
NTRU-ν-um: Secure Fully Homomorphic Encryption from

NTRU with Small Modulus

Kamil Kluczniak
CISPA Helmholtz Center for Information Security

kamil.kluczniak@cispa.de

September 20, 2022

Abstract

NTRUEncrypt is one of the first lattice-based encryption schemes. Furthermore, the earliest
fully homomorphic encryption (FHE) schemes rely on the NTRU problem. Currently, NTRU
is one of the leading candidates in the NIST post-quantum standardization competition. What
makes NTRU appealing is the age of the cryptosystem and relatively good performance.

Unfortunately, FHE based on NTRU became impractical due to efficient attacks on NTRU
instantiations with “overstretched” modulus. In particular, currently, NTRU-based FHE schemes
to support a reasonable circuit depth require instantiating NTRU with a very large modulus.
Breaking the NTRU problem for such large moduli turns out to be easy. Due to these attacks,
any serious work on practical NTRU-based FHE essentially stopped.

In this paper, we reactivate research on practical FHE that can be based on NTRU. We
design an efficient bootstrapping scheme in which the noise growth is small enough to keep the
modulus to dimension ratio relatively small, thus avoiding the negative consequences of “over-
stretching” the modulus. Our bootstrapping algorithm is an accumulator-type bootstrapping
scheme analogous to AP/FHEW/TFHE. Finally, we show that we can use the bootstrapping
procedure to compute any function over Zt. Consequently, we obtain one of the fastest FHE
bootstrapping schemes able to compute any function over elements of a finite field alongside
reducing the error.

1 Introduction

A fully homomorphic encryption scheme gives the possibility to compute any function on encrypted
data. Early practical homomorphic encryption schemes were built either from the ring learning
with errors problem (e.g. BGV [19, 18] and BFV [17, 34]) or the NTRU problem1 (LTV [54] and
YASHE [14]). Both variants demonstrated similar performance characteristics [30]. It is worth
noting that NTRUEncrypt by Hoffstein, Pipher, and Silverman [45] was among the first lattice-
based cryptosystems, is currently subject to standardization [1, 9] and considered to be a leading
candidate for further standards [4].

The first subfield attack against NTRU was due to Gentry and Szydlo [39] and was directed
against the NTRU signature scheme. However, the attack did not get much attention since the
original NTRU encryption algorithm does not require a large modulus. Further, Albrecht, Bai, and

1The problem is called “Decisional Small Polynomial Ratio Assumption” but here we refer to it briefly as NTRU.

1

Ducas [5] and independently Cheon, Jeong, and Lee [24] apply the subfield attack to, among other,
LTV [54] and YASHE [14].

Roughly speaking, the NTRU lattice contains a sublattice that, when recovered, allows an at-
tacker to recover the secret key almost immediately. Therefore, when the modulus of an NTRU is
too large in comparison to the dimension, then NTRU is broken. Kirchner and Fouque [48] later
studied the attack and showed that finding the basis vector of the sublattice is faster than recovering
the secret key already for moduli as small as Q = n2.783+o(1). The same attack does not apply to ring
learning with errors. To support correct computation, all schemes BGV, BFV, LTV, and YASHE
need to increase the modulus with the depth of the circuit unless we bootstrap the ciphertext,
which in itself is a costly operation. Since for larger moduli, NTRU is broken, to compensate, we
would need to increase its dimension, making NTRU-based fully homomorphic encryption schemes
uncompetitive to RLWE-based schemes. Very recently, Ducas and van Woerden [33] gave a detailed
analysis and estimations, backed by experiments, on the hardness of the NTRU problem when the
modulus falls into the overstretched regime.

1.1 Our Contribution.

We leverage the results from Ducas and van Woerden [33] and design a very competitive, fully
homomorphic encryption scheme based on NTRU that we call NTRU-ν-um2. Importantly, we
can keep the modulus of the NTRU instantiation small, and thereby we get reasonable security
levels. What is more, we can leverage a larger ring dimension to our advantage. At the core of our
scheme is a bootstrapping algorithm, which is based on the homomorphic accumulator technique
[8, 32]. To build the bootstrapping algorithm, we construct an NTRU-analog of the GSW encryption
scheme by Gentry, Sahai, and Waters [38]. The GSW encryption scheme underlies many previous
accumulator-based bootstrapping schemes [8, 32, 26]. In the fastest bootstrapping schemes [32, 26]
GSW is instantiated with the ring version of the learning with errors problem. In the case of NTRU,
multiplication requires roughly half the work as an instantiation of GSW with ring learning with
errors.

Our bootstrapping algorithm, alongside reducing the error, can compute all negacyclic functions
F : Zt 7→ Zt where t ∈ N. Using recent techniques from [61, 53] we extend the method to all functions
over Zt. In other words, we can compute arbitrary functions over finite fields alongside bootstrapping
the ciphertext and reducing the error. This way, we can leverage a larger ring dimension to perform
computation alongside bootstrapping of higher precision. Very recently such full domain functional
bootstrapping got more attention [29, 50, 61, 53]. Our bootstrapping algorithm is arguably the
fastest among the currently proposed schemes. We give more details on the comparison in the main
body of the paper, but in practice, our scheme is roughly two times as fast as the current best
schemes.

We show several parameter sets to correctly bootstrap plaintexts from Zt where t ≈ 28 or more.
One appealing property of our scheme is that we can run in the correct mode and approximate
mode. This means, in particular, that we can set the plaintext space even as high as log2 t = 214 if
the application can tolerate errors. We give an efficient implementation and test a few applications.
For example, our bootstrapping allows us to compute univariate polynomials in time independent
of the degree of the polynomial. Importantly, our scheme can compute modular inversion of field
elements with only a single bootstrapping operation. Consequently, we show applications to solving
systems of linear equation over encrypted data by evaluating Gaussian elimination. To the best of
our knowledge, this is the first time finite field Gaussian elimination has been efficiently performed
over encrypted data. Solving such equations may be useful to build, for example, blind signatures

2Read NTRU-nium.

2

by combining our scheme with multivariate blind signatures like Rainbow [58, 47, 31] (Round 3
candidate in the NIST PQ Competition). In contrast, when applying fully homomorphic encryption
for boolean circuits [32, 26, 27], we would need to represent modular reduction and modular inversion
as a boolean circuit. For schemes designed to compute arithmetic circuits [17, 19, 18, 34], we still
need to represent modular inversion as an arithmetic circuit. While it is theoretically possible to
compute such circuits, it is infeasible to apply these schemes, for example, to Gaussian elimination.
Finally, we can implement binary decomposition of field elements with only a single bootstrapping,
thereby we can efficiently switch between binary and arithmetic homomorphic computation.

1.2 Overview of NTRU-ν-um’s Bootstrapping Algorithm.

Let us first start by recalling the structure of NTRU samples and introducing a gadget NTRU
version. Denote RQ = ZQ[X]/(XN + 1). An NTRU sample is a polynomial c ∈ RQ of the form
c = e1/f + e2+m, where f ∈ RQ (usually having coefficients in {−1, 0, 1}) is the secret key, e1, e2 ∈
RQ are the error polynomials and have coefficients from some distribution X , and m = Q

t ·m′ with
m′ ∈ Rt. Note that if we want to add two NTRU ciphertexts c, and c′ = e′1/f + e′2 +m′, we simply
compute c+ c′ = (e1+e

′
1)/f +e2+e

′
2+m+m′ which is a valid ciphertext of m+m′ but with larger

error. We can also multiply a ciphertext by a scalar a ∈ RQ such that c′′ = c·a = e1 ·a/f+e2 ·a+m·a.
Note that the above scalar multiplication is quite expensive as the error terms are multiplied by

the scalar a. Hence, to preserve correctness and allow for decryption, we can only multiply with
sparse polynomials with small coefficients . To resolve the issue, we introduce a gadget version of
NTRU. Gadget NTRU is analogous to the GSW scheme for ring LWE, but we adapt the GSW
technique to NTRU. In this paper, we use gadget NTRU to multiply two ciphertexts and use the
fact that the resulting error is relatively small. A gadget NTRU sample is a vector cG = [ci]

ℓ
i=1 with

ℓ = logL(Q), where each ci is a NTRU ciphertext of mG · Li−1. To multiply such ciphertext with a
scalar c ∈ RQ, we compute the inner product between cG and the decomposition of c with respect
to the base L. Concretely, let G−1 be the decomposition function such that cD ← G−1(c, L) ∈ Rℓ

L

where
∑ℓ

i=1 cD[i] · Li−1 = c. Then to multiply a gadget NTRU ciphertext cG with c, we compute

cout =
〈
cG,G

−1(c, L)
〉
= e1,G/f + e2,G +mG · c

Note that when computing the inner product, we make ℓ scalar multiplications and additions, where
the scalar multiplications are with polynomials from RL. Furthermore, if c is itself an NTRU
ciphertext as above, then we have

cout = e1,G/f + e2,G +mG · (e1/f + e2 +m)

= (e1,G +mG · e1)/f + (e2,G +mG · e2) +mG ·m,

which is a valid NTRU ciphertext. Note that the error, in this case, depends on the magnitude of
mG.
Blind Rotating a Homomorphic Accumulator. Following the ideas from [8, 32, 26], we con-
struct a homomorphic accumulator scheme which we can informally summarize as follows. A LWE
sample is a vector c ∈ Zn+1

2N , where c[1] = −c[2:n + 1]⊤s + e + 2N
t m. To partially decrypt c it is

sufficient to compute the linear function c[1] + c[2:n + 1]⊤s = e + 2N
t · m. Given that the error

e < 2N
2·t , we can further decode the message by

⌊
t

2N (e + N
t m)

⌉
= m. Note that each message is

encoded in an interval of size
⌊
2N
t

⌋
to ensure correct decryption.

Now let us consider the operation arot · Xc[1]+c[2:n+1]⊤s = arot · Xe+ 2N
t ·m ∈ RQ. Note that

when RQ = ZQ[X]/(XN + 1), this operation is a negacyclic rotation of the coefficients of arot by

3

c[1] + c[2:n + 1]⊤s = e + 2N
t ·m mod N positions. Hence, the idea is to set the coefficients of the

polynomial arot such that after rotating it, the desired value for e+ 2N
t ·m is encoded in the constant

coefficient. Specifically, to compute any negacyclic function F : Zt 7→ Zt, we set the rotation

polynomial such that arot[y + 1] = F (
⌊

t
2N · y

⌉
) for all y ∈ [0, N]. Remind that if y = 2N

t ·m + e,

where m ∈ Zt, then
⌊

t
N · y

⌉
= m given that e ≤ N

t .

The Bootstrapping Procedure. Now we are ready to describe the bootstrapping procedure.
Let’s say that we want to bootstrap an LWE ciphertext with a secret key s ∈ {0, 1}n. We publish n
gadget NTRU ciphertexts that encrypt the bits of the LWE secret key. Denote the vector of those
gadget NTRU ciphertexts by cBk. Furthermore, we have an NTRU ciphertext cacc that encodes arot.
We call cacc the accumulator. To bootstrap an LWE ciphertext c we compute

cout = cacc ·Xc[1] ·
n∏

i=1

Xc[i+1] · cBk[i]

= c′acc ·Xc[2:n+1]⊤s.

where c′acc encrypts arot just as cacc but with a higher error. Finally, we have that the message in
cout contains the desired result in its constant coefficient.

The problem now is that if we want to continue computing and bootstrapping on the resulting
ciphertext, we need to transform the NTRU ciphertext into an LWE ciphertext which encrypts the
message in the constant coefficient of the NTRU ciphertext. Hence we design a special key switching
procedure that homomorphically extracts the dth coefficient, by computing the linear function

(cacc · f)[d] =
N∑

i=1,j=1,
i+j−2 mod N=d

cacc[i] · f [i]

from the coefficient of the NTRU ciphertext and its secret key. Furthermore, we use the NTRU to
LWE key switching procedure to pack N messages into a single NTRU ciphertext which we can then
extract for bootstrapping. This way, we transmit only a single integer per message.

Note, however, that there is a problem with this solution. Namely, when computing cacc · f we
obtain and encryption of m · f instead of m. In other words, we have the message masked by the
secret key f . So how can we possibly continue to bootstrap such ciphertext? We solve this issue,
by including f−1 ∈ RQ in the accumulator cacc. That is the accumulator will encrypt f−1 · arot.
When multiplying f we immediately recover arot (or the negacyclic rotation of arot). Unfortunately,
the trick requires us to assume NTRU is key-dependent message (KDM) secure with respect to f−1.
While we do not have a formal reduction, we believe that this version preserves security as we can
write such NTRU samples as c = e1/f + e2 +m/f = (e1 +m)/f + e2. In this case, the constant
coefficient of the e1 error is shifted by m. If coefficients of e1 are random variables with expectations
equal to zero, then the KDM version shifts the expectation by the coefficients of m.

Another problem appears when using such a scheme in practice. Namely, since we require
the message in the accumulator to be key-dependent, an evaluator cannot freely choose rotation
polynomials, and we need to publish all potential accumulators together with the bootstrapping
key. To resolve this issue, instead of publishing an accumulator with the rotation polynomials, we
can publish a gadget NTRU encryption of Q

t · f−1. The evaluator can then choose its own arot
and multiply it with the accumulator. Note that if plaintexts are Zt, then arot ∈ Rt and t << Q.
Hence we actually need to publish a smaller gadget that supports the composition of numbers up
to t instead of Q.

4

1.3 Related Work

Gentry’s introduction of the bootstrapping technique [37] opened a floodgate of research on fully
homomorphic encryption [19, 17, 34, 18, 7, 38, 41, 22, 42].

The NTRU problem and the corresponding cryptosystem dates back to the work by Hoffstein,
Pipher, and Silverman [45]. One of the earliest schemes by López-Alt, Tromer, and Vaikuntanathan
[54], and its scale-invariant version YASHE [14] are based on the Stehlé, and Steinfeld’s [60] variant
of the NTRU problem.

The first accumulator-based bootstrapping scheme is due to Alperin-Sheriff, and Peikert [8].
The techniques require representing the decryption circuit as an arithmetic circuit, and we do not
rely on Barrington’s theorem. Furthermore, the method exploits error characteristics of the GSW
cryptosystem by Gentry, Sahai, and Waters [38]. Hiromasa, Abe, and Okamoto [44] improved upon
[8] and build a version of GSW that natively encrypts matrices. Genise et al. [36] showed an
encryption scheme that further improves the efficiency of matrix operations, albeit using a novel
NTRU-like assumption. Ducas and Miccancio [32], building on [8], design a practical bootstrapping
algorithm called FHEW. FHEW uses the ring version of the GSW cryptosystem. Chillotti et al.
[26, 28] showed numerous optimizations to FHEW bootstrapping algorithm. On the other hand,
their scheme called TFHE relies on LWE with binary keys, while FHEW was originally designed to
support keys with much larger coefficients. We refer to the work by Micciancio and Polyakov [56]
for an excellent comparison of both methods. The FHEW and TFHE bootstrapping algorithms,
by far, are the fastest bootstrapping algorithms to date. Further improvements mostly relied on
incorporating packing techniques [27, 57], and improved lookup tables evaluation [27, 20]. Initially,
FHEW/TFHE were designed to bootstrap ciphertexts with binary plaintexts, but a series of works
[12, 20, 40] showed that extending the computation to larger plaintexts may be beneficial in practice.

Concurrently, Chillotti et al. [29] and Kluczniak and Schild [50], who was very quickly followed
by Yang et al. [61] and Liu et al. [53], showed how to resolve the limitation of the FHEW/TFHE
functional/programmable bootstrap. In particular, while previous schemes could bootstrap larger
plaintexts, due to the negacyclicity of the function that the bootstrapping could compute, it wasn’t
easy to compute arithmetic circuits over Zp. The works [29, 50, 61, 53] resolve the issue by using
FHEW/TFHE as a subroutine. Still, the resulting bootstrapping algorithms are inherently slower
than the original TFHE algorithm, and so far, only [50, 61, 53] implemented their schemes.
Concurrent and Independent Work. We note that Bonte et al. [13] independently published a
fully homomorphic encryption scheme similar to ours. In particular, they also define a gadget NTRU
cryptosystem and build an accumulator bootstrapping algorithm. We note that there are several
differences in our designs. The most crucial difference seems to be that Bonte et al. build their
scheme with binary ciphertexts in mind while we compute arbitrary functions on plaintexts from Zt.
There are also some very technical differences, like the way both works extract LWE ciphertexts.
We describe a generalized algorithm that we can later use to extract LWE samples from the packed
NTRU ciphertexts. Bonte et al. [13] show a faster blind rotation algorithm for ternary keys. We
note that the optimization is general and can be used with our algorithm as well. Finally, we note
that Bonte et al. [13] need to reduce the security of their scheme to a less understood version of the
decisional small polynomial ration (also called NTRU) assumption. In contrast, we can reduce the
security of our scheme to standard NTRU and RLWE. We describe more details on this in Section 5.

2 Preliminaries

Notation. We denote as R the ring of polynomials ZQ[X]/(XN + 1) where N is prime. We
denote vectors with bold lowercase letters, e.g., v. We denote a n dimensional column vector as

5

[f(., i)]ni=1, where f(., i) defines the i-th coordinate. For brevity, we will also denote as [n] the vector
[i]ni=1, and more generally [n,m]mi=n the vector [n, . . . ,m]⊤. We address the ith entry of a vector
v by v[i], and denote a slice of the vector by v[i:j]. In particular, if v = [v1, v2, . . . , vm], then
v[i:j] = [vi, vi+1, . . . , vj]. For a random variable a ∈ Z we denote as Var(a) the variance of a and
as E(x) its expectation. For a ∈ RQ, we define Var(a) and E(a) to be the variance and expectation
respectively of the coefficients of the polynomial a. By Ha(a) we denote the hamming weight of the
vector a, i.e., the number of of non-zero coordinates of a. We represent numbers in ZQ as integers
in [−Q/2, Q/2).

At Table 1 we list commonly used parameters. Throughout the paper, we denote as Q,P ∈ N
to be moduli. The parameter n ∈ N always denotes the dimension of an LWE sample. For rings,
we always use N to denote the degree of (XN + 1). We define ℓ = ⌈logLQ⌉ for some decomposition
base L ∈ N. We define the decomposition algorithm a = G−1(c, L) to take a ring element c,
a decomposition base L and output a vector a ∈ RL with coefficients in [−L/2, L/2) such that

c =
∑ℓ

k=1 a[i] · Lk−1. Finally, we refer to random variables from the discrete Gaussian distribution
with parameter (standard deviation) σ. Remind that the variance of discrete Gaussian random
variables is σ2.
Assumptions. Below we recall the learning with errors assumption by Regev [59] and recall the
error analysis for its linear homomorphism.

Definition 1 (Learning With Errors) Let s ∈ Xsk be a secret key, for a secret key distribution
Xsk over and and e ∈ N be form the discrete Gaussian distribution of parameter σ. We define a LWE
sample of a message m ∈ ZQ as c = LWEσ(s,m) ∈ ZQ where c[1] = −c[2:n+ 1]⊤ · s+ e+m ∈ ZQ,
and c[2:n+1] is a vector that is chosen from the uniform distribution over ZQ. We define the phase
of c as Phase(c) = c[1] + c[2:n+ 1]⊤ · s. We define the learning with error distribution LWEn,Xsk,σ,
to consist of LWE samples of zero, as defined above.

The learning with error assumption states that it is hard to distinguish elements sampled from
LWEn,Xsk,σ and elements sampled uniformly at random over Zn+1

Q .

It is well know that the following holds.

Lemma 1 (Linear Homomorphism of LWE samples) Let c = LWEσc(s, mc) and d = LWEσd
(s,

md). If cout ← c + d, then cout ∈ LWEσout(s,mc + md), where σ
2
out = σc + σd. Furthermore, let

d ∈ (−L/2, L/2). If cout ← c · d, then cout ∈ LWEσout(s, mc · d), where σ2
out ≤ L2

4 · σ2
c.

Proof 1 (Sketch) The proof follows from the elementary calculus of random variables. The noise
variance of the sum of the LWE ciphertexts follows form the sum of two discrete Gaussian random
variables. The bound on the noise variance for scalar multiplication follows from the fact that
we bound d by L/2 and that the noise of the LWE sample is centered around zero. Remind that
Var(B · e) = B2 · Var(e), where e has Gaussian parameter σ.

Now we recall the decisional small polynomial ratio assumption [45] (or NTRU assumption).

Definition 2 (Decisional Small Polynomial Ratio Assumption) Let f ∈ RQ be a secret key
with coefficients samples uniformly form the ternary distribution, i.e., from {−1, 0, 1} conditioned
to have an inverse in RQ. We define the distribution DSPRARQ

to be the distribution of elements
[gi/fi]

m
i=1, where fi is from the same distribution as f , and gi ∈ RQ has coefficients chosen form

the uniform ternary distribution but must not necessarily be invertible in RQ. The decisional small
polynomial ratio assumption says it is hard to distinguish elements sampled from DSPRARQ

and
elements sampled uniformly from RQ.

6

Q,P Prime moduli such that Q < P .
RQ,RP ZQ[X]/(XN + 1) and ZP [X]/(XN + 1)
n LWE dimension
Bk,Ksk Blind rotation and key-switching keys

LBk
Decomposition base for the blind rotation key where ℓBk = ⌈logLBk

(P)⌉
LKsk

Decomposition base for the key switching key where ℓKsk = ⌈logLKsk
(Q)⌉

f NTRU secret key in RP

s LWE secret key in RQ

σBk, σKsk, σacc
Standard deviations of the noise terms in the bootstrapping key,
key-switching key, and the ciphertext cacc respectively.

arot arot ∈ RP s.t. (arot ·Xy)[1] = F (⌊ t1N · y⌉), where y ∈ ZN and F : Zt1 7→ Zt2 .

Table 1: Summary of Variables.

Stehlé and Steinfeld [60] showed that the assumption holds unconditionally for a certain choice
of parameters. Furthermore, they showed a reduction to worst-case lattice problems when for the
ring ZQ[X]/(XN + 1), where N is a power of two. Homomorphic encryption schemes like LTV [54]
and YASHE [14] follow Stehlé and Steinfeld’s version of the assumption.

3 Homomorphic Encryption Techniques from NTRU

This section describes the algorithms that we use to build the bootstrapping algorithm. Below we re-
call the basic cryptosystem. First of all, we describe the algorithm as a symmetric key cryptosystem.
Specifically, we do not define a public key version, as it is unnecessary in this paper and simplifies
the exposition.

Definition 3 (An NTRU Homomorphic Encryption Scheme) Let the message modulus as
be t < Q. Let the secret key f have coefficients from the uniform ternary distribution and have an
inverse in RQ. We define an NTRU encryption as c = NTRUσ(f,m) = e1 · g/f + e2 + r + Q

t ·m,
where e1, e2 are random variables over RQ with coefficients from the discrete Gaussian distribution
of parameter σ, g has coefficients form the uniform ternary distribution, r is in [−U(c),U(c)] and
m ∈ Rt. Furthermore, we assume f and g have the same hamming weight. To decrypt we compute
f ·m =

⌊
t
Q · c · f

⌉
∈ Rt.

Note that in this definition we recover m · f instead of m. In this paper, we use a key-dependent
version of the scheme, where we encrypt Q

t ·m · f−1. Therefore, the decryption process cancels the
secret key out of the message. Furthermore, we remark that t usually does not divide Q, and in the

implementation we round the fraction
⌊
Q
t · m

⌋
which adds a small rounding error to the r noise.

Note that we introduce the notation U(c) to keep track of the error term that is not from the discrete
Gaussian distribution. Usually this error stems from rounding operations. In practice the keys f, g
are often generated by choosing an element from {−1, 1} uniformly at random and setting random
1/3 coefficients to zero. We follow the same method and set the hamming weights to 2/3 ·N .

Lemma 2 (Correctness of the NTRU Decryption) Let c = NTRUσ

(
f, Qt ·m

)
. We have that

Q
t ·m · f + e+ f · r = f · c, where Var(e) ≤ 4/3 ·N · σ2 and E(|f · r|) ≤ 2/3 ·N · U(c). Furthermore

if |e| < Q
2·t − |f · r|, then

⌊
t
Q · c · f

⌉
= m · f ∈ Zt.

7

Proof 2 From definition 3 we have that c = e1 · g/f + e2 + r + Q
t ·m ∈ RQ where m ∈ Rt. Then

f · c = e1 · g + f · e2 + f · r + Q
t · f ·m = e+ f · r + Q

t · f ·m. Note that e = e1 · g + f · e2. Hence

Var(e) = Var(e1 · g) + Var(f · e2) ≤ 2/3 ·N ·
(
Var(e1) + Var(e2)

)
Remind that e1 and e2 are random variables with Gaussian parameter σ hence their variance is σ2.
Note that we cannot include f ·r into the variance as both f and r are from the uniform distributions
and not the discrete Gaussian. Hence we upper-bound the expectation of the final noise term. The
above follows from e1, e2 being independent and centered around zero. Note that in the ring RQ

multiplication of ring elements corresponds to computing their negacyclic convolutions. Hence the
dth coordinate of f · e2 is given by

Var
(
(f · e2)[d]

)
=

N∑
i=1,j=1,

i+j−2 mod q=d

f [i] · e2[j]),

where ψ(i, j) returns 1 if i+j ≥ N and −1 otherwise. Therefore if f has Ha(f) non-zero coefficients
and its non-zero are bounded by 1, then we have Var

(
(f · e2)[d]

)
≤ 2/3 · N · Var(e2). The same

argument can be made for Var(e1 · g). Then we bound the expectation by E(|f · r|) ≤ Ha(f) · 1 ·U(c)
where we bound the infinity norm of r by U(c) and on f is 1. Finally, if |e| < Q

2·t − |f · r|, then⌊ t
Q
· (e+ f · r + Q

t
· f ·m)

⌉
=

⌊ t
Q
· (e+ f · r) + f ·m

⌉
= f ·m

because t
Q · (e+ f · r) < 1

2 .

Below we analyze the variance of the errors for elementary homomorphic operations.

Lemma 3 (Affine Functions on Encrypted Data) Let c1 = NTRUσ1
(f , m1) and c2 = NTRUσ2

(f ,
m2), and a ∈ RQ. We have the following.
Addition: We have c1 + a = NTRUσ1(f,m1 + a) and c1 + c2 = NTRUσout(f,m1 + m2), where
σ2
out = σ2

1 + σ2
2. Furthermore, U(c1 + c2) ≤ U(c1) + U(c2).

Scalar Multiplication: We have c1 · a = NTRUσout(f,m1 · a), where σ2
out ≤ Ha(a) · ||a||2∞ · σ2

1.
Furthermore, U(c1 · a) = U(c1) · Ha(a).

Proof 3 From definition 3 we have c1 = e1/f + e2 + r+m1 and c2 = ẽ1/f + ẽ1 + r̃+m2. Addition
with scalar a follows trivially from c1 + a = e1/f + e2 +m1 + a. Addition of two ciphertexts follows
from c1+c2 = e1/f+e2+r+m1+ ẽ1/f+ ẽ1+ r̃+m2 = (e1+ ẽ1)/f+e1+ ẽ1+r+ r̃+m1+m2. Hence
the variance of the output noise is the sum of the input noise variances. For scalar multiplication we
have c1 ·a = a ·e1/f1+a ·e2+a ·r+a ·m1. Crucially multiplying ring elements from RQ corresponds
to computing their negacyclic convolutions. Similarly as in the proof of Lemma 2, we can represent
the dth coefficient of a · ek (or a · r) for k ∈ [2] as a negacyclic convolution and bound its variance
by by Ha(a) · ||a||2∞ · σ2, and U(c · a) ≤ U(c1) · Ha(a).

NTRU to LWE Key Switching.

The key switching procedure below takes as input an NTRU ciphertext, and an LWE key switching
key outputs an LWE ciphertext that encrypts a chosen coefficient of the NTRU plaintext.

8

Definition 4 (NTRU to LWE Key Switching) Let LKsk ∈ N be a decomposition parameter for
the key-switching procedure and denote ℓKsk = ⌈logLQ⌉. The NTRU-to-LWE key switching setup
KSSetup(f, s) takes as input f and s, computes and returns the key switching key

Ksk[i, ∗]←
[
LWEσKsk

(
s, f [i] · Lk−1

Ksk

)]ℓKsk
k=1

(1)

for i ∈ [N]. The key switching procedure KSwitch(Ksk, c, d) computes

N∑
i=1,j=1,

i+j−2 mod N=d

〈
Ksk[i, ∗],G−1

(
ψ(i, j) · c[j], LKsk

)〉
, (2)

where c ∈ RQ is a NTRU ciphertext with respect to the secret key f , d ∈ [N], and ψ(i, j) returns
1 if i + j ≥ N and −1 otherwise. Remind that G−1

(
ψ(i, j) · c[j], LKsk

)
computes the base LKsk

decomposition of ψ(i, j) · c[j] ∈ ZQ.

Lemma 4 (Correctness of NTRU to LWE Key Switching) Let c = NTRUσ(f,m) be a NTRU
ciphertext and Ksk← KSSetup(f, s) as in the formula 1. If c = KSwitch(Ksk, c, d) for d ∈ [N], then
cout = LWEσout(s, (f ·m)[d]), where

σ2
out ≤ σ2

Dec +N · ℓKsk · L2Ksk/4 · σ2
Ksk,

where σDec and the expectation is as for the noise of c’s decryption (see Lemma 2).

Proof 4 Let us denote a decomposition of ψ(i, j)·c[j] as follows
[
a
(i,j)
k

]ℓKsk
k=1

= G−1
(
ψ(i, j)·c[j], LKsk

)
.

Note that the decomposed elements a
(i,j)
k ∈

[
− LKsk/2, LKsk/2

)
are such that

∑ℓKsk
k=1 a

(i,j)
k · Lk−1

Ksk =
ψ(i, j) · c[j] mod Q.

Let us first analyze the inner product for each i ∈ [N] separately. Particularly, we have

ci =

〈
Ksk[i, ∗],G−1

(
ψ(i, j) · c[j], LKsk

)〉
= LWEσ̄(s,

ℓKsk∑
k=1

f [i] · Lk−1
Ksk · a

(i,j)
k)

= LWEσ̄(s, f [i] · ψ(i, j) · c[j])

where σ̄2 ≤ ℓKsk · L2Ksk/4 · σ2
Ksk because we perform ℓKsk LWE scalar multiplications.

Then we have that KSwitch(Ksk, c, d) computes

N∑
i=1,j=1,

i+j−2 mod N=d

LWEσ̄

(
s, f [i] · ψ(i, j) · c[j]

)
,

= LWEσ′
(
s, (f · c)[d]

)
because the sum computes the dth coefficient of the negacyclic convolution of f and c. Then we have

LWEσ′
(
s, (f · c)[d]

)
= LWEσ′

(
s, (e1 · g)[d] + (f · e2)[d] + (f · r)[d] + (f ·m)[d]

)
= LWEσ

(
s, (f ·m)[d]

)
,

9

where σ′2 = N ·ℓKsk·L2Ksk/4·σ2
Ksk because there are exactly N pairs i, j ∈ [N] such that i+j−2mod N =

d. Then from correctness of the NTRU decryption procedure we have Var(e1 · g + f · e2) ≤ σ2
Dec and

the expectation magnitude is bounded by 2/3 ·N ·U(c). Therefore σ2
out is as in the lemma statement.

Gadget Encryption and Multiplication.

Below we give the NTRU gadget encryption, and multiplication algorithm, which is analogous to
the GSW encryption scheme [38].

Definition 5 (NTRU Gadget Encryption and Multiplication) We define a gadget NTRU sam-
ple of a message mG ∈ RQ as

cG = G-NTRUσBk
(f,mG) =

[
NTRUσBk

(
f,mG · Li−1

Bk

)]ℓBk
i=1

, (3)

where ℓBk = ⌈logLBk
(Q)⌉. We define the gadget multiplication procedure GMul as

GMul(cG, c) =
〈
cG,G

−1(c, LBk)
〉
, (4)

where c ∈ RQ and in particular c = NTRUσ(f , m).

Note that the gadget ciphertext at Eq. 3 is nothing more than a vector of NTRU ciphertexts of
mG · Li−1

Bk . Addition and scalar multiplication for individual gadget ciphertexts are as for NTRU.
In this paper, we will never directly decrypt gadget ciphertexts; hence we omit to describe the
decryption algorithm.

Below we analyze the correctness of the gadget multiplication algorithm. We use only the case
where the message mG is a monomial with its coefficient in Z2. Hence we will focus the analysis only
on this special case for simplicity. We give the generalized analysis in Appendix 8 for completeness.

Lemma 5 (Correctness of NTRU Gadget Multiplication) If cout = GMul(cG, c) and mG ∈
Z2, then cout = NTRUσout(f , c ·mG), where σ

2
out ≤ N · ℓBk · L2Bk/4 · σ2

Bk.
If additionally c = NTRUσ(f,m), then the output ciphertexts is cG = NTRUσout(f , m·mG), where

σ2
out ≤ σ2 +N · ℓBk · L2Bk/4 · σ2

Bk, and U(cout) ≤ U(c) +N · ℓBk · LBk · U(cG).

Proof 5 Let us denote the base-LBk decomposition of c as
[
ck
]ℓBk
k=1

= G−1(c, LBk) which is such that∑ℓBk
k=1 ck · Lk−1

Bk = c mod Q. From definition we have

cout =
〈
cG,G

−1
(
c, LBk

)〉
=

ℓBk∑
k=1

NTRUσBk

(
f,mG · Lk−1

Bk

)
· ck

= NTRUσ̃

(
f,mG ·

ℓBk∑
k=1

ck · Lk−1
Bk

)
= NTRUσ̃

(
f,mG · c

)
.

From linear homomorphism (see Lemma 3) of NTRU we have σ̃2 ≤ N · ℓBk · L2Bk/4 · σ2
Bk. Note that

in the above ck are ring elements with coefficients in
[
− LBk/2, LBk/2

)
. Denote NTRUσ̃

(
f,mG · c

)
=

10

e′1/f + e′2 +mG · c. Since the coefficient of mG is smaller than or equal 1 we have

cout = e′1/f + e′2 + r′ +mG · c
= e′1/f + e′2 + r′ +mG ·

(
e1/f + e2 + r +m

)
≤

(
e′1 + e1

)
/f + e′2 + e2 + r′ + r +mG ·m.

The same reasoning is applied to the analysis of the random variable r′. To summarize we have
σ2
out ≤ σ2 +N · ℓBk · L2Bk/4 · σ2

Bk, and U(cout) ≤ U(c) +N · ℓBk · LBk · U(cG).

Modulus Switching.

Here we analyze the modulus switching procedure for NTRU and LWE ciphertexts.

Lemma 6 (Modulus Switching for NTRU) Let us denote c = NTRUσ(f ,
Q
t ·m). We define

the NTRU modulus switching procedure as

ModSwitch(c, q) =
⌊
c · q
Q

⌉
,

where q ≤ Q.

If cout = ModSwitch(c, q), then cout = NTRUσout(f,
q
t ·m), where σ2

out =
(

q
Q · σ

)2

and U(cout) ≤
q
Q · U(c) + 1.

Proof 6 Denote c = e1/f + e2 +
Q
t ·m. From definition we have:

cout =
⌊ q
Q
· c
⌉
=

q

Q
· c+ r′

=
q

Q
· e1/f +

q

Q
· (e2 + r) + r′ +

q

Q
· Q
t
·m

≤ q

Q
· e1/f +

q

Q
· e2 +

q

Q
· r + r′ +

q

t
·m,

where r has coefficients in [−1/2, 1/2]. Note however, that the signs of the coefficients are the same
as the signs of e2. Therefore, the rounding error shifts the expectation of the e2 + r from 0 at most

1. Hence σ2
out ≤

(
q
Q ·σ

)2

, and the infinity norm on the expectation of the noise terms is bounded by

1 due to the rounding error.

Below we remind the modulus switching algorithm LWE. Since this is a standard algorithm, we
give its correctness proof in Appendix 8 for completeness.

Lemma 7 (Modulus Switching for LWE) Let us define the following ciphertext c = LWEσ

(
s, Qt ·

m
)
, where s ∈ Zn

Q. Let us define the LWE modulus switching procedure as

ModSwitch(c, q) =
⌊[
c · q

Q

]n+1

i=1

⌉
for q ≤ Q.

If cout ← ModSwitch(c, q), then cout = LWEσout

(
s, qt ·m

)
, where

σ2
out ≤

(q
Q
· σ

)2

+ Ha(s) · Var(s)

the bound on the expectation of the noise term is at most 1 due to the rounding error.

11

BootKeyGen(s, f, P):

Input:

- LWE secret key s ∈ {0, 1}.
- NTRU secret key f ∈ RQ.

- Integer P s.t. Q < P .

1 : For i ∈ [n]:

2 : Set Bk[i]← G-NTRUσBk

(
f, s[i]

)
∈ RP .

3 : Ksk← KSSetup
(
f, s

)
.

4 : Return Ksk and Bk.

BlindRotate(c,Bk, cacc):

Input:

- Ciphertext c = LWEσ

(
s,

2N

t1
·m

)
.

- Blind rotation key Bk.

- Accumulator cacc = NTRUσacc

(
f,

P

t2
· arot · f−1).

1 : cacc,1 ← cacc ·Xc[1].

2 : For i ∈ [n]:

3 : cacc,i+1 ← GMul
(
Bk[i],

cacc,i ·Xc[i+1] − cacc,i
)
+ cacc,i.

4 : Return cacc,n+1.

Figure 1: Bootstrapping Key Generation and Blind Rotation

4 Computing on Ciphertexts and Bootstrapping

In this section, we give our bootstrapping algorithm. At Figure 1 we give the adaptation of TFHE-
style blind rotation [26] and the plug it into the FHEW-style bootstrapping [32, 56] and functional
bootstrapping [61, 53] algorithm. Figures 1 and 2 give the basic schemes. In particular, we assume
that the bootstrapping algorithm gets as input an accumulator holding a rotation polynomial. At
the end of this section, we discuss how to build such an accumulator for a chosen rotation polynomial.
For simplicity, we describe only the version that uses blind rotation (see Figure 1) LWE ciphertexts
with binary secret keys. We note that we may extend the bootstrapping algorithm to bootstrap
LWE ciphertexts with ternary or Gaussian distributed secret keys via standard techniques [32, 56].
Finally, at Table 2 we summarize all noise of ciphertexts output by the procedures from this section
and Section 3.
Setting up the Rotation Polynomial and the Accumulator. Before giving the formal analysis
of the bootstrapping algorithm, let us briefly explain how to choose the rotation polynomial arot.
Suppose we want to bootstrap a ciphertext that holds the message m ∈ Zt1 , and along the way, we
want to compute the function F : Zt1 7→ Zt2 . To do so, we need to construct a rotation polynomial
arot ∈ RQ. We set arot[N − y] = −F (⌊ t1·y2·N ⌉) mod P for all y ∈ [1, N] and arot[1] = F (0).

When using the Bootstrap algorithm, we can compute functions F such that F (x+t1/2 mod t1) =
−F (x mod t1) mod t1 for x ∈ Zt1 and even t1. When running F-Bootstrap we do not have the
above restriction. In particular, we can compute any F : Zt1 7→ Zt2 and any t1 < N . For the
F-Bootstrap algorithm we have another rotation polynomial asgn, whose coefficients are all set to
6N/4. We compute asgn · Xy, which constant coefficient is 2N/4 for y ∈ [1, N] and 6N/4 for
y ∈ [N + 1, 2N]. When we modulus switch the ciphertext cpre to ZN instead of Z2N , then we have
y = bpre−a⊤pres = mpre + epre + kN mod 2N . Now when k = 0, then asgn returns 2N/4, hence we do
not add anything in step 6. For k = 1, we add 6N/4− 2N/4 = N and we get rid of the k ·N term
in y. Thereby, we ensure that the second blind rotation rotates arot by numbers from ZN instead of
Z2N . See the proof of Theorem 1 for more details.

12

Bootstrap(c,Ksk,Bk, cacc, d):

Input:

- Ciphertext c = NTRUσ

(
f,

Q

t1
·m · f−1

)
.

- NTRU to LWE key-switching key Ksk.

- Blind rotation key Bk.

- Accumulator cacc = NTRUσacc

(
f,

P

t2
· arot · f−1

)
.

- Index d ∈ [N].

1 : cLWE ← KSwitch
(
Ksk, c, d

)
.

2 : cin ← ModSwitch
(
cLWE, N

)
.

3 : cacc,out ← BlindRotate
(
cin,Bk, cacc

)
.

4 : Return cout ← ModSwitch
(
cacc, Q

)
.

F-Bootstrap(c,Ksk,Bk, cacc, csgn, d, t):

Input:

- Ciphertext c = NTRUσ

(
f,

Q

t1
·m · f−1

)
.

- NTRU to LWE key-switching key Ksk.

- Blind rotation key Bk.

- Accumulator cacc = NTRUσacc

(
f,

P

t2
· arot · f−1

)
.

- Accumulator csgn = NTRUσacc

(
f,

P

t2
· asgn · f−1

)
.

- Index d ∈ [N] and integer t ∈ N.

1 : cKsk ← KSwitch
(
Ksk, c, d

)
∈ Zn+1

Q .

2 : cpre ← ModSwitch
(
cKsk, N

)
+

[⌊N
2t

⌉
,0

]
.

3 : cacc,msg ← BlindRotate
(
Bk, csgn, cpre

)
.

4 : cmsg ← KSwitch
(
Bk, cmsg, 1

)
∈ Zn+1

Q .

5 : cm̂sg ← ModSwitch
(
cmsg, 2N

)
∈ Zn+1

2N .

6 : cin ← cpre + cm̂sg −
2N

4
∈ Zn+1

2N .

7 : cacc,out ← BlindRotate
(
Bk, arot, cin

)
.

8 : Return cout ← ModSwitch
(
cacc, Q

)
.

Figure 2: Bootstrap and Full Domain Functional Bootstrapping.

Algorithm Noise variance of the output ciphertext

Dec(c) σ2
Dec ≤ 4/3 ·N · σ2

KSwitch(Ksk, c, d) σ2
Dec +N · ℓKsk · L2

Ksk/4 · σ2
Ksk

GMul(cG, c) σ2 +N · ℓBk · L2
Bk/4 · σ2

Bk

ModSwitch(c, q)
(

q
Q
· σ

)2

ModSwitch(c, q)
(

q
Q
· σ

)2

+ Ha(s) · Var(s)

Bootstrap(c,Ksk,Bk, cacc, d)
σ2
out ≤

(
q
Q

)2

·
(
σ2
in ≤ σ2

acc + n ·N · ℓBk · L2
Bk/4 · σ2

Bk

)
σ2
in ≤

(
q
Q

)2

·
(
σ2
Dec +N · ℓKsk · L2

Ksk/4 · σ2
Ksk

)
+ Ha(s) · Var(s)

F-Bootstrap(c,Ksk,Bk, cacc, csgn, d, t)
σ2
out ≤

(
q
Q

)2

·
(
σ2
in ≤ σ2

acc + n ·N · ℓBk · L2
Bk/4 · σ2

Bk

)
σ2
in ≤ 2 ·

(
q
Q

)2

·
(
σ2
Dec +N · ℓKsk · L2

Ksk/4 · σ2
Ksk

)
+ 2 · Ha(s) · Var(s)

Table 2: Summary of the Noise Variances.We assume all algorithms and their inputs are generated
as the respective definition. For the inout ciphertexts we assume c and c to be an NTRU and LWE
a ciphertext both with Gaussian parameter σ.

13

4.1 The Bootstrapping Algorithms

Below we give the correctness and noise analysis of our bootstrapping algorithm.

Theorem 1 (Correctness of the Bootstrapping Algorithm) Let arot ∈ RP be such that (arot ·
Xy)[1] = F (⌊ t1N · y⌉), where y ∈ ZN and F : Zt1 7→ Zt2 .

Let cin and cout be as in step 2 and 4 of the Bootstrap (resp. step 6 and 8 of the F-Bootstrap)
algorithm at figure 2. Then

cin = LWEσin

(
s,
N

t1
·m · f−1

)
and

cout = NTRUσout

(
f,
Q

t2
· F (m) · f−1

)
where σin and σout are given by Table 2, and q = 2N for the Bootstrap (resp. q = N for the
F-Bootstrap) algorithm.

Proof 7 We will divide the proof into four parts. First we give the analysis of the BlindRotate algo-
rithm from Figure 1. Then we give the analysis of cout that is returned by Bootstrap and F-Bootstrap.
Finally, we give the correctness and the noise analysis of cin. Note that correctness and the noise
analysis of the three last parts mostly follows from the correctness of the underlying algorithms. The
most involved part of the proof is blind rotation given below.
Blind Rotation. Let us first inspect the ith iteration for the blind rotation’s For loop. Denote
cacc,i = NTRUσacc,i

(
f,Mi

)
, where Mi ∈ RP is the message in the current iteration. Remind that

Bk[i] encrypts s[i] ∈ {0, 1}. Hence there are two cases we must consider.

1. The case for s[i] = 0. In this case, the GMul algorithm outputs an NTRU encryption of 0 with
Gaussian parameter σG to which we add cacc,i. Hence we have that

cacc,i+1 = NTRUσG

(
f, 0

)
+ cacc,i

= NTRUσG

(
f, cacc,i

)
.

Remind that from Lemma 5, we have σ2
G ≤ N · ℓBk · L2Bk/4 · σ2

Bk. Therefore, this step adds σ2
G

to the error variance σ2
acc,i of cacc,i.

2. The case for s[i] = 1. In this case GMul output an NTRU ciphertext cG,i = NTRUσG

(
f, cacc,i ·

Xcin[i] − cacc,i
)
to which we add cacc,i. Note that from additive homomorphism the cacc,i cancel

out and we have

cacc,i+1 = NTRUσG

(
f, cacc,i ·Xcin[i]

)
.

Furthermore, since the scalar Xcin[i] has infinity norm equal one, we have that the ciphertext
cacc,i ·Xcin[i] has the same noise variance as the ciphertext cacc,i. As in the previous case, the
iteration add σ2

G to the error variance σ2
acc,i of cacc,i.

Remind that we initialize the ciphertext cacc,1 with the message M ·Xcin[1], where M = P
t2
· arot · f−1.

Furthermore, the cacc,1 has noise parameter σacc, which is the same noise parameter as cacc. After
the nth iteration the ciphertext cacc,n+1 encrypts M ·∏n

i=1X
c[i] =M ·XPhase(cin). The bound on the

14

final noise term follows from the noise analysis of GMul in Lemma 5. Namely, each iteration of the
loop adds the additive term ℓBk · L2Bk/4 · σ2

Bk to the total noise. To summarize we have

σ2
acc,n+1 ≤ σ2

acc + n ·N · ℓBk · L2Bk/4 · σ2
Bk.

Bootstrap. The correctness of this part immediately follows from the correctness of BlindRotate
and ModSwitch. However to summarize, we have that BlindRotate outputs a NTRU ciphertext of
P
t2
·arot ·f−1 ·XPhase(cin), which after modulus switching becomes a ciphertext of Q

t2
·arot ·f−1 ·XPhase(cin).

From the assumption on arot we have that the constant coefficient of cout’s plaintext is Q
t2
· F (⌊ t1N ·

Phase(cin)⌉).
Functional Bootstrap. Correctness of the full domain functional bootstrapping is as follows. De-

note cpre = [bpre,apre] such that bpre = a⊤pres+mpre+epre+ ∈ ZN . Note that since we add
[⌊

N
2t

⌉
,0

]
we

ensure that 0 ≤ mpre + epre < N . This shifting operation is important as otherwise we would not be
able to choose an appropriate rotation polynomial. We set all coefficients of the rotation polynomial
asgn to 6N/4 except for the constant coefficient that is set to 2N/4. We blind rotate cpre modulo
2N with asgn, so bpre − a⊤pres = mpre + epre + kN mod 2N for some k ∈ {0, 1}, where mpre is the
modulus switching of the message m that is encoded in c. From correctness of blind rotation, and
the key and modulus switching we have that cm̂sg decrypts to 2N

4 if k = 0 and 3·2N
4 if k = 1. We

can write the decryption of cm̂sg as k · 6N4 + (1− k) · 2N4 . So when we add cpre + cm̂sg − 2N
4 , the term

kN + k · 6N4 + (1 − k) · 2N4 − 2N
4 is zero for both k ∈ {0, 1}. Hence we have bin = a⊤s +mpre + ein

mod 2N , where mpre + e < N . Therefore, we can choose the coefficients of the rotation polynomial

such that (arot ·X
N
t mpre+e)[1] = F (Nt ·mpre + e). Note that we will only multiply the rotation polyno-

mials by Xmpre+e, where 0 ≤ mpre+ e < N . In particular, the negacyclicity problem never occurs. In
other words, we directly set the coefficient to encode the lookup table, and we do not worry that the
rotation exceeds the number of coefficients and changes the sign of the output. Finally, the variance
σ2
out follows from the analysis of blind rotation and modulus switching as for the Bootstrap algorithm.

The “Small” Modulus LWE Ciphertext. The correctnes and the noise variance for cin fol-
lows from correctness of KSwitch (Lemma 4) and the LWE ModSwitch (Lemma 7). In the case
of F-Bootstrap we actually add cpre and cm̂sg to obtain cin. Note that the noise terms of both cpre
and cm̂sg are the same noise variance as cin in the Bootstrap algorithm, because both are products
of key switching and LWE modulus reduction on NTRU ciphertexts returned blind rotation and key
switched from P to the Q modulus. To summarize, for the full domain functional bootstrapping the
variance of cin’s noise is twice as high as for Bootstrap.

4.2 Computing on Encrypted Data and Packing

To compute on encrypted data, we can use the homomorphism of NTRU ciphertexts to compute
affine functions over Zt1 . After bootstrapping a ciphertext holding a message m at position d we

obtain an NTRU ciphertext encrypting g = Q
t2
arot · f−1 ·X N

t2
m+e. The extraction and key switching

steps return a LWE ciphertext of (f ·g)[1] = Q
t2
F (m). Note that we can still compute affine functions

on these ciphertexts with monomials of degree zero. But any further bootstrapping must extract
the LWE from position d = 1. Note that it may be tempting to key switch to LWE right after the
blind rotation step. Unfortunately, this requires us to take the LWE with the larger modulus Q or
pay a high price in terms of lower correctness when trying to bootstrap such ciphertext again.

When working over ZQ[X]/(XN + 1), we can compute any negacyclic function F on Zt1 . Fur-
thermore, when applying the F-Bootstrap technique from [61, 53] we can generalize the method
to compute any function on Zt1 . In this case we can for example correctly compute x2 mod t1

15

or x−1 mod t2 for x ∈ Zt1 . If furthermore Zt1 contains inverses of 4 then we can compute
x ·y = (x+y

2)2− (x−y
2)2 mod t1 with only two invocations of the bootstrapping algorithm. This way

we can efficiently compute arithmetic circuits. Furthermore, the arithmetic can be easily extended
to composite Zp with p =

∏m
i=1 t1,i where all t1,i are pairwise co-prime from the Chinese remainder

theorem.
Building Accumulators. Note that the accumulator we give as input to the bootstrapping proce-
dure is key-dependent. We do the following to allow the evaluator to choose its rotation polynomials,
thus selecting the circuit to be computed. We publish additionally a gadget encryption of f−1. The
evaluator obtains the accumulator by gadget multiplying the encryption with the rotation polyno-
mial of its choice. We note that the error due to gadget multiplication is a tiny fraction of the error
due to blind rotation. As we will show in Section 5, in practice, we have over 29 gadget multiplica-
tions in the blind rotation step. Furthermore, this multiplication has to be executed only once per
rotation polynomial because the evaluator can store and reuse his accumulators.
Encrypting Data. To send encrypted data, we have a few options. We can either send LWE cipher-
texts, with modulus N and error distribution being a Gaussian with standard deviation matching
the standard deviation of the error of the LWE ciphertext after switching the modulus. Then, in-
stead of key switching the input NTRU ciphertexts, we can immediately start to compute step four
on the LWE ciphertexts. The downside of this method is that we require n + 1 elements in ZN

to transmit a single message. Another method is to set a message into a coefficient of the NTRU
ciphertext. This way, we may transmit N messages at the cost of only N elements in ZQ. We note
that for the initial NTRU ciphertext, we may actually take a smaller modulus and obtain an even
better ciphertext rate. The moduli Q and P are chosen to support the error induced by the blind
rotation as well as the NTRU to LWE key switching part.

Finally, the naive way to return the outcome of the computation is to return the NTRU ciphertext
from the last invocation of bootstrapping (or after additionally computing some affine functions on
a vector of NTRU ciphertexts). In this case, the ciphertext rate for the result is rather weak since
we transmit N elements in ZQ per message. What we can do, is either run the NTRU to LWE
switching procedure to reduce the rate to n+1 elements in Zq, or we can try to pack the outcome of
multiple NTRU ciphertexts into a single NTRU ciphertext. For this purpose, we need an additional
packing key that works as the NTRU to LWE key switching procedure but has NTRU ciphertexts
instead of LWE ciphertexts.
Amortization. We can use similar techniques as showed by Carpov et al. [20] to compute multiple
functions on the same input with only a single invocation of the bootstrapping algorithm. Namely
instead of setting the accumulator to be a NTRU ciphertext of P

t2
· arot · f−1, we set it to P

t2
· f−1.

Then before step 7 of the bootstrapping procedure, we multiply the blind rotated accumulator with
arot. It is easy to see that the resulting message is the same, but we note that the noise rate will be
greater and dependent on the norm of arot. Nevertheless, for applications like binary decomposition
of field elements, we set arot to have only binary coefficients.

5 Security, Parameters and Correctness

We present all parameter sets on Table 3. All our parameters are targeted to achieve at least 128-
bits of security. The NTRU secret key f is always assumed to have coefficients from {−1, 0, 1}. We
chose e2 such that Var(e2) =

1
16 . For every NTRU ciphertext we sample a fresh g with coefficients

in {−1, 0, 1}. We set e1 such that Var(e1) = 2/3. We take Q as close to N as possible, but we are
limited by the error of the key switching procedure. The smaller Q, the smaller the key switching
key, and the bigger the error in the resulting LWE ciphertext that stems from the key switching

16

n log(P) log(Q) N LBk ℓBk ℓKsk stddevKsk
Binary LWE Secret Key

NTRU-ν-um-11-B 29 + 125 230 225 211 26 5 25 210

NTRU-ν-um-12-B 29 + 238 245 233 212 215 3 33 214

NTRU-ν-um-13-B 29 + 315 245 234 213 215 3 34 214

NTRU-ν-um-14-B 29 + 390 245 236 214 215 3 36 214

Table 3: Parameter Sets. The hamming weight of these parameters is not enforced, and all coeffi-
cients are from the same distribution. In other words we have Ha(f) = N and Ha(s) = n.

Binary LWE Secret Key
Set: 11-B 12-B 13-B 14-B

log(t) \ sk 10.45% 64.43% 93.36% 82.96%
4 (0, 2−13) (0, 0) (0, 0) (0, 0)
5 (2−33, 2−4) (0, 0) (0, 0) (0, 0)
6 (2−9, 0.32) (0, 2−15) (0, 0) (0, 0)
7 (0.10, 0.62) (0, 2−5) (0, 2−12) (0, 2−37)
8 (0.41, 0.80) (0, 0.28) (0, 2−4) (2−39, 2−10)
9 (0.68, 0.90) (0, 0.59) (2−42, 0.33) (2−11, 2−4)
10 (0.83, 0.95) (2−46, 0.72) (2−12, 0.63) (0.07, 0.38)
11 (0.91, 0.97) (2−13, 0.89) (0.06, 0.81) (0.37, 0.66)

Table 4: Correctness Estimates. Each entry contains two probabilities of failing to bootstrap cor-
rectly. The first is the probability that the ciphertext cout yields an incorrect output. The second
is that the ciphertext cin is erroneous due to noise from a previous bootstrapping, key switching,
and modulus switching. Given the variance of a random variable, we calculate the probability of
failure by the erf function. Remind that t is the plaintext modulus, and the percentage gives the
contribution of the rounding error cin.

17

Set uSVP Avg β λ
NTRU-ν-um-11-B 178.7 360.84 136
NTRU-ν-um-12-B 319.6 361.0 137
NTRU-ν-um-13-B 710.2 1068.0 344
NTRU-ν-um-14-B 1575.2 3048.68 923

Table 5: Security Estimations for the DSPRA-assumption (NTRU) and RLWE.The second column
gives the cost estimations of usvp against the RLWE assumption (this is the lowest cost that we
obtained). β is the BKZ-block size against DSPRA. λ gives us the estimated security parameter. To
summarize, our parameters give larger security than we need allowing us to increase the modulus P
if necessary.

procedure. The key switching key is instantiated over the smaller modulus Q. When choosing the
LWE parameters for the key switching key, we observe that the LWE dimension n is one of the most
crucial parameters for the system’s performance. Hence we try to minimize n. But, on the other
hand, we need to take the modulus Q large enough to fit the key switching error. Furthermore, we
take the decomposition base for the key switching key to be 2 across all parameter sets. However,
we note that choosing a larger decomposition base for key switching would cost us either valuable
precision, or a larger modulus Q but smaller key size overall. We decided to go with larger keys.

5.1 Estimating Security.

Assumptions in This and Concurrent Work. Let us remind that we do not publish a public
key in the form of an element c = g/f is the case for LTV [54] and YASHE [14]. Crucially, note that
if we would publish a public key h = g/f , and encrypt a message as c = e · g/h +m, then for two
ciphertexts encrypting the same message, an adversary could easily compute (c1− c2)/h = (e1− e2)
which is small. In our case, the attack would be disastrous because the adversary would be allowed
to query the bits of the LWE secret key encrypted in the bootstrapping key. But in our scheme, like
in the concurrent work [13], h is never published. The work [13] does not use g as we do. Specifically
their NTRU ciphertext takes the form ci = gi/f+mi, where gi is from the same distribution as f , and
is freshly chosen for each ciphertext. Hence we cannot reduce the problem to the standard DSPRA-
assumption. From the decision small polynomial ratio assumption, we have that a ciphertext in the
form h = g/f is indistinguishable from uniform random. However, it is not entirely clear whether a
sequence c1 = e1/f, . . . , c2 = em/f , where e1, . . . , em are sampled independently and 1/f is reused
across all c1, . . . , cm is indinsinghishable from random as well. To summarize, it seems that [13]
must assume a modified decision small polynomial ratio assumption 2 to argue indistinguishability.

We choose our parameters more conservatively and add another layer of scrambling with the e1
error and the e2 error. This way we can argue security, by arguing for each ciphertext ci = e1gi/f+e2
that the parts gi/f are chosen independently at random from the decision small polynomial ratio
assumption (Definition 2). Note that it is sufficient to use just one g across all ciphertexts, but we
chose it freshly as an additional defense. The DSPRA-assumption states indistinguishability when
all the gi’s are equivalent. Then from the RLWE assumption [59, 55] for the ring ZP [X]/(XN + 1),
with N -power-of-two, we can argue indistinguishability of ci even if the parts gi/f would leak and
would reuse the same gi’s. Finally, we stress that the argument above is a standard argument, and
for formal proof, we refer to [60]. For completeness we recall the proof in Appendix 8 in the full
version [49].
Estimating Security of the Parameters. To estimate security for the (R)LWE samples used

18

the LWE estimator [6], but we note that for our parameters, the dimension of the rings is so large
that the RLWE security is much above the 128-bit level. The security bottleneck lies in the key-
switching key, which has a relatively small dimension. Below we discuss how we estimate the security
for NTRU. However, we observe that the estimated security is far above 128-bits due to the large
ring dimensions.

For NTRU, we consider two types of attacks. The first is a direct attack on the NTRU secret key
that we call the SKR event (Secret Key Recovery). In this case, we consider recovering a vector of the
short lattice basis as a successful attack against NTRU. The second event is recovering a basis vector
of the dense sublattice contained in the NTRU lattice. We call this event the DSD event (Dense
Sublattice Discovery). For more details on the attacks we refer to [33]. It has been observed that
recovering the dense sublattice is much more efficient when the ratio between the modulus P and the
ring dimension is large. We call the ratio between P and N after which the event of finding a basis
vector of the sense sublattice is more likely than finding a vector as short as the secret key vector of
the fatigue point. Two concurrent works by Albrecht, Bai, and Ducas [5], and Cheon, Jeong, and
Lee [24] initiate the study of the so-called overstretched regime3. Kirchner and Fouque [48] improve
their results and set the asymptotic fatigue point at N2.783+o(1). Very recently, Ducas and van
Woerden [33] give a tighter prediction and set the fatigue point at P = N2.484+o(1). Importantly,
Ducas and van Woerden [33] predict the hardness of the decisional small polynomial ratio problem
in the overstretched regime. Namely, they predict the hardness of the DSD event when the modulus
P exceeds the fatigue point. Moreover, they back up their prediction with extensive experiments.
At Table 5 we give the results of running the estimator from [33]4 and form [6]. Remind that our
ciphertexts assume NTRU and RLWE. For RLWE we report on the uSVP cost as returned by the
estimator. We note that this is the lowest estimated attack cost.

Below, we describe the estimations for the DSPRA-assumption. The NTRU estimator gives us
the block size β at which Progressive BKZ detects the SKR or DSD event. For all our parameter
sets, we obtained the DSD event first, meaning that running BKZ with block size β, we get the DSD
event with a probability close to 1. On the other hand, the SKR event for the given β was close to
0. Hence at table 5, we list the parameters necessary to brake NTRU by obtaining a DSD event.

Based on thhe BKZ-block size β and the ring dimension N , we estimate the cost of running the
lattice reduction by the cost model from [10]. Namely, we estimate the cost in (brute force-equivalent
bits) by

λ = 0.292 · β + 16.4 + log(8 ·N).

Despite operating in the overstretched regime, we note that our dimensions N are so high that our
parameters have much larger security than necessary. For example, for NTRU-ν-um-C-13-B, the
NTRU instances are estimated to have 405-bits of security! For the parameters with the smallest
dimension, we get 136-bits of security, which is already much higher than our 128-bit goal.

5.2 Correctness of the Parameter Sets.

Below we show correctness estimates for plaintext spaces Zt1 and Zt2 , for t1 and t2 = 24, . . . , 211.
Our estimates are depicted at Table 4. The sk row gives the share of variance from the rounding
when modulus switching. Specifically, we calculate what percentage of the total variance of cin
consists of the variance of the rounding error. The reason to point out the rounding’s share is to
give an intuitive limit on the ciphertext space’s size for a given ring dimension and without sparse
secret keys.

3Although the first attack is due to Gentry and Szydlo [39]
4We slightly modified the estimator code to allow us to estimate security for larger dimensions.

19

≈ N NTRU-ν-um [50] [61] [53]
211 7644 29400 28672 -
212 6000 34300 12672 15660
213 6616 44100 - -
214 7216 - - -

Table 6: The number of the FFT/NTTs for NTRU-ν-um. We take only the fastest parameters from
previous work.

Set BR [s] KS [s] Ksk [MB] Bk [MB] ct [KB]
11-B 0.09 0.01 130.08 25.97 8.15
12-B 0.14 0.03 507.18 55.25 20.46
13-B 0.32 0.06 1152.68 121.90 40.94
14-B 0.81 0.2 2662.56 265.96 81.90

Table 7: Performance of NTRU-ν-um. Columns BR and KS refer to blind rotation and key switching
respectively. The columns Ksk, Bk give the evaluation key sizes, and ct gives the size of the ciphertext.

6 Implementation and Performance

We implement [3] and test NTRU-ν-um in C++ using the fftw library [35] to compute fast Fourier
transforms and Intel HEXL [11] to compute number theoretic transforms. We use FFT’s for the
NTRU-ν-um with ring size 211. For all other parameter sets, we use the NTT to compute negacyclic
convolutions. Let us briefly describe the main loop of the bootstrapping algorithm. In each iteration,
we perform a rotation of the coefficients of cacc, subtraction, addition, and a gadget multiplication.
Clearly, gadget multiplication is the most expensive operation. Similarly, as in previous implemen-
tations, we precompute the FFT/NTT’s of the polynomials of the blind rotation keys. That is, the
polynomials are stored in the evaluation form. The accumulator is stored in the coefficient form.
Hence, for every gadget multiplication we decompose the NTRU sample cacc ·Xcin[i+1]− cacc, and we
compute a FFT/NTT for every element of the decomposition. Then we compute a multisum with
the corresponding bootstrapping key in the evaluation form and compute an inverse FFT/NTT.

We give a brief theoretical comparison of the FFT/NTT’s required to compute a bootstrapping
between our scheme, FDFB [50] and [61, 53]. The comparison is on Table 6. We limit ourselves only
to a theoretical comparison, for the following reasons. All papers [50, 53, 61] provide parameters and
report timings on their implementations. Nevertheless, we find that comparing the implementation
times may be difficult and unfair. For example FDFB [50, 53] are implemented on top of Palisade,
which timings may vary depending on whether hardware acceleration is used or not. Furthermore,
some parameter sets like [53] use a 54-bit modulus, whereas we have only 45 bits, what allows them
to choose much larger decomposition bases and reduce the number of NTT’s. As noted earlier, our
ring dimensions actually allow us to increase our modulus. We note that all the schemes can be
implemented using the same arithmetic. We can calculate the number of FFT/NTT’s in our blind
rotation by n · (ℓBk + 1). In contrast for the blind rotation used in previous work, that is based on
RLWE, we have 2 ·n ·(ℓBk+1). Therefore, we expect of achieve a 2× speedup over prior work. As we
can see, NTRU-ν-um appears to achieve a major speedup in terms of the number of FFT/NTT’s.
For example, our binary set for N ≈ 212 is approximately 2.12 times faster than [61, 53] and 5.9
faster than [50]. What is worth noting is that [61, 53] and [50] also use binary keys. Finally, we

20

1 2 3 4 5 6 7 8 9

1

2

3

C-11-B

C-12-B

BFV-HPS

BFV-NEW-LVL

BGV-NEW

Multiplicative Depth

T
im

e
[s
]

1

Figure 3: Comparison for timing between NTRU-ν-um and the BGV/BFV to compute
∏k

i=1 aix
i.

Remind that all BGV/BFV are leveled and do not include bootstrapping and modulus raising.

tested our implementation on a commodity laptop with an Intel(R) Core(TM) i7-11850H 2.50GHz
processor and 32.0 GB RAM. We performed all tests on a single core. Table 7 shows the average
timing of a single bootstrapping operation and the size of the key material.

6.1 Applications.

This section describes several example applications and reports on timings for those applications.
Computing Univariate Functions over Finite Fields. We show how NTRU-ν-um compares
to BGV/BFV-type schemes [17, 19, 18, 34] when computing univariate functions in finite fields. In

particular, we take the function
∏k

i=1 aix
i. The comparison is given by Figure 3 with the recent

results from Kim, Polyakov, and Zucca [46] implemented in PALISADE [2]. There are a few im-
portant observations. First, NTRU-ν-um evaluates an arbitrary univariate function over Zt in time
independent of the depth of the function. Second, the experiments in [46] assume that |ai| < 24. The
coefficients are much smaller than the plaintext modulus, which is around 16-bits. For larger coeffi-
cients, we would need to adjust the parameters for BGV/BFV and take a larger ciphertext modulus.
In contrast, NTRU-ν-um is independent of the size of the coefficients. However, to compute correctly
for larger plaintext spaces using our parameter sets, we need to represent the plaintexts in the CRT
form. Note that a similar optimization is made in [46]. In contrast to [46], NTRU-ν-um outputs an
already bootstrapped (noise reduced) ciphertext, which allows an evaluator to resume computation
immediately. For BGV/BFV-type schemes to resume computation, we need to raise the modulus
and bootstrap the resulting ciphertexts [41, 22, 42]. On the other hand, when an NTRU-ν-um boot-
strapping invocation is the last, and the ciphertext is returned to the client, we can take a much
larger precision.
Homomorphic Gaussian Elimination. The next application is to compute the Gaussian elim-
ination algorithm. Let us remind that Gaussian elimination requires computing the multiplicative
inverse of field elements. Importantly, with BGV/BFV techniques, while it is theoretically possible
to compute any polynomial-size arithmetic circuit, in practice evaluating the Extended Euclidean
algorithm is a very costly operation. With NTRU-ν-um, we compute multiplicative inverses in just
one bootstrapping operation. Figure 4 presents the results of computing Gaussian elimination for
several dimensions and parameter sets.

21

1 2 3 4 5 6 7 8 9

1

2

3

4

C-11-B

C-12-B
C-13-B

C-14-B

Dimension

T
im

e
[M

in
]

1

Figure 4: Timings for solving a system of linear equations via the Gaussian elimination algorithm.

−50 −30 −10 0 10 30 50

0

10

30

50
Relu

Relu(x)

x

Relu

C-12-B, t1 = 29

C-12-B, t1 = 211

C-12-B, t1 = 212

1

Figure 5: Error for approximate “bootstrapping” of the Relu.

22

Computing Approximate Functions. We can compute in an approximate mode by taking t1
even as large as the ring dimension. In this case, a ciphertext that may have been the result of
a previous bootstrap operation is modulus reduced to ZN . Hence if t1 = N , we have essentially
no rounding of the ciphertext just like in CKKS [25]. This way, we can compute any approximate
function with a single bootstrapping operation. This is very useful when evaluating neural networks
on encrypted queries. Neural networks can be seen as circuits with gates of the form F (b+

∑m
i=1 ai·xi)

where [ai]
m
i=1 are called weights and b is the bias. When using NTRU-ν-um we compute the affine

part b +
∑m

i=1 ai · xi at nearly no cost. In practice, the size of the affine function rarely exceeds
m ≤ 1000. Hence the computing time is dominated by computing the non-linear function F .

In CKKS-type schemes, to compute any function, we first need to approximate the function, for
example, with a Taylor series, and then evaluate the approximation with a CKKS-style approximate
homomorphic encryption. Furthermore, similarly to BGV/BFV, after computing a function with
CKKS, we need to raise the modulus to resume computation, whereas for NTRU-ν-um we can
compute immediately after bootstrapping. Raising the modulus in CKKS-type schemes is currently
subject to extensive studies [23, 21, 43, 15, 51], as it is the major efficiency and accuracy bottleneck.
For NTRU-ν-um the time to compute a function is as given by Figure 7. We find it instructive
to showcase how the approximation error behaves for a functional bootstrapping algorithm like
NTRU-ν-um. Notably, the approximation error is very different than the error for schemes like
CKKS. As a demonstration, we depict in Figure 5 the result of bootstrapping the Relu function
with an oversized plaintext modulus. The Relu function on input x ∈ Z output x if x ≥ 0 and 0
otherwise. As we can see, the larger the size of the plaintext modulus, the larger the impact of the
error on the outcome of the computation. What stands unique for NTRU-ν-um and other functional
bootstrapping algorithms [27, 16, 20, 50, 61, 13] is that the error depends on the computed function.
In the case of Relu, we can see that when the function is constant on a section of the domain,
the error does not affect the outcome of the bootstrapping. The reason is as follows. The error
may cause the homomorphic rotation of arot polynomial to be shifted. Suppose the shift sets the
constant-coefficient to the same value as for correct computation. In that case, the bootstrapping
procedure will output the correct value conditioned that the bootstrapping error does not distort it,
but as we can see from Table 4 the bootstrapping error and size of the modulus P allow for a much
larger plaintext modulus. Finally, note that as all existing approximate HE schemes, NTRU-ν-um
in approximate mode will not be CPAD-secure [52].

7 Conclusions

We showed that it is possible and advantageous to build fully homomorphic encryption secure in the
“overstretched” modulus regime. What is important to note is that the functional bootstrapping
technique might be applied in combination with BGV/BFV and CKKS schemes. In particular, it
seems that while multiplying two field elements for NTRU-ν-um is possible with two bootstrapping
operations, multiplication without bootstrapping is much faster in BGV/BFV. Furthermore, it may
be that for the ring dimensions, it may be possible to provide a secure instantiation of LTV and
YASHE that could support a small number of multiplications.
Acknowledgements This work has been partially funded/supported by the German Ministry for
Education and Research through funding for the project CISPA-Stanford Center for Cybersecurity
(Funding number: 16KIS0927).

23

References

[1] Ieee standard specification for public key cryptographic techniques based on hard problems over
lattices. IEEE Std 1363.1-2008, pages 1–81, 2009.

[2] PALISADE Lattice Cryptography Library (release 1.11.5). https://palisade-crypto.org/,
2021.

[3] FHE-Deck. https://github.com/FHE-Deck, 2022.

[4] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey,
Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al. Status report on the second round
of the nist post-quantum cryptography standardization process. US Department of Commerce,
NIST, 2020.

[5] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes. In Matthew Robshaw
and Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, Part I, volume 9814 of
Lecture Notes in Computer Science, pages 153–178. Springer, Heidelberg, August 2016.

[6] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[7] Jacob Alperin-Sheriff and Chris Peikert. Practical bootstrapping in quasilinear time. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 1–20. Springer, Heidelberg, August 2013.

[8] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part I, volume
8616 of Lecture Notes in Computer Science, pages 297–314. Springer, Heidelberg, August 2014.

[9] X9 ANSI. 98: Lattice-based polynomial public key establishment algorithm for the financial
services industry. Technical report, Technical report, ANSI, 2010.

[10] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neigh-
bor searching with applications to lattice sieving. In Robert Krauthgamer, editor, 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 10–24. ACM-SIAM, January 2016.

[11] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh Gopal, et al. Intel HEXL
(release 1.2). https://github.com/intel/hexl, 2021.

[12] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from tensored homo-
morphic accumulator. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18: 10th International Conference on Cryptology in Africa, volume 10831 of
Lecture Notes in Computer Science, pages 217–251. Springer, Heidelberg, May 2018.

[13] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and Nigel P. Smart.
FINAL: Faster FHE instantiated with NTRU and LWE. Cryptology ePrint Archive, Report
2022/074, 2022. https://eprint.iacr.org/2022/074.

[14] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a
ring-based fully homomorphic encryption scheme. In Martijn Stam, editor, Cryptography and
Coding, pages 45–64, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

24

https://palisade-crypto.org/
https://github.com/FHE-Deck
https://github.com/intel/hexl
https://eprint.iacr.org/2022/074

[15] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza, and Jean-Pierre
Hubaux. Efficient bootstrapping for approximate homomorphic encryption with non-sparse
keys. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology –
EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer Science, pages 587–
617. Springer, Heidelberg, October 2021.

[16] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic
evaluation of deep discretized neural networks. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in
Computer Science, pages 483–512. Springer, Heidelberg, August 2018.

[17] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 868–886. Springer,
Heidelberg, August 2012.

[18] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic en-
cryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in
Theoretical Computer Science, pages 309–325. Association for Computing Machinery, January
2012.

[19] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (stan-
dard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foundations of Computer
Science, pages 97–106. IEEE Computer Society Press, October 2011.

[20] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques for multi-value input
homomorphic evaluation and applications. In Mitsuru Matsui, editor, Topics in Cryptology –
CT-RSA 2019, volume 11405 of Lecture Notes in Computer Science, pages 106–126. Springer,
Heidelberg, March 2019.

[21] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping for approximate ho-
momorphic encryption. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science, pages 34–54.
Springer, Heidelberg, May 2019.

[22] Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and improved FHE boot-
strapping. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes in Computer Science, pages 315–
337. Springer, Heidelberg, April / May 2018.

[23] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrap-
ping for approximate homomorphic encryption. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part I, volume 10820 of Lecture Notes
in Computer Science, pages 360–384. Springer, Heidelberg, April / May 2018.

[24] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru problems and
cryptanalysis of the ggh multilinear map without a low-level encoding of zero. LMS Journal of
Computation and Mathematics, 19(A):255–266, 2016.

[25] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science,
pages 409–437. Springer, Heidelberg, December 2017.

25

[26] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, Part I, volume 10031 of Lecture
Notes in Computer Science, pages 3–33. Springer, Heidelberg, December 2016.

[27] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster packed ho-
momorphic operations and efficient circuit bootstrapping for TFHE. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I, volume 10624 of
Lecture Notes in Computer Science, pages 377–408. Springer, Heidelberg, December 2017.

[28] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

[29] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Improved programmable
bootstrapping with larger precision and efficient arithmetic circuits for tfhe. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 670–699,
Cham, 2021. Springer International Publishing.

[30] Ana Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryption scheme
is best? In Kazue Sako, editor, Topics in Cryptology – CT-RSA 2016, volume 9610 of Lecture
Notes in Computer Science, pages 325–340. Springer, Heidelberg, February / March 2016.

[31] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature scheme.
In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05: 3rd International
Conference on Applied Cryptography and Network Security, volume 3531 of Lecture Notes in
Computer Science, pages 164–175. Springer, Heidelberg, June 2005.

[32] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less
than a second. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages 617–
640. Springer, Heidelberg, April 2015.

[33] Léo Ducas and Wessel van Woerden. Ntru fatigue: How stretched is overstretched? In Mehdi
Tibouchi and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages
3–32, Cham, 2021. Springer International Publishing.

[34] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012. https://eprint.iacr.org/2012/144.

[35] Matteo Frigo and Steven G. Johnson. Fftw. https://www.fftw.org, 2021.

[36] Nicholas Genise, Craig Gentry, Shai Halevi, Baiyu Li, and Daniele Micciancio. Homomorphic
encryption for finite automata. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology – ASIACRYPT 2019, Part II, volume 11922 of Lecture Notes in Computer Science,
pages 473–502. Springer, Heidelberg, December 2019.

[37] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178. ACM Press,
May / June 2009.

[38] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A.

26

https://eprint.iacr.org/2012/144
https://www.fftw.org

Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 75–92. Springer, Heidelberg, August 2013.

[39] Craig Gentry and Michael Szydlo. Cryptanalysis of the revised NTRU signature scheme. In
Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of Lecture
Notes in Computer Science, pages 299–320. Springer, Heidelberg, April / May 2002.

[40] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the functional bootstrap in
tfhe. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(2):229–253,
Feb. 2021.

[41] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 641–670. Springer, Heidelberg, April 2015.

[42] Shai Halevi and Victor Shoup. Bootstrapping for HElib. Journal of Cryptology, 34(1):7, January
2021.

[43] Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate homomorphic en-
cryption. In Stanislaw Jarecki, editor, Topics in Cryptology – CT-RSA 2020, volume 12006 of
Lecture Notes in Computer Science, pages 364–390. Springer, Heidelberg, February 2020.

[44] Ryo Hiromasa, Masayuki Abe, and Tatsuaki Okamoto. Packing messages and optimizing boot-
strapping in GSW-FHE. In Jonathan Katz, editor, PKC 2015: 18th International Conference
on Theory and Practice of Public Key Cryptography, volume 9020 of Lecture Notes in Computer
Science, pages 699–715. Springer, Heidelberg, March / April 2015.

[45] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key cryptosys-
tem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin, Heidelberg,
1998. Springer Berlin Heidelberg.

[46] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic encryption schemes
for finite fields. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, pages 608–639, Cham, 2021. Springer International Publishing.

[47] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature
schemes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of
Lecture Notes in Computer Science, pages 206–222. Springer, Heidelberg, May 1999.

[48] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on overstretched NTRU
parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, Part I, volume 10210 of Lecture Notes in Computer Science, pages 3–26.
Springer, Heidelberg, April / May 2017.

[49] Kamil Kluczniak. Ntru-ν-um: Secure fully homomorphic encryption from ntru with small
modulus. Cryptology ePrint Archive, Paper 2022/089, 2022. https://eprint.iacr.org/

2022/089.

[50] Kamil Kluczniak and Leonard Schild. FDFB: Full domain functional bootstrapping towards
practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2021/1135, 2021.
https://eprint.iacr.org/2021/1135.

27

https://eprint.iacr.org/2022/089
https://eprint.iacr.org/2022/089
https://eprint.iacr.org/2021/1135

[51] Joon-Woo Lee, Eunsang Lee, Yongwoo Lee, Young-Sik Kim, and Jong-Seon No. High-precision
bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial ap-
proximation and inverse sine function. In Anne Canteaut and François-Xavier Standaert, edi-
tors, Advances in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in
Computer Science, pages 618–647. Springer, Heidelberg, October 2021.

[52] Baiyu Li and Daniele Micciancio. On the security of homomorphic encryption on approximate
numbers. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer Science, pages
648–677. Springer, Heidelberg, October 2021.

[53] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomorphic sign evalua-
tion using FHEW/TFHE bootstrapping. Cryptology ePrint Archive, Report 2021/1337, 2021.
https://eprint.iacr.org/2021/1337.

[54] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computa-
tion on the cloud via multikey fully homomorphic encryption. In Howard J. Karloff and Toniann
Pitassi, editors, 44th Annual ACM Symposium on Theory of Computing, pages 1219–1234. ACM
Press, May 2012.

[55] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors
over rings. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110
of Lecture Notes in Computer Science, pages 1–23. Springer, Heidelberg, May / June 2010.

[56] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like Cryptosystems, page
17–28. Association for Computing Machinery, New York, NY, USA, 2021.

[57] Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW bootstrapping.
In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018: 45th International Colloquium on Automata, Languages and Programming, vol-
ume 107 of LIPIcs, pages 100:1–100:14. Schloss Dagstuhl, July 2018.

[58] Jacques Patarin. The oil and vinegar signature scheme. In Dagstuhl Workshop on Cryptography
September, 1997, 1997.

[59] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on Theory of
Computing, pages 84–93. ACM Press, May 2005.

[60] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal
lattices. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume
6632 of Lecture Notes in Computer Science, pages 27–47. Springer, Heidelberg, May 2011.

[61] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. TOTA: Fully homo-
morphic encryption with smaller parameters and stronger security. Cryptology ePrint Archive,
Report 2021/1347, 2021. https://eprint.iacr.org/2021/1347.

8 Omitted Proofs

Below we give the full versions of the lemmas and proves that were omitted in the main body of the
paper.

28

https://eprint.iacr.org/2021/1337
https://eprint.iacr.org/2021/1347

Lemma 8 (Correctness of Gadget Multiplication for General Messages) If cout = GMul(cG,
c) and mG ∈ RQ, then cout = NTRUσout(f , c ·mG), where

σ2
out = N · ℓBk · L2Bk/4 · σ2

Bk.

If additionally c = NTRUσ(f,m) and ||mG||∞ ≤ B, then

σ2
out ≤ N ·B2 · σ2 +N · ℓBk · L2Bk/4 · σ2

Bk.

Proof 8 The proof is as the proof of Lemma 5, but we only need to estimate the noise magnitude
when multiplying with an NTRU ciphertext and where ||mG||∞ ≤ B. Similarly as before we have

c′ = e′1/f + e′2 + r′ +mG · c
= e′1/f + e′2 + r′ +mG · (e1/f + e2 + r +m)

= (e′1 +mG · e1)/f + e′2 +mG · (e2 + r) +mG ·m.

To summarize we have

σ2
out ≤ N ·B2 · σ2 +N · ℓBk · L2Bk/4 · σ2

Bk

because we multiply the Gaussian noise by mG that has infinity norm bounded by B. Furthermore,
we have U(cout) ≤ N ·B · U(σ) +N · ℓBk · LBk/2 · U(cG).

Lemma 9 (Modulus Switching for LWE) Let us define the following ciphertext c = LWEσ

(
s, Qt ·

m
)
, where s ∈ Zn

Q. Let us define the LWE modulus switching procedure as

ModSwitch(c, q) =
⌊[
c · q

Q

]n+1

i=1

⌉
for q ≤ Q.

If cout ← ModSwitch(c, q), then cout = LWEσout

(
s, qt ·m

)
, where

σ2
out ≤

(q
Q
· σ

)2

+ Ha(s) · Var(s)

and U(c) ≤ 1.

Proof 9 Let c[1] + c[2 : n+ 1]⊤ · s = e+∆Q,t ·m. From definition we have

cout[1] + cout[2 : n+ 1]⊤ · s
= ⌊ q

Q
· c[1]⌉+ ⌊ q

Q
· cout[2 : n+ 1]⊤ · s⌉

=
q

Q
· c[1] + r +

q

Q
· cout[2 : n+ 1]⊤ · s+ r⊤ · s

=
q

Q
· (c[1] + cout[2 : n+ 1]⊤ · s) + r + r⊤ · s

=
q

Q
· Q
t
·m+

q

Q
· e+ r + r⊤ · s

=
q

t
·m+

q

Q
· e+ r + r⊤ · s

29

where r ∈ [−1/2, 1/2] and r ∈ [−1/2, 1/2]n. We assume that r and r are uniform random over their
support. We upper-bound the infinity norm of r and r by 1. Hence cout = LWEeout(c,

q
t ·m), where

eout =
q
Q · (ϵ · t+ e)+ r+ r⊤ · s. Therefore, Var(eout) ≤ Var(q

Q · e)+ 1+Var(r⊤ · s). We set n−Ha(s)
coordinates of s to zero, so we get

Var(r⊤ · s) =
Ha(s)∑
i=1

Var(r[i]) · (Var(s) + E(s)2)

= Ha(s) · (Var(s) + E(s)2)

To summarize we have

Var(eout) = (
q

Q
)2 · Var(e) + Ha(s) · Var(s)

and U(cout) ≤ 1.

Definition 6 (Ring Learning With Errors) Let s ∈ RQ be a secret key with coefficients form
some distribution Xsk. We define a RLWE sample of a message m ∈ RQ as c = RLWEσ(s,m) ∈ RQ

where c[1] = −c[2] · s + e + m, and c[2] is chosen from the uniform distribution over RQ. We
define the phase of c as Phase(c) = c[1] + c[2] · s. We define the learning with error distribution
LWERQ,Xsk,σ, to consist of LWE samples of zero, as defined above.

The ring learning with error assumption states that it is hard to distinguish elements sampled
from RLWERQ,Xsk,σ and elements sampled uniformly at random over R2

Q.

Theorem 2 (Security of NTRU-ν-um.) NTRU-ν-um is IND-CPA secure assuming the DSPRARQ
,

the RLWERQ,Xsk,σ and LWEn,σ′,X ′
sk
assumptions hold over RQ.

Proof 10 Note that the FHE scheme consists of the blind rotation key Bk and the key switching
key Ksk. Clearly as the Ksk key consists of LWE samples, the key is indistinguishable from uniform
from the LWE assumption. The Bk key and ciphertexts of the clients are NTRU samples. Hence
what is left to show, is that NTRU samples are indistinguishable form uniform. Remind that an
NTRu sample of zero is of the form c = e1 · g/f + e2 + r. From the DSPRARQ

assumption we have
that g/f is indistinguishable from a uniformly sampled element u ∈ RQ. Hence the sample c is
indistinguishable from a sample c′ = e1 · u + e2 + r. Finally, note that the tuple (u, c′) constitutes
a RLWE sample of r with secret key e1 and error e2. Nevertheless, form RLWE assumption we
have that e1 · u+ e2 is indistinguishable from a uniformly sampled element u′ ∈ RQ. Hence we have
(u, u′ + r) which is distributed as (u, u′′) with u′′-uniform in RQ. To summarize, the tuple (u, c′) is
indistinguishable from (u, u′′) assuming RLWERQ,Xsk,σ .

30

	Introduction
	Our Contribution.
	Overview of NTRU–um's Bootstrapping Algorithm.
	Related Work

	Preliminaries
	Homomorphic Encryption Techniques from NTRU
	Computing on Ciphertexts and Bootstrapping
	The Bootstrapping Algorithms
	Computing on Encrypted Data and Packing

	Security, Parameters and Correctness
	Estimating Security.
	Correctness of the Parameter Sets.

	Implementation and Performance
	Applications.

	Conclusions
	Omitted Proofs

