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Kadcast-NG: A Structured Broadcast Protocol
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Abstract—In order to propagate transactions and blocks,
today’s blockchain systems rely on unstructured peer-to-peer
overlay networks. In such networks, broadcast is known to be
an inefficient operation in terms of message complexity and
overhead. In addition to the impact on the system performance,
inefficient or delayed block propagation may have severe conse-
quences regarding security and fairness of the consensus layer. In
contrast, the Kadcast protocol is a structured peer-to-peer proto-
col for block and transaction propagation in blockchain networks.
Kadcast utilizes the well-known overlay topology of Kademlia to
realize an efficient broadcast operation with tunable overhead.
We study the security and privacy of the Kadcast protocol based
on probabilistic models and analyze its resilience to packet losses
and node failures. Moreover, we evaluate Kadcast’s block delivery
performance, broadcast reliability, efficiency, and security based
on advanced network simulations. Lastly, we introduce a QUIC-
based prototype implementation of the Kadcast protocol and
show its merits through deployment in a global-scale cloud-based
testbed.

Index Terms—blockchain, peer-to-peer networks, broadcast

I. INTRODUCTION

B ITCOIN [1] fundamentally challenged the role of banks
by enabling decentralized money transfer on the Internet.

It builds upon a peer-to-peer network to implement an elec-
tronic cash system, where nodes can interact directly without
intermediaries. Following its genesis in 2008, a high number
of blockchain networks emerged. In these systems, nodes
may issue transactions by broadcasting them in the overlay
network. Validator nodes collect and verify transactions and
periodically consolidate them into blocks, which are appended
to a replicated, immutable ledger—the blockchain. Blocks are
broadcast in the network as well, which gives every node the
capability to verify correctness locally. That is, nodes run a
distributed agreement protocol to enable state replication.

Problem Statement: Broadcast is accordingly the most
commonly used network operation in blockchain networks.
Current implementations are typically based on unstructured
overlay networks, which is not necessarily favorable for this
kind of operation: while being relatively robust, broadcast in
unstructured overlays suffers from high message overhead, as
duplicates are introduced to the system. To reduce the load,
many networks spread block messages only by gossiping to a
subset of neighbors, which in turn might introduce additional
propagation delays.

This inefficiency of the utilized network protocols is a
limiting factor for innovations striving for higher transaction
rates, such as increased limits for block sizes, block rates, or
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changes that depart even further from the Nakamoto consen-
sus [2, 3, 4]. Furthermore, it has been shown that the block
propagation delay has severe effects on the consistency of
blockchain networks, leading to higher rates of stale blocks
and blockchain forks [5]. As this opens opportunities for
fraud [6, 7], alleviating the network-layer deficiencies is not
only a matter of performance, but also a pressing issue of
fairness and security. While it has been shown that unsolicited
block propagation has the largest impact on the stale block
rate [5], it leads to flooding the network with block data,
which the current networking paradigm cannot handle. The
emergence of third-party relay networks [8, 9] emphasize the
need for an improved propagation mechanism. We however
consider them orthogonal to our work, because they do not
address the inherent shortcomings of blockchain networks. In
fact, many of the improvement proposals [10, 11, 12, 13] are
compatible with our approach presented here.

Kadcast and Kadcast-NG: Kadcast [14] is a new struc-
tured broadcast protocol for blockchain networks based on
Kademlia [15]. Kadcast utilizes the structured overlay archi-
tecture of Kademlia, which can be thought as a binary tree, to
delegate broadcast responsibilities for subtrees with decreasing
height. This procedure eventually leads to forwarding data
along a spanning tree and under the assumption of non-
faulty nodes yields an highly efficient broadcast. In order to
deal with faulty and malicious nodes, however, we introduce
mitigation strategies and reliability mechanisms, most notably,
a redundant broadcast strategy. This allows Kadcast to main-
tain its broadcast efficiency and offers tunable parameters to
adjust trade-offs with respect to propagation delays, overhead,
reliability, security, and privacy.

In this work, we complement and extend the study of the
Kadcast protocol, address some weaknesses, and explore the
feasibility of a real-world adoption. We propose a number
of protocol extensions to further harden Kadcast in the face
of security and privacy threats. In particular, we show that
Kadcast achieves a high degree of reliability and resilience
when confronted with random and adversarial node failures.
Moreover, we provide an analysis of transaction privacy.

In addition, we developed Kadcast-NG, a QUIC-based [16]
prototype implementation of the Kadcast protocol. Kadcast-
NG resolves the weaknesses our initial UDP-based approach,
most notably reliability and flow control, without sacrificing
fast and lightweight message exchanges (cf. 0-RTT session
resumption). We use our Kadcast-NG prototype to evaluate the
approach in global-scale testbed hosted by Google Compute
Cloud. Our evaluations show that Kadcast distributes blocks
significantly faster than the currently deployed blockchain
protocols in both simulated scenarios and real-world deploy-
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ments. Kadcast furthermore increases the efficiency of block
propagation, making room to introduce additional features
such as unsolicited block push. Our simulation results also
indicate that it achieves similar, often better, security results
in terms of the stale block rate.

Contributions: Our key contributions can be summarized
as follows: (i) We present an efficient broadcast protocol
for blockchain networks, which utilizes Kademlia’s structured
architecture. (ii) We introduce parallelization to improve the
reliability and resilience of Kadcast in a completely adjustable
and predictable way. (iii) We discuss attack vectors and
provide mitigation strategies against Sybil and Eclipse attacks,
and analyze the network’s resilience to adversarial nodes
obstructing block delivery or trying to deanonymize transac-
tion originators. (iv) We conduct a comprehensive simulation
study and evaluate the performance, reliability, efficiency, and
security of Kadcast in comparison to a vanilla blockchain
protocol, which generalizes the currently prevalent networking
paradigm. (v) We provide Kadcast-NG, a prototypical imple-
mentation, and confirm its benefits through comparative real-
world deployment in a global testbed.

While this paper is based on our introduction of Kad-
cast [14], it complements and extends the contributions signif-
icantly. Specifically, we discuss security threats and mitigation
strategies, propose ID space randomization, conduct a privacy
analysis, and extend the simulation study by implementing and
evaluating compact blocks [10] and other messaging schemes.
Most notably, though, we developed Kadcast-NG including a
pluggable prototype, set up a global testbed, and performed a
real-world evaluation.

Structure: The remainder of this paper is structured
as follows. First, we describe primitives of information dis-
semination currently found in the blockchain landscape in
Section II. In Section III, we present the Kadcast protocol and
discuss its adjustable redundancy. Subsequently, we analyze
Kadcast’s security and privacy, and discuss various threats and
mitigation strategies in Section IV. We present our findings
from the simulative evaluation in Section V, and introduce the
results of our testbed deployment in Section VI. In Section VII,
we discuss related work, before we conclude the paper in
Section VIII.

II. INFORMATION DISSEMINATION
IN BLOCKCHAIN NETWORKS

The central purpose of blockchain protocols is to keep
track of the current state of accounts, which are bound
to cryptographic key pairs. To this end, new transactions
are disseminated in the peer-to-peer network, whereby they
reach validator nodes. Elected validators (a.k.a. round leaders)
collect and verify the transactions, decide on an authorita-
tive transaction ordering, and finally batch them into blocks,
i.e., updates to the global blockchain state. Depending on
the system specifications, leaders may be elected by some
kind of Byzantine fault tolerant consensus mechanism, e.g.,
Nakamoto-style Proof-of-Work [1], Proof-of-Stake [17], or
PBFT [18]. After their creation, blocks are broadcast to all
nodes in the network, which verify them and apply the updates

to their local ledger state. While blockchain protocols have
been proven to be consistent in the partially synchronous
network model, they are based on the assumption that blocks
are delivered in a timely fashion, i.e., faster than a propagation
delay limit [19]. As this restricts the interval in which new
blocks of a certain size may be safely issued, blockchain
scalability and consensus security have been shown to depend
on the performance and reliability of the network [2, 5].

Currently, most blockchain networks employ a network
stack based on an unstructured overlay construction, to which
we in the following refer to as the vanilla approach. When
joining such an unstructured overlay network, nodes retrieve
the addresses of a number of other participants by the means
of an adequate bootstrapping mechanism. Then, they establish
TCP connections to a random subset of neighbor nodes
R ⊂ N . As nodes are only able to communicate to the rest
of the peer-to-peer network via these neighbors, messages
are passed hop-by-hop in a store-and-forward manner. In
particular, upon arrival of new transactions and blocks, each
node first stores them in local memory, verifies their validity
based on its current blockchain state, and then forwards them
to adjacent nodes in the network. To ensure timely message
delivery via the shortest path, the messages are advertised to
all neighbors, which then follow the same protocol. However,
while this propagation method indeed covers the shortest path,
it actually covers all paths in the network, which potentially
introduces a large amount of superfluous messages. Therefore,
this kind of broadcast operation exhibits a high message
complexity (O(N ·R)), which has been shown to have severe
consequences on network scalability in the past [20].

Therefore, some blockchain networks reduce traffic by
introducing alternative messaging patterns, such as request-
response or compact block [10] propagation schemes. How-
ever, while such schemes may reduce the network utilization,
they also add at least one round-trip time (RTT) per hop to
the message propagation delay. Such delayed block propaga-
tion has been shown before to be unfavorable compared to
unsolicited block propagation [5], if the network is capable of
handling the increased load. However, in the vanilla case of
an unstructured overlay network, unsolicited block relay would
amount to blindly flooding the network. As a consequence of
the ensuing congestion, blockchain networks would likely face
degraded block propagation performance and serious issues
regarding the consensus stability.

For more detailed information on the networking layer
of Bitcoin [1] and Ethereum [21], we refer the reader to
literature [22].

III. THE KADCAST PROTOCOL

Kadcast is based on Kademlia [15], a distributed hash
table (DHT) design that is typically used for efficient lookup
procedures. Kadcast, however, makes use of Kademlia’s over-
lay structure to enable an efficient broadcast operation. In
the following, we describe the overlay construction and the
broadcast algorithm as the two main building blocks of our
approach. Moreover, we introduce means to improve the
performance, reliability, and resilience of Kadcast.
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Figure 1: Example broadcast initiated by node 1111 (β = 1).
Colors indicate node distances in the spanning tree, relative to
the initiator.

A. Overlay Construction

Kademlia is a peer-to-peer protocol in which nodes form
a structured overlay network. Nodes in the network are
addressed by unique L-bit binary node identifiers, in the
following denoted as ID, which are generated upon joining
the network. The ID determines a node’s position in a binary
routing tree that builds the foundation of Kademlia’s overlay.
An example of such a tree for a 4-bit address space is
shown in Figure 1. Nodes use their local view to traverse
the network structure efficiently, yielding a message com-
plexity of O(N). To this end, nodes maintain routing state
and organize known nodes in so-called k-buckets, storing
triplets (ip_addr, port, ID). Each bucket is a list of
the k least recently seen nodes that have a certain distance, in
relation to the node identifier ID. The factor k is a system-
wide parameter which determines the routing state and the
lookup complexity.

Characteristically, Kademlia’s notion of distance is based
on the non-euclidean XOR-metric, calculated by applying
the ⊕-operation on two node identifiers and interpreting the
result as an integer number, i.e., d(x, y) = (x ⊕ y)10. This
means, that for node identifiers of length L, a node ID0

holds buckets Bi, i = 0 . . . L − 1, whereby bucket Bi

holds the node information of k nodes with IDj so that
2i ≤ d(ID0,IDj) < 2i+1. It follows that the node space
covered by each bucket is exponential with i. The buckets
can be thought of holding up to k nodes belonging to a series
of subtrees with identifiers whose binary prefixes do not match
the nodes’ prefix, i.e., also not containing the node itself. For
example, given the fully populated tree shown in Figure 1, the
4 buckets of node ID0 = 1111 would hold nodes from the
ranges 1110, 110*, 10**, and 0***, respectively. If a node
wants to add a new entry to a given bucket that already holds k
entries, we employ a least recently used (LRU) drop policy.
Before dropping an entry from the list, the peer also checks
whether the respective nodes is still reachable, and only drop
it otherwise. This way, the protocol favors older, more stable
nodes over fresh ones. It thereby also circumvents an eviction

bias towards fresh, potentially malicious peers, which hardens
the network against security issues, such as the eclipse attacks
described in [23].

When a node first joins the network, it has to know
the address of at least one bootstrapping node. It therefore
sends PING messages to known nodes to check whether they
are actually online. Additionally, PING transmits the sending
node’s routing information to the recipient, thereby distributing
its existence in the network. In fact, similar patterns can be
found throughout the protocol, where every seen message
updates not only the sender’s but also the recipient’s buckets.
This soft-state protocol design allows for a very lightweight
overlay membership management that keeps the footprint of
the required information base to a minimum.

After the initial bootstrapping step, each Kadcast node
begins discovering the network to update its routing infor-
mation, which it repeats periodically throughout its lifetime.
Initially, the joining node looks up its own ID, which returns
a set of nodes closely positioned to its own network location.
Moreover, each node periodically refreshes every bucket it has
not seen some activity from in the last hour: for each such
bucket, it picks a random ID with appropriate distance and
performs a look up to populate its buckets with fresh routing
information.

The lookup procedure allows a node to retrieve a set of k
nodes closest to a specific ID in the address space. The proce-
dure of finding the k closest nodes is carried out by iteratively
narrowing down the search space and issuing FIND_NODE
messages to nodes which are closer to the ID. To this end,
(1) the node looks up the α closest nodes with respect to the
XOR-metric in its own buckets. (2) It queries these α nodes
for the ID by sending FIND_NODE messages. (3) The queried
nodes respond with a set of k nodes they believe to be closest
to ID. (4) Based on the acquired information, the node builds a
new set of closest nodes and iteratively repeats steps (1)–(3),
until an iteration does not yield any nodes closer than the
already known ones anymore.

Like the bucket size k, α is a globally known parameter
determining the redundancy (and hence also the overhead)
of the lookup procedure. At the same time, these parameters
influence the lookup latency, as the parallel nature of the
lookup procedure optimizes the needed delay. Typical param-
eter values are k ∈ [20, 100] and α = 3. As the Kadcast
protocol is not used to store and retrieve values, it does not
incorporate other message types found in Kademlia.

B. Message Propagation

As described before, most blockchain networks rely on
TCP-based transport protocols for block and transaction prop-
agation, which ensure the reliable transmission of arbitrarily
large data by retransmitting missing segments in case of packet
loss. This method implicitly assumes long-lived connections
and requires additional state-keeping in terms of connection
management and is therefore less scalable. Retransmissions
and head-of-line blocking might introduce additional delays
and unpredictable message overhead. In contrast, transport
protocols such as UDP or QUIC [16] enable a more scalable



4

Algorithm 1 Redundant broadcasting algorithm.
Require: broadcast height h,

chunk data c,
set of known chunks C,
redundancy factor β
if c ∈ C then abort
C ← C ∪ {c}
for i = 0→ h− 1 do

R← randomly_select (β,Bi)
for all r ∈ R do

send_chunk(r, c, i)
end for

end for

and dynamic approach with short-lived, low-cost transmis-
sions, which complement Kadcast’s design. While this al-
lows for a lightweight protocol design with reduced state-
keeping and tunable per-link message complexity, it also
entails handling data serialization and reliable transmission on
the application layer.

Therefore, when the propagation of a block or a transaction
is initiated, Kadcast first segments the data in chunks that are
then distributed in the network according to the broadcast pro-
cedure described in Algorithm 1, which is a modified version
of the algorithm in [24]. Kademlia’s bucket logic partitions
the identifier space in subtrees whose sizes depend on their
distance to the current node. The Kadcast protocol makes use
of this fact to generate a spanning tree that allows for an
efficient broadcast operation: the algorithm delegates broadcast
responsibilities for subtrees with decreasing height h to other
nodes, which recursively repeat the process within their dele-
gated area. Therefore, when a miner initiates the broadcast, it
is responsible for the entire tree with height h = L. The miner
picks a random peer from each bucket and delegates broadcast
responsibilities by sending CHUNK messages, which carry the
data and her routing information. In particular, it assigns a new
height h, which effectively determines the receiver’s broadcast
responsibility. When a node receives a CHUNK message, it
repeats the process in a store-and-forward manner: it buffers
the data, picks a random node from its buckets up to (but not
including) height h, and forwards the CHUNK with a smaller
value for h accordingly.

Consequentially, with every step, another set of nodes
is designated to be responsible for chunk delivery in their
respective subtrees. A simple example for L = 4 can be
seen in Figure 1: node ID0 = 1111 initiates a broad-
cast in the network, and sends four CHUNK messages with
heights h = 0 . . . 3 to one random node picked from each of
the respective buckets Bi, i = 0 . . . 3. The receiving nodes
repeat this procedure, again issuing messages to nodes from
bucket numbers less then their assigned height. Hence, the
broadcast operation is performed on decreasing subtree sizes,
and therefore guaranteed to terminate in O(log n) steps. Upon
receipt of all chunks required to rebuild a block or transac-
tion message, the node follows Bitcoin’s typical verification
procedure before continuing the broadcast operation.

C. Reliability of UDP-based Message Delivery

If we assume constant transmission times, honest network
participants, and no packet loss in the underlying network,

the propagation method just discussed would result in an
optimal broadcast tree. In this scenario, every node receives
the required data exactly once and hence no duplicate mes-
sages would be introduced by this broadcasting operation.
Unfortunately, we cannot make these assumptions and have
to consider packet losses, as well as adversarial and random
failures during transmission. In the example of Figure 1, if
a chunk on its way to node 0000 is corrupted or this node
refuses to forward a chunk, the whole bucket B3, i.e., the
right half of the tree, would not receive the corresponding
message. That is, in the worst case, a single transmission
failure caused by the unreliable UDP transport protocol could
result in a network coverage of fifty percent only. Therefore,
the broadcast algorithm is improved and secured by two
different approaches, which both introduce redundancy.

In the following, we present means of improving the broad-
cast reliability and provide a first analytical assessment of the
respective approaches.

1) Improving Broadcast Reliability and Performance:
Firstly, instead of having a single delegate per bucket, we
select β delegates. This severely increases the probability
that at least one out of the multiple selected nodes is honest
and reachable. It therefore protects the broadcasting operation
against random and adversarial node failures on the propa-
gation path. Moreover, this parallelized broadcasting method
improves the propagation performance in terms of latency:
nodes with the best connection receive the transmitted chunk
first and will proceed to propagate the chunks in the bucket. As
this repeats on every hop, and Kadcast nodes ignore duplicate
chunks, only the fastest routes are used for message delivery.

Secondly, Kadcast has to consider transmission failures
due to corrupted and/or dropped packets on every hop of
the propagation. When Kadcast is implemented on top of
an unreliable transport protocol, such as UDP, it therefore
needs to increase the reliability of the transmission and hence
employs a forward error correction (FEC) scheme based on
RaptorQ [25] codes. The adoption of this scheme allows
Kadcast nodes to recover transmitted block data after the
reception of any s source symbols out of n encoding symbols,
which are transmitted via CHUNK messages. As this results in
more transmitted data overall, an overhead of n−s additionally
transmitted symbols per transmission is introduced. The FEC
overhead factor can be adjusted through a parameter f = n−s

s .
Utilizing FEC gives the receiver the ability to correct errors
without the need for retransmissions, which lead to additional
delay. We therefore optimize our protocol in terms of latency
and accept an additional overhead. In order to allow nodes to
recover from the rare case that message delivery fails, and to
enable the initial bootstrapping of the blockchain, the Kadcast
protocol also incorporates a simple REQUEST message that
allows nodes to query others for specific blocks or transactions,
and is answered by the corresponding CHUNK messages.

2) Analysis of Parallelized Broadcast: Kadcast implements
broadcast redundancy by parallelizing the algorithm. To this
end, we introduce the system parameter β, which describes
how many distinct delegates per bucket should be selected
(and thus how many nodes per bucket should receive a copy
of the message). This improved algorithm can be seen in
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Algorithm 1. Please note that for β = 1, Algorithm 1 describes
the “optimal” broadcast from Section III-B.

Along the lines of [24], we model the propagation reliability
as the expected node coverage of the broadcast operation,
which is based on the average probability of transmission
failures. Thus, given the failure probability ε and β = 1,
a single broadcast chunk would reach its next hop with
probability p = 1−ε. The expected number of nodes receiving
this chunk can therefore be expressed by M = (1 + p)L,
assuming a balanced distribution tree of height L, which is
highly plausible due to the uniform random distribution of
node identifiers. It follows that the ratio of covered nodes is

m =
M

2L
=

(
1 + p

2

)L

.

Note however that this expression models the transmission of
a single chunk without redundancy.

In order to express the coverage of a redundant broadcast,
we need to extend this model. We therefore model the parallel
execution of our algorithm as the probability that at least
one of the redundantly sent chunks is successfully delivered,
i.e., pβ = 1 − εβ . Moreover, let X be a random variable
expressing the number of received chunks. The probability
that we receive all s chunks of a block or transaction is thus
pb = P (X = s) = ps, which induces a failure probability
of εb = 1 − pb. Accordingly, the probability to deliver a
message with redundancy β is given by pb,β = 1− εβb . These
observations yield an expected coverage ratio of

mb,β =

(
1 + pb,β

2

)L

.

As the transmission of blocks is only successful, if all
chunks are received, the propagation of entire blocks is not
as reliable. To this end, we analyze the expected UDP-based
block broadcast coverage in the face of different packet loss
rates, β ∈ {1, 3}, and an assumed block size of 1 MB.
The results are shown in Figure 2: we observe that without
redundancy even the smallest packet loss makes the probability
of delivering a block drop immediately, hence rendering the
chance of covering the entire network virtually impossible.
While a redundancy factor β = 3 has a positive impact on the
block propagation, it is not sufficient on its own to guarantee
the reliable transmission of entire blocks over a lossy channel.
However, the parallelized broadcast is still necessary either
way to compensate adversarial and random node failures, and
to improve the propagation performance, as discussed before.

3) Analysis of FEC-based Block Delivery: In order to
further increase the block transmission reliability, a Kadcast
node employing the RaptorQ forward error correction has to
successfully receive s or more arbitrary symbols out of the n
transmitted in order to recover a full block, an event which
can be modeled by a binomial distribution, i.e.,

pb,f = P (X ≥ s) = 1− P (X < s) = 1−
s−1∑
i=0

p.

Figure 2 clearly shows the improved transmission reliability
offered by introducing FEC with 15% redundancy (f = 0.15):

β = 1 β = 1, FEC β = 3 β = 3, FEC
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Figure 2: Reliability of UDP-based block propagation over
unreliable channels (block size of 1 MB, L = 160, and FEC
overhead factor f = 0.15).

this approach ensures that broadcasted blocks reach full net-
work coverage for packet loss rates up to around 9%.

However, this can still be improved by combining the FEC
approach with redundancy, i.e., β > 1. In this case, the success
probability is pb,β,f = 1 − (1 − pb,f )

β , which is shown
for β = 3 in Figure 2 as well. The combination of FEC
and parallelization ensures full network coverage, even if on
average 12% packets are lost during transmission.

The analysis results highlight that FEC is a favorable way
to ensure reliable UDP-based transmission of data over an
unreliable network infrastructure: it allows to significantly
increase the reliability of the broadcast while introducing a
relatively small linear overhead. In contrast, the overhead
introduced with increasing the replication factor β introduces a
larger increase in messaging complexity. However, broadcast
redundancy is still required in cases where the weak point
is not just an unreliable network link, but a malicious node
obstructing block or transaction delivery.

IV. KADCAST SECURITY AND PRIVACY

Fast and fair block propagation is considered security-
critical for the consensus layer of blockchain-based systems.
However, the peer-to-peer network and the block propagation
mechanism may also become themselves subject to attacks on
security and privacy. In the following, we therefore discuss
the security and privacy properties of the Kadcast network
protocol. In particular, we make the security and privacy
threats transparent and provide a series of mitigation strategies.

A. Adversary and Threat Model

We assume an active adversary who joins the peer-to-
peer network. More specifically, the adversary has the means
and resources to run and maintain a number of nodes. The
adversary’s intention is to attack the network as a whole or
to isolate specific nodes by occupying strategic positions in
the network. Please note that this includes, both, attacks on
security as well as privacy of the network and its users.

Numerous previous entries study Kademlia’s security prop-
erties, its behavior when attacked by a range of adversaries,
and designs improving on its security [26, 27, 28, 29, 30,
31, 32, 33]. In the following, we discuss the most prevalent
adversarial threats to the security of blockchain peer-to-peer
networks in general and Kadcast in particular.
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1) Sybil attacks: The notion of a Sybil attack [34] describes
the possibility of a single adversary to embody a large num-
ber of network entities by forging additional identities. By
doing so, the adversary aims to outnumber the honest nodes
participating in a distributed system, effectively increasing the
share of malicious nodes in the system. Moreover, a Sybil
attack is especially enticing when the forged identities can be
used to trick the system and enable unwanted behavior. In
systems based on the Kademlia overlay, Sybil attacks may be
used to generate a lot of identities that can fill up a victim’s
buckets [30, 32]. The ability to run this kind of attack is often a
prerequisite to be able to run Eclipse attacks (see next section)
on Kademlia-based systems. In the case of Kadcast, if an
adversary can forge arbitrary IDs and position herself close to
a target, she may be able to increase the likelihood of receiving
lookups and broadcasts from this node. This may enable the
adversary to simply refuse block delivery and thereby obstruct
the block propagation. Hence, we observe that the ability
to create valid node identifiers at arbitrary positions in the
network is detrimental to the security of the system.

2) Eclipse attacks: All peer-to-peer networks rely on some
kind of routing scheme that allow nodes to decide where to
forward data or which nodes to query for a specific data item.
However, these routing decisions are made on the basis of
an underlying data structure, the routing table. Eclipse attacks
describe a family of attacks on peer-to-peer networks in which
the adversary manipulates the routing tables of its targets to
contain only nodes controlled by the adversary. Once she
isolated her target from the rest of the network, the adversary
is in full control of the data streams coming from and to the
target node. This may be used by the adversary to completely
block data delivery, selectively obstruct data transmission, or
even foist spurious data.

In blockchain networks, Eclipse attacks are a serious threat,
since they could be used to monopolize the connections of
a target node and then further exploit the protocol. They
have been shown to enable double-spending and selfish-mining
attacks [23, 35]. In the past, the feasibility of Eclipse attacks
on the Kademlia protocol have been studied in literature [30,
32, 33]. These studies show that, if an adversary would come
to control a large number of node identifiers, she may try to
flood all buckets of a target node with addresses of nodes in
her control. This technique could be used to isolate Kadcast
nodes from the rest of the network.

3) Denial-of-Service attacks: Broadcast protocols aim to
distribute information to all nodes in the network. This in-
herent asymmetry immediately raises the question on whether
they allow an adversary to flood the network with arbitrary
data, i.e., how susceptible they are to denial-of-service (DoS)
attacks. Additionally, previous work [36] highlighted that node
operators have become targets of DDoS in the past. In the
worst case, this results to a node failure, which might impair
the broadcast operation.

4) Transaction Privacy: Previous works highlighted that
the propagation of messages in the network may compromise
user privacy. In particular, it has been shown that malicious
nodes may passively monitor the network and link transaction
data to identifying information such as IP addresses, thereby

possibly deanonymizing their origin [37, 38, 39]. Furthermore,
the notion of AS-level adversaries, i.e., adversaries monitor-
ing the data flows of blockchain networks within an entire
autonomous system (AS), has been discussed in literature [40,
41]. Such passive attacks on privacy are a threat to the Kad-
cast network protocol in particular, since broadcast messages
include a height field, which is additional information that may
allow an adversary monitoring transaction propagation to infer
her distance from the transaction’s origin.

B. Best Practice Mitigation Strategies

The Kadcast protocol employs a number of countermeasures
in order to increase its resilience to the various threats. Later
in Sections IV-C–IV-E, we present Kadcast-specific counter-
measures. Here, we concentrate on best practice mitigation
strategies and how they can be integrated into Kadcast.

First of all, Kadcast follows a bucket eviction policy that
favors older, more stable nodes over newly acquired node
addresses. By following this policy, we increase an adversary’s
efforts, requiring her to run nodes for longer periods. Even
stricter bucket policies, which enforce a certain degree of
diversity from an AS-level and/or subnet perspective [40, 41],
are conceivable. The general approach effectively prevents the
adversary from easily supplying all nodes known to the victim.

In addition, the Kadcast protocol can easily be extended
to incorporate cryptographic puzzles as Sybil and Eclipse
protection, similar to [31, 42, 43]. Along the lines of proof-
of-work mining, a joining node has to find a nonce, so that
the hash of concatenation of its identifier and nonce adheres
to a certain difficulty level. That is, the binary value of the
hash has to be less than the chosen difficulty target, i.e.,
H(ID ||ID_NONCE) < tdiff , where tdiff is a global system
parameter. Every node that receives a new node identifier
validates this property before it inserts the new node to its
buckets. It can run the validation quickly, while the node
generation can take quite some time, depending on the chosen
parameter tdiff . The inclusion of this hash puzzle scheme
impairs the ability of an adversary to quickly generate a large
number of node identifiers. Evidently, the use of cryptographic
puzzles also has its difficulties with respect to difficulty
adjustments and a skewed distribution of computational power.

In general, we can observe that by safeguarding node
identifiers and enforcing rigorous bucket policies, Kadcast
follows best practices for Sybil and Eclipse protection [35].

In order to avoid Denial-of-Service (DoS) attacks,
blockchains like Bitcoin employ a store-and-forward propaga-
tion policy: each time a node receives a new block, it is first
stored and validated (i.e., check the proof of work), before it is
announced to neighbors. This way, an adversary trying to flood
the network with fake block data would have to solve a proof-
of-work hash puzzle for each of the forged blocks, making it
a very unattractive attack vector. The Kadcast protocol sticks
to this DoS protection scheme.

Lastly, communication between nodes should be en-
crypted to mitigate network-level threats. Unfortunately, many
blockchain networks, e.g., Bitcoin, do not employ this mitiga-
tion strategy. For Kadcast, we propose to encrypt messages
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at the transport layer [44], which hinders an AS-level ad-
versary from passively monitoring the network traffic. More
specifically, we suggest to implement a trust-on-first-sight
public key pinning policy and to derive the node identifiers
from the corresponding public keys. We consider this is an
easy way to bind the protocol to cryptographic identities
without necessitating a dedicated (possibly centralized) public-
key infrastructure (PKI).

C. Identifier Space Randomization

As just discussed, it is essential for network security and
privacy to impair an adversary’s capability to determine and
exploit a node’s position in any distribution graph for a given
block or transaction broadcast. In particular, an adversary
should not be able to pre-populate nodes’ buckets with pre-
calculated identifiers in a targeted fashion. To this end, Kadcast
employs identifier space randomization in order to facilitate
distribution graphs that cannot be easily anticipated by an
adversary. However, a complete randomization of the iden-
tifier space would abandon the network structure and hence
also render Kadcast’s efficient broadcast algorithm based on
the XOR-metric non-deterministic. We therefore implement
pseudo-randomized views of the identifier space for each
broadcast operation. In this regard, additional temporary rout-
ing tables are created for each block or transaction broadcast,
in which buckets are populated based on a salted distance
metric ds(x, y) = (x ⊕ y ⊕ s)10, where s describes a salt
value derived from the message data to be propagated, e.g.,
the hash of the corresponding block or transaction message. By
applying such a temporary transformation to the node identifier
space, we make sure that, on the one hand, node locations
cannot be predicted by any adversary, but that on the other
hand the network view of all nodes remains the same on a
per-broadcast basis.

D. Obstruction of Block Delivery

The reliability of Kadcast depends on the responsiveness
and compliance of delegate nodes. An adversary however may
have an interest to obstruct the block delivery. To this end,
she could position herself on the distribution path during the
broadcast operation, and refuse to comply when chosen as
delegate. In the following, we will elaborate and analyze this
general attack vector.

First, an adversary may try to prevent a specific node from
publishing a new block. In order to intercept outgoing blocks
generated by a target node, an adversary needs to fill every
bucket of the target with malicious nodes. We assume that an
adversary is able to spawn M out of N nodes, but cannot
foresee or cheat the placement mechanism, i.e., has to hash
node identifiers like everyone else, resulting in a uniform
coverage of the randomized identifier space. In fact, this is
a set of very conservative assumptions, since we neglect the
previously discussed bucket filling and eviction policies that
would heavily skew this towards stable and honest nodes.
Moreover, for the sake of censoring outgoing blocks, all
buckets are equally attractive targets, since the covered space
does not only determine the amount of affected nodes, but in

equal manner the probability to be selected by the target’s
broadcast operation. For example, as the bucket size in a
network of N nodes can be estimated to be

bs,i =

⌊
2i

2L
·N

⌋
,

a successful attack on the transmission to bucket BL−1 may
lead to only a coverage of N/2 nodes. However, the required
number of nodes in this bucket space is also proportionally
harder to acquire for the adversary. Due to Kadcast’s parallel
route selection, it becomes highly unlikely that all β nodes
per bucket are picked from the adversary’s pool. In particular,
when the adversary can acquire control of M nodes, we can
assume that the same share, ε = M/N , describes the situation
in every bucket and hence determines the failure probability of
a single broadcast operation. Accordingly, this would result in
a parallelized broadcast failure probability of pε = (M/N)β ,
which exponentially decreases with the redundancy factor β,
as we discussed and analyzed in Section III-C.

The more interesting case is an adversary trying to interfere
with the block delivery to a specific node. As discussed before,
a true Eclipse attack is unfeasible in the Kadcast network,
since it strictly applies best practices as well as identifier space
randomization. However, in the following we analyze security
of block delivery when faced with an adversary that is able to
spawn a certain amount of network nodes, i.e., attempting a
Sybil attack. In order to calculate the probability of successful
block delivery in face of such an attacker, we model the
broadcast operation as a simple Markov chain. In this model,
the block propagation starts in an arbitrary distance i from
the target. For instance, if the origin would fall in bucket B2,
the model only needs to consider the operations in height two
or smaller. The broadcast operation succeeds, when the block
is delivered to the target node, and only honest nodes were
visited during path traversal.

The initial state in the Markov model is si, and without
loss of generality we can assume it to start at sL−1, the state
representing broadcast in the largest bucket. From state i, the
Kadcast algorithm can delegate the targeted node directly and
transition to the success state sd with probability

pd,i = 1−
(
bs,i − 1

bs,i

)β

.

Alternatively, the algorithm chooses some other node in the
bucket with probability pd,i. The chosen node may be either
honest or malicious. If it is honest (again, probability ph =
1−pε = 1− (M/N)β), the broadcast operation continues and
the model transitions to state si−1. If it is malicious, it would
obstruct the block delivery, and hence the model transitions
to the fail state sf with probability ph = 1 − ph. Once in
the success or fail state, the fate of the broadcast operation is
decided, hence the Markov model reaches a steady state after
a maximum of L− 1 state transitions.

We implemented the Markov chain model utilizing the
R package markovchain [45], and simulated the success
probability of block propagation for different shares of mali-
cious nodes ε and redundancy factors β. As these simulations
assume the source to be in the bucket of highest distance
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Table I: Markov Simulation Results

Parameters Results

N M ε β pε pd

11,000 1,000 0.1 3 0.00075 0.993
12,000 2,000 0.2 3 0.0046 0.957
13,000 3,000 0.3 3 0.0122 0.888
13,000 3,000 0.3 5 0.00065 0.994
15,000 5,000 0.5 5 0.0041 0.963

(L− 1), they yield worst-case estimations for the steady-state
success probability. The results are shown in Table I; even
for adversaries that control 10% of network nodes, Kadcast
delivers block with more than 99% probability. Moreover, by
adjusting the redundancy factor, Kadcast is able to deliver
blocks with more than 96% probability in a highly adversarial
environment where 50% of nodes are adversarial.

E. Privacy of Transaction Propagation

In the following, we discuss what privacy Kadcast can pro-
vide during transaction propagation and what improvements to
the baseline protocol should be considered in other to further
mitigate the possibility for attacks on user privacy.

1) Prepending a Random Walk: As the Kadcast protocol is
designed with privacy in mind, its protocol messages generally
do not include unnecessary information that may be utilized by
an adversary in order to gain additional knowledge on their
origin. However, one necessary exception to this rule is the
height field that is part of the broadcast messages carrying
block and transaction data. As this field is initialized with L
and is decreased with every subsequent forwarding step, an
adversary receiving a broadcast message is able to infer her
distance from the originator of the broadcast in the propagation
graph. This is particular worrisome for the first hop, as an
adversary receiving a message with height L − 1 would be
able to infer that the sender of this message is also its origin.
While this may be no issue for block propagation (blocks can
be assumed to be not privacy-critical) it may be detrimental
to user privacy for transaction propagation.

Borrowing from the idea of the Dandelion protocol [46, 47],
Kadcast therefore improves the privacy of transaction propa-
gation by prepending the spreading process with a privacy
phase, i.e., introducing an initial random walk. To this end, the
originator of a transaction broadcast initially sets the height
field to an otherwise unused magic number (e.g., L + 1) in
order to signal that the broadcast is still in the privacy phase
and sends corresponding messages to β initial peers. After
receiving these messages, each of these peers reads the height
field and throws a weighted coin in order to decide whether
to continue the random walk, i.e., forward the message to a
single other peer, or immediately initiate the spreading of the
transaction message as discussed above. It follows that the
expected length of the random walk can easily be adjusted
through the weight parameter of the coin toss.

2) Resilience to Passive Attacks on Privacy: In order to
study the privacy that Kadcast can provide, we in the following
assume scenarios in which an adversary controls an embedding
of M out of N nodes that passively monitor the network

1
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Figure 3: Probability of detection with and without a
prepended privacy phase in dependence of the share of mali-
cious nodes and the parallelization factor β (L = 160).

for propagated transactions. We furthermore assume that the
adversary has no knowledge of additional information that
would allow her to infer the propagation path, but is only
capable of passively recording from which node the controlled
observation points received a transaction. That is, the adver-
sary classifies observations according to a so-called first-spy
estimator model and assumes the first encounter to be the
transaction’s origin [46]. As additional confounding factors—
such as considering varying verification times, link latencies,
or bandwidths—would only increase entropy and hence reduce
an adversary’s capabilities, we omit modelling any message
delivery timings, but assume that network messages arrive in
the order in which they were initially sent.

As a consequence, the adversary estimates the correct
transaction origin, if any of the M malicious nodes receive a
propagated message first, i.e., it is selected by the origin as one
of the d1 = β(L−1) initial bucket delegates. This probability
of detection is the probability that at least on malicious node
is initially chosen, i.e.,

pm = ph = 1−
(
N −M

N

)d1

.

By utilizing the privacy phase, the number of delegates directly
contacted by the originator is reduced from d1 = β(L− 1) to
d1 = β, hence resulting in a lower probability of detection.

Figure 3 shows the probability of detection with and without
a prepended privacy phase in dependence of the parallelization
factor β. We observe that in the baseline Kadcast protocol,
an adversary would indeed have a really high probability of
guessing the originator of a transaction correctly. However,
we also can see that the privacy phase immensely improves
this and depending on the degree of parallelization may even
come close to the optimal probability proportional to the share
of malicious nodes M/N . Finally, we observe that there is a
trade-off between privacy and reliability: on the one hand,
the more nodes β the transaction originator initially contacts,
the higher is the probability that a passive adversary gains
information on the transaction’s origin. On the other hand, as
we previously explicated, a too low β value may leave the
broadcast operation open for censorship attacks.
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V. EVALUATION: NETWORK SIMULATIONS

In this section, we evaluate the block distribution perfor-
mance, the broadcast reliability and efficiency, as well as the
security impact of the Kadcast protocol on an empirical basis.
For this, we gathered data from a comprehensive network
simulation study, which are discussed in the following.

A. Simulation Model

Our network simulation study utilizes the network-centric
bns [14, 48] blockchain simulation framework, which is
based on the time-discrete network simulator ns-3 [49]. The
parameters that fuel our simulation are therefore generally
chosen in reference to real-world measurements of the Bitcoin
peer-to-peer network [48]. Furthermore, bns allows us to
evaluate a UDP-based Kadcast implementation in comparison
to a TCP-based vanilla blockchain network protocol stack.

While our evaluation is based on a number of different
setups, the results described in the following are based on
scenarios simulating the mining process in networks with
N = 500 nodes. Every scenario was repeated 30 times for
different seed values to ensure statistical significance of the
conducted measurements. During the three hour simulation
time, the miners generated blocks and initiated broadcast
operations employing one of the networking stacks, i.e., the
unstructured vanilla baseline or the Kadcast protocol. We
furthermore implemented and evaluated the impact of different
messaging patterns, i.e., header, cmpctblock, and unsolicited
block propagation for the vanilla stack, as well as cmpctblock
and unsolicited propagation for Kadcast. In the Kadcast case,
if not stated otherwise, the results are based on the default
parameters L = 64, k = 100, α = 3, β = 3, and an FEC
overhead factor f = 0.05.

In order to analyze the protocol behavior under different
network conditions, we furthermore evaluated all protocol
variants in the Hub & Spoke, as well as in the geographic
topology models provided by the bns framework [48]. The
Hub & Spoke model is a typical setup for the assessment
of peer-to-peer overlays, and while it captures some network
effects, it does not rely on additional assumptions about the
underlying topology. As it furthermore assumes the Internet
connectivity to not be a bottleneck, it creates an idealized
simulation scenario that gives us the capability to assess the
networking stacks based on a neutral, common ground. The
geographic topology model however captures a heterogeneous
and partly resource-restricted environment that enables simu-
lations in more complex network scenarios, which incorporate
a high degree of network effects.

B. Protocol Evaluation

In order to show the benefits of the Kadcast protocol in
different environments, we created simulation scenarios with
parametrizations resembling Bitcoin (10 min. block interval
and 1 MB block size limit) and Ethereum (15 sec. block
interval, proportionally smaller block size limit of 25 KB [50]).
Moreover, in light of the debates on block size limits in
the Bitcoin community, we additionally analyzed the block
propagation for increased block size limits of 4, 8, and 16 MB.

1) Block Propagation Delay: As a first study, we inves-
tigated the performance of Kadcast compared to different
instantiations of vanilla broadcasting. Figure 4 shows the block
propagation delay to reach 90% of all nodes as cumulative
distribution functions F (x): as expected, the block distribution
time heavily depends on the block size and block intervals, as
well as the employed messaging pattern. The Kadcast pro-
tocol, however, delivers blocks significantly faster compared
to vanilla in all cases. For example, Kadcast exhibits a mean
propagation time of 436 ms to deliver compact blocks with
a 1 MB block size limit (Bitcoin-like scenario, upper plot),
which is close to twice as fast as vanilla with enabled compact
blocks. The mean propagation delay for unsolicited Kad-
cast propagation is 2,349 ms, 63% faster than header-based,
and even 70% faster than unsolicited vanilla propagation in
Bitcoin-like scenarios.

The improved propagation speed is also reflected by an
overall faster network coverage: while it takes vanilla in
the Bitcoin case with enabled compact blocks 1,133 ms to
reach 90% of the network, Kadcast is able to reach the same
number of nodes around 22% faster. Unsolicited propagation
via Kadcast reaches 90% coverage even respectively 53% and
60% faster than header-based and unsolicited propagation in
the unstructured vanilla networking layer.

Furthermore, as shown in the bottom-left of Figure 4,
Kadcast’s performance is competitive with vanilla’s in the case
of smaller intervals and smaller block sizes: in the Ethereum-
like scenario, unsolicited Kadcast is able to deliver blocks
on average more than 60% faster than the unsolicited vanilla
baseline, and even 66% faster than the header-based propa-
gation. However, the vanilla stack performs slightly better in
the compact block case, in which it is around 7% faster than
Kadcast. For the larger block sizes of 4 MB, 8 MB, and 16 MB
(cf. the bottom-right plot), Kadcast is on average also able to
consistently deliver blocks more than 50% faster.

These results highlight on the one hand the messaging
pattern has a significant impact on the performance of block
propagation. On the other hand, we conclude that Kadcast is
able to immensely speed up the block distribution and may be
beneficial to a wide variety of blockchain networks.

2) Impact on Consensus Stability: The effect of quicker
block propagation is also reflected in the median stale rate,
i.e., rate of blocks that are mined, but do not become part of
the final blockchain. As increased blockchain forks and wasted
mining power weaken consensus security, the stale rate is an
indicator for how the networking layer impacts security [5].

The boxplots in the lower part of Figure 4 show the stale rate
in dependence of the applied messaging pattern and different
choices for the redundancy parameter β: in the Bitcoin-like
scenario, Kadcast achieves a median stale rate of zero, barring
the occasional outliers. This is comparable to the vanilla
cases, which exhibit similar behavior. However, in the case
of a decreased block interval, the ratio of propagation delay
to block interval gets much larger, resulting in an overall
increased stale rate of around 1–2%. In this Ethereum-like
scenario, the influence of the messaging pattern is again clearly
visible, as compact block based propagation beats unsolicited
and header-based propagation every time. In accordance with
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Figure 4: Block propagation delay and resulting stale rates for Bitcoin-like and Ethereum-like parametrizations, as well as for
simulation scenarios with higher block size limits.

the results of the previous section, the compact block based
vanilla variant achieves the lowest median stale rate of 1.3%.

The simulations with compact block relaying of larger
blocks indicate that the additional stress on the network
layer negatively impacts consensus security: while vanilla and
Kadcast can mostly retain a median stale rate of zero, the
number of outliers increase in both cases. Though, in the case
of the 16 MB block size limit, a clear difference becomes
apparent, as Kadcast can retain an average stale rate of 1.6%
versus vanilla’s 6%.

In summary, the improved block propagation of Kadcast
leads to a median stale rate that is comparable and often
better than the results of the vanilla stack. This indicates that
the consensus security of blockchain systems could benefit
from employing the Kadcast protocol. Moreover, since blocks
reach a larger share of the network much faster, the adoption
of Kadcast could help to mitigate time-dependent adversarial
mining strategies, such as selfish mining [51].

3) Broadcast Efficiency: In order to confirm the adjusta-
bility and efficiency of the Kadcast protocol, we recorded the
total amount of traffic ttotal produced during our simulation
time. Furthermore, we accumulated the block sizes of all
blocks generated during this time, tblocks. As all blocks need
to be transmitted to each node at least once, the minimum
amount of traffic for the broadcast operation can be calculated
as N · tblocks. Accordingly, we define the overhead ratio as
ro = (ttotal − N · tblocks)/(N · tblocks), which describes how
much additional traffic was generated during a simulation run,
including all signaling messages.1

1Note, that since we only consider block propagation for the traffic
estimation and due to the existence of stale blocks, the overhead ratio may
assume values below 1 or even 0, which however does not impair the validity
of this metric.
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Figure 5: Overhead ratios in dependence of applied messaging
pattern and parametrizations for f and β.

Figure 5 shows the resulting overhead ratios in dependence
of the applied messaging patterns and different parametriza-
tions of the redundancy parameters β and f . Firstly, we
observe that Kadcast’s overhead immensely depends on the
applied messaging pattern and that it increases linearly with
the redundancy factors β and f . As expected, unsolicited
block propagation overall results in a significantly higher
overhead than the propagation through headers or compact
blocks. We moreover note that throughout all parametrizations,
Kadcast’s overhead remains below its vanilla counterpart: for
β = 1, Kadcast even with unsolicited block relay results
in an overhead ratio below the header-based and compact
block variants of vanilla, and for β = 5, it is comparable
to unsolicited vanilla propagation. In the bottom half of
Figure 5, we can finally observe that the overhead of compact
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Figure 6: Network coverage and stale rate, when a share ε of
adversarial nodes is introduced to the network.

block propagation through Kadcast is consistently below the
vanilla counterpart. This shows the adjustability of the Kadcast
approach, which allows for a fast block relay with low and
controllable overhead.

C. Protocol Behavior under Attack

We empirically evaluated the performance of Kadcast in the
face of an adversary obstructing block delivery. For this, we
set up simulation scenarios in which a fraction ε of nodes were
marked as adversarial and henceforth would cease to forward
blocks. The upper part of Figure 6 shows the network coverage
in dependence of ε and β: while Kadcast, of course, reaches
100% network coverage for ε = 0, its block propagation is
severely hindered when malicious nodes are introduced and
no redundancy exists (β = 1). However, the effect of the
redundancy factor β is also clearly visible, ensuring 99%
coverage for β = 3 as long as ε ≤ 0.3. For β = 5, Kadcast
can even handle higher shares of malicious nodes (ε ≥ 0.4).

Interestingly, while vanilla’s network coverage is not im-
paired by the introduction of adversarial nodes, it does exhibit
degraded propagation performance due to the almost frag-
mented network. In fact, the resulting stale rates of both pro-
tocols are very similar, when confronted with such a powerful
adversary (cf. lower part of Figure 6). The results show that,
with a reasonably chosen set of parameters, Kadcast is resilient
to a large amount of adversarial nodes and compares to the
currently deployed vanilla networking layer.

D. Protocol Behavior under Degraded Network Conditions

In order to evaluate the Kadcast protocol in more heteroge-
neous networking environments, we reproduced the previous
scenarios in a resource restricted setting. We utilize the geo-
graphic topology model (Geo) from [48], where node deploy-
ments resemble a geographic distribution with heterogeneous
network conditions (delay, bandwidth) on the underlay as mea-
sured in the Bitcoin network. Due to lower bandwidths, larger
latencies, packet losses, and more complex structure of this
model, more network effects come into play. We accordingly
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Figure 7: Block propagation delays and stale rates for different
parametrizations in the geographic topology model.

expect a degraded performance with a more pronounced long
tail and more outliers.

The results shown in Figure 7 confirm our expectations.
But despite the heterogeneous network conditions, the results
follow the same tendencies as discussed before: in general,
Kadcast provides faster block propagation than vanilla. In
particular when compact block relaying is enabled, the per-
formance improvements are clearly visible. Nevertheless, the
results also show that the UDP-based Kadcast implementation
may exhibit degraded performance when facing slower or
more congested networking environments. In particular for
the unsolicited block propagation, we can see the first signs
of network congestion in Kadcast: even though the average
propagation delays are comparable with vanilla, the propa-
gation delay distribution exhibits a longer tail. The degraded
network performance is also reflected by higher stale rates for
β > 1. As the effect is only exhibited with unsolicited block
propagation, enabling compact block relaying ascertains low
stale rates even in the face of these restricted and heteroge-
neous environments.

In a first conclusion, we can confirm that Kadcast improves
the efficiency of blockchain networks, particularly in com-
bination with compact blocks. We, however, can also see a
weakness of the UDP-based approach in Kadcast for restricted
network environments as it can lead to network congestion
and therefore to degraded performance. This is not surprising
as our data transport does not include any congestion control
mechanisms. We accordingly consider implementation of con-
gestion control in Kadcast as a logical, necessary next step,
which we will address in the next section with Kadcast-NG.
On a more general note, our simulation results show that de-
graded performance can be mitigated by compact block relay-
ing schemes. We therefore consider adopting such a messaging
pattern to be beneficial for blockchain networks in general.
This could help to further alleviate network bottlenecks in
heterogeneous environments and hence foster decentralization.
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VI. KADCAST-NG AND TESTBED DEPLOYMENT

In the following, we introduce our prototypical implemen-
tation of the Kadcast protocol, Kadcast-NG, and evaluate the
properties of Kadcast in a global-scale testbed deployment.

A. Kadcast-NG: A QUIC-based Prototype Implementation

As we have seen in the previous section, Kadcast may
exhibit degraded performance in restricted network settings
when it is implemented on top of UDP. We therefore consider
it necessary to implement the Kadcast protocol together with
an appropriate transport protocol including congestion control.
While we could implement congestion control on top of UDP
ourselves, we opt for the QUIC [16] transport protocol as
a base for Kadcast-NG. QUIC fits the design philosophy of
Kadcast very well: It features data transmission via multiple
concurrent streams, which eliminates head-of-line blocking
and therefore reinforces the benefits of Kadcast’s parallelized
broadcast operation. In contrast to the comparatively slow TCP
handshake, QUIC furthermore facilitates connection establish-
ment in one or even zero RTTs. This is an important feature,
since it enables Kadcast to continue to follow the lightweight
soft-state approach in which short-lived connections are only
established when they are needed. Moreover, QUIC is an
encrypted and authenticated transport protocol which provides
many benefits to the security and privacy of the Kadcast
protocol, as previously discussed.

In order to enable testing and evaluation in real-world
networks, we developed kadcast-ng, a prototypical node
implementation of the Kadcast protocol written in Rust [52].
The kadcast-ng codebase is open source and publicly
available.2 Following the separation of concerns principle and
for the sake of comparability, kadcast-ng is designed to run
on top of the Bitcoin Core daemon bitcoind [53], which is
the reference implementation of the vanilla Bitcoin protocol.
To this end, kadcast-ng interacts with bitcoind through
its remote procedure call (RPC) [54] and ZeroMQ [55] inter-
faces only, while leaving the enforcement of the consensus
protocol to bitcoind. This allows kadcast-ng to merely
act as a relay node that receives and submits transaction
and block data which it (de-)serializes using the rust-
bitcoin [56] library implementation. At the time of writing,
rust-bitcoin does not (yet) support Bitcoin’s compact
blocks [10]. The kadcast-ng prototype implementation is
therefore also limited to unsolicited block and transaction
propagation. As transport protocol and to establish overlay
connections, the kadcast-ng prototype utilizes the asyn-
chronous Quinn [57] library implementation of the QUIC
protocol and establishes an encrypted overlay network based
on a trust-on-first-sight principle.

B. Testbed Setup

In accordance with real-world blockchain networks, we
setup a testbed that enables the evaluation in a global and
real-world network setting. To this end, we deployed 1,000
instances of type e2-small in different regions of the

2https://git.tu-berlin.de/rohrer/kadcast-ng-public
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Figure 8: Block propagation delays for kadcast-ng and
Bitcoin Core in a testbed of 1,000 nodes.

Google Compute Cloud. Google Cloud’s e2-small in-
stances feature a shared CPU (vCPUs), 2 GB of memory,
and up to 1 Gbps egress bandwidth. We build upon the
results from [48], who measured the Bitcoin network and
derived a network model. According to the measured node
distribution, we deploy node instances close to the regional
center of the geographic topology model. Specifically, we
deployed nodes in the Google Cloud zones: us-west1-
a (NA), southamerica-east1-a (SA), europe-
west3-a (EU), asia-south1-a (AS), australia-
southeast1-a (OC), and asia-east2-a (CN). All node
instances are provisioned with Ubuntu Linux 20.10, Bitcoin
Core in regtest mode, and kadcast-ng.

Of all deployed nodes, 15 nodes are chosen as “miners”
based on the geographic mining distribution [48]. They are
then configured with a certain mining rate, which denom-
inates at which exponentially distributed rate they should
produce blocks to induce a network-wide average block
interval of 10 minutes. According to this parameter, new
blocks are generated through the invocation of bitcoind’s
generatetoaddress remote procedure call, which in the
regtest mode allows to instantaneously create blocks, i.e.,
simulate the mining process without actually searching for a
proof-of-work solution. In order to fill the blocks, new transac-
tions are created based on a transaction rate parameter, which
we assume to be uniformly distributed over all nodes. To this
end, on average a total of 2,000 transactions should be created
for every block interval through the distributed invocation of
the sendtoaddress RPC. This parameter corresponds to
the current average number of transactions per block in the
Bitcoin network [58]. To enable this distributed issuance of
transactions, we deploy a pre-generated blockchain and funded
wallets to each individual node during provisioning.

As before, we configure kadcast-ng with the default
parameters k = 100 and β = 3, and employ an initial
waiting period to ensure that all nodes have finished their
initial bootstrapping before the experiment’s measurement
period of 24 hours starts.

C. Block Propagation Performance

In order to study the block propagation performance of
the kadcast-ng prototype, we evaluated its unsolicited
broadcast in comparison to the Bitcoin Core baseline with

https://git.tu-berlin.de/rohrer/kadcast-ng-public
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and without compact block [10] relaying enabled. Over the
measurement period of 24 hours an average of 143 blocks were
produced and propagated in the described testbed scenarios
of 1,000 nodes, each of which recorded the time the blocks
arrived from the ZeroMQ interface.

The results are shown in Figure 8: Firstly, we observe
that the characteristics of the block propagation behavior
concur with the simulated scenarios, thereby validating our
prior results. Secondly, we observe that also in the testbed
deployment Kadcast is able to show its benefits, resulting a
block delivery time that is on average 43% faster than the
header-based propagation of Bitcoin Core, and even still 27%
faster than the case with enabled compact block relay.

The evaluation of the QUIC-based kadcast-ng prototype
implementation therefore does not only show the general fea-
sibility of a global-scale deployment of the Kadcast protocol,
but also once more underlines its significant impact on the
block propagation performance in many scenarios.

VII. RELATED WORK

In recent years, a large body of work proposed improve-
ments for blockchain networks.

Orthogonal to the core of the Kadcast broadcast protocol, a
number of contributions deal with private transaction relaying.
For example, Venkatakrishnan, Fanti, and Viswanath [46] and
Fanti et al. [47] propose protocol redesigns that improve
anonymity of transaction propagation in the Bitcoin network.
Similarly, Naumenko et al. [11] recently proposed a more
bandwidth-efficient protocol for transaction dissemination in
the Bitcoin network. While these prior works are concerned
with transaction propagation, Kadcast is mainly concerned
with block propagation, which is currently not considered
to have additional privacy requirements. Yet, for improved
privacy, we in fact build upon the main idea proposed by
Venkatakrishnan, Fanti, and Viswanath and extended Kadcast
in this paper. We therefore also provide an example for how
these protocols can be integrated in Kadcast.

The Graphene protocol [12] proposes a more efficient block
transmission protocol based on Bloom filters, specifically In-
vertible Bloom Lookup Tables (IBLTs). This scheme augments
the concept of compact blocks to enable higher bandwidth
utilization by only retrieving transactions missing from the
transaction mempool, which however accepts the possibility of
an increased worst-case block propagation delay. Similarly, the
Velocity protocol [13] uses FEC on top of the existing network
architecture. While improving on some aspects, such as the
messaging overhead of the current block delivery method
in Bitcoin, these protocols do not fundamentally change the
prevalent network and block propagation model. In particular,
they do not address issues that are inherent to unstructured
overlay networks. Kadcast however also tackles the overlay
structure and the dissemination protocol.

Decker and Wattenhofer [6] deploy a highly connected high
capacity node, which effectively reduces the network diameter.
While the approach has a positive effect on the propagation
delay, it also leads to a more centralized network design.
Kadcast is able to improve the propagation delay without
sacrificing decentralization.

Table II: Related protocols

Protocol Method Structured Overlay

Unstru
ctured Overlay

Block Propagation

Tx Propagation

Kadcast Broadcast delegation • - • ◦
BIP 152 [10] Compact blocks ◦ • • -
Erlay [11] Set reconciliation ◦ • - •
Graphene [12] Set reconciliation ◦ • • -
Velocity [13] Fountain codes ◦ • • -

◦ “can be used for” • “designed for”

Third-party relay networks, such as bloXroute [9] or
FIBRE [8] aim to improve the block distribution. While the
emergence of these proposals clearly show the urgency of
the problem, we consider them orthogonal to the goal of
improving the peer-to-peer networks of blockchain systems
themselves. Additionally, results suggest [5] that a separate
relay network has a negligible effect over switching to a faster,
i.e., unsolicited block propagation scheme. Moreover, since
such relay networks involve some central peer management
and coordination, they do not meet the blockchain design goals
of decentralization.

In general, the Kadcast protocol dictates the overlay struc-
ture and the distributed algorithm for information dissemina-
tion only. Messaging formats and handshakes between peers
still can make use of improvements such as compact blocks
as in Bitcoin’s improvement proposal BIP 152 [10] or alike.
Principally, Kadcast is compatible with related work such
as the previously mentioned Erlay [11], Graphene [12], and
Velocity [13]. Similarly, Kadcast can be combined with an ad-
ditional relay network—if desired. We summarize, categorize,
and compare related protocols in Table II.

Beyond cryptocurrencies, contributions focusing on the
broadcast in structured peer-to-peer networks are also relevant
for our work. El-Ansary et al. [59] realize a broadcast opera-
tion based on the overlay structure Chord [60]. Furthermore,
a number of entries are concerned with the broadcasting
operation in Kademlia [15]-based overlay networks [24, 61,
62]. Of these contributions, we highlight the work by Czirkos
and Hossz [24], as parts of Kadcast are based on the proposed
scheme. However, to the best of our knowledge, we are first
to adopt and evaluate a broadcasting algorithm based on a
structured peer-to-peer network in the setting of a real-world
application with respective additional requirements, e.g., in
terms of security.

VIII. CONCLUSION

In this work, we studied Kadcast, a new protocol for
fast, efficient, and secure block and transaction propagation
in blockchain networks. We analyzed Kadcast’s reliability,
security, and privacy, and showed its merits through extensive
simulative evaluations. Furthermore, we provided a prototype
implementation and utilized it to confirm our prior results
through deployment in a global-scale cloud-based testbed.
Finally, through our work, we hope to further the discussion
about alternative transport protocols in the blockchain space.
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