Machinery.

[10] I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for robust estima-
tion of high-dimensional gaussians and gaussian mixtures. 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pages 73–84, 2017.

[11] C. Dwork, M. Naor, and O. Reingold. Immunizing encryption schemes from decryption errors.
In EUROCRYPT, 2004.

[12] A. Edelman. Eigenvalues and condition numbers of random matrices. SIAM Journal on Matrix
Analysis and Applications, 9:543–560, 1988.

36

https://ia.cr/2010/453
https://ia.cr/2010/453


[13] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18, Berlin, Heidelberg,
1985. Springer-Verlag.

[14] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In C. Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 197–
206. ACM, 2008.

[15] O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98,
page 1–9, New York, NY, USA, 1998. Association for Computing Machinery.

[16] O. Goldreich, A. Sahai, and S. P. Vadhan. Can statistical zero knowledge be made non-
interactive? or on the relationship of szk and niszk. In Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 467–484.
Springer, 1999.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[18] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[19] R. D. Gordon. Values of Mill’s ratio of area to bounding ordinate of the normal probability
integral for large values of the argument. Annals of Math. Stat., 12:364–366, 1941.

[20] A. Gupte, N. Vafa, and V. Vaikuntanathan. Continuous LWE is as hard as LWE & applications
to learning gaussian mixtures. Cryptology ePrint Archive, Report 2022/437, 2022. https:

//ia.cr/2022/437.

[21] B. Hajek, Y. Wu, and J. Xu. Computational lower bounds for community detection on random
graphs. In Proceedings of The 28th Conference on Learning Theory, volume 40 of Proceedings
of Machine Learning Research, pages 899–928, Paris, France, 03–06 Jul 2015. PMLR.

[22] M. Hardt and E. Price. Tight bounds for learning a mixture of two gaussians. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 753–760, 2015.

[23] T. Holenstein and R. Renner. One-way secret-key agreement and applications to circuit polar-
ization and immunization of public-key encryption. In Proceedings of the 25th Annual Interna-
tional Conference on Advances in Cryptology, CRYPTO’05, page 478–493, Berlin, Heidelberg,
2005. Springer-Verlag.

[24] R. Impagliazzo and D. Zuckerman. How to recycle random bits. pages 248–253. IEEE, 1989.

[25] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space
Network Progress Report, 44:114–116, Jan. 1978.

37

https://ia.cr/2022/437
https://ia.cr/2022/437


[26] D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-
sures. SIAM J. Comput., 37:267–302, 2007.

[27] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[28] C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of ring-lwe for any
ring and modulus. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, page 461–473, New York, NY, USA, 2017. Association for Computing
Machinery.

[29] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
MIT Laboratory for Computer Science, 1979.

[30] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93, 2005. Full version in [31].

[31] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6), 2009.

[32] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978.

[33] A. Sahai and S. Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, mar 2003.

38


	Introduction
	Our contributions
	Related work
	CLWE, SZK, and Statistical-Computational Gaps

	Technical Overview
	``Pancake'' Encryption
	``Bimodal'' Encryption
	``Discretized'' Encryption
	``Baguette'' Encryption
	SZK membership

	Preliminaries
	Public Key Encryption
	Singular values and matrix norms
	Normal Distribution
	Gaussian hypercontractivity
	Lattices
	The (homogeneous) CLWE distribution

	Scheme 1: Pancake Encryption
	Rounding into buckets of equal measure
	The encryption scheme
	Correctness
	Security
	Precision

	The  shCLWE  and  (0,1/2)hCLWE  Distributions
	The s-hCLWE Distribution
	The (0,1/2)-hCLWE Distribution
	A reduction from 1/2-hCLWE to hCLWE

	Scheme 2: Bimodal Encryption
	The encryption scheme
	Correctness
	Security

	Scheme 3: Discretized Encryption
	The parallelepiped technique and Zq
	The encryption scheme
	Correctness
	Security
	Precision

	Scheme 4: Baguette Encryption
	The hCLWE() distribution
	Encryption scheme
	Correctness
	Security

	 hCLWE  and  hCLWE()  are in SZK

