
Feta: Efficient Threshold Designated-Verifier
Zero-Knowledge Proofs

Carsten Baum1 ID , Robin Jadoul2 ID , Emmanuela Orsini2 ID , Peter Scholl1 ID , and Nigel P.

Smart2 ID

1 Dept. Computer Science, Aarhus University, Aarhus, Denmark.
2 imec-COSIC, KU Leuven, Leuven, Belgium.

cbaum@cs.au.dk,

robin.jadoul@esat.kuleuven.be,

emmanuela.orsini@kuleuven.be,

peter.scholl@cs.au.dk,

nigel.smart@kuleuven.be,

Abstract. Zero-Knowledge protocols have increasingly become both popular and practical in recent
years due to their applicability in many areas such as blockchain systems. Unfortunately, public verifi-
ability and small proof sizes of zero-knowledge protocols currently come at the price of strong assump-
tions, large prover time, or both, when considering statements with millions of gates. In this regime,
the most prover-efficient protocols are in the designated verifier setting, where proofs are only valid to
a single party that must keep a secret state.
In this work, we bridge this gap between designated-verifier proofs and public verifiability by distributing
the verifier efficiently. Here, a set of verifiers can then verify a proof and, if a given threshold t of the
n verifiers is honest and trusted, can act as guarantors for the validity of a statement. We achieve this
while keeping the concrete efficiency of current designated-verifier proofs, and present constructions that
have small concrete computation and communication cost. We present practical protocols in the setting
of threshold verifiers with t < n/4 and t < n/3, for which we give performance figures, showcasing the
efficiency of our approach.

1

https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0003-3567-3304


Table of Contents

Feta: Efficient Threshold Designated-Verifier Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . 1

Carsten Baum ID , Robin Jadoul ID , Emmanuela Orsini ID , Peter Scholl ID , and Nigel

P. Smart ID

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Shamir Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Zero-knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Schwarz-Zippel Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Coin Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Distributed Verifier Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Zero-Knowledge in the Threshold Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Preprocessing for distributed proofs with honest majority t < n/2 . . . . . . . . . . . . . . . . . . . . 14

5 Distributed proof with t < n/4 corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Distributed proof with t < n/3 corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Introduction

A zero-knowledge proof of knowledge (ZKPoK) is an interactive protocol which allows a prover
to convince a verifier, given a statement x, that the prover knows a witness w such that the pair
(x,w) lies in some NP language L. This is done in such a way that the verifier learns nothing but
the validity of the statement, i.e. they learn nothing about the witness w, only that the prover
knows the it. ZKPoKs have a wide range of applications, especially in the burgeoning area of
blockchain [HBHW16], but also as building blocks of highly efficient signature schemes [CDG+17]
or to increase the security level of existing cryptographic protocols from passive to active security
in a black-box manner [GMW87].

There are various parameters that influence which ZKPoK scheme is suitable for a certain
application. For example, when using ZKPoKs for blockchains one needs proofs that are publicly
verifiable and non-interactive; namely the proof is sent in a single message from the prover such
that any verifier can verify it. Another common requirement is that they are succint, namely that
the proof has size and verification time that is sublinear in the size of the statement.

Therefore, most ZKPoKs such as SNARKs [BCG+13] and STARKs [BBHR19] that are consid-
ered for practical applications within blockchains for instance, are mainly optimized for small proof
size and verification time (and are also publicly verifiable and non-interactive). Their drawback

https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0002-5997-9992
https://orcid.org/0000-0002-1917-1833
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0003-3567-3304


is that prover running time can be prohibitive for large statements, i.e. statements expressed by
arithmetic circuits with billions of gates. This is because the prover runtime for all current practi-
cal succinct schemes has an inherent polylog(|x|) overhead over the optimal O(|x|) proof time and
because prover memory access is not local3, which leads to inherent slowdowns for increasing |x|.

Modern MPC-in-the-Head ZKPoKs such as KKW [KKW18] or Limbo [dOT21] have a proof
size that is at least linear in |x|, with the unique exception of Ligero [AHIV17] which achieves
sub-linear proof for large enough statements. In addition, they usually use a “light” inner proof
(which is a passively-secure MPC scheme) that requires O(|x|) computation, but must be repeated
s/ log(s) times to achieve negligible soundness error where s is the security parameter.

Alternative ZKPoKs for large statements, which also have a practically efficient prover due to
small concrete constants, are either based on garbled circuits ([JKO13] and follow-ups) or vOLE-
commitments [WYKW21, YSWW21, BMRS21]). All of these prover-efficient schemes have the
disadvantage that they require the verifier to keep a secret state, i.e. they are designated-verifier
ZKPoKs. This means that the proof can only be verified by a single party, who must be identified
before the proof is produced. This makes the application in blockchains, where a proof may need
to be verified by a set of validator nodes, impossible.

One can mitigate the problem of a designated verifier by distributing the verification among a
larger set of parties. Here, each such verifier comes from a pre-defined, possibly large set, leading
to a form of distributed designated verifier proof system. Now, if a majority of these verifiers is
trusted, the statement of the prover can be accepted as validated by a majority of third parties.

Distributing Verification. This distribution of verification has an impact on the question of what a
proof actually is, and also changes how protocols for such a setting can be designed.

– If the verifier is distributed, an adversary may corrupt multiple verifiers, in addition to the
prover, in order to convince honest verifiers of the validity of a false statement. This means that
soundness must be redefined to take this into consideration.

– When a proof is rejected, this might happen either if a prover does not have a proof or if it is
honest, but verifiers may prevent successful verification of a proof. Hence, honest verifiers may
want to distinguish these cases in order to not blame an honest prover or verifier as corrupt. So
in the case of dishonest behaviour a security definition may require that honest verifiers do not
just abort, but they also identify one (or more) of the cheating parties. This enables a form of
cheater elimination.

– The distributed nature of the verifier may allow to obtain more efficient protocols: while in
standard zero-knowledge the verifier must always be considered as fully corrupted, we may now
be ok with only maintaining zero-knowledge if a strict subset of the verifiers does not collude.

1.1 Related Work

Thresholdizing in zero-knowledge proofs has a long history. The earliest works are those of [BD91]
and [Bea91], both from 1991. In the work of [BD91] the verifiers do not need to agree on the validity
of the proof, and in addition do not communicate directly. Our work is closer in spirit to that of
[Bea91], although with a modern security definition and practical, concrete efficiency. In particular
our security notion is UC-based, and captures issues related to a dishonest prover and dishonest

3 There are theoretical works that achieve linear prover time such as e.g. [LSTW21], but to the best of our knowledge
they are not concretely efficient.

3



verifiers colluding, as well as (by definition) providing a proof-of-knowledge. We also require that
cheaters are identified which we feel is important in applications (and is missing in all prior work).
The construction in [Bea91] is based, unsurprisingly for it’s time, on Verifiable Secret Sharing
(VSS), thus the protocol is highly inefficient compared to our more modern approach. Whilst VSS
enables identifiable abort, it is unclear in [Bea91] how (or even if) this can be used to identify if a
verifier and prover collaborate to cheat.

In the 2000’s interests continued in this problem, but focused on proofs related to languages
based on discrete logarithms (for example proving that certain discrete logarithm-based commit-
ments satisfied some given properties). Work in this vein included [ACF02], which focused on
statements related to relations between discrete logarithms. Their application are statements tai-
lored for systems using VSS in MPC. We essentially lift the definitions of [ACF02] to a more general
UC setting for arbitrary adversary structures, as well as extend the definitions to general languages
(and not just those related to discrete logarithms).

Conceptually, our setting bears resemblance to the one considered in the MPC-in-the-head
paradigm [IKOS07] where the proof is verified by a set of simulated verifiers. Compared to [IKOS07]
we require that an adversarial prover can only cooperate with a small set of corrupt verifiers, as we
assume a majority of verifiers to be honest.

There are other related works, which are similar but distinct from our own work. For example,
one related notion is the concept of distributed zero-knowedge from [BBC+19], which looks at the
case where the statement x is unknown to any given verifier, and is instead secret shared. The
protocols in that work only support a limited class of languages, and do not consider identifiable
abort, and so are vulnerable to denial-of-service attacks from a malicious verifier. Our notion can
be seen as orthogonal to Multi-Prover Interactive Proofs [BGKW88], where multiple provers act
independently to convince a verifier. Our notion is also complementary to the setting considered
in [WZC+18] where the witness w is shared amongst a set of provers. Instead, we only have one
prover and w is shared among the verifiers.

A relatively recent paper [BKZZ20] focuses on reducing the total amount of entropy needed
by a set of verifiers, if all verifiers are to verify the proof. This is othogonal to our work, as we
require a joint/distributed verification where some verifiers can be dishonest. However, the idea of
reducing the entropy requirement would be an interesting aspect to consider in the future. As would
extending the ideas of [BKZZ20] to more general problem statements, since [BKZZ20] focuses on
languages based on discrete logarithms.

Another interesting orthogonal direction to our work is that of “Fair-Zero Knowledge” intro-
duced in [LMs05]. In this work a distributed-verifier notion is presented, where a prover might leak
the secret to a dishonest verifiers via a subliminal channel. Nevertheless, since our “online” proof
stage only requires broadcast interaction from the prover to the verifiers, fairness as in [LMs05] for
our type of proof systems might be interesting line for future work.

The renewed interest in the distributed verifier setting is shown by two recent papers by Yang
et al. [YW22] and Applebaum et al. [AKP22]. Both works consider the case where a majority of
verifiers are honest. Applebaum et al. focus more on the theoretical side and study the minimal
assumptions needed to achieve round-optimal distributed verifier protocols; the work of Yang et.
al. is similar to our approach and oriented to real-world efficiency, however does not present an
implementation and does not consider cheater identification, thus only achieving security with
selective abort.

4



1.2 Our Contribution

In this work, we formalize the notion of Distributed Verifier ZKPoKs (DV-ZKPoKs) in the UC
framework. We provide multiple constructions of such protocols, all with cheater identification,
that are secure against different thresholds of corrupted verifiers4.

New definitions. We first present a formal definition of what it means for a DV-ZKPoK to be
secure in the UC framework. Let us first redefine the three standard properties of ZKPoKs to be
applicable to the threshold setting:

Distributed Correctness: If the prover has a witness, then the honest parties either accept the
proof or identify the same corrupted verifiers that interfered with the proof.

Distributed Soundness: If the prover does not have a witness then honest verifiers only accept
with negligible probability, given not too many other verifiers are corrupted. In addition the
honest verifiers either agree that the prover does not have a witness, or will identify a set of
corrupted verifiers.

Distributed Zero-Knowledge: The corrupted verifiers learn no new information beyond the fact
that the statement is true.

Our definition will allow different adversarial structures for all of these properties. This means
that our definition also encapsulates protocols where e.g. soundness breaks down if just one verifier
is corrupted, but which are zero-knowledge even if all verifiers are corrupted.

There are a number of “naive” protocols which enable such distributed verifier zero-knowledge
proofs using existing techniques. We will describe some of these protocols, showing the applicability
of our framework.

New protocols. We then present two efficient DV-ZKPoK protocols together with necessary prepro-
cessing protocols. These protocols are optimized for t < n/4 and t < n/3 corruptions, respectively,
where n is the number of verifiers and t is the number of corrupted verifiers. Our protocols are
plausibly post-quantum secure, and require as setup assumptions a PKI as well as a broadcast
channel. The latter can easily be implemented if t < n/3 information theoretically.

Implementations. We have implemented our protocols in C++, showing concretely efficiency both
in terms of prover and verifier time. For example, for the case of t < n/4, the combined pre-
processing and prover time for proving knowledge of the pre-image of a single SHA-256 evaluation
with n = 5 verifiers is about 10 milliseconds, with a proof time of around 7 milliseconds. The
verification time is under 15 milliseconds. A circuit with a million AND gates requires a total proof
time of 96 milliseconds pre-processing and 30 milliseconds for the proof generation. The verification
time is 90 milliseconds. For n = 100 verifiers and t = 20 the million AND gate circuit times become
431 milliseconds for pre-processing, 176 milliseconds to generate a proof and 219 milliseconds for
the 100 verifiers to verify it. This is with a single threaded implementation of our protocols.

As remarked above the prior works on distributed verifier zero-knowledge have all been for
discrete logarithm based languages, as opposed to the general languages considered in our paper.
In addition, they have considered different and often less general security requirements, as we

4 In our construction, the single (cheesy) verifier of the Mac-and-Cheese protocol [BMRS21] has been crumbled into
a large set of smaller verifiers. Thus, our protocol name Feta.

5



outlined above. Thus to compare our implementation we are left, with the admittedly unsatisfactory
situation of, comparison against either publicly verifiable or designated verifier proof systems.

Our run times are all significantly smaller than the single instance publicly-verifiable proofs of
similar SHA-256 pre-images, using a system such as Ligero [AHIV17]. Using machines less pow-
erful than the ones we used in our experiments, [AHIV17] give prover and verification times for
a single pre-image of a SHA-256 evaluation of over 100 milliseconds. Our proof size, excluding
pre-processing, is also significantly smaller (8 KBytes vs 100’s of KBytes for Ligero). Note, Ligero
provides a publicly verifiable proof as opposed to our distributed designated verifier proofs.

The Limbo system [dOT21], which again provides publicly verifiable proofs, reports single
threaded prover and verifier times for the same circuit of 50 milliseconds, using machines com-
parable to the ones in our experiments, with their proof sizes being 42 KBytes.

The Mac-n-Cheese [WYKW21] and Quicksilver protocols [BMRS21], which provide designated
verifier proofs using a single threaded implementation can achieve around 7 million AND gates
per second in terms of prover/verification time. Translating this to the 22.573 AND gate SHA-256
circuit would equate to a prover/verification time of 3 milliseconds.

Thus, we see our prover/verification time of 6.5/10 milliseconds, for the SHA-256 circuit in the
distributed verifier case, provides a compromise between slower publicly verifiable proofs and faster
designated verifier proofs.

The protocol for the case of t < n/3 is slightly less efficient, but still provides a highly efficient
methodology for performing distributed verifier zero-knowledge proofs. Also in this case both prover
and verification time are significantly smaller than in publicly verifiable schemes like Ligero and
Limbo.

Hence, we see that our notion of distributed designated verifier proofs can enable more efficient
practical zero-knowledge proofs when compared to publicly verifiable proofs.

1.3 Applications

Protocols with distributed verification have a number of applications, mainly in blockchains.

– For permissioned blockchains, which are popular for use in companies, the validators (usually)
authenticate the next block via majority voting. Such validators could act as the distributed
verifiers for a proof. In such a situation the total number of validators is a handful, and thus the
techniques of this paper could be used to validate a proof before the next block is authenticated
by the chosen validator.

– In permissionless blockchains with oracles (i.e. groups of parties that vouch for certain external
facts), the oracle parties could serve as verifiers for our proofs. The oracles are e.g. trusted by a
smart contract, and our distributed verifier means that this trust can be minimized in the case
of proof verification. Oracles are sometimes also used in Layer-2 protocols on the blockchain.
For example, in commit-chains like NOCUST [KZF+18], there is an operator responsible (i.e.
an oracle) for committing the latest state of user account balances to the main blockchain
every epoch. In the case of optimistic rollups (as in Arbitrum [KGC+18] and Optimism5), the
verification and state-progression are done off-chain by the validator (i.e. an oracle) as well, while
the final states (assertions) are published on the blockchain. Our distributed verifier proofs can

5 https://community.optimism.io

6

https://community.optimism.io


act as a balance between optimistic rollups and full ZK-rollups. In all cases, the number of such
oracles is relatively small and so the techniques of this paper could be applied.

More generally, zero-knowledge with distributed verification can be used in all zero-knowledge
applications where the verifiers are known ahead of time.

1.4 Techniques

On a high level, our protocols can be described using the following four-step paradigm:

1. The verifiers create consistent commitments to random values ri such that only the prover can
open these later. Here, if t or less verifiers are corrupted, then they cannot reconstruct the
committed values themselves.

2. The verifiers and the prover check together that the commitments to the random values are
indeed consistent among all verifiers, and that the prover knows the openings. If not, then
cheaters are identified. If they are consistent, then the preprocessing of the DV-ZKPoK is
considered as finished.

3. In the online phase, the prover uses the ri to commit to w as well as auxiliary information
necessary to show that (x,w) ∈ R. This commitment can ideally be done by sending one
message via a broadcast channel.

4. Upon the prover having finished committing, the verifiers perform a proof verification step. Here
we aim for a “cheap” proof verification that only requires the verifiers to communicate in O(1)
rounds, with a message complexity that is sublinear in |x| or |w| as well.

To achieve this, our “preprocessing” phase lets the verifiers create many random Shamir secret
sharings as commitments, where the prover only learns the secret being shared. Given the linearity of
this secret sharing, consistency can easily be established using a linear test. This test only requires
communication that scales in the number of parties but not |x| or |w|. Moreover, we show that
cheater identification can be achieved by additionally signing certain messages in the preprocessing
protocol.

In our online phase, our protocols let the prover commit both to w as well as the intermediate
wire values for a circuit C that evaluates to 0 iff w is a valid witness for the statement x. The
verifiers re-evaluate C based on the committed w using the homomorphic properties of the com-
mitment/secret sharing and check if the intermediate wire values are consistent with w and that
the output of C(w) is 0. This only requires a depth-1 circuit to be evaluated by the verifiers.

In the first protocol (for t < n/4) we make use of error-detecting properties of a Reed-Solomon
code/Shamir sharing. The linear gates are free to evaluate as the Shamir sharing is linearly homo-
morphic, while the multiplication is performed by each verifier multiplying the input shares of a
multiplication gate locally. The bound of t < n/4 comes from having to perform error detection
on product codes (coming from degree 2 · t polynomials stemming from the share multiplication),
which is necessary to detect cheating during the multiplication protocol by a verifier.

Our second protocol (for t < n/3) is slightly more complex and avoids the verifiers having
to multiply shares altogether. Instead, we let the prover commit to slightly more data and use a
checking procedure for multiplications that is based on the Schwarz-Zippel Lemma, similarly to
[BBC+19]. This means that multiplication checks only require linear operations.

7



2 Preliminaries

2.1 Shamir Sharing

Our protocols are built on top of Shamir’s secret-sharing scheme [Sha79]. We briefly recap on it
here in order to fix the notation we will use in the rest of the paper.

A secret s, in a finite field F, is shared amongst n parties P = {P1, . . . , Pn} by the sharing party
defining a random degree t polynomial fs(X) whose constant term is the value s. Assuming n > |F|
and that the integers {1, . . . , n} are mapped to distinct non-zero values α1, . . . , αn in F, each party
Pi is given the share s(i) = fs(αi) ∈ F. We denote such a sharing by ⟨s⟩t.

Note that this secret sharing scheme is linear, namely given β, δ, γ ∈ F and two sharings ⟨x⟩t
and ⟨y⟩t, both of degree t, parties can locally produce the sharing ⟨z⟩t, where z = β · x+ δ · y + γ,
by computing

z(i) = β · x(i) + δ · y(i) + γ.

Also note that one can linearly combine sharings of different degrees to produce a sharing of the
maximal degree, i.e. given ⟨x⟩t1 and ⟨y⟩t2 then one can locally produce ⟨x+y⟩t, where t = max(t1, t2),
which we shall write as ⟨x⟩t1 + ⟨y⟩t2 .

Reconstruction of a secret s, shared via ⟨s⟩t, requires t + 1 correct share values from different
parties. It is well known that Shamir’s secret sharing scheme defined as above is equivalent to a
Reed-Solomon code [n, t + 1, n − t] over F, where the shares (fs(α1), . . ., fs(αn)) are viewed as a
codeword. In particular, when the number of dishonest parties is bounded by d and n > t + 2 · d,
the parties can robustly reconstruct a shared value ⟨s⟩t, so that any party who lies about their
sharings will be detected. In one of our protocols we will use the fact that, if n > 4 · t and d < t we
can robustly reconstruct a value for a sharing of degree 2 · t.

Assuming n > t + 2 · d, we denote by RobustReconstruct(⟨s⟩t, d) the reconstruction algorithm
associated with Shamir’s scheme which outputs a pair (s, flag), where either flag = (correct, ∅),
indicating that all the shares are consistent with a degree t sharing, or flag = (incorrect,D) where
D indicates the parties who input an inconsistent shares.

2.2 Digital Signatures

Our basic protocols will make use of digital signatures, for which we use the following two standard
definitions.

Definition 1. A digital signature scheme for message space M is given by the polynomial time
algorithms (KeyGen, Sign, Verify).

– KeyGen(1λ): On input a security parameter λ this randomized algorithm outputs a public/private
key pair (pk, sk).

– Sign(sk,m): On input of private key sk and a message m ∈ M, this (potentially) randomized
algorithm outputs a digital signature σ.

– Verify(pk, σ,m): On input of a public key pk, a message m and a purported signature σ, this
algorithm outputs either true (meaning accept the signature) or false (meaning reject the signa-
ture).

A digital signature scheme is said to be correct if for each m ← M and (pk, sk) ← KeyGen(1λ),
Verify(pk, Sign(sk,m),m) = true.

8



A digital signature scheme is said to be UF-CMA secure if the probability of any adversary A
winning the following game is negligible in λ

1. (pk, sk)← KeyGen(1λ).
2. (m∗, σ∗)← ASign(sk,·)(pk).
3. Output ‘win’ if and only if Verify(pk, σ∗,m∗) = true and m∗ was not queried to A’s signing

oracle.

2.3 Zero-knowledge Proofs

A standard zero-knowledge proof takes a statement x and a witness w from some NP relation R.
The prover P holds the pair (x,w) ∈ R, whilst the verifier only has x. The goal of a zero-knowledge
proof (of knowledge) is to convince the verifier that x is in the language LR of statements that have
a witness in R. This is done by asserting that the prover holds w such that (x,w) ∈ R, while no
information about w (bar the fact that the prover knows it) is revealed to the verifier. Informally,
a zero-knowledge proof has three security properties:

Correctness: If (x,w) ∈ R then V always accepts.
Soundness: If P does not have w then V only accepts with negligible probability.
Zero-Knowledge: There exists a simulator S that on input x can create transcripts of protocol

instances between P and V that make V accept.

In the designated verifier setting, the soundness only holds for a verifier that has a secret state.

2.4 Schwarz-Zippel Lemma

One of our protocols will make use of the Schwarz-Zippel lemma for univariate polynomials, which
we state here.

Lemma 1 (Schwartz-Zippel Lemma). Let F ∈ F[X] denote a non-zero polynomial of degree
d over a field F. Let S denote a finite subset of elements of F. If one selects r ∈ S uniformly at
random then

Pr[ F (r) = 0 ] ≤ d

|S|
.

2.5 Coin Flipping

We will utilize at various points the ideal functionality FRand(P,M,F), described in Fig. 1. This
functionality allows a set of parties P to sample M uniformly random values from a finite field F
such that each party learns these. It does this in a manner which has identifiable abort, in the case
that the adversary aborts the execution of the protocol. The implementation of this functionality
is standard: The parties agree on a shared single seed using a non-interactive commitment via
broadcast, then open via broadcast, and then the seed is expanded into the desired number of
random values from F using a PRG.

3 Distributed Verifier Zero-Knowledge Proofs

Our definition of Distributed Verifier Zero-Knowledge Proofs (DV-ZKPoKs) aims to generalize the
notion of a Designated Verifier Zero-Knowledge Proof to the threshold setting. Namely, we will
have a set of designated verifiers V1, . . . ,Vn who jointly verify the correctness of the proof using an
interactive protocol.

9



The Ideal FRand(P,M,F) Functionality

On input (Rand, cnt) from all parties in P, if the counter value is the same for all parties and has not been
used before:

1. Sample ri ← F for i ∈ [M ].
2. The values ri are sent to the adversary, and the functionality waits for its input.
3. If the input is Deliver then the values ri are sent to all parties. Otherwise the adversary will return a

non-trivial subset CA of the dishonest parties. The value (Abort, CA) is returned to all parties.

Fig. 1. Functionality FRand(P,M)

3.1 Zero-Knowledge in the Threshold Setting

As mentioned in Section 1 in a distributed verifier setting there might exist multiple verifiers Vi,
some of whom may collaborate with a potentially corrupt prover P. For a DV-ZKPoK we therefore
get the following intuitive properties.

Distributed Correctness: If (x,w) ∈ R then either all honest verifiers V always accept or all
honest verifiers agree on a set of cheating verifiers CA.

Distributed Soundness: If P does not have w then honest verifiers only accept with negligible
probability.

Distributed Zero-Knowledge: There exists a simulator S that on input x can create transcripts
of protocol instances between P and verifiers V1, . . . ,Vn that make verifiers accept.

Let V = {V1, . . . ,Vn} denote the set of verifiers. An access structure Γ on V is a monotonically
increasing subset of 2V , i.e., if S ∈ Γ then we have T ∈ Γ for all T such that S ⊆ T ⊆ V. The
adversary structure ∆ associated with Γ is the set of all sets V \ S for S ∈ Γ .

When dealing with a potentially dishonest prover and a subset of potentially dishonest verifiers,
we can consider three different access structures related to the three different properties of ZK
proofs. We let the relevant access structures, for the potentially dishonest verifiers, be denoted
by ΓC (for Correctness), ΓS (for Soundness) and ΓZ (for Zero-Knowledge). With their different
associated adversary structures being ∆C , ∆S and ∆Z . We allow different access structures to
provide better flexibility in applications, as well as more flexibility in designing protocols. To aid
the reader one could initially think of the threshold case of ΓC = ΓS = ΓZ being all subsets of size
greater than n− t, and ∆C = ∆S = ∆Z being all subsets of the verifiers of size less than or equal
to t.

We let VD denote the precise set of dishonest verifiers in a given protocol instance. We desire
that at the end of the protocol, the verifiers either output Abort, Success or Fail. Here, Success or
Fail imply that the proof was correct or not, respectively, while Abort means that some verifiers
or the prover may have aborted. In all cases each honest party P will obtain a non-empty list of
parties who aborted.

Distributed Correctness. We first discuss correctness; as usual this assumes an honest prover.
In the case of VD ̸∈ ∆C then the adversary has enough power to break correctness. In this case some
honest verifiers will abort, some will accept and some will fail - no common guarantees can be made.
Note in the case when VD ̸∈ ∆C , the set C that each honest verifier identifies as corrupt parties

10



in the case of abort, can be different for each of them, and they may even identify honest parties
as corrupted. In the case of failure or success the honest verifiers may in addition identify cheating
verifiers. This is captured by the procedure Breakdown() in our ideal functionality FDV−ZK, which
can be found in Fig. 2.

However, when VD ∈ ∆C then the parties obtain consensus of output: either all honest verifiers
output Success or they all output Abort. In the latter case, the verifiers identify a set CA ̸= ∅ of
dishonest verifiers which is the same for each honest verifier. Consensus of output when VD ∈ ∆C

is needed to avoid denial-of-service attacks where a single dishonest verifier can make the honest
verifiers reject a valid proof. This is captured by the procedure CompleteWithAbort() in our ideal
functionality FDV−ZK.

Note that cheater identification is not necessary in the case of honest majority access structures
ΓC . This is because a simple majority vote will result in the honest verifiers accepting the proof
(assuming consensus on accept). In the case of dishonest majority the ability for the honest parties
to identify a single dishonest party (with consensus) will act as a deterrent to verifiers to act
dishonestly. Thus even in the case of acceptance we allow the identification of dishonest verifiers so
as to allow our functionality to capture the dishonest majority case.

Distributed Soundness. Soundness considers the case of a dishonest prover. We require that if
VD ̸∈ ∆S then the adversary can get the honest verifiers to output anything it wants. Which is
again captured by the procedure Breakdown() in Fig. 2.

As we require the prover to input a witness w, if VD ∈ ∆S and if (x,w) ∈ R then the worst P
can do is get some honest verifiers to abort and identify a cheating party. This is again captured
by the procedure CompleteWithAbort() in Fig. 2. On the other hand, if (x,w) /∈ R then the best
P can achieve is to get some honest verifiers to abort and identify a cheating party (which could
include the prover). Again, this is captured by the procedure FailWithAbort() in Fig. 2.

Distributed Zero-Knowledge. Finally in the case of a honest prover, if VD ̸∈ ∆Z then the
adversary has enough power to break the zero-knowledge property and potentially learn information
about w. But if VD ∈ ∆Z then the adversary cannot learn w.

It is straightforward to change FDV−ZK so that it only has unanimous abort. Another interesting
strengthening is to not permit identifiable aborts if VD ∈ ∆C . Since this setting seems to be not
achievable if a majority of verifiers is corrupted for any interesting protocol6, we have opted for a
definition that is achievable in both the honest and dishonest-majority setting.

3.2 Examples

We now explain the ideas behind our definition by presenting some näıve protocols that FDV−ZK

captures, with different access structures ΓC , ΓS , and ΓZ . In Table 1 we present a comparison of
four “näıve” protocols, alongside our two more elaborate constructions, Π4t and Π3t.

6 It is achievable if the prover broadcasts a publicly verifiable proof to all verifiers. If the verifiers need to use a
secret-shared state to validate the proof, then dishonest-majority completeness implies that < n/2 verifiers are
sufficient to perform this validation and possibly reconstruct the secret state. But then, this implies that < n/2
corrupted verifiers can use their knowledge to aid a dishonest prover to break soundness.

11



Functionality FDV−ZK

This functionality communicates with n + 1 parties P,V1, . . . ,Vn as well as the ideal adversary S. We call
P the prover and V = {V1, . . . ,Vn} the verifiers. For simplicity, we write W = V ∪ {P}. The functionality
is instantiated with descriptions of three access structures ΓC , ΓS , ΓZ ⊆ 2V , and their associated adversary
structures ∆C , ∆S and ∆Z . The adversary structures denote which parties S can corrupt without leading to
a loss of correctness, soundness or zero-knowledge. Let init be a flag that is initially ⊥.

Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆ W. Let H = W \ D. If P ∈ D then
we call the prover “corrupted”, otherwise “honest”. We call VD = V ∩ D the corrupted verifiers and
VH = V \ VD the honest verifiers.

Init: On input (Init) by all parties in H:
1. Send (Init?) to S. If S responds with (ok) then send (InitOK) to all parties in H and set init ← ⊤.

Otherwise send (Abort) to all parties in H.
ProveHonest: On input (Prove, x, w) by P ∈ H as well as (Prove, x) by all parties in VH, if init = ⊤ and

if (x,w) ∈ RL:
1. If VD ̸∈ ∆Z then send (Prove?, x, w) to S, otherwise send (Prove?, x).

– If VD ̸∈ ∆C then run Breakdown().
– If VD ∈ ∆C then run CompleteWithAbort().

ProveDishonest: On input (Prove, x, w) by S if P ∈ D as well as (Prove, x) by all parties in VH and if
init = ⊤:
– If VD ̸∈ ∆S or VD ̸∈ ∆C then run Breakdown().
– If VD ∈ ∆S , VD ∈ ∆C and (x,w) ∈ RL then run CompleteWithAbort().
– If VD ∈ ∆S , VD ∈ ∆C and (x,w) /∈ RL then run FailWithAbort().

Method Breakdown():
1. Wait for a message (Abort, A, F, S, C) from S where A,F, S are disjunct sets, A ∪ F ∪ S = H,

CA : H → 2W .
2. Send (Abort, x, CA(P )) to each P ∈ A, (Fail, x, CA(P )) to each P ∈ F and (Success, x, CA(P )) to

each P ∈ S.
Method CompleteWithAbort():

1. Wait for a message (Abort, b, CA) from S where CA ⊆ VD, b ∈ {0, 1} and CA ̸= ∅ if b = 0.
2. If b = 0 then send (Abort, x, CA) to each P ∈ H, otherwise send (Success, x, CA) to each P ∈ H.

Method FailWithAbort():
1. Wait for a message (Abort, b, CA) from S where CA ⊆ VD, b ∈ {0, 1} and CA ̸= ∅ if b = 0.
2. If b = 0 then send (Abort, x, CA) to each P ∈ H, otherwise send (Fail, x, CA) to each P ∈ H.

Fig. 2. Functionality FDV−ZK for Distributed-Verifier ZK

Protocol Assumptions ΓC ΓS ΓZ

Protocol 0 Broadcast Channel ∅ ∅ ∅
Protocol 0 no Broadcast Channel Q3 Q3 ∅
Protocol 1 - Q3 Q3 ∅
Protocol 2 Robust/identifiable abort MPC Protocol for Γ Γ Γ Γ
Protocol 3 Threshold structures tc < (n+ 1)/3 ts < (n+ 1)/3− 1 tz < (n+ 1)/3

Π4t Digital Signatures t < n/4 t < n/4 t < n/4
Π3t Digital Signatures t < n/3 t < n/3 t < n/3

Table 1. Comparison of Protocols

P0: Send a NIZK Assuming the existence of a functionality FNIZK, as well as a broadcast channel,
we can easily realize FDV−ZK. There is no preprocessing (bar what is needed to set up the function-

12



ality FNIZK) and the prover simply broadcasts the non-interactive proof. The verifiers then verify it
using FNIZK and then come to consensus on the output. In the case of acceptance, any party who
does not concur is determined to be an identified adversary. In that case ΓC = ΓS = ΓZ = ∅, i.e.
we can tolerate any set of adversaries possible. Without a broadcast channel, ΓC and ΓS instead
follow from e.g. standard bounds on Byzantine agreement. The protocol can only be simulated if
FNIZK is straight-line extractable.

P1: Secret-Share a Proof Suppose we have a single access structure Γ over the verifiers, we let
⟨·⟩ denote an information theoretic secret sharing scheme which respects this access structure. A
trivial protocol is to take a non-interactive two party ZKPoK, for the prover to generate a proof π
and then simply generate a sharing ⟨π⟩ of that proof and distribute it to the verifiers. The verifiers
then (simply) publish their received share.

In terms of correctness we require ΓC = Γ is Q3
7. This follows as we require, in the presence of

dishonest verifiers, that honest verifiers output either success with consensus, or output abort with
consensus, and identify the cheater.

In terms of soundness we also require that ΓS = Γ is Q3, this follows as the proof π is already
sound. Thus we require that for a (real or fake) proof that the verifiers come to a consensus and
either identify a cheating verifier, or identify (in the case of a fake proof) that the prover has
generated a fake proof.

In terms of zero-knowledge we have ΓZ = ∅ since the initial proof π is zero-knowledge.

P2: Secret Share a Witness Instead of sharing the proof, the prover simply shares the witness
according to some access structure Γ , and then the verifiers engage in an MPC protocol respecting
Γ evaluating the circuit which verifies the witness. The zero-knowledge property is weaker than
before, as we have ΓZ = Γ . If the dishonest verifiers are not in the allowed adversary structure ∆
then they can recover the witness and break the zero-knowledge property. The correctness, and the
associated ΓC , follow from the underlying MPC protocol (which needs to be a protocol which is
either robust, or with identifiable abort). For soundness, and the associated ΓS , we obtain ΓS = ΓC

by the correctness of the MPC protocol.

The advantage of this example, over P1 is that the prover has almost no overhead over secret-
sharing the witness - it itself is not required to compute any kind of proof. In comparison to this
generic protocol is highly likely to be significantly less efficient than our specialized protocols Π4t

and Π3t, which can be seen as variants of this protocol idea. Our protocols Π4t and Π3t perform this
optimization by removing the expensive circuit evaluation needed in a generic MPC solution; this
is done at the expense of the prover needing to provide more share values for the circuit evaluation
and not just sharing a witness.

P3: Joint MPC It may seem from the previous examples that we always have ΓC = ΓS but this does
not have to be the case. Consider the following construction, where we assume an MPC protocol
run between the prover and the verifiers. The verifiers have no input, but the prover inputs the
witness w. The common output (for the verifiers) is the evaluation of the checking circuit on the
witness, or an identified cheater.

The proof is interactively performed between the prover and the verifiers by running the MPC
protocol. Consider the case where ΓC is a threshold structure on the n verifiers, with threshold

7 A Q3 access structure can be simply thought of as one which admits robust opening, see [HM97]

13



Functionality F t,n
Prep

This functionality communicates with n + 1 parties P,V1, . . . ,Vn as well as the ideal adversary S, where P
denotes the prover and V = {V1, . . . ,Vn} the verifiers. Let W = V ∪ {P} and t < n/2.

Corrupt: Before any other command, S sends (Corrupt,D) where D ⊆ W. Let H = W \ D. If P ∈ D then
we call the prover “corrupted”, otherwise “honest”. We call VD = V ∩ D the corrupted verifiers and
VH = V \ VD the honest verifiers.

Distribute Shares: On input (Shares, nS) from all parties
1. Sample nS random values si ∈ F2k for i ∈ [nS ].
2. If P is corrupted then send {si}i∈[nS ] to S.
3. Wait for a message (Abort, CA) from S where ∅ ≠ CA ⊆ D or (Continue, {ŝ(p)i }p∈VD,i∈[nS ]).

– If S inputs Abort then (Abort, CA) is returned to each party in H and the functionality aborts.
– If S inputs Continue then generate a Shamir sharing of si of degree t for each i ∈ [nH ], which we

denote by ⟨si⟩t. The individual Shamir shares are denoted by s
(j)
i ∈ F2k for j ∈ [n]. The sharing

is chosen so that s
(j)
i = ŝ

(j)
i . The values si are passed to P if P ∈ H, whilst the values s

(p)
i are

given to Vp for p ∈ VH.

Fig. 3. Functionality F t,n
Prep for preprocessing in the case when t < n/2

tC . In this case we can have that tC < (n + 1)/3 (because the prover acts honestly) and we can
use an information theoretic robust protocol to ensure correctness. This also ensures that we have
tZ < (n+ 1)/3.

Now consider ΓS with a threshold structure with threshold tS . For the same protocol and
soundness we actually have an additional adversary (the prover), and now require that tS + 1 <
(n+ 1)/3. Thus, depending on n, we can have different bounds on the maximum values of tC and
tS and thus ΓC may not be equal to ΓS .

4 Preprocessing for distributed proofs with honest majority t < n/2

We begin by outlining the preprocessing phase for our proof in the presence of a honest majority.
This preprocessing can then be used with the actual online phases of the proof, which require
t < n/4 (Section 5) or t < n/3 (Section 6) corruptions. The ideal preprocessing functionality F t,n

Prep

is described in Fig. 3. Both the protocols and functionality are defined over an extension field of
appropriate degree to allow for Shamir secret sharing with n parties. We focus on the case of a
binary field F2k with 2k > n, but our protocols are easily adapted to Fq for any q > n. We also use
a repetition factor ρ such that 2k·ρ > 2sec, where sec is our security parameter.

In the protocol Πt,n
Prep that implements the preprocessing functionality, and given in Fig. 4, each

of the n verifiers Vi samples a random ri and sends a share of ⟨ri⟩t to each other verifier and ri to the
prover P. These values are checked for consistency by forming a random linear combination using
random values αi. This random linear combination simultaneously guarantees the correctness of the
underlying secret known to the prover and the consistency of the shares on a degree t polynomial.
It can be repeated to achieve negligible soundness error. Next, let ⟨r⃗⟩t be the vector representing
all sharings made by the verifiers, and let Mt be an (n− t)× n Vandermonde matrix. The verifiers
locally compute the sharings ⟨s⃗⟩t = Mt ·⟨r⃗⟩t, while the prover computes s⃗ = Mt · r⃗. This randomness
extraction ensures that out of these n shares, of which t are known to the adversary, n− t uniformly
random shares are recovered, unknown to any other party than the prover. Several instances of this

14



Protocol Π t,n
Prep

We let Mt be an (n − t) × n Vandermonde matrix for randomness extraction. The protocol is parametrized
by the number of verifiers n, number of corruptions t < n/2 and two integers nS and ρ.
The protocol uses the hybrid functionality FRand. If FRand sends (Abort, CA) then each party in the protocol
outputs (Abort, CA) and terminates.

Distribute Shares:
1. Each party Vi ∈ V executes the following protocol:

(a) For j ∈ [⌈(nS + ρ)/(n− t)⌉] do
i. Sample ri,j ∈ F2k and generate a sharing ⟨ri,j⟩t.
ii. Send (r

(p)
i,j , Sign(ski, r

(p)
i,j )) to Vp for p ̸= i. Note this is done as a single message for all j values

needed.
iii. Send (ri,j , Sign(ski, ri,j)) to P, again this is done as a single message for all j values needed.

iv. On receiving (r
(i)
p,j , σ

(i)
p,j) = (r

(i)
p,j ,Sign(skp, r

(i)
p,j)) from party Vp, verify the signature. If the

signature σ
(i)
p,j does not hold or if Vp did not send any message at all

A. Broadcast (Complaint, i,Vp).
B. Upon receiving (Complaint, i,Vp) party Vp publicly sends (r

(i)
p,j , σ) to all parties, who for-

ward it to Vi.
v. Similarly, do the same for the signatures that P should obtain.

2. For ℓ ∈ [ρ] do as follows.
(a) Execute (α1,j,ℓ, . . . , αn,j,ℓ)← FRand({V1, . . . ,Vn,P}, n,F2k ).

(b) Compute T
(i)
ℓ ←

∑
j

∑
v∈[n] αv,j,ℓ · r(i)v,j and broadcast T

(i)
ℓ .

(c) The prover P computes Tℓ ←
∑

j

∑
v∈[n] αv,j,ℓ · rv,j and broadcasts Tℓ.

(d) If the T
(i)
ℓ do not form a valid degree-t sharing of Tℓ then go to Abort(ℓ).

3. For j ∈ ⌈nS/(n− t)⌉ do
(a) c← (j − 1) · (n− t).
(b) The prover P computes and outputs (s1+c, . . . , sn−t+c)

T = Mt × (r1,j , . . . , rn,j)
T ,

(c) Vi ∈ V compute and output (⟨s1+c⟩t, . . . , ⟨sn−t+c⟩t)T = Mt × (⟨r1,j⟩t, . . . , ⟨rn,j⟩t)T .
Abort(ℓ): Each Vi holds r(i)v,j , σ

(i)
v,j for v ∈ [n] and j ∈ [⌈(nS + ρ)/(n− t)⌉], while P holds rv,j , σv,j for v ∈ [n]

and j ∈ [⌈(nS + ρ)/(n− t)⌉] (for simplicity, each Vi signs a share r
(i)
i,j for itself).

1. Each verifier Vi broadcasts {r(i)v,j , σ
(i)
v,j}v,j , while P broadcasts {rv,j , σv,j}v,j . If any signature σ

(i)
v,j does

not hold then identify Vi as a cheater and abort. If any σv,j does not hold then identify P as cheater
and abort.

2. If for some i ∈ [n] it holds that T
(i)
ℓ ̸=

∑
v,j αv,j,ℓ · r(i)v,j then identify Vi as cheater and abort. If it

holds that Tℓ ̸=
∑

j

∑
v αv,j,ℓ · rv,j then identify P as a cheater and abort.

3. For any Vv, if r(1)v,j , . . . , r
(n)
v,j do not form a valid degree-t sharing of rv,j then identify Vv as a cheater

and abort.

Fig. 4. Protocol for preprocessing with t < n/2

preprocessing phase are performed in parallel to obtain more than n − t secret sharings, with (at
least) an additional ρ sharings produced so as to verify the entire production is correct.

The protocol assumes a PKI in which each verifier Vi has a public key pki and a signing key ski,
which enables them to authenticate sent messages m with a digital signature Sign(ski,m). In the
case when the consistency check fails, this allows parties to reveal the shares that they obtained from
each other. This means that parties can identify cheaters by either identifying incorrectly generated
sharings or incorrectly formed messages. Signatures prevent dishonest parties from framing honest
parties by claiming to have obtained shares that the honest party never sent.

15



Theorem 1. Assuming that Sign is an unforgeable signature scheme, then the protocol Πt,n
Prep in

Fig. 4 securely implements the functionality F t,n
Prep in the FRand-hybrid model against any static

adversary corrupting at most t < n/2 parties except with probability 2−ρ·k+1.

Before proving the theorem, we give three lemmas that will simplify the proof. First, we show
that if a dishonest party creates an incorrect sharing, then the protocol enters Abort with over-
whelming probability. Second, we show that if a verifier sends an incorrect share to an honest
prover, then the protocol enters Abort with overwhelming probability. Finally, we show that upon
entering Abort at least one dishonest party is identified, and only dishonest parties are identified.

Lemma 2. Let VH = V ∩H and assume t < n/2. For v ∈ [n], consider the shares r
(i)
v,j for Vi ∈ VH

and let Sv,j be the unique polynomials of smallest degree over F2k such that Sv,j(i) = r
(i)
v,j. If there

exist v, j such that8 deg(Sv,j) > t, then the protocol enters Abort except with probability 2−k·ρ.

Proof. Computing T
(i)
ℓ =

∑
j

∑
v αv,j,ℓr

(i)
v,j is the same as computing the polynomials Sℓ =

∑
v,j αv,j,ℓ·

Sv,j first and then evaluating Sℓ at points i to obtain the shares T
(i)
ℓ of the honest parties. This

follows from the linearity of Lagrange interpolation.

Any additional point T
(v)
ℓ provided by the adversary through party Vv can either lie on the

polynomial Sℓ or not. If it does then Sℓ will keep its degree, if not then the points T
(1)
ℓ , . . . , T

(n)
ℓ

must lie on a polynomial of larger minimal degree. This means that the protocol enters Abort if

any of the protocols Sℓ is of degree > t, independent of the values T
(v)
ℓ sent by S.

Let r = maxv,j{deg(Sv,j)}, by definition we have r > t. This means that for some Sv,j the
monomial Xr has a non-zero coefficient. Then any Sℓ will only be of degree < r, i.e. the shares of
honest parties will lie on a degree-< r polynomial, if the coefficients of the monomials Xr of all
Sv,j sum to 0 in Sℓ. By the random choice of the αv,j,ℓ through FRand after these Sv,j are fixed,
this only happens with probability 2−k for a single Sℓ and with probability 2−kρ for all S1, . . . , Sρ

simultaneously.

Lemma 3. Let VH = V ∩ H and t < n/2 and assume P ∈ H. For v ∈ [n], consider the shares

r
(i)
v,j of Vi ∈ VH and let Sv,j be the unique polynomials of degree t over F2k such that Sv,j(i) = r

(i)
v,j.

Furthermore, let rv,j be the values received by P. If there exist v, j such that Sv,j(0) ̸= rv,j, then
the protocol enters Abort except with probability 2−k·ρ.

Proof. Observe that αv,j,ℓ are only chosen through FRand after all r
(i)
v,j , rv,j have been fixed, v ∈ [n].

Assume that the protocol does not enter Abort, then for each ℓ ∈ [ρ] it holds that∑
v,j

αv,j,ℓrv,j =
∑
v,j

αv,j,ℓ · Sv,j(0)

which can be rewritten as
0 =

∑
v,j

αv,j,ℓ · (rv,j − Sv,j(0))

Write Sv,j(0) = rv,j + δv,j . By assumption, there must exist v, j such that δv,j ̸= 0. Hence it must
hold that the δv,j chosen by the adversary lie in the kernel of αv,j,ℓ which are chosen uniformly
at random after δv,j are fixed. For any ℓ, this happens with probability at most 2−k and with
probability at most 2−kρ for all ℓ ∈ [ρ] simultaneously.
8 Here we use that t < n/2, as Sv,j could otherwise not be of degree > t.

16



Lemma 4. Assuming unforgeability of Sign, then Abort always terminates with at least one dis-
honest party being identified. Furthermore, it only terminates identifying dishonest parties.

Proof. In Step 1 of Abort the protocol only identifies dishonest parties. This is because honest
parties would have asked for shares with valid signatures in Step 1(a)iv of Distribute Shares.
Similarly, we identify a dishonest prover as an honest prover would have asked for correctly signed
data in Step 1(a)v of Distribute Shares.

In Step 2 we only identify dishonest parties, as honest parties would have computed T
(i)
ℓ , Tℓ

correctly.

Assuming we reach Step 3 without aborting, then all T
(i)
ℓ , Tℓ were computed correctly but either

T
(i)
ℓ do not form a polynomial of degree t or do not share the secret Tℓ. If for each v, j the shares

r
(i)
v,j would form a degree-t sharing of rv,j then the condition for entering Abort cannot be reached.

Thus, there must exist v, j such that the polynomial formed by r
(i)
v,j is of larger degree or reconstructs

to a value that is not rv,j .

If Vv was honest then all r
(1)
v,j , . . . , r

(n)
v,j revealed during Step 1 lie on a degree-t polynomial. The

protocol only identifies an honest party Vv in Step 3 if r
(1)
v,j , . . . , r

(n)
v,j lie on a polynomial of degree t+1

or higher. As honest parties report the shares of Vv honestly, this only happens if an incorrect r̃
(i)
v,j

is broadcast by a corrupt Vi, together with a valid signature under skv (as we would have otherwise
aborted in Step 1). So an honest Vv is only identified as a cheater if a signature was forged by
Vi, contradicting the assumption that the signature scheme is unforgeable. Similarly, an honest Vv
would always send the correct shared rv,j to P so P can only reveal r̃v,j that is inconsistent with

r
(1)
v,j , . . . , r

(n)
v,j if it can forge a signature, contradicting the assumption. Therefore, any Vv identified

by Step 3 must be corrupted.

We can now give the simulation-based proof of Theorem 1.

Proof. (of Theorem 1) The simulator S obtains as input from the environment the setD of corrupted
parties and forwards this to F t,n

Prep. It furthermore sets up a copy of FRand. If P ∈ H then S
will simulate an honest prover. Moreover, for each Vi ∈ H S will simulate an honest verifier. It
will generally follow the protocol, except if specified otherwise below. Initially, let CA = ∅. Send
(Shares, nS) in the name of all simulated honest parties to F t,n

Prep. If P ∈ D then S obtains the

shares si from F t,n
Prep. If at any point FRand outputs (Abort, CA) then S sends (Abort, CA) to F t,n

Prep.

S simulates the honest verifiers Vi in Step 1(a)ii by sending uniformly random r
(v)
i,j to each

corrupted Vv. It then waits for the sharings of the dishonest parties being sent to the simulated
honest verifiers. If any of these sharings is of degree > t for a dishonest verifier Vv then add v to
the set CA, otherwise denote ⟨rv,j⟩t as the secret sharings of the dishonest parties.

If P ∈ D then choose ri,j for the honest verifiers such that a prover following Step 3 will obtain
si as output, and send these ri,j to the corrupt P. This is always possible using [BTH08]. If instead
P /∈ D then choose uniformly random ri,j for each honest verifier and wait for values r̃v,j being
sent from the dishonest verifiers to the simulated P. For any of these shares ⟨rv,j⟩t that does not

reconstruct to r̃v,j add v to CA. Finally, choose suitable r
(p)
i,j for all honest Vp to create valid sharings

⟨ri,j⟩t.

17



If the protocol enters Abort, then S follows Abort honestly but aborts the simulation when
a dishonest party provides a forged signature in Step 1 of Abort. Additionally, it adds to CA any

dishonest party that sent incorrect T
(i)
ℓ or Tℓ if P ∈ D, as identified in Abort.

If CA ̸= ∅ then S sends (Abort, CA) to F t,n
Prep, independent if Abort of the protocol was entered

or not. Otherwise it computes ⟨si⟩t as parties would do in the protocol and sends the shares of the
dishonest parties to F t,n

Prep.

Indistinguishability. We first observe that the shares of the honest parties which the environment
obtains from F t,n

Prep are consistent with those of the dishonest parties if the simulation finishes
successfully. This is because if P is corrupted then the shares will be consistent with the si, while
they are otherwise consistent with the si unknown to the adversary during the protocol run as the
adversary does not have enough shares to reconstruct (and F t,n

Prep chooses the shares of the honest

parties accordingly). Moreover, S always aborts F t,n
Prep if the adversary provides inconsistent shares

to honest parties or if they provably send visibly incorrect T
(i)
ℓ , Tℓ. We now show through a sequence

of hybrids that the output of S when interacting with the dishonest parties is indistinguishable from
the real protocol running with the dishonest parties.

Define the output of the simulation as H0 and let H1 be exactly like H0, but where dishonest Vv
that send invalid rv,j to an honest P are only added to CA if the protocol actually enters Abort.
By Lemma 3, these two hybrids are indistinguishable except with probability 2−kρ.

Let H2 be the same hybrid as H1, but where dishonest Vv are only added to CA if they were
identified to have sent incorrect sharings in Abort. By Lemma 2, these two hybrids are indistin-
guishable except with probability 2−kρ.

Observe that in the computation of CA, only dishonest parties are contained and the simulation
would abort. Now, let H3 be the same as H2 but where the simulation does not abort. As abort
of the simulation happens iff the adversary succeeds in forging a signature, any distinguisher of
H2 and H3 can be used to successfully break the unforgeability of Sign. Finally, observe that the
distribution of the shares of the honest parties, the identified corrupted parties as well as the abort
events are identical between H3 and the protocol.

5 Distributed proof with t < n/4 corruptions

In this section we describe a protocol which deals with t < n/4 corruptions of the verifiers, i.e. ΓC ,
ΓS and ΓZ are access structures consisting of all sets with more than n − t verifiers in them. The
protocol Π4t, given in Fig. 5, forms the basis of our following protocol in the case of t < n/3, indeed
it shares the same pre-processing phase from the previous section.

In the setting where we have t < n/4 corruptions we can rely on the Reed-Solomon decoding
to robustly open secret sharings of degree up to 2t. Thus we can efficiently verify multiplications.
We assume the statement to be verified is given by a circuit C over F2k which will evaluate to zero
only on input of the witness w, i.e. C(w) = 0.

Given the values s⃗ generated in pre-processing, the prover can trivially “commit” to the witness
w as well as the outputs of all the multiplication gates of C by broadcasting the difference between s⃗
and these values towards the verifiers. The verifiers can then evaluate the circuit as follows: to obtain
the wire output values of a gate, they can either simply apply the corresponding linear operation
directly on their shares, or obtain a sharing for the output wire from the prover’s broadcast for

18



Protocol Π4t

Let C be the circuit to be proved; the prover P is assumed to know an input witness w such that C(w) = 0.
Let nS denote the number of AND gates in the circuit, nW the length of the witness w and ρ a positive
integer.
Let CheckMult and OutputRec be two additional flags initially set to ⊤ and ⊥ respectively.

Init: Call F t,n
Prep, so that P obtains si and the verifiers V1, . . . ,Vn obtain ⟨si⟩t for i ∈ [nS + nW + 3ρ], i.e. Vj

obtains s
(j)
i , j ∈ [n]. Set xj = sj+nW+ns+ρ and yj = sj+nW+ns+2ρ, j ∈ [ρ].

Prove: The prover “evaluates” the circuit as follows:
1. Compute the difference between the input wire values wi and the pre-processed values si, i.e. wi −

si, i ∈ [nW ].
2. Evaluate the circuit gate-by-gate:

(a) For every linear gate, simply compute the resulting wire value
(b) For each AND gate, compute the resulting wire value cj ← aj · bj and cj − sj+nW , j ∈ [nS ].
(c) Compute ρ additional random triples as xj · yj = zj , and zj − sj+nW+nS , j ∈ [ρ]

3. Set the proof to be the concatenation of all the values {wi − si}i∈[nW ], {cj − sj+nW }j∈[nS ], and
{zj − sj+nW+nS}j∈[ρ].

Verify: The verifiers V1, . . . ,Vn jointly check the circuit evaluation:
1. Evaluate the circuit within the Shamir secret sharing, computing a share of the output wire ⟨o⟩t:

(a) Shares of the input wires can be computed as ⟨wi⟩t ← ⟨si⟩t + (wi − si) for i ∈ [nW ].
(b) Shares of the output wire values for an AND gate can be computed as

⟨cj⟩t ← ⟨sj+nW ⟩t + (cj − sj+nW ), for j ∈ [nS ].

(c) A degree 2 · t sharing ⟨cj⟩2·t of this same value is computed by each Vi as c(i)j ← a
(i)
j · b

(i)
j .

(d) Linear gates can be evaluated linearly over the shares in the degree t sharing.
(e) Recompute ⟨xi⟩t = ⟨si+nW+ns+ρ⟩t, ⟨yi⟩t = ⟨si+nW+ns+2ρ⟩t and ⟨zi⟩t ← ⟨si+nW+ns⟩t + (zi −

si+nW+ns). Furthermore, compute a degree-2t sharing of zi by locally multiplying the shares of
xi, yi as in Step 1c.

2. The verifiers call RobustReconstruct(⟨o⟩t, t), to obtain (o, flago).
3. If o ̸= 0:

– If flago = (correct, ∅) then output Fail.
– If flago = (incorrect, Co), then output the dishonest verifiers in Co and Fail.

4. Else, set OutputRec = ⊤. If flago = (incorrect, Co), identify the dishonest verifiers in Co.
5. Multiplications check: Verifiers repeat ρ times the following.

(a) Call (β1, . . . , βnS+1)← FRand({V1, . . . ,Vn}, nS + 1,F2k ).
(b) Compute

⟨A⟩2t =
∑

j∈[nS ]
βj · ⟨cj⟩2t + βnS+1 · ⟨zi⟩2t and ⟨C⟩t =

∑
j∈[nS ]

βj · ⟨cj⟩t + βnS+1 · ⟨zi⟩t

(c) Run RobustReconstruct(⟨A⟩2t − ⟨C⟩t, t), to obtain (T, flagT )
(d) If T ̸= 0, set CheckMult = ⊥. Moreover,

– If flagT = (correct, ∅), then output Fail.
– If flagTv

= (incorrect, CM ), then identify the dishonest verifiers in flagTv
and output Abort

6. If both CheckMult = ⊤ and OutputRec = ⊤, accept the proof and identify possible dishonest verifiers
CA = Co ∪ {CMv}v∈[ρ]

Fig. 5. Protocol Π4t for t < n/4

multiplications. After evaluating the entire circuit in this manner, the verifiers can robustly open
⟨C(w)⟩t and verify it correctly evaluates to zero.

19



The verifiers also have to check that the commitments the prover provided for the outputs

of the multiplication gates are consistent. For each verifier Vi, let a
(i)
j be the share of the left

input corresponding to the jth multiplication/AND gate, j ∈ [nS ]. Correspondingly, b
(i)
j is the

share for the right input and c
(i)
j for the output. Then c

(i)
j = a

(i)
j · b

(i)
j is a degree 2 · t sharing

of the value cj = aj · bj output by this multiplication gate. We represent this sharing by ⟨cj⟩2·t.
The proof proceeds by verifying that the values held in ⟨cj⟩2·t are identical with the values held
in ⟨cj⟩t = ⟨sj⟩t − (sj − cj), and provided by the prover, therefore checking that all committed
multiplication gate outputs were correct.

To achieve this, the verifiers check that a random linear combination over all products of the
inputs corresponds to the same linear combination over the gate outputs. More precisely, for each
multiplication gate j ∈ [nS ], the verifiers sample a uniformly random multiplier βj and locally

compute shares A(i) =
∑

j βj · a
(i)
j · b

(i)
j , and C(i) =

∑
j βj · c

(i)
j . Then, since t < n/4, the verifiers

reliably reconstruct ⟨A⟩2t and ⟨C⟩t. If A = C then the verifiers accept the proof, otherwise they
reject. Cheater identification can be achieved in a straightforward manner thanks to the error
correction during the robust reconstruction. Moreover, the check is made zero-knowledge by letting
P share additional valid random multiplication triples.

Theorem 2. If t < n/4, then protocol Π4t secure implements the functionality FDV−ZK in the
(F t,n

Prep,FRand)-hybrid model with ΓC = ΓS = ΓZ being the set of all subsets of verifiers of size n− t
or more, except with probability 1/|F|.

In the proof, we use the following lemma.

Lemma 5. Let ⟨xj⟩t, ⟨yj⟩t, ⟨zj⟩2t, ⟨zj⟩t, ⟨a⟩t, ⟨b⟩t, ⟨c⟩2t, ⟨c⟩t the inputs of the multiplications check.
If either xj · yj ̸= zj, for some j ∈ [nS ], or a · b ̸= c, then T ̸= 0, except with probability 1

|F| .

Proof. (of Lemma 5) We recall that ⟨zj⟩t = ⟨sj⟩t − (sj − zj), j ∈ [nS ], and ⟨c⟩t = ⟨s⟩t − (s −
c), where ⟨sj⟩t and ⟨s⟩t are correct sharings provided by the preprocessing functionality. Let
fj,t(·), gj,t(·), sj,t(·) be the unique t-degree polynomials such that, for j ∈ [nS ],

fj,t(i) = x
(i)
j , fj,t(0) = xj ,

gj,t(i) = y
(i)
j , gj,t(0) = yj ,

sj,t(i) = s
(i)
j , sj,t(0) = sj ,

and pt(·), qt(·), st(·) the unique t-degree polynomials such that

pt(i) = a(i), pt(0) = a.

qt(i) = b(i), qt(0) = b,

st(i) = s(i), st(0) = s.

Then the shares A(i) and C(i) are given by∑
j∈[nS ]

βj · (fj,t(i) · gj,t(i)) + βnS+1 · (pt(i) · qt(i))

20



and ∑
j∈[nS ]

βj · (sj,t(i)− (sj − zj)) + βnS+1 · (st(i)− (s− c)).

If all the triples are correct, then A− C = T = 0.

Otherwise, suppose that fj,t(0)·gj,t(0) = z̃j and pt(0)·qt(0) = c̃ with z̃j = zj+δj and c̃ = c+δnS+1

. Then the reconstructed value T is given by

A− C =
∑

j∈[nS ]

βj(z̃j − zj) + βnS+1(c̃− c)

=
∑

j∈[nS ]

βj · δj + βnS+1 · δnS+1,

where not all δj ’s are zero. Let b⃗ = (β1, . . . , βnS , βnS+1) and d⃗ = (δ1, . . . , δnS , δnS+1), and consider

the liner map fd = d⃗ · b⃗T . The probability that T is zero is equal to the probability that b⃗ ∈ ker(fd).
Since dim(ker(fd)) = nS , and b⃗ is random and unknown to A when they choose d⃗, the probability

that b⃗ ∈ ker(fd) is
|F|nS

|F|nS+1 = 1
|F| .

Proof. (of Theorem 2) The simulator S obtains as input from the environment the setD of corrupted
parties and forwards (Corrupt,D) to the functionality. On input (Init) from FDV−ZK, if A sends
Abort, it forwards Abort to the functionality, otherwise it forwards (ok). S sets up a copy of FRand.

S emulates F t,n
Prep obtaining si and the s

(j)
i , for i ∈ [nS+nW +3ρ], held by the corrupted parties.

Since VD ∈ ∆Z , it receives (Prove, x) from the functionality. If P ∈ H, then it randomly samples
the shares of the proof for corrupted parties, and sets honest shares consistently, i.e., such that the
multiplication values are correct and o = 0; otherwise it receives from A the proof, consisting of
the masked input values and masked multiplication values for AND gates and ρ masked random
triples. In this case, S reconstructs the input w̃ and forwards (Prove, x, w̃) to the functionality. The
simulator S starts the simulation of the verification step, i.e. it evaluates the circuit honestly, for
each gate computes the shares held by corrupted parties and sends the shares of the honest parties
needed to run RobustReconstruct(⟨o⟩t, t). Receiving the shares of corrupted parties, it checks if those
shares are the same as the ones computed by S. We distinguish two different cases:

– If P ∈ H: The simulator S sets the flag accept. If the shares are consistent then CA = ∅; else, if
the shares are inconsistent, it identifies the cheating verifiers with incorrect shares and updates
CA with those parties.

– If P ̸∈ H: if either (x,w) ̸∈ R or some of the multiplication values given by the prover are
incorrect, it sets the flag reject. If some of the shares are inconsistent, then S identifies the
cheaters and updates CA.

After this, S emulates the Multiplications check. To do this, it obtains random β1, . . . , βnS+1 from
FRand, and sends these values to A. If at any time FRand sends (Abort, CA), the simulator forwards
(Abort, CA) to the functionality. It also sends to A the honest shares A(i), C(i), i ∈ H, necessary to
run RobustReconstruct, and receives from A the values A(j), C(j), j ∈ D. If some of these shares are
incorrect, it updates CA with the corresponding corruptions.

Finally, if the flag accept or reject is true, S sends (Abort, 1, CA) to FDV−ZK, otherwise it sends
(Abort, 0, CA) to the functionality.

21



Indistinguishability. We now argue indistinguishability of the real and ideal executions to an envi-
ronment, Z. Recall that Z chooses the inputs of all parties. The view of Z in the real world then
consists of these inputs, the messages received by the adversary and all the output values.

Indistinguishability of the proof follows from the privacy of Shamir’s secret sharing scheme and
from the fact that the input and the multiplication values are masked by the preprocessed values si,
that are unknown to the adversary if the prover is honest. The messages received by the adversary
in the multiplications check are randomized by a triple x, y, z, different for each of the ρ executions
and randomly chosen by the simulator, if P is honest, and unknown to Z. From this and privacy
of Shamir’s sharings, simulation of these messages is perfect.

To argue indistinguishability of the output, we distinguish two cases as follows.

– If P ∈ H, the simulator always accepts the proof and outputs (Abort, 1, CA) to the functionality,
where the set CA = ∅ if all the shares provided by A are correct and consistent. Irrespective of
what the adversary does, RobustReconstruct always reconstructs the correct values, even with
flag = (incorrect, C), since t < n/4. In the ideal execution, the simulator outputs the set of parties
that provided incorrect shares, in the real one this same set is provided by RobustReconstruct.
Indeed, since the sharing is correct, it is possible to efficiently and correctly detect all the t < n/4
possible errors. Hence, in this case the simulation is perfect.

– If P ̸∈ H, the simulator honestly evaluates the circuit with inputs extracted from the masked
proof given by A. Therefore, if (x, w̃) ̸∈ R and the multiplication values that are part of the
proof are correct, then S rejects the proof by sending (Abort, 1, CA) and the outputs of the two
executions are identical.

If (x, w̃) ̸∈ R and the multiplication values are incorrect, then the simulator rejects the proof
by sending (Abort, 1, CA), whereas in the real execution the probability of acceptance is given
by Lemma 5.

Since this test is repeated ρ times, the probability of passing the multiplications check with
incorrect inputs is ( 1

|F|)
ρ. Finally, we note that also in this case the set CA of corrupted verifiers

given by the simulation and the protocol are identical and only consists of dishonest parties:
while S can directly check inconsistent shares, in a real execution this set is guaranteed to be
correct by the correctness of the sharing provided by F t,n

Prep.

6 Distributed proof with t < n/3 corruptions

The general approach for this setting will be very similar to the case t < n/4 described in the
previous section. The main difference is that now we can no longer robustly reconstruct a degree
2t polynomial, so we will instead rely on the Schwartz-Zippel lemma to check the correctness of
the multiplications. More precisely, we use a checking method similar to the one used in [BBC+19,
BMRS21]. We first transform the nS multiplication gates into an inner product triple by taking
a random linear combination and updating the left inputs to the multiplications correspondingly.
Given a challenge from the verifiers, this operation is entirely local.

This inner product triple is then repeatedly compressed by applying the Schwartz-Zippel lemma,
until only a final, single multiplication triple remains. This final triple can be checked by the verifiers
by robustly opening it. The prover adds an extra random multiplication to preserve the zero-
knowledge property in this process. To avoid log nS rounds of communication between the prover

22



and the verifiers, we apply the Fiat-Shamir transform to make the process of proving non-interactive.
We also use the Fiat-Shamir transform to compute the initial re-randomization factors. For this
to work we apply a minor change to the preprocessing functionality F t,n

Prep, so that it additionally

outputs a random string ν ∈ Fλ
2 to each parties P,V1, . . . ,Vn. This is used in the random oracle

to bind the statement and the proof to this value. The compression itself is performed as follows.
Assume we have an inner product triple ((xi)1≤i≤N , (yi)1≤i≤N , z), such that z =

∑N
i=1 xi · yi,

and that N is a multiple of two (otherwise, we implicitly pad the xi and yi by zeroes). The
prover then interpolates N polynomials of degree 1, fk(x) and gk(x), such that fk(j) = x2·k+j

and gk(j) = y2·k+j = yj , for j ∈ [2]. Furthermore, define the polynomial of degree 2 h(x) =∑N
2
k=1 fk(x) · gk(x) = h1 + h2 · x+ h3 · x2. Observe that by construction, z =

∑2
j=1 h(j) = h2 + h3.

The prover commits to the coefficients of h(x) so that the verifiers can evaluate it with only linear
operations. Given the relation between z and those coefficients above, the verifiers can recover
a commitment to h3 from ⟨z⟩t, and ⟨h2⟩t through only linear operations, allowing the prover to
eliminate a commitment to h3 from the proof. The compressed inner product triple can now be
obtained as ((fk(r))1≤k≤N/2, (gk(r))1≤k≤N/2, h(r)) for a randomly chosen value of r.

To verify the proof, the verifiers check that the circuit output reconstructs to 0 and that the
final multiplication triple is correct. The interpolation of fk(x) and gk(x) is linear, so the verifiers
can perform the operation locally over the secret sharing, and with the shares of the coefficients of
h(x) the evaluation of all polynomials in r can also be performed locally.

Fig. 6 describes the protocol in detail. To ensure the soundness of this protocol, the multipli-
cation check and compression must be performed over a large enough finite field. It is however
possible to keep the proof size small by performing the circuit evaluation over a smaller finite field
F2k such that 2k > n to allow for the secret sharing. The (shares of the) inputs and outputs of the
multiplication gates are then lifted to an extension field F2ρ·k to perform the multiplication check
with sufficient soundness.

Theorem 3. Let H be a random oracle that maps into F2ρ·k . If t < n/3 then protocol Π3t de-
scribed in Fig. 6 securely implements the functionality FDV−ZK against a static adversary in the
(F t,n

Prep,FRand)-hybrid model with ΓC = ΓS = ΓZ being the set of all subsets of verifiers of size n− t
or more, except with probability

ϵ · log2(nS) + q(ϵ+ 2/|D|+ 2−λ)

where q is the number of random oracle queries made by a malicious prover, ϵ = 2−ρ·k+2 and
|D| = 2−ρ·k.

Lemma 6. Let aℓ · bℓ ̸= cℓ, for some ℓ ∈ [nS ], then the probability of passing the multiplication test
if parties honestly perform the check is

ϵ · log2(nS) + q(ϵ+ 2/|D|+ 2−λ)

where q is the number of random oracle queries made by a malicious prover, ϵ = 2−ρ·k+2 is the
round-by-round soundness and |D| = 2−ρ·k is the smallest challenge set in any given round of the
proof.

Proof. (of Lemma 6) The proof follows from adapting Theorem 5 of [BMRS21]. There, the authors
show that if the proof is an IP with LOVe with t rounds, 1 query and round-by-round soundness ϵ,

23



then the compiled protocol that uses the Fiat-Shamir transform to compute the t challenges instead
of having these chosen by the verifier has soundness error as defined in the statement of the lemma.

Our protocol is an IP with LOVe by observing that F t,n
Prep generates perfectly binding linearly

homomorphic commitments (due to the reconstruction property), as used in the IP with LOVe
model, and therefore permits the same queries by the verifier. As we essentially use the same proof
protocol as [BMRS21] for evaluating the circuit, we obtain the same round-by-round soundness error
ϵ and the same number of rounds t. Thus, by their theorem, we also obtain the same soundness
error, except that we avoid their extra loss due to an adversarial guess of the MAC key of the
verifier, as in our case the commitment is perfectly binding for a dishonest prover.

We now prove theorem 3.
The simulator S obtains as input from the environment the set D of corrupted parties and

forwards (Corrupt,D) to the functionality. Throughout the execution, S simulates the random
oracle H by answering every new query with a random value from the relevant set and maintaining
a list of past queries to answer repeated queries consistently. As in the real protocol, the simulator
uses a deterministic expansion function that for each seed defines a distinct random tape.

The simulation is very similar to that of Theorem 2. On input (Init) from FDV−ZK, if A sends
Abort, it forwards Abort to the functionality, otherwise forwards (ok). S emulates F t,n

Prep obtaining

the values si and s
(j)
i , for i ∈ [nS +nW +2 ·n1+n2+2], held by corrupted parties. Since VD ∈ ∆Z ,

it receives (Prove, x) from the functionality. If P ∈ H, then it randomly samples values to be sent
during Prove. In the process, it samples random Rj by honestly emulating the random oracle H.
If P is corrupted it receives from A the proof by extracting from the shares issued by F t,n

Prep. S
reconstructs the input w̃ and forwards (Prove, x, w̃) to the functionality.

The simulator S starts the simulation of the verification step, i.e. it evaluates the circuit hon-
estly, for each gate computes the shares held by corrupted parties and sends the shares of the
honest parties needed to run RobustReconstruct(⟨o⟩t, t). Here, if P ∈ H it sends shares during
RobustReconstruct of ⟨o⟩t that open it to 0. Receiving the shares of corrupted parties, it checks if
those shares are the same as the ones computed by S. We distinguish two different cases:

– If P ∈ H: The simulator S sets the flag accept. If the shares are consistent then CA = ∅; else, if
the shares are inconsistent, it identifies the cheating verifiers with incorrect shares and updates
CA with those parties.

– If P ̸∈ H: if either (x,w) ̸∈ R or some of the multiplication values given by the prover are
incorrect, it sets the flag reject. If some of the shares are inconsistent, then S identifies cheaters
and updates CA.

It also sends to A the honest shares, necessary to run RobustReconstruct and receives from
A the shares of dishonest verifiers. If some of these shares are incorrect, it updates CA with the
corresponding corruptions.

Finally, if the flag accept or reject is true, S sends (Abort, 1, CA) to FDV−ZK, otherwise it sends
(Abort, 0, CA) to the functionality.

Indistinguishability. We now argue indistinguishability of the real and ideal executions to an envi-
ronment, Z. Recall that Z chooses the inputs of all parties. The view of Z in the real world then
consists of these inputs, the messages received by the adversary and all the output values.

Indistinguishability of the proof follows from the privacy of Shamir’s secret sharing scheme
and from the fact that the input and the multiplication values are masked by the preprocessed

24



Number of Proof Preprocessing Prover Verifier
Protocol Circuit n t Field Parameters preproc. element size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 5 1 F23 ρ = 14 7000 2496 1.67 4.07 6.83
Π4t SHA-256 5 1 F23 ρ = 14 23000 8449 3.45 7.06 14.02
Π4t SHA x10 5 1 F23 ρ = 14 230000 84655 28.52 33.64 43.87
Π4t 1M AND 5 1 F23 ρ = 14 1100000 375048 95.64 30.03 89.81

Π3t AES 4 1 F23 F287 6655 + 50 2811 2.01 7.81 8.43
Π3t SHA-256 4 1 F23 F287 22530 + 35 8808 3.41 22.83 24.24
Π3t SHA x10 4 1 F23 F287 225745 + 50 85079 24.46 50.32 50.94
Π3t 1M AND 4 1 F23 F287 1000128 + 50 375516 98.89 180.07 200.27

Π3t AES 7 2 F23 F287 6655 + 50 2811 2.98 7.86 8.93
Π3t SHA-256 7 2 F23 F287 22530 + 35 8808 4.52 21.88 24.16
Π3t SHA x10 7 2 F23 F287 225745 + 50 85079 25.16 54.23 80.28
Π3t 1M AND 7 2 F23 F287 1000128 + 50 375516 113.79 187.56 212.69

Table 2. Experimental results for running the protocols in Fig. 5 and Fig. 6 on our evaluation circuits

values si, that are unknown to the adversary if the prover is honest. All messages received by the
adversary for the shares of h are also committed to using differences to random commitments by
the simulator, if P is honest, and unknown to Z. Moreover, the triple in the last round is random
due to the inclusion of a random triple in the protocol. For the opening of o, the adversary does
not have enough shares to distinguish its opening to 0 from the opening to the actual value that
was shared by the simulator. From this and privacy of Shamir’s sharings throughout the protocol,
simulation of these messages is perfect.

To argue indistinguishability of the output, we distinguish two cases as follows.

– If P ∈ H, the simulator always accepts the proof and outputs (Abort, 1, CA) to the function-
ality, where the set CA = ∅ if all the shares provided by A are correct and consistent. Irre-
spective of what the adversary does, RobustReconstruct always reconstructs the correct values,
even with flag = (incorrect, CA), since t < n/3 and the sharings are correct since they are ob-
tained by calling the preprocessing functionality. In the ideal execution, the simulator outputs
the set of parties that provided incorrect shares, in the real one this same set is provided by
RobustReconstruct. Indeed, since the sharing is correct, it is possible to efficiently and correctly
detect all the t < n/3 possible errors. Hence, in this case the simulation is perfect.

– If P ̸∈ H, the simulator honestly evaluates the circuit with inputs extracted from the masked
proof given byA. Therefore, if (x, w̃) ̸∈ R and the multiplication values that are part of the proof
are correct, then S aborts the proof towards FDV−ZK and the outputs of the two executions are
identical.

If (x, w̃) ̸∈ R and the multiplication values are incorrect, then the simulator rejects the proof,
whereas in the real execution the probability of acceptance is given by applying Lemma 6.

Finally, we conclude by observing that the set CA of cheating verifiers is identical in both the
executions and only consists of corrupted parties as this set in the protocol is given by running
the Reed-Solomon reconstruction on a correct sharing with t < n/3.

7 Experiments

We implemented our protocols in C++9 and tested with different circuits and number of verifiers.

For experiments with less than 10 parties, our tests were run on a cluster of computers running
Ubuntu 20.04.2 with a ping time of roughly 0.6 ms, and a total bandwidth of 9.41Gbit/s per

9 The implementation is publicly available at https://github.com/KULeuven-COSIC/Feta.

25

https://github.com/KULeuven-COSIC/Feta


Proof Preprocessing Prover Verifier
Protocol Circuit n t Field Parameters size (bytes) Time (ms) Time (ms) Time (ms)

Π4t AES 100 20 F27 ρ = 6 5, 824 33.26 2.36 10.60
Π4t SHA-256 100 20 F27 ρ = 6 19, 714 42.09 5.47 13.39
Π4t SHA x10 100 20 F27 ρ = 6 197, 527 166.35 46.63 51.28
Π4t 1M AND 100 20 F27 ρ = 6 875, 112 432.21 175.92 218.51

Π3t AES 100 30 F27 F291 6, 153 71.55 5.56 68.06
Π3t SHA-256 100 30 F27 F291 20, 090 70.20 15.34 80.52
Π3t SHA x10 100 30 F27 F291 197, 971 181.13 135.09 215.65
Π3t 1M AND 100 30 F27 F291 875, 602 595.44 562.45 891.46
Table 3. Experimental results for n = 100 verifiers on our evaluation circuits

machine. The machines had either Intel i7-770K CPUs running at 4.2 GHz with 32 GB of RAM, or
Intel i9-9900 CPUs running at 3.1 GHz with 128 GB of RAM. For the other experiments (n > 10),
we utilized n + 1 machines on Amazon AWS. Each of these was an individual c5.large instance
in the eu-central-1 region, with a measured ping of roughly 0.5 ms, and 4.17Gbit/s bandwidth.
Each configuration was run a total of 200 times and the median was taken to obtain the presented
running times.

We present experimental validation of the efficiency of our protocols for small circuits by pre-
senting prover and verification times for proving knowledge of an AES-128 key corresponding to a
public plaintext-ciphertext pair and a boolean circuit proving the knowledge of a pre-image for the
SHA-256 compression function. These functions where chosen as the boolean circuits for these are
readily available, and well-studied. The AES-128 circuit has 6400 AND gates, while the SHA-256
circuit has 22573 AND gates. We also present results for a SHA-256 pre-image consisting of 10
512-bit blocks, which gives a circuit of 1,317,424 total gates and 220,369 AND gates, and a circuit
consisting solely of one million AND gates, with 128 inputs. For all circuits and protocols we present
results for a system tolerating a single corrupted verifier (t = 1) and a total of n = 5 verifiers in
Table 2. For the protocol for t < n/3, we also provide numbers for t = 2 corruptions with n = 7
parties in total.

In Fig. 7, we present results for n ∈ {20, 40, 60, 80, 100} with the maximum value for t allowed
by the protocols. Table 3 contains more detailed results of our experiments with n = 100 verifiers.

7.1 Results

Our experimental results are presented in Table 2 and Fig. 7. We can immediately see that Π4t

is a small factor more efficient than Π3t. Both protocols have runtimes that allow for practical
deployment. Given that a threshold of t < n/4 may be enough in a number of practical situations,
one can see that the more efficient Π4t can be preferred.

We have already made some comparisons with other systems in Section 1. Notice that [dDOS19,
BdK+21, dOT21] report comparable prover and verification times for AES, however these papers
use a more compact description of the AES circuit over F28 with S-boxes instead of AND gates.
We could utilize the same approach, obtaining better runtimes. However, our goal is different from
the one in these papers as they specifically aim to obtain efficient post-quantum signature schemes
based on AES, while we support general circuits, only using AES and SHA-256 as examples.

For protocol Π4t from Fig. 5, targeting t < n/4, we selected the finite field F23 to accommodate
the secret sharing, when n < 7 and F27 for the other cases. We performed ρ = 14 (resp. ρ = 6)
parallel repetitions of the protocol to boost the statistical security to 2−42. When looking at the

26



trade-off between the field size of F2k and the number of repetitions ρ for this protocol, notice
that the security level will always be 2−k·ρ, regardless of how we distribute the load across the two
parameters. Similarly, the communication cost among the verifiers does not depend on either ρ or
k individually, but only on the product ρ · k. Using a larger field size, however, does increase the
proof size and the communication cost of the preprocessing phase, as those only depend on the field
size, and not on ρ. Hence it should be preferred to use a smaller field with more parallel repetitions,
rather than increasing the field size to target a security level for this protocol. The communication
cost (in terms of amount of bytes sent by each verifier) in the verification protocol is O(n) in the
case of protocol Π4t.

For Π3t in Fig. 6, targeting t < n/3, we again choose to aim for a security level of sec = 40 and
let the maximum number of queries the prover can make to H be q = 240. Similar to the above
case, we choose F2k = F23 as the minimal field to accommodate for the secret sharing for n ≤ 7
and F27 for the other cases; we let F2ρ·k = F287 be the extension field, when n ≤ 7, and F2ρ·k = F291

for the other cases, to ensure soundness for all our evaluation circuits.

Large number of verifiers. Table 3 and Fig. 7 show that increasing the number of parties has a
small impact on proof and verification time for protocol Π4t, while the change is a little more
evident in Π3t. There is only a small difference in the pre-processing execution between our two
protocols. Our Π4t protocol can prove circuits of 1 million AND gates in less than 176/220ms
for proof and verification, respectively, with 100 verifiers; while our Π3t requires proof/verification
time of 563/892ms for the same circuit and number of verifiers. In both protocols the proof size is
≈ 0.8MB.

Communication cost. The communication cost is O(n) in the case of protocol Π3t; which scales
linearly with the number of verifiers, however, importantly it is sublinear in the total circuit size.
Note, the threshold t has no effect on the round or total communication cost, it only increases
the computational cost to perform a robust opening. Also note, for small n, the computation time
mostly dominates for the prover, and we see only little impact of a growing number of verifiers on
the prover time. When the number of verifiers grows larger, the communication starts to dominate.
For the verifiers, similarly the increased amount of communication partners takes its toll, along
with an increased computational cost for robust reconstruction when t starts to grow.

For our preprocessing protocol for any t < n/2, the dominant cost is each verifier sending
nS/(n − t) shares to every other verifier, and the prover. Therefore, if t is a constant fraction of
n, the communication per verifier is linear in the circuit size but essentially independent of n. For
instance, with t = n/3 it is roughly 3

2 · nS field elements, and for t = n/4 this becomes 4
3 · nS .

Acknowledgements

We thank Pratik Sarkar for identifying a bug in an earlier version. This work has been supported
in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research
Projects Agency (DARPA) under contract HR001120C0085, by the FWO under an Odysseus
project GOH9718N, by CyberSecurity Research Flanders with reference number VR20192203, by
the Aarhus University Research Foundation, and by the Independent Research Fund Denmark
under project number 0165-00107B.

27



Protocol-Π3t

Let C be the circuit to be proved; the prover P is assumed to know an input witness w such that C(w) = 0.
Let nS denote the number of AND gates in the circuit, nW the length of the witness w, and σ = ⌈log2 nS⌉.
Let K = F2k and L = F2ρ·k , with ϕ : K → L the field homomorphism that embeds K in L. The protocol uses
a hash function modelled as a random oracle. For secret sharings in L, let the evaluation points of verifier Vi
be ϕ(i ∈ K).

Init: Call F t,n
Prep in K, so that P obtains si and the verifiers V1, . . . ,Vn obtain ⟨si⟩t for i ∈ [nS +nW ], i.e. Vj

obtains s
(j)
i , j ∈ [n]. Call F t,n

Prep in L, so that P obtains Si and the verifiers obtain ⟨Si⟩t for i ∈ [3 + 2 · σ].
All parties obtain a random string ν ∈ Fλ

2 .
Prove: The prover “evaluates” the circuit as follows:

1. Compute the difference between the input wire values wi and the pre-processed values si, i.e. wi −
si, i ∈ [nW ].

2. Evaluate the circuit gate-by-gate:
(a) For every linear gate, simply compute the resulting wire value
(b) For each AND gate, compute cj ← aj · bj and cj − sj+nW , j ∈ [nS ]. Let Aj = ϕ(aj), Bj = ϕ(bj)

and Cj = ϕ(cj).
3. Compute an additional random multiplication triple (A,B,C) ∈ L3, and compute A − S1, B − S2,

C − S3.
4. Set π to be the concatenation of all committed values so far: {wi − si}i∈[nW ], {cj − sj+nW }j∈[nS ],

A− S1, B − S2, C − S3.
5. Randomize the multiplication triples (Aj , Bj , Cj = Aj · Bj)j into an inner product triple ((Rj ·

Aj)j , (Bj)j ,
∑

j Rj ·Cj), where nS +1 random value Rj are sampled, seeded with a hash of (π, x, ν).
6. Compress the inner product triple σ times until a single multiplication triple remains. For j ∈ [σ]:

(a) Parse the current inner product triple as ((Xk)k, (Yk)k, Z), k ∈ [nS/2
j ]

(b) Interpolate the polynomials fk(x) and gk(x) such that fk(0) = X2·k−1, fk(1) = X2·k, gk(0) =
Y2·k−1 and gk(1) = Y2·k.

(c) Define h(x) =
∑

k fk(x) · gk(x) = h1 + h2 · x+ h3 · x2.
(d) Append commitments to the coefficients h1, h2 of the polynomial h(x) to π: {hi−X3+2·j+i}i∈[2].
(e) Obtain a random field element Tj ∈ L, seeded with a hash of the current value of π.
(f) The inner product triple now becomes ((fk(Tj))k, (gk(Tj))k, h(Tj)).

The proof consists of the final value of π.
Verify: The verifiers V1, . . . ,Vn jointly check the circuit evaluation:

1. Evaluate the circuit within the Shamir secret sharing on K, computing a share of the output wire
⟨o⟩t:
(a) Shares of the input wires can be computed as ⟨wi⟩t ← ⟨si⟩t + (wi − si) for i ∈ [nW ].
(b) Shares of the output wire values for an AND gate cj = aj · bj can be computed as

⟨cj⟩t ← ⟨sj+nW ⟩t + (cj − sj+nW ), for j ∈ [nS ].

Let ⟨Aj⟩t = ϕ(⟨aj⟩t), ⟨Bj⟩t = ϕ(⟨bj⟩t) and ⟨Cj⟩t = ϕ(⟨cj⟩t).
(c) Linear gates can be evaluated linearly over the shares in the degree t sharing.

2. The verifiers obtain A, B and C by similarly adding the commitment to the preprocessing shares.
3. The verifiers call (o, flago)← RobustReconstruct(⟨o⟩t).

(a) If o ̸= 0:
– If flago = (correct, ∅) then output Fail.
– If flago = (incorrect, Co), then output the dishonest verifiers in Co and Fail.

(b) If flago = (incorrect, Co), identify the dishonest verifiers in Co.
4. Obtain the same – secret-shared – randomization to an inner product triple as the prover, using the

same random value R.
5. Perform the analog of the prover’s compressions, for j ∈ [σ]:

(a) Interpolate ⟨fk(x)⟩t and ⟨gk(x)⟩t similar to the prover.
(b) The polynomial ⟨h(x)⟩t can be recovered from the commitment to its coefficients, together with
⟨h2⟩t = ⟨Z⟩t − ⟨h2⟩t.

(c) Update the inner product triple to be the compressed version with the same random Tj as the
prover.

6. Let the final remaining multiplication triple be (⟨X⟩t, ⟨Y ⟩t, ⟨Z⟩t).
7. Call (w, flagw)← RobustReconstruct(⟨w⟩t, t) for w ∈ {X,Y, Z}. If flagw = (incorrect, Cw), identify the

cheaters in Cw.
8. If X · Y ̸= Z, Fail. Otherwise accept the proof.

Fig. 6. Protocol Π3t for t < n/3

28



Fig. 7. Timing on the 10-block SHA256 circuit with t = ⌊(n− 1)/4⌋ and t = ⌊(n− 1)/3⌋ respectively. The base field
is F27 and for t < n/3 the extension field is F291 .

29



References

ACF02. Masayuki Abe, Ronald Cramer, and Serge Fehr. Non-interactive distributed-verifier proofs and proving
relations among commitments. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 206–223, Queenstown, New Zealand, Decem-
ber 1–5, 2002. Springer, Heidelberg, Germany.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on Computer and Communi-
cations Security, pages 2087–2104, Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

AKP22. Benny Applebaum, Eliran Kachlon, and Arpita Patra. Verifiable relation sharing and multi-verifier
zero-knowledge in two rounds: Trading NIZKs with honest majority. Cryptology ePrint Archive, Report
2022/167, 2022. https://eprint.iacr.org/2022/167.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-knowledge proofs
on secret-shared data via fully linear PCPs. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science,
pages 67–97, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part III, volume 11694 of Lecture Notes in Computer Science, pages 701–732, Santa
Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:
Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 90–108, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

BD91. Mike Burmester and Yvo Desmedt. Broadcast interactive proofs (extended abstract). In Donald W.
Davies, editor, Advances in Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in Computer
Science, pages 81–95, Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany.

BdK+21. Carsten Baum, Cyprien de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg
Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021: 24th
International Conference on Theory and Practice of Public Key Cryptography, Part I, volume 12710 of
Lecture Notes in Computer Science, pages 266–297, Virtual Event, May 10–13, 2021. Springer, Heidelberg,
Germany.

Bea91. Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty mi-
nority. Journal of Cryptology, 4(2):75–122, January 1991.

BGKW88. Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive proofs: How
to remove intractability assumptions. In 20th Annual ACM Symposium on Theory of Computing, pages
113–131, Chicago, IL, USA, May 2–4, 1988. ACM Press.

BKZZ20. Foteini Baldimtsi, Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. Crowd verifiable zero-
knowledge and end-to-end verifiable multiparty computation. In Shiho Moriai and Huaxiong Wang, edi-
tors, Advances in Cryptology – ASIACRYPT 2020, Part III, volume 12493 of Lecture Notes in Computer
Science, pages 717–748, Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

BMRS21. Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese: Zero-knowledge
proofs for boolean and arithmetic circuits with nested disjunctions. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology – CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in Computer
Science, pages 92–122, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.

BTH08. Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure MPC with linear communication com-
plexity. In Ran Canetti, editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of Lec-
ture Notes in Computer Science, pages 213–230, San Francisco, CA, USA, March 19–21, 2008. Springer,
Heidelberg, Germany.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rech-
berger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1825–1842,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

30

https://eprint.iacr.org/2022/167


dDOS19. Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart. BBQ: Using
AES in picnic signatures. In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019: 26th Annual
International Workshop on Selected Areas in Cryptography, volume 11959 of Lecture Notes in Computer
Science, pages 669–692, Waterloo, ON, Canada, August 12–16, 2019. Springer, Heidelberg, Germany.

dOT21. Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-knowledge
MPCitH-based arguments. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021: 28th Confer-
ence on Computer and Communications Security, pages 3022–3036, Virtual Event, Republic of Korea,
November 15–19, 2021. ACM Press.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

HBHW16. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification. GitHub:
San Francisco, CA, USA, 2016.

HM97. Martin Hirt and Ueli M. Maurer. Complete characterization of adversaries tolerable in secure multi-party
computation (extended abstract). In James E. Burns and Hagit Attiya, editors, 16th ACM Symposium
Annual on Principles of Distributed Computing, pages 25–34, Santa Barbara, CA, USA, August 21–24,
1997. Association for Computing Machinery.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th Annual ACM Symposium on Theory of
Computing, pages 21–30, San Diego, CA, USA, June 11–13, 2007. ACM Press.

JKO13. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits: how
to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM CCS 2013: 20th Conference on Computer and Communications Security, pages 955–966,
Berlin, Germany, November 4–8, 2013. ACM Press.

KGC+18. Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and Edward W. Felten.
Arbitrum: Scalable, private smart contracts. In William Enck and Adrienne Porter Felt, editors, USENIX
Security 2018: 27th USENIX Security Symposium, pages 1353–1370, Baltimore, MD, USA, August 15–17,
2018. USENIX Association.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications Security,
pages 525–537, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

KZF+18. Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and Arthur Gervais. Commit-
Chains: Secure, scalable off-chain payments. Cryptology ePrint Archive, Report 2018/642, 2018. https:
//eprint.iacr.org/2018/642.

LMs05. Matt Lepinski, Silvio Micali, and abhi shelat. Fair-zero knowledge. In Joe Kilian, editor, TCC 2005: 2nd
Theory of Cryptography Conference, volume 3378 of Lecture Notes in Computer Science, pages 245–263,
Cambridge, MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.

LSTW21. Jonathan Lee, Srinath Setty, Justin Thaler, and Riad Wahby. Linear-time and post-quantum zero-
knowledge SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/030, 2021. https://eprint.

iacr.org/2021/030.
Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,

22(11):612–613, November 1979.
WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable, and

communication-efficient zero-knowledge proofs for boolean and arithmetic circuits. In 2021 IEEE Sym-
posium on Security and Privacy, pages 1074–1091, San Francisco, CA, USA, May 24–27, 2021. IEEE
Computer Society Press.

WZC+18. Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion Stoica. DIZK: A distributed
zero knowledge proof system. In William Enck and Adrienne Porter Felt, editors, USENIX Security 2018:
27th USENIX Security Symposium, pages 675–692, Baltimore, MD, USA, August 15–17, 2018. USENIX
Association.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient and affordable zero-
knowledge proofs for circuits and polynomials over any field. In Giovanni Vigna and Elaine Shi, editors,
ACM CCS 2021: 28th Conference on Computer and Communications Security, pages 2986–3001, Virtual
Event, Republic of Korea, November 15–19, 2021. ACM Press.

YW22. Kang Yang and Xiao Wang. Non-interactive zero-knowledge proofs to multiple verifiers. Cryptology
ePrint Archive, Report 2022/063, 2022. https://eprint.iacr.org/2022/063.

31

https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2021/030
https://eprint.iacr.org/2021/030
https://eprint.iacr.org/2022/063

	Feta: Efficient Threshold Designated-Verifier  Zero-Knowledge Proofs
	Introduction
	Related Work
	Our Contribution
	Applications
	Techniques

	Preliminaries
	Shamir Sharing
	Digital Signatures
	Zero-knowledge Proofs
	Schwarz-Zippel Lemma
	Coin Flipping

	Distributed Verifier Zero-Knowledge Proofs
	Zero-Knowledge in the Threshold Setting
	Examples

	Preprocessing for distributed proofs with honest majority t<n/2
	Distributed proof with t < n/4 corruptions
	Distributed proof with t < n/3 corruptions
	Experiments
	Results



