
The multiplicative complexity of interval checking

Thomas Häner and Mathias Soeken
Microsoft Quantum, Switzerland

Abstract

We determine the exact AND-gate cost of checking if a ≤ x < b, where a and b are constant integers.
Perhaps surprisingly, we find that the cost of interval checking never exceeds that of a single comparison
and, in some cases, it is even lower.

1 Introduction
The multiplicative complexity of a Boolean function f is the smallest number of AND gates in any logic
network over the gate set {AND, XOR, NOT} that implements f . Multiplicative complexity is used as an
important characteristic metric to measure the cost of cryptographic implementations in secure computation
protocols [1, 7, 10] or the cost of fault-tolerant implementations of quantum operations [11]. Unfortunately,
computing the multiplicative complexity is intractable [9] and for a random n-variable Boolean function f
it is at least 2n/2 − O(n) with high probability [3]. However, for several families of Boolean functions the
multiplicative complexity has been analyzed, including quadratic functions [12], all functions up to 6 variables [5],
all functions with a multiplicative complexity of at most 4 [6], all symmetric functions [4], and the Hamming
weight function [2].

In this paper, we determine the multiplicative complexity of the interval check [a ≤ x < b], where a and
b are two nonnegative constant integers and x is an n-bit nonnegative integer. We derive an upper bound on
the multiplicative complexity by proposing a construction to implement the interval check, and we derive a
matching lower bound based on the algebraic degree of the function (i.e., the largest monomial in its algebraic
normal form), thus proving that our construction is optimal with respect to the number of AND gates. We
state our main result in Theorem 1.

Theorem 1 (Main result). Let n > 0 be the number of bits, and let a, b be two constant integers a < b < 2n.
Let ja and jb denote the number of trailing zeros1 in the binary representation of a and b, respectively. Then,
the interval check a ≤ x < b for some arbitrary n-bit nonnegative integer x has a multiplicative complexity of{

n−min{ja, jb} − 1 if ja 6= jb,
n− ja − 2 otherwise.

(1)

We present our method for interval checking using an optimal number of AND gates in Section 3. We then
analyze our construction and give a proof of Theorem 1 in Section 4.

2 Background
In this section, we introduce algebraic normal forms, algebraic degree, and AND/OR chains, which are a family
of Boolean functions central to the implementation of comparison with constants. We use #S to denote the
cardinality of some set S, and we use ite(x, f, g) := (x ∧ f)⊕ (x̄ ∧ g) to denote the if-then-else function.

Definition 1 (Algebraic normal form). Let S = {1, . . . , n} and xi ∈ {0, 1}. Then

f(x1, . . . , xn) =
⊕
I⊆S

aI
∧
i∈I

xi (2)

is the algebraic normal form (ANF) of f for some assignment to the coefficients aI ∈ {0, 1}. Each AND-term
in (2), where aI = 1, is called a monomial of f .

Example 1. The ANF of x1 ∨ x2 is x1 ⊕ x2 ⊕ (x1 ∧ x2). Here a∅ = 0, but a{1} = a{2} = a{1,2} = 1.

1The number of trailing zeros in the binary representation of a ≥ 0 is the largest integer j ≤ n such that a
2j

is an integer.

1



Note that every Boolean function has a unique ANF, since there are 2n coefficients in (2) and there exist 22
n

Boolean functions over n variables.

Definition 2 (Algebraic degree). The algebraic degree of a Boolean function f is

deg(f) = max{#I | aI = 1}, (3)

where the coefficients aI are given by the ANF of f . In other words, the algebraic degree of f is given by the
number of variables in its largest monomial.

Definition 3 (Multiplicative complexity). Let f denote a Boolean function. The multiplicative complexity of
f , denoted by c∧(f), is the minimal number of AND gates in any logic network for f over the gate set {∧,⊕,¬},
which consists of the 2-input AND and XOR gates and inverters.

Note that OR gates can be considered AND gates in the context of the multiplicative complexity (see also
Example 1).

Lemma 1 (Proposition 3.8, [13]). We have for all Boolean functions f , c∧(f) ≥ deg(f)− 1.

Definition 4 (AND/OR chain). Given Boolean variables x1, x2, . . . , xk, k ≥ n, an AND/OR chain is any
formula

f = x1 ◦1 (x2 ◦2 (· · · (xn−1 ◦n−1 xn) · · · )), (4)

where ◦i ∈ {∧,∨}. We refer to `(f) = n− 1 as the length of f .

Lemma 2. Let f be an AND/OR chain. Then deg(f) = `(f) + 1 and c∧(f) = `(f).

Proof. We prove that deg(f) = `(f) + 1 by induction over the length ` of an AND/OR chain. The statement
holds trivially for ` = 0. Assuming that the statement holds for `, consider a function x ◦ f , where ◦ ∈ {∧,∨}
and f is an AND/OR chain and `(f) = `. Further, x is not in the support of f . Then, we have deg(x ◦ f) =
deg((x⊕ f)[◦ = ∨]⊕ (x∧ f)) = deg(x∧ f) = 1 + deg(f) = `(f) + 2. Since the number of operators in f is `(f),
using Lemma 1, we have c∧(f) = `(f).

3 Construction
In this section, we describe an algorithm to construct a logic network to evaluate [a ≤ x < b]. A straightforward
upper bound on the number of AND gates is the sum of the costs of both individual comparisons. However, we
will present a construction that incurs at most the cost of the more costly comparison, and we show that it is
possible to save an additional AND gate if both comparisons have identical costs.

3.1 Comparison
As a starting point, we present a construction for comparing an integer to a constant, i.e., evaluating [a ≤ x] for
a constant integer a and an n-bit nonnegative integer x. We are not aware of any previous work that describes
this construction.

Lemma 3. Let a = (a1 . . . an−11)2 be an odd constant integer and let x = (x1 . . . xn)2 be an arbitrary n-bit
nonnegative integer. Then, the AND/OR chain x1 ◦1 (x2 ◦2 (· · · (xn−1 ◦n−1 xn) · · · )), with

ci =

{
∨ if ai = 0,
∧ if ai = 1,

evaluates [a ≤ x].

Proof. We prove the statement using induction over n. For n = 1, we have a = 1 and x = x1, and [1 ≤ x] = x1.
We assume that the statement holds for any odd constant integer of length n. Consider a constant a = a12n +a′

for some constant integer a′ of length n. If a1 = 0, then [a′ ≤ x] = x1 ∨ [a′ ≤ (x2 . . . xn+1)2]. If a1 = 1, then
[2n + a′ ≤ x] = x1 ∧ [a′ ≤ (x2 . . . xn+1)2].

We provide pseudocode for this construction in Listing 1, where we use the ←-operator to denote insertion
of the expression on the right into the formula on the left at the unique position identified by the · symbol.
Invoking comparison_formula(a, range={1,n}) produces the AND/OR chain from Lemma 3 for evaluating
[a ≤ x], where x is an n-bit integer and a is an odd n-bit constant integer.

Note that comparing to an even number can be recast as a comparison against an odd number. This allows
us to derive the multiplicative complexity of comparison using Lemma 2, leading to the following corollary.

Corollary 1. Let a = 2jk > 0 be a constant integer, where k is odd. Evaluating [a ≤ x] is equivalent to
evaluating [a/2j ≤ (x1 . . . xn−j)2], and therefore c∧([a ≤ x]) = n− j − 1.

2



Formula comparison_formula(a, range):
F ← (·) // formula being constructed
for (k = range.low; k < range.high; ++k)

◦ = a[k] ? ∧ : ∨ // operator is chosen according to a[k]
F ← xk ◦ (·)

return (F ← xrange.high)

Listing 1: Pseudocode for generating a formula for comparison [a ≤ x] (assuming a is odd) using our con-
struction. The range argument can be used to generate subchains, which will be useful for our interval check
construction. In the code, a[k] denotes the k-th bit of the n-bit integer a, with k ranging from 1 to n and a[1]
being the most-significant bit.

3.2 Interval checking
Next, we construct a logic network for interval checking. To this end, note that [a ≤ x < b] is equivalent to

[a ≤ x]⊕ [b ≤ x], (5)

since a < b.2 Starting from this expression, our algorithm for constructing the interval check proceeds by
iteratively decomposing [a ≤ x] ⊕ [b ≤ x] = (x1 ◦ f1) ⊕ (x1 • f2), where both f1 and f2 are either AND/OR
chains or constants, and ◦ and • are either ∧ or ∨. The variables involved in f1 and f2 are either the same and
appear in the same order, or the variables in one chain are a prefix of the variables in the other chain. We show
how to evaluate this expression for different choices of ◦ and •, and that this leads to a formula involving either
f1 ⊕ f2 (allowing us to recurse), or the if-then-else (ite) operation on two AND/OR chains.

Specifically, if f1 or f2 is a constant, then

x⊕ (x ∧ f) = x ∧ f̄ or x⊕ (x ∨ f) = x̄ ∧ f, (6)

and the iteration stops. Otherwise, one of the following three cases applies:

(x ∧ f1)⊕ (x ∧ f2) = x ∧ (f1 ⊕ f2) (7a)
(x ∨ f1)⊕ (x ∨ f2) = x̄ ∧ (f1 ⊕ f2) (7b)
(x ∨ f1)⊕ (x ∧ f2) = ite(x, f̄2, f1) (7c)

Proof. Equations (6) and (7a) follow from straightforward Boolean identities. For (7b), note that (x∨f1)⊕ (x∨
f2) = (x̄ ∧ f̄1)⊕ (x̄ ∧ f̄2) = x̄ ∧ (f1 ⊕ f2), by applying De Morgan’s law and using the fact that x̄⊕ x̄ = x⊕ x.
By expanding the first term in (7c) into an ANF, one obtains f1 ⊕ (x ∧ f1) ⊕ x ⊕ (x ∧ f2). Then the first two
and the last two terms can be merged into (x̄ ∧ f1)⊕ (x ∧ f̄2) = ite(x, f̄2, f1).

Next, we show a special construction for ite(x, f̄2, f1) that exploits the fact that f1 and f2 are both AND/OR
chains. Their formulas only differ in their lengths or in what operators are used. The idea is to propagate the
inversion of f2 into the formula (using De Morgan’s laws) in order to make the operators match those of f1.
Then, the inversions and potential chain suffixes (for chains with unequal lengths) can be implemented in the
same formula conditional on x.

Before proving the general case, we discuss the following examples to provide some intuition. In the first
example, both chains have the same lengths and none of the operators are equal.

Example 2. Let f1 = x2 ∨ (x3 ∧ x4) and f2 = x2 ∧ (x3 ∨ x4). Then

f̄2 = x2 ∧ (x3 ∨ x4)

= x̄2 ∨ (x3 ∨ x4)

= x̄2 ∨ (x̄3 ∧ x̄4),

and therefore
ite(x1, f̄2, f1) = (x1 ⊕ x2) ∨ ((x1 ⊕ x3) ∧ (x1 ⊕ x4)).

Note how this formula evaluates to f1, if x1 = 0, and to f̄2, if x1 = 1.

In the second example, the chain lengths are still equal, but one operator is the same: The ∨ operator links x2
to the rest of the chain in both f1 and f2.

2This expression could also be evaluated on a quantum computer using Deutsch’s algorithm [8] with a single comparator.

3



Example 3. Let f1 = x2 ∨ (x3 ∧ x4) and f2 = x2 ∨ (x3 ∨ x4). Then

f̄2 = x2 ∨ (x3 ∨ x4)

= x2 ∨ (x3 ∨ x4)

= x2 ∨ (x̄3 ∧ x̄4),

and therefore
ite(x1, f̄2, f1) = x1 ⊕ (x2 ∨ (x1 ⊕ ((x1 ⊕ x3) ∧ (x1 ⊕ x4)))).

Note how the inverter is not propagated when the operators are the same, but a double negation is introduced to
further propagate the inverter to the remaining part of the chain.

In the final example, we consider the case in which one chain is longer than the other.

Example 4. Let f1 = x2 ∧ (x3 ∨ x4) and f2 = x2 ∨ (x3 ∧ (x4 ∨ x5)). Then

f̄2 = x2 ∨ (x3 ∧ (x4 ∨ x5))

= x̄2 ∧ (x3 ∧ (x4 ∨ x5))

= x̄2 ∧ (x̄3 ∨ (x4 ∨ x5)),

and therefore
ite(x1, f̄2, f1) = (x1 ⊕ x2) ∧ ((x1 ⊕ x3) ∨ (x1 ⊕ (x4 ∨ (x1 ∧ x5)))).

Note how x1 is not only used to invert subterms of the formula, but also to conditionally include x5 to repre-
sent f̄2.

We can now enumerate all cases for f1 and f2 in ite(x, f̄2, f1). In the following, xi 6= xj , and neither of the two
variables occurs in f1 or f2. The terminal cases apply when `(f1) = 0 or `(f2) = 0:

ite(xi, x̄j , xj) = xi ⊕ xj (8a)
ite(xi, x̄j , xj ∧ f) = (xi ⊕ xj) ∧ (xi ∨ f) (8b)
ite(xi, x̄j , xj ∨ f) = (xi ⊕ xj) ∨ (x̄i ∧ f) (8c)

ite(xi, xj ∧ f, xj) = (xi ⊕ xj) ∨ (xi ∧ f̄) (8d)

ite(xi, xj ∨ f, xj) = (xi ⊕ xj) ∧ (x̄i ∨ f̄) (8e)

In addition to these 5 terminal cases, there are 4 non-terminal cases:

ite(xi, xj ∨ f2, xj ∧ f1) = (xi ⊕ xj) ∧ ite(xi, f̄2, f1) (9a)

ite(xi, xj ∧ f2, xj ∨ f1) = (xi ⊕ xj) ∨ ite(xi, f̄2, f1) (9b)

ite(xi, xj ∧ f2, xj ∧ f1) = xi ⊕ (xj ∧ (xi ⊕ ite(xi, f̄2, f1))) (9c)

ite(xi, xj ∨ f2, xj ∨ f1) = xi ⊕ (xj ∨ (xi ⊕ ite(xi, f̄2, f1)) (9d)

These identities are readily verified by expressing both sides of the equation as an ANF and using identities
such as x⊕ x = 0 and x̄ ∧ y = y ⊕ (x ∧ y).

We provide pseudocode for our construction in Listing 2, where we make use of the shorthand xb for
x, b ∈ {0, 1} to mean

xb =

{
x if b = 1,

x if b = 0,

and for a binary operator ◦ ∈ {∧,∨}, we denote by ◦ its dual operator, i.e., if ◦ = ∧, then ◦ = ∨ and vice-versa.

4



Formula interval_check_formula(n, a, b, j_a, j_b):
cutoff = n - min(j_a, j_b)
F = (·) // formula being constructed
// first, remove identical prefix: Eqs. (7a), (7b)
for (i = 1; a[i] == b[i] and i < n - max(j_a, j_b); ++i)

F ← x
a[i]
i ∧ (·)

// iteration stops if f1 or f2 is a constant: Eq. (6)
if i == n - j_a

f = comparison_formula(b, range={i+1,cutoff})
return (F ← xi ∧ f)

if i == n - j_b
f = comparison_formula(a, range={i+1,cutoff})
return (F ← xi ∧ f)

// handle remaining and/or-chain sections with ite()-recursion: Eqs. (9a)− (9d)
for (j = i+1; j < n - max(j_a, j_b); ++j)

◦j = a[j] ? ∧ : ∨ // and/or is chosen according to a[j]
if a[j] == b[j] // same operators in and/or chains

F ← xi ⊕ (xj ◦j (xi ⊕ (·)))
else // different operators in and/or chains

F ← (xi ⊕ xj) ◦j (·)

// handle terminal cases for ite(): Eqs. (8a)− (8e)
if j_a != j_b // unequal lengths

negop = j_a > j_b ? !b[j] : a[j]
◦ = negop ? ∧ : ∨
num = j_a > j_b ? b : a
// get the postfix of the longer chain
f = comparison_formula(num, range={j+1,cutoff})
// and merge with the formula
if j_a > j_b

negop = !negop
return (F ← (xi ⊕ xj) ◦ xnegop

i ◦ f ja<jb)
else // Eq. (8a)

return (F ← xi ⊕ xj)

Listing 2: Pseudocode for generating a formula for the interval check [a ≤ x < b] based on the construction
detailed in Section 3. As in Listing 1, a[k] denotes the k-th bit of the n-bit integer a and a[1] is the most-
significant bit. j_a and j_b correspond to ja and jb, respectively.

4 Analysis
In this section, we determine the multiplicative complexity of the interval check [a ≤ x < b]. To this end,
we first compute an upper bound on the multiplicative complexity by counting the number of AND and OR
gates that appear in our construction from the previous section. Then, we determine a lower bound on the
multiplicative complexity by deriving the algebraic degree of our construction. We will conclude that the lower
bound matches the upper bound, allowing us to prove Theorem 1.

4.1 Upper bound
In the following, let u(f) be the number of AND/OR gates that are applied when evaluating f according to the
construction discussed in the previous section.

Lemma 4. Let f1 and f2 be two AND/OR chains that do not contain x. Then

u(ite(x, f̄2, f1)) =

{
`(f1) if `(f1) = `(f2),
max{`(f1), `(f2)}+ 1 otherwise.

5



Proof. W.l.o.g. we assume that `(f2) ≥ `(f1) and prove the statement by induction on `(f1). In the base case,
`(f1) = 0, the statement follows from (8a) when `(f2) = 0. Otherwise, either (8d) or (8e) applies, resulting in
2 + `(f) = 2 + `(f2)− 1 = `(f2) + 1 AND or OR gates. For the induction step, assume that the statement holds
for `(f1) = ` and let f ′1 be an AND/OR chain with `(f ′1) = ` + 1. Then, one of the cases in (9a)–(9d) must
apply, which adds one AND or OR gate in each case and reduces the length of the formulas passed to ‘ite’ by
one.

Lemma 5. Let f1 and f2 be two distinct AND/OR chains. Then,

u(f1 ⊕ f2) =

{
`(f1)− 1 if `(f1) = `(f2),
max{`(f1), `(f2)} otherwise.

Proof. We assume w.l.o.g. that `(f2) ≥ `(f1). If the first k operators (indexed from 1 to k in (4)) in the AND/OR
chains of f1 and f2 are the same, we can apply equations (7a) and (7b) k times, resulting in u(f1 ⊕ f2) =
k + u(f ′1 ⊕ f ′2), where f ′1 and f ′2 are obtained by removing the first k operators of f1 and f2, respectively, with
`(f ′1) = `(f1)− k, and `(f ′2) = `(f2)− k. Note that f ′1 6= f ′2, since f1 6= f2. Therefore, it is sufficient to consider
the case in which the top most operators of f ′1 and f ′2 differ or the case in which `(f ′1) = 0. In the first case,
f ′1 ⊕ f ′2 can be written as an if-then-else construct acting on chains that are shortened by 1 operand/operator,
see (7c), and the statement follows from Lemma 4. In the second case, the statement follows from (6).

4.2 Lower bound
We prove a lower bound on the multiplicative complexity by computing the algebraic degree of f1 ⊕ f2, where
f1 and f2 are AND/OR chains. To do so, we first prove the following fact for the case where `(f1) = `(f2).

Lemma 6. Let f1 and f2 be two distinct AND/OR chains of identical length n−1. Then, the largest monomial
of f1 is of length n and equal to that of f2, and there exists a monomial of length n− 1 that exists in only one
of the two chains.

Proof. Let f denote an AND/OR chain with inputs x2, ..., xn. Noting that x1 ∨ f = x1 ⊕ f ⊕ (x1 ∧ f),
the largest monomial of f1 and f2 is (x1 ∧ x2 ∧ · · · ∧ xn). To prove the second statement, note that since
f1 6= f2, there exists a largest position k ≤ n − 1 at which the operators in f1 and f2 differ. W.l.o.g., f1
has an ∨-operator and f2 has an ∧-operator in the k-th position. We write f1 = f ′1 ◦ (xk ∨ g(xk+1, . . . , xn))
and f2 = f ′2 • (xk ∧ g(xk+1, . . . , xn)), where f ′1 and f ′2 are prefixes involving variables x1, . . . , xk−1 and g is an
AND/OR chain with the largest monomial (xk+1∧· · ·∧xn). In turn, this is one of the second largest monomials
in the ANF of xk ∨ g = xk ⊕ g⊕ xk ∧ g, but not in the ANF of xk ∧ g, where all monomials feature the variable
xk. Consequently, note that f1 features the monomial x1 ∧ · · · ∧ xk−1 ∧ xk+1 ∧ · · · ∧ xn, which is not present in
the ANF of f2.

Using Lemma 6, we can compute the algebraic degree of f1 ⊕ f2 as follows.

Lemma 7. Let f1 and f2 be two distinct AND/OR chains. Then,

deg(f1 ⊕ f2) =

{
`(f1) if `(f1) = `(f2),
max{`(f1), `(f2)}+ 1 otherwise.

Proof. In the case `(f1) 6= `(f2), assume w.l.o.g. that `(f1) > `(f2). The degree of f1 is `(f1) + 1 (see Lemma 2)
since its single largest monomial contains all variables in the support of f1. All monomials of f2 are smaller,
and therefore deg(f1 ⊕ f2) = deg(f1) = `(f1) + 1.

If `(f1) = `(f2), then Lemma 6 implies that the largest monomials of f1 and f2 are identical and thus no
longer present in the ANF of f1 ⊕ f2, and that there exists a monomial of length `(f1) that is present in only
one of the two ANFs and thus also in the ANF of f1 ⊕ f2. Therefore, deg(f1 ⊕ f2) = deg(f1)− 1 = l(f1).

4.3 Proof of Theorem 1
We are now in a position to prove the main theorem.

Proof. We have

f = [a ≤ x < b] = [a ≤ x]⊕ [b ≤ x]

= [(a/2ja) ≤ (x1 . . . xn−ja)2]︸ ︷︷ ︸
fa

⊕ [(b/2jb) ≤ (x1 . . . xn−jb)2]︸ ︷︷ ︸
fb

= fa ⊕ fb

,

6



where fa and fb are AND/OR chains with a respective length of n−ja−1 and n−jb−1, see Corollary 1. Therefore,
max{`(fa), `(fb)} = n − min{ja, jb} − 1. From Lemma 5, it follows that c∧(f) ≤ n − min{ja, jb} − 1 − δjajb ,
and from Lemma 7 together with Lemma 1, it follows that c∧(f) ≥ deg(f) − 1 = n −min{ja, jb} − 1 − δjajb .
Therefore,

c∧(f) = n−min{ja, jb} − 1− δjajb ,

where δij denotes the Kronecker delta.

5 Conclusions
We have derived the multiplicative complexity of interval checking given two constant bounds. Our construction
is of practical interest as it reduces the cost of interval checking by up to a factor of 2 compared to a construction
composed of two comparators. This motivates us to study the multiplicative complexity of similar composite
operations, e.g., [x = y ± a] or [a ≤ x + y], where a is a constant. This may in turn provide some insight
into the multiplicative complexity of other practically-relevant operations such as multiplication, which can be
considered a composition of simpler arithmetic operations.

We are further interested in studying the multiplicative complexity of formulas f = ite(x, f1, f2). In general
c∧(f) ≤ 1 + c∧(f1) + c∧(f2), but in this paper we found examples in which the multiplicative complexity of f
did not exceed that of the two subformulas. Ideally, we would like to find characteristic properties for f1 and
f2 that hold if and only if c∧(f) ≤ max{c∧(f1), c∧(f2)}.

References
[1] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers for MPC and FHE. In

Int’l Conf. on the Theory and Applications of Cryptographic Techniques, pages 430–454, 2015.

[2] J. Boyar and R. Peralta. The exact multiplicative complexity of the Hamming weight function. Electronic
Colloquium on Computational Complexity, (049), 2005.

[3] J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean functions over the basis
(∧,⊕, 1). Theoretical Computer Science, 235(1):43–57, 2000.

[4] L. T. A. N. Brandão, Ç. Çalik, M. S. Turan, and R. Peralta. Upper bounds on the multiplicative complexity
of symmetric Boolean functions. Cryptography and Communications, 11(6):1339–1362, 2019.

[5] Ç. Çalik, M. S. Turan, and R. Peralta. The multiplicative complexity of 6-variable Boolean functions.
Cryptography and Communications, 11(1):93–107, 2019.

[6] Ç. Çalik, M. S. Turan, and R. Peralta. Boolean functions with multiplicative complexity 3 and 4. Cryp-
tography and Communications, 12(5):935–946, 2020.

[7] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Slamanig, and G. Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primitives. In ACM SIGSAC Conf. on
Computer and Communications Security, pages 1825–1842, 2017.

[8] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R.
Soc. Lond., A 400(1818):97–117, 1985.

[9] M. G. Find. On the complexity of computing two nonlinearity measures. In Int’l Computer Science
Symposium in Russia, pages 167–175, 2014.

[10] I. Giacomelli, J. Madsen, and C. Orlandi. ZKBoo: Faster zero-knowledge for Boolean circuits. In USENIX
Security Symposium, pages 1069–1083, 2016.

[11] G. Meuli, M. Soeken, E. Campbell, M. Roetteler, and G. De Micheli. The role of multiplicative complexity
in compiling low T -count oracle circuits. In Int’l Conf. on Computer-Aided Design, pages 1–8, 2019.

[12] R. Mirwald and C. Schnorr. The multiplicative complexity of quadratic Boolean forms. In Foundations of
Computer Science, pages 141–150. IEEE Computer Society, 1987.

[13] C.-P. Schnorr. The multiplicative complexity of Boolean functions. In Int’l Conf. on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, pages 45–58, 1988.

7


