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Abstract. Deep learning-based side-channel analysis performance heavily depends
on the dataset size and the number of instances in each target class. Both small
and imbalanced datasets might lead to unsuccessful side-channel attacks. The attack
performance can be improved by generating traces synthetically from the obtained
data instances instead of collecting them from the target device. Unfortunately,
generating the synthetic traces that have characteristics of the actual traces using
random noise is a difficult and cumbersome task. This research proposes a novel data
augmentation approach based on conditional generative adversarial networks (cGAN)
and Siamese networks, enhancing in this way the attack capability. We present a
quantitative comparative machine learning-based side-channel analysis between a
real raw signal leakage dataset and an artificially augmented leakage dataset. The
analysis is performed on the leakage datasets for both symmetric and public-key
cryptographic implementations. We also investigate non-convergent networks’ effect
on the generation of fake leakage signals using two cGAN based deep learning models.
The analysis shows that the proposed data augmentation model results in a well-
converged network that generates realistic leakage traces, which can be used to mount
deep learning-based side-channel analysis successfully even when the dataset available
from the device is not optimal. Our results show potential in breaking datasets
enhanced with “faked” leakage traces, which could change the way we perform deep
learning-based side-channel analysis.
Keywords: Machine learning-based Side-channel Attacks · ASCAD · Elliptic Curves
Cryptography · Data Augmentation · Signal Processing.

1 Introduction
Recently, deep learning-based attacks have been extensively studied for improving the
profiling side-channel analysis (SCA) attacks, see, e.g. [MPP16, KPH+19, ZBHV19]. Pro-
filing attacks are the class of side-channel attacks in which the adversary is assumed to
have access to the target device’s open copy. Then, the attacker uses that copy of a device
to build a strong profiling (deep learning) model. With it, in the second phase of the
attack, the attacker infers the secret information, e.g., the secret key from the target device
based on the profiling model and measurements of some physical activity of the target
device while cryptographic implementation is running on it. The deep learning model’s
performance can suffer if enough data is not provided during the training phase. What is
more, using deep learning may not even make sense if not enough data is available. This
lack of availability could be a consequence of implemented countermeasure prohibiting
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collecting a large number of traces or due to the evaluation setup [PHG19]. Additionally, it
is rather common to use side-channel leakage models like the Hamming weight or Hamming
distance, which will result in an imbalanced class scenario [PHJ+18].

Deep learning is data-hungry. Not providing enough data can mean that either we
do not reach the full potential of a certain method or, in more extreme cases, that the
method shows very poor performance. One common reason for it is overfitting, where the
deep learning model learns how to model the noise, making it difficult to generalize to the
previously unseen examples. To fight against it, researchers commonly use techniques like
1) hyperparameter tuning - to find architectures that are better tuned for the task and
thus have less capacity to overfit, 2) regularization - to lower the complexity of a neural
network model during training, and thus prevent the overfitting, and 3) data augmentation
- to provide additional (synthetic) examples, utilizing the capacity of a model better, but
to also regularize the model with noise inherent to the synthetic examples. Each of those
techniques has its advantages and drawbacks, and they are also successfully applied to the
side-channel domain. Interestingly, while hyperparameter tuning and regularization (e.g.,
dropout, L2 regularization) are commonly used in SCA, data augmentation received less
attention, despite very good preliminary results. One possible reason lies in the difficulty
of clearly visualizing how a successful synthetic side-channel measurement should look
(something much simpler in, e.g., image classification domain).

Cagli et al. proposed the first data augmentation setup for deep learning-based SCA
to counter the effects of clock jitter countermeasure [CDP17]. Still, the authors do not
consider scenarios where the number of measurements is significantly limited. Picek et al.
presented the results with traditional machine learning data augmentation techniques and
concluded that Synthetic Minority Over-sampling Technique (SMOTE) could aid in data
generation, resulting in improved attack performance [PHJ+18]. Differing from us, the
authors used the Hamming weight leakage model, which resulted in an imbalanced dataset.
In our work, we used intermediate values resulting in more classes and more challenging
analyses. Luo et al. used a mixup data augmentation technique where new synthetic
examples are based on randomly selected combinations of existing examples [LZW+21].
The authors conducted experiments for several datasets and leakage models and obtained
mostly similar behavior for the original and mixup traces.Generative Adversarial Networks
(GAN) is another popular data augmentation technique that is widely used in the image
processing domain for generating fake images [LHY+20], which significantly improves the
machine learning model’s performance [GPAM+14]. Only one existing study presents the
realization of using GAN-generated fake signals as leakage signals for machine learning-
based side-channel analysis [WCL+20]. However, the authors use more profiling traces and
the HW leakage model (which will result in fewer classes), making their work significantly
different from ours. What is more, this work misses providing a detailed analysis of the
GAN network before using it for the fake data generation.

GAN’s performance for generating fake images/signals depends on the generator’s
progressive learning based on the discriminator’s response. The design and selection of a
GAN play an important role in generating realistic leakage signals. A well-convergent GAN
network will generate traces carrying relevant/significant features similar to the original
data samples. Designing a GAN-based model with optimum convergence or equilibrium
point is one of the greatest challenges for generating fake signals [KAHK17] that contain
the characteristics of real leakage traces. Several techniques, presented for fake image
generation, can help achieve convergence, including feature matching [SGZ+16], conditional
GAN (cGAN) [MO14], and semi-supervised learning [SGZ+16]. In our work, we generated
50% traces for each class (256×150×2 real and fake traces for AES and 16×150×2 real
and fake traces for ECC), making the setting very challenging. The selection of a well-
convergent cGAN based network is an important step that should be thoroughly explored
before data generation. Moreover, we provide a detailed insight on how cGAN generates
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relevant data and works for side-channel analysis. We also present a fast convergent
GAN network by utilizing the configurations/characteristics of the Siamese network. Our
approach is inspired by the fake image generation presented in [HLSC18].Our presented
generic model can generate fake data for various leakage datasets, including symmetric
and public-key algorithm implementations. We provide a comparative analysis with the
existing simple dense layer-based cGAN network used for leakage generation.

Specifically, we list our contributions as follows:
• We present a layered approach for generating the 1-dimensional fake signals for
machine learning-based side-channel analysis (ML-SCA). Our approach combines
Siamese network and Conditional GAN characteristics with an extra model loss
monitoring layer introduced to detect the model convergence. The visual repre-
sentation of the loss function of the proposed data augmentation technique helps
in analyzing the well-converged GAN model. A well-converged network helps in
generating indistinguishable fake traces that will give the same insights to the data
as that of the original signals. With this, we showcase the relevance of “real vs. fake”
data and exhibit successful attacks with synthetic data that could impact various
real-world use cases and security applications.

• We provide a comparative analysis exhibiting the fake leakage trace datasets’ effect
on the side-channel model training performance. These fake leakage traces are
generated from various converging points during the proposed Siamese-cGAN model
training, which helps to analyze the importance of the well-converged models.

• The proposed Siamese-cGAN model can be generalized to any leakage dataset (from
varying cryptographic algorithm implementations). To demonstrate this, we have
trained our proposed model on datasets containing either symmetric or public-key
algorithm implementations, using two different neural networks for generator and
discriminator. Best performing neural networks are further selected for analysis.
While there are a few results showing the benefits of data augmentation for symmetric-
key implementations, to the best of our knowledge, this was not done before for
public-key implementations.

• We provide a comparative analysis of our proposed Siamese-cGAN model with the
existing used cGAN model [WCL+20] (named as cGANModelA in this study) for
generating fake leakage traces. 1

• The performance of the Siamese-cGAN data augmentation model is evaluated by
applying the actual machine learning-based side-channel attack on the generated
leakage traces using four different neural network architectures (one multilayer
perceptron (MLP) and two Convolutional Neural Networks (CNNs) for symmetric
algorithm implementation leakages and one CNN for public-key implementation
leakages). Our results show that the fake data samples generated from the well-
convergent model combined with 50% real data successfully recover the secret with
similar efficiency as real data traces alone. What is more, for the ASCAD case, the
key rank suggests even improved results for the dataset consisting of real and fake
traces. We emphasize that the goal of our approach is not only to improve the attack
performance in scenarios where there are enough real measurements for a successful
attack. Rather, we envision it for constrained settings where more measurements
than available are needed to break the target. We think here of implementations
that randomize the secret (key) after a number of algorithm’s execution such that
the adversary can collect only a limited number of traces for the analysis.

The rest of the paper is organized as follows. Section 2 gives an overview of the profiled
and machine learning-based side-channel attacks, cGAN background, machine learning,
and cryptographic algorithms used for analysis. In Section 3, we provide an overview of

1We note that the provided details were not sufficient to ensure the reproducibility of the results, so we
did our best to infer the used architecture from the description.
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related works. Section 4 explains the layered GAN approach for leakage traces generation
for ML-SCA, while Section 5 discusses the experiments conducted along with the results.
Finally, Section 6 concludes the paper and discusses possible future research directions.

2 Preliminaries
In this section, we discuss the profiled side-channel attacks, (conditional) generative
adversarial networks (GANs), data augmentation, and machine learning techniques we
investigate in this paper. Finally, we briefly discuss the datasets we use.

2.1 Profiled Side-channel Attacks
The profiled attack represents the most powerful side-channel attack where the adversary
has access to the target device’s open copy. There are two phases of the attack: the
profiling phase and the attack phase. In the profiling phase, the adversary creates a profile
of the device with all the possibilities for the data leakages and then uses that profile
(template in the case of template attack [CRR03] or machine learning model) in the attack
phase to distinguish/predict the unknown secret information [WOS14].

Commonly, profiled attacks are divided into classical ones like template attacks [CRR03]
and stochastic model [SLP05], and machine learning-based attacks [LBM14, MPP16].
Machine learning-based side-channel attacks (ML-SCA) follow the same steps as the
classical profiling attacks. More precisely, they have two phases: training phases (profiling
phase) and testing phase (attack phase). The adversary can train the model with the
leakage examples collected from the identical copy of a target device and then evaluate
the trained model using previously unseen examples.

2.2 Generative Adversarial Networks (GANs)
The generative adversarial networks were first introduced by Goodfellow et al. in
2014 [GPAM+14]. Since then, many variations of GAN have been proposed, including
Conditional GAN (cGAN), Deep Convolutional GAN (DC-GAN), Information Maximizing
(InfoGAN), and Stacked GAN (StackGAN) [RMC16, MO14, CDH+16, ZXL+17, BDS18].

A generative Adversarial Network (GAN) is a neural network architecture for training
generative model which is then capable of generating plausible data. It consists of two
neural networks adversarial models, discriminator D and generator G. Generator G
network generates the fake data with random noise input z, and discriminator D network
discriminates between real and fake data. Real data is labeled as ’1’ and artificially
generated (fake) data is labeled as ’0’.

The discriminator’s task is to distinguish the real and generated data instances, whereas
the generator’s task is to improve the model based on the feedback from the discriminator.
GANs are based on the concept of a zero-sum non-cooperative game where one network
(discriminator) is trying to minimize the loss, and the other network (generator) is
trying to maximize the loss (this min-max problem as given by equation 1), meaning
the discriminator is trying to distinguish and classify the data instances as real or fake.
However, the generator is trying to generate data traces that are alike. This makes it
hard to find a good convergence point. GAN converges when both D and G reach a Nash
equilibrium, meaning that one (D/G) will not change its actions anymore, no matter what
opponent (D/G) does. This is the optimal point which adversarial loss in GANs aims to
optimize.

Ex[log(D(x))] + Ez[log(1−D(G(z)))]. (1)
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There are different techniques used to improve the performance of GANs by improving
the convergence. One of such techniques is Conditional GAN (cGAN).

2.3 Conditional Generative Adversarial Networks (cGANs)
GANs help in generating plausible data, but there is no way of controlling what kind of
random data they will generate. To handle the issue, GAN can be conditioned with some
extra data to control the information being generated. GAN with an extra condition is
called Conditional Generative Adversarial Network (cGAN). The extra data in cGANs is
the class label of the data samples. Using class labels for cGAN training has two main
advantages: firstly, it helps in improving the GAN performance, and secondly, it helps in
generating the specific target class samples.

In the training process of the cGAN model, the generator network generates data
based on the label and the random input and tries to replicate the actual distribution in
the real data samples. The generated samples are of the same structure as that of the
input labeled data. In the next step, the real and the generated/fake data are given as
input to the discriminator. The discriminator is first trained with the original/real labeled
data samples and is then trained with the fake generated data samples. Similar to GANs,
the discriminator’s task is to separate the fake from real data samples, which helps the
generator is generating better (realistic) samples [MO14].

2.4 Data Augmentation
Data augmentation is an umbrella term representing various techniques used to increase
the amount of data by adding (slightly) modified copies of already existing examples or
newly created synthetic examples from existing data. Data augmentation can act as a
regularization technique and will help reduce overfitting. While data augmentation can
be applied to any domain, most of the results and techniques were developed for data
augmentation in image classification [SK19].

2.5 Machine Learning Algorithms
Based on the deep learning-based side-channel attacks (DL-SCA) performance on var-
ious cryptographic algorithms [CDP17, WPB19, MMKA18], we tested our newly gen-
erated datasets using two state-of-the-art machine learning algorithms: multilayer per-
ceptron (MLP) and Convolutional Neural Network (CNN). MLP and two variations of
CNN [BPS+20, ZBHV19] are used to evaluate the AES dataset, and one CNN architec-
ture [WPB19] is used to evaluate the ECC dataset.

2.5.1 Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) belongs to a class of feed-forward neural network algorithms
consisting of one input layer, one or more hidden layers, and one output layer. Each
layer consists of nodes/neurons, except the input layer. These nodes utilize a nonlinear
activation function to learn the patterns in the data. MLP uses supervised learning-based
backpropagation to change the weights on the connections during the data processing. A
batch of data is presented to these fully connected networks during each epoch for learning.

2.5.2 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN or ConvNet) is a class of deep learning neural
networks and is principally based on convolutions. A CNN architecture consists of an input
and an output layer and few hidden layers. Hidden layers are usually convolutional layers
having an activation function, followed by pooling layers that help reduce the dimension
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of data. CNN has the capability of learning the patterns from noisy side-channel leakages
without any preprocessing [CDP17].

2.6 Cryptographic Algorithms Under Evaluation
For our analysis, we investigate the performance of our proposed model on two publicly
available datasets. One dataset corresponds to the implementation of Advanced Encryption
Standard (AES) and the other to the Elliptic Curve Cryptographic (ECC) implementation.

• The ASCAD dataset ([BPS+20]) is the first dataset that acts as a basis for compara-
tive analysis of deep learning-based side-channel analysis (DL-SCA). The traces are
collected from the masked AES-128 bit implementation on an 8-bit AVR microcon-
troller (ATmega8515). The leakage model is first-round S-box (Sbox[P (i)3 ⊕ k∗])
where the third byte is exploited (as that is the first masked byte). There are 60 000
total traces along with the metadata (plaintext/ciphertext/key). These traces are
further split into two datasets, one for training (profiling) consisting of 50 000 and
the other for testing (attacking), consisting of 10 000 traces. Each trace consists of
700 features. The labels are stored in a separate file.

• The publicly available ECC dataset ([WPB19],[ecc19]) consists of power consumption
traces collected from a Pinata development board (developed by Riscure). The
board is equipped with a 32-bit STM32F4 microcontroller (with an ARM-based
architecture), running at the clock frequency of 168 MHz and having Ed25519
implementation of WolfSSL 3.10.2. The target is the profiling of a single EC scalar
multiplication operation with the ephemeral key with the base point of curve Ed25519.
The 256-bit scalar/ephemeral key is interpreted as slices of four nibbles. Hence there
are a total of 16 classes/labels in the dataset. The dataset has a similar format
as ASCAD. The database consists of two groups of traces; profiling traces and
attack traces. Each group further consists of “TRACES” and “LABELS”. Each raw
trace consists of 1 000 features, representing the nibble information used during the
encryption. Profiling and attack traces groups consist of np and na tuples, with
a corresponding label for each trace. In total, there are 6 400 traces, out of which
80/20 are kept for profiling (np = 5 120) and attacking (na = 1 280).

The profiling traces from both datasets are used to train the cGAN models. Half of the
real traces per class are kept in the final dataset, along with the generated data samples.
The attacking traces are used for evaluating the performance of the DL-SCA model trained
with the new dataset.

It should be noted that the purpose of this research is to analyze the effect of artificially
generated features in data traces for environments where the adversary has an additional
constraint on collecting leakage traces to form a dataset. The presented methodology can be
extended to produce and test the fake leakage traces for any other cryptographic algorithms.

2.7 Siamese Neural Network
Siamese neural network (also called twin/identical neural network) is an artificial neural
network architecture that consists of two similar neural networks (having the same weights
and network parameters) and is capable of processing two different input vectors to produce
comparable output vectors [KZS15]. The two neural networks are feed-forward multilayer
perceptrons that work in tandem and are trained in a backpropagation manner. The
idea behind Siamese neural network is not to learn to classify the labels but to learn to
discriminate between the input vectors. Hence a special loss function, contrastive loss, or
Triplet Loss is used for the training of the network [LSP21]. For training the network, the
pairs (xi, xj) of input vectors are prepared; few pairs consist of similar vectors, and few
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pairs consist of dissimilar vectors. The similar vector pair is labeled as y=’1’, whereas the
dissimilar pair is labeled as y=’0’. Each pair is fed to the Siamese network, and distance is
computed to check the similarity. The output vectors from each network are compared
using cosine or Euclidean distance and can be considered as a semantic similarity between
projected representation of the input vectors [Chi21].

3 Related Works
Data augmentation represents a set of techniques to reduce overfitting and improve the
supervised machine learning task (commonly classification). Data augmentation is a
well-researched topic, mostly framed in the context of image data augmentation [SK19].
While there are multiple ways to divide the data augmentation techniques, a common one
is on techniques transforming the input, deep learning techniques (where our work also
belongs), and meta-learning.

Data augmentation in SCA is used to improve side-channel attack performance and can
be put in the same general direction as, e.g., works exploring how to improve hyperparameter
tuning. As data augmentation increases the amount of data, it is commonly considered in
the deep learning perspective as there, very large datasets are beneficial.

There are significantly more works considering symmetric-key cryptography and deep
learning-based SCA than public-key cryptography. What is more, we are not aware of any
works exploring the perspective of data augmentation for public-key cryptography.

3.1 Deep Learning-based SCA on AES
The first investigation that uses convolutional neural networks for side-channel attacks
on AES is conducted by Maghrebi et al. [MPP16]. This work represents a significant
milestone for the SCA community as it demonstrated how deep learning could be used
without feature engineering and efficiently break various targets. 2

Cagli et al. investigated how deep learning could break implementations protected
with jitter countermeasures [CDP17]. This work is highly relevant as it introduced data
augmentation to the SCA domain. The authors used two data augmentation techniques:
shifting (simulating a random delay) and add-remove (simulating a clock jitter). Picek et
al. investigated how reliable are machine learning metrics in the context of side-channel
analysis. Their results showed that machine learning metrics could not be used as sound
indicators of side-channel performance [PHJ+18]. Additionally, as the authors used the
Hamming weight leakage model that results in class imbalance, they utilized a well-known
data balancing technique called SMOTE, showing that the attack performance can be
significantly improved. Kim et al. explored how to design deep learning architectures
capable of breaking different datasets [KPH+19]. Additionally, they used Gaussian noise at
the input to serve as a regularization factor to prevent overfitting. Luo et al. investigated
how mixup data augmentation can improve both CPA and deep learning-based side-channel
attacks [LZW+21].

Next, several works aimed at improving neural network performance by providing
a systematic approach for tuning neural network architectures. Zaid et al. were the
first to propose a methodology to tune the hyperparameters related to the convolutional
neural network size (number of learnable parameters, i.e., weights and biases) [ZBHV19].
Wouters et al. [WAGP20] further improved upon the work from Zaid et al. [ZBHV19]
by showing how to reach similar attack performance with even smaller neural network
architectures. Rijsdijk et al. used reinforcement learning to design in an automated way

2We note earlier works are also using neural networks like multilayer perceptron, but the results were
in line with other machine learning techniques, and researchers commonly used feature engineering to
prepare the traces.
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small convolutional neural networks that perform well [RWPP21]. Following a different
approach to improving the attack performance, Wu and Picek showed how denoising
autoencoder could be used to reduce the effect of countermeasures [WP20]. The first work
that considers the usage of GANs (more specifically, cGANs) for the SCA domain is made
by Wang et al. [WCL+20]. While this work shows the potential of GANs in SCA, the
results indicate that a large profiling set is required to construct useful synthetic data.

3.2 Deep Learning-based SCA on Public-key Cryptography
There are several works using template attack (and its variants) to attack public-key cryp-
tography, see, e.g., [MO08, HMH+12, BCP+14, OPB16]. Lerman et al. used a template
attack and several machine learning techniques to attack an unprotected RSA implemen-
tation [LBM14]. Carbone et al. used deep learning to attack a secure implementation of
RSA [CCC+19]. The authors showed that deep learning could reach strong performance
against secure implementations of RSA. Weissbart et al. showed a deep learning attack
on EdDSA using the curve Curve25519 as implemented in WolfSSL, where their results
indicate it is possible to break the implementation with a single attack trace [WPB19].
Weissbart et al. considered deep learning-based attacks on elliptic curve Curve25519
protected with countermeasures and showed that even protected implementations could
be efficiently broken [WCPB20]. Perin et al. used a deep learning approach to remove
noise stemming from the wrong choice of labels after a horizontal attack [PCBP21]. The
authors showed that protected implementations having an accuracy of around 52% after a
horizontal attack could reach 100% after deep learning noise removal. Zaid et al. introduced
a new loss function called ensembling loss, generating an ensemble model that increases
the diversity [ZBHV21]. The authors attacked RSA and ECC secure implementations and
showed improved attack performance.

4 Proposed Approach
This section explains the proposed layered GAN model used for selecting the optimal
model for generating leakage signals from random noise.

4.1 Data Splitting
The leakage data traces L are collected from the device while AES or ECC algorithms
encryptions E are performed using the secret key K or scalar/ephemeral key K, respectively.
The labeled collected traces are then divided into two sets: Training (DT raining) and
Testing (DT esting). The training set is used for training the Siamese-cGAN model, which
then produces the fake traces. The newly generated dataset (real+fake traces) is used to
train the DL-SCA model, and the testing set is used for evaluating the performance of the
SCA model. For a fair evaluation of the trained Siamese-cGAN model, the testing set is
never shown to the network during the Siamese-cGAN model training process.

For the rest of the paper, “cGAN models” or “Siamese-cGAN models” refer to the
model used for generating data. However, “DL-SCA models” refer to the deep learning
models, which are used to evaluate the performance of the generated data by applying
profiling side-channel attacks.

4.2 Siamese-cGAN Model for Data Augmentation
In contrast to the standard GANs, conditional GANs (cGANs) perform conditional
generation of the fake data based on the class label rather than generating signals blindly.
The labels c of the data traces/instances are used to train GANs in a zero-sum or adversarial
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manner to improve the learning of the generator (G). As mentioned before, the generator’s
G task is to generate the leakage signals that carry similar properties as the original traces
using the random noise z and the latent space input ls. The discriminator’s D task is to
distinguish real and fake signals. In the cGAN training process, first, the discriminator D
is trained with the labeled real data traces Treal, and then the discriminator D is trained
with the fake generated signals G(z) or TGen. The objective function for cGAN is given
by Eq. (2).

Ex∼TReal
[log(D(x|c))] + Ez[log(1−D(G(z|c)))]. (2)

In our proposed design of Siamese-Conditional Generative Adversarial Network (Siamese−
cGAN), we are combining cGAN with the Siamese network concept. Siamese network
is an architecture in which two identical/twin networks carrying the same weights are
trained with two different inputs. In the proposed model, two generators G1 and G2 take
two random input noise vectors z1 and z2, and generate fake signals G(z1) and G(z2),
respectively, in a Siamese fashion. Both the generators share the same network weights,
and only the input is different. The discriminator D is first trained with the labeled real
data Treal and then with the fake data Tgen, originating from the two twin generator
networks G1 and G2.

As mentioned before, convergence is a challenging issue in training GANs. In some cases,
the model converges and then starts diverging again; that is, it forgets its learned examples.
Several techniques include memory-based learning, to handle such scenarios [WHL+19].
Training the model simultaneously with the random noise from two sources can help obtain
a better-converged model. Moreover, to analyze the impact of convergence, we introduced
another layer in the two-step cGAN model to analyze the model performance for leakage
traces. This layer monitors the real traces loss Lreal, generated traces loss Lgen, and GAN
model Loss LGAN .

Let DGAN→R represent the loss difference between LGAN and Lreal, and DGAN → G
represent the loss difference between LGAN and Lreal, then the average of loss differences
over last t iterations will be given by:

1
t

t∑
i=1

(|DGAN→R|+ |DGAN→G|). (3)

The Siamese-cGAN model stops training when the average model loss LossAvg over
the last t iteration is less than the average loss over the last t ∗ 2 iterations. The trained
Siamese-cGAN model is then used to generate the ng fake traces Tgen, containing features
similar to the original signals. Tgen and Treal, having ng and nr instances respectively, are
combined together to form a resultant dataset TGAN . This dataset is then used to train
the machine learning model to analyze the generated dataset’s performance with ML-SCA.
A test set is set aside for a fair evaluation before adding the generated traces into the
training dataset. The test set is never shown to the neural network during training. The
proposed Siamese-cGAN specific for ML-SCA is shown in Figure 1.

4.3 cGAN Models for Discriminator and Generator
In the proposed Siamese-cGAN model, the selection of generator and discriminator plays
a vital role. The authors in [WCL+20] recommended using a generator and discriminator
with fully connected dense layers only, without any complex layers. However, in this study,
we explore the possibility of using fully connected dense layers as well as the convolutional
layers in discriminator. The reason for evaluating CNN layer-based network is that it
has provided better fake images generation in image processing [RMC16]. Hence, for
evaluating the trained Siamese-cGAN model performance, two different networks are used
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Figure 1: Proposed Siamese-cGAN architecture for ML-SCA

for the generator and discriminator. These networks are denoted as Model A and Model B.
Model A is based on two fully connected layers for the generator and the discriminator.
However, Model B (CNN-based) has a more complex architecture with four fully connected
and one CNN layer. Batch normalization, LeakyRelu, and dropout layers are introduced,
which help achieve a more stable model and help avoid overfitting. Additionally, we tested
both Model A and Model B generators and discriminators with and without Siamese
settings to analyze the improvements introduced by using the Siamese configuration.

Figures 2 and 3 show the structure of both the models. We use the same generator
and discriminator model architectures for generating data samples for both symmetric
and public-key leakages. The only parameter that needs to be changed is the size of dense
layers, which changes based on the number of classes per target dataset. The size in each
subsequent layer is doubled from the previous layer. That is, layer 1, layer 2, and layer
3 have a size equal to the number of classes, the number of classes*2, and the number
of classes*4, respectively. The convolutional layer has a tanh activation function. The
parameter details for the generator network are given in Table 1, while for discriminator,
we use a dense layer (512), LeakyReLU, and Dropout set at 0.4.

Table 1: Generator Architecture Details
Hyper-parameter Value
Input shape (700,1) for AES, (1 000,1) for ECC
Fully Connected layer 1 number of classes
Fully Connected layer 2 number of classes*2
Fully Connected layer 3 number of classes*4
Dropout rate 0.4
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Figure 2: Siamese− cGANModel A

5 Experiments and Results
In this section, we present the experimental setup and the results of applying our proposed
methodology on the publicly available datasets.

5.1 DL-SCA Evaluation Model Architectures
As mentioned in Section 2.5, we use MLP and CNN architectures to evaluate the per-
formance of the newly generated datasets using the cGAN model. The state-of-the-
art DL-SCA model architectures for evaluating the original publicly available datasets
([BPS+20, ZBHV19, WPB19]) are used in the same setting except for the batch size and
epochs, which are varied between 50-200 to see the impact on the results.

For evaluating the ASCAD dataset, the first architecture is an MLP-based network
from [BPS+20]. The first CNN architecture is denoted as ASCAD-CNN1 ([BPS+20]), while
the second one is denoted as ASCAD-CNN2 ([ZBHV19]). For evaluating the ECC dataset
performance, we use the deep learning architecture presented in [WPB19]. Note that we
use the existing state-of-the-art DL-SCA model architectures to allow fair comparison.
What is more, the goal of this work is not to find new deep learning architectures but to
enhance the performance of the existing architectures.

The performance of the DL-SCA trained models with the newly generated datasets is
evaluated using two commonly used evaluation metrics: key rank and accuracy. Accuracy
represents the number of correctly classified examples divided by the total number of
examples. Key rank is the position of the correct key guess in the key guessing vector.
More precisely, this vector contains the key candidates in decreasing order of probability,
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Figure 3: Siamese− cGANModel B

and finding the position of the correct key indicates the effort required by the attacker to
break the target.
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5.2 Experimental Setup
For our experiments, the proposed GAN models have been developed and trained using
Keras and Tensorflow libraries. The models are trained to generate the fake data on a
common computer equipped with 32Gb RAM, i7-4770 CPU with 3.40GHz, and Nvidia
GTX 1080 Ti. The Siamese− cGANModels training took less than 5 minutes to train
and less than 5 minutes to generate 150 fake traces for 256 classes in total. Obviously, the
time required for fake data generation will vary depending upon the number of classes and
the number of generated fake traces per class.

We divide our experimental analysis into two sections.
• Analysis-1: first, in Section 5.3, we provide the visual representation of the trained

cGAN models over 1 000 epochs. Visual representation helps identify the convergent
model, which is then further selected for analysis in the second phase of analysis. We
trained four cGAN models, out of which two are existing and two are newly proposed,
based on the generator and discriminator as explained in Section 4.3. Details of the
cGAN models are given in Table 2. We also provide the model convergence-based
comparison of our proposed Siamese-cGAN-based model with the existing cGAN
models [WCL+20].

• Analysis-2: second, in Section 5.4, we provide the machine learning-based side-channel
analysis of two datasets; dataset containing real leakage signals only and the dataset
consisting of both real and fake leakages, by training with two neural networks (MLP
and CNN). For this analysis, we also show the comparison of generating leakage
signals from the non-converging network and a converging network. To achieve
this, we generated fake signals from various points while training the Siamese-cGAN
network. More precisely, we generated the signals when the model converged the
best and generated the signals when the model was the least convergent (initial
epochs). Converging details of each model are given in the respective sections. This
comparison is performed to highlight the fact that not any cGAN can be selected
blindly. Only a well-convergent network will generate traces that are more alike in
characteristics to that of original real traces.

Table 2: cGAN Model Details
Model Name Description
cGAN Model A Model without CNN and Siamese network
cGAN Model B Model with CNN but without Siamese network
Siamese− cGAN Model A Model without CNN but with Siamese network
Siamese− cGAN Model B Model with CNN and with Siamese network

5.3 Analysis-1: Existing and Proposed GAN-based Approaches
In this section, we perform a convergence-based comparative analysis of our approach with
the existing cGAN models. The existing cGAN networks (without layered Siamese-cGAN
setting) are denoted as CGAN Model A/B, whereas our proposed models are denoted
as Siamese− cGAN Model A/B. For this analysis, all four cGAN networks are trained
with the DT raining dataset and the GAN model loss for both AES and ECC, as shown
in Figures 4 and 5, respectively. Figure 4 a and b presents the real, fake, and GAN
loss for training with cGAN Model A and cGAN Model B without Siamese settings,
respectively. Next, Figure 4 c and d presents the real, fake, and GAN loss for training with
Siamese − cGAN Model A and Siamese − cGAN Model B with the Siamese setting.
Similarly, Figure 5 presents all four cGAN training models’ loss for the ECC dataset.

Siamese − cGAN and cGAN models, for the ASCAD and ECC dataset analysis,
are trained for 1 000 epochs, and history is recorded every ten epoch. Hence x-axis is
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scaled by 10. It can be seen that the proposed Siamese− cGAN Model B architecture
(based on CNN) provides the best loss convergence of real, fake, and GAN models as the
models converge around 100-150 epochs and 700-1 000 epochs for AES and ECC datasets,
respectively.

This shows that at this convergence point, the generator started generating traces that
are similar in characteristics to the real traces, making it harder for the discriminator
to discriminate between real and fake. Existing cGAN Model A and cGAN Model B
without Siamese configuration did not converge well in 1 000 epochs. Moreover, for
Siamese − cGAN Model B, GAN loss is high and quickly decreases in initial epochs.
Hence, the proposed Siamese − cGAN Model B is the robust solution for generating
artificial/fake leakage signals for both algorithms as it converges better and faster than
other cGAN models. Interestingly, Siamese− cGAN Model A performs relatively poorly,
indicating that indeed the more powerful neural network architecture was required for this
task. In conclusion, from this analysis, Siamese− cGAN Model B is further selected for
generating the fake data in analysis phase 2.

(a) (b)

(c) (d)

Figure 4: CGAN Model Training Loss for the ASCAD dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

5.4 Analysis-2: Analysis of the Proposed Siamese-CGAN for DL-SCA
Based on the results from the previous analysis, Siamese− cGAN Model B is selected
for further experiments in this section. Now, we perform DL-SCA (using MLP, ASCAD-
CNN1, and ASCAD-CNN2) on the newly generated TGAN (real+fake traces) datasets,
generated using Siamese− cGAN Model B. However, for performance comparison, we
also conducted analysis on the real dataset (with reduced traces per class). Hence, two
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(a) (b)

(c) (d)

Figure 5: cGAN Model Training Loss for the ECC dataset (a) cGAN Model A, (b)
cGAN Model B, (c) Siamese− cGAN Model A, (d) Siamese− cGAN Model B

datasets are formed; one with real traces only and the other (TGAN) with both real and
fake traces. For TGAN datasets, two further datasets are formed, one for the fake data
generated from the well-converged model and the second from the non-convergent model.
Finally, we analyze how the key rank of a side-channel attack is impacted by all these
different settings.

5.4.1 Analysis on Real Traces

In our experiments, we reduced the size of the ASCAD and ECC leakage datasets in-
tentionally to analyze the effect of the artificially generated data traces on the small
size datasets. We selected nr = 150 (for each class) leakage traces from the ASCAD
and ECC datasets. The reason for selecting precisely 150 traces per class is because we
wanted an equal number of real traces for all the classes. In the ASCAD dataset, class
213 has a minimum number of traces (154 traces), hence 150 is selected. No artificial/fake
traces are included in the training dataset, so ng = 0. Hence, total number of traces
in AES and ECC datasets are 38 400 (150 traces × 256 classes) and 24 00 (150 traces
× 16 classes), respectively. For machine learning-based attacks, we used the previously
successful machine learning side-channel attack models for AES and ECC in respective
studies [BPS+20, ZBHV19, WPB19].

The purpose of using the same deep learning-based models is to show that the artificially
generated traces produce the same results as the real traces with the same model architec-
tures. When considering the ASCAD-CNN1 architecture, everything stays the same as in
previous studies’ analysis except that we perform normalization on the training and testing
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data. For normalization, each input variable feature is scaled in the range [−1, 1] by using
MinMaxScaler from the Sklearn library. For MLP, 10-fold cross-validation is performed.
For ASCAD-CNN2 analysis, in addition to applying normalization, a standardization is
added as per the proposed architecture in [ZBHV19], and data is standardized around
mean with a unit standard deviation (between 0 and 1) [GBC16, LBOM12]. For ECC, the
same model is used for training and testing as proposed in [WPB19].

Figure 6 (a) shows the key rank for the real traces (38 400) dataset for the ASCAD
dataset analysis using MLP and 10-fold cross-validation. We compare our results of reduced
original traces with the results of MLPbest reported in [BPS+20], which is plotted for the
trained model on 50 000 traces. We can see a slight deviation though both figures are for
the trained model on real traces. Figure 6 (b) shows the key rank on reduced ASCAD
dataset trained using ASCAD-CNN2. It shows key rank not approaching zero in the first
1 000 traces. This shows that the reduced dataset did not perform as expected with the
existing models.

Figure 7 shows the accuracy for the real traces dataset for ECC dataset analysis using
CNN architecture [ZBHV19]. For ECC, the analysis of raw real data traces shows that
the private key can be recovered with 100% accuracy using CNN. It should be noted that
preprocessing and alignment have not been applied to these datasets.

(a) (b)

Figure 6: Results for (a) Key rank for the ASCAD dataset having 38 400 profiling traces
trained using MLP, and (b) Key rank for the ASCAD dataset having 38 400 profiling traces
trained using ASCAD-CNN2

Figure 7: Results for training and validation accuracy for the ECC dataset having 2 400
profiling traces
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5.4.2 Analysis on Real and Generated traces Dataset with the Maximum and Mini-
mum Convergence

For the maximum convergence analysis, the training dataset consists of an equal proportion
of the real traces and the artificially generated fake traces, that is, nr = 150 and ng = 150.
Fake leakage signals are generated for the epochs during which the cGAN-Siamese model
achieves maximum convergence. For the minimum convergence analysis, we combined the
real traces with the artificially generated traces in equal proportion, the same as for the
maximum convergence case. However, traces are collected for the epochs during which the
GAN model showed minimum convergence.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Key rank for the ASCAD dataset for (a) Maximum convergence cGAN −
Siamese Model B using MLP, (b) Minimum convergence cGAN − Siamese Model B
using MLP, (c) Maximum convergence cGAN − Siamese Model B using ASCAD-CNN1,
(d) Minimum convergence cGAN−Siamese Model B using ASCAD-CNN1, (e) Maximum
convergence cGAN − Siamese Model B using ASCAD-CNN2, (f) Minimum convergence
cGAN − Siamese Model B using ASCAD-CNN2

Figure 8 shows the key rank for both maximum and minimum convergence for all three
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DL-SCA models and the ASCAD dataset. We notice that generating fake traces from
the maximum convergence point has a significant impact on key rank. The maximum
convergence is achieved around 100-150 epochs for Siamese− cGAN Model B. Hence,
data traces are generated around those epochs for analysis. It is observed that with the
generated traces, all models (MLP, ASCAD-CNN1, and ASCAD-CNN2) gave the best
performance, and the secret key can be obtained efficiently. Thus, we can conclude that
the artificially generated traces contain significant information that improved the ML-SCA
performance.

(a) (b)

Figure 9: Training and validation accuracy on the ECC dataset collected from (a) Maximum
convergence point, (b) Minimum convergence point

The minimum convergence is observed around initial epochs, so artificial 150 traces per
class are generated around this point and are combined with the real 150 traces to train
the DL-SCA model. Observe that with minimum convergence, the DL-SCA attack model
shows key rank is not stable, as it reaches zero in certain cases and starts increasing again as
can be seen from Figures 8b and 8f . However, for Figure 8d (trained with ASCAD-CNN1),
it appears to reach a key rank of zero near 1 000 traces, so more investigation is required
to assess this case properly.

Figure 5 shows the GAN convergence curve for the ECC dataset. The model trained
with the proposed Siamese− cGAN Model B shows a better convergence as compared to
the other three cGAN models’ losses. The traces with the maximum convergence analysis
are generated around epoch 700-1 000 (70-100 scaled in Figure 5), and traces for the
minimum convergence are generated around 20-30 epochs. The performance accuracy is
high after adding artificial traces. The trained model with the artificial traces generated
with the convergent model (Figure 9a) shows accuracy greater than 97% using CNN, which
is nearly the same accuracy as achieved on the real traces. However, the trained model
with artificial traces, with the least convergent model, shows around 90% accuracy. While
this performance is still good, we note that it cannot be compared with the performance
on the real dataset. Hence, the maximum convergent model generates the artificial traces
that are more alike in characteristics to the real leakage traces and helps in training an
efficient model for profiling side-channel analysis.

5.5 Discussion
Based on the conducted experiments, we can draw some more general observations:
• GANs (more precisely, conditional GANs) represent a viable option for constructing

synthetic side-channel traces. To improve the performance of GANs, it is beneficial
to use deeper architectures and convolutional layers.
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• A combination of a Siamese network and a cGAN can further improve the quality of
the obtained synthetic examples.

• The procedure of generating fake traces is efficient and can generate hundreds of
traces in a matter of minutes.

• It is important to monitor the GAN loss carefully and use the model that minimizes
it when crafting synthetic examples.

• The combination of fake and real traces performs well regardless of the applied
machine learning-based model. What is more, we see that fake traces can even
improve attack performance.

• It is possible to construct synthetic examples for various cryptographic implementa-
tions with similar success, i.e., this technique is not limited to a specific cryptographic
implementation.

6 Conclusions and Future Work
A dataset of leakage traces with an insufficient number of traces can pose a significant
problem for accurate attack modeling using machine learning-based side-channel analysis.
For such scenarios, data augmentation using a Generative Adversarial Network (GAN) can
be useful. In this work, we proposed a layered architecture (Siamese-cGAN) based on cGAN
and Siamese network that presents a well-convergent model to generate the artificial traces
that have similar characteristics to the real traces. We performed two sets of analyses. In
the first set of analyses, we run the experiments and present a visual comparative analysis
between the performance of the proposed model and the existing cGAN based models for
leakage signal generation. For this analysis, two neural network-based models (MLP and
CNN) have been used for modeling the generator and the discriminator networks. The
best model is selected based on the comparative analysis. In the second set of analyses,
we evaluated the generated fake dataset by applying the actual machine learning-based
side-channel attack on the leakage datasets from the exiting AES and ECC algorithm
implementations. Four state-of-the-art neural network architectures (one MLP and three
CNNs) are used for this evaluation. We also provided a comparative analysis of the
dataset’s performance consisting of data generated from the well-convergent network and
data generated from the non-convergent network.

The proposed Siamese-cGAN model performed better than the existing simple cGAN
models for both existing symmetric and asymmetric datasets. The quantitative analysis
results show that the well-converged Siamese-cGAN network produces fake leakage traces
similar to the real collected traces. Hence, they enable a better machine learning-based
model for side-channel attacks. We also observed that the CNN-trained models performed
better than MLP for the key recovery. We conclude that leakage traces/instances with
significant contributing features can be efficiently generated. However, selecting a fully
converging model might vary for each cryptographic algorithm.

In future work, it would be interesting to explore what are the limits of our approach
from the perspective of the number of synthetic traces. Indeed, our results indicate
that 150 traces per class are more than sufficient to construct convincing synthetic data.
Understanding what the minimum required number of traces is would allow its proper
evaluation of the viability. Furthermore, we used only the intermediate value leakage
model, which results in more classes but also balanced measurements per class. We
plan to evaluate different leakage models like the Hamming weight model that results in
imbalanced data but also have fewer classes. Finally, it would be interesting to explore
if the GAN-based approach could generate measurements that would help reduce the
effect of portability for deep learning-based SCA [BCH+20]. There, instead of synthesizing
measurements that resemble the traces from the profiling device, the task would be to
generate measurements resembling those from the device under attack.
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