
Concurrent Signatures from a Variety of Keys

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. Concurrent signatures allow two entities to produce two am-
biguous signatures that become binding once an extra piece of informa-
tion (called the keystone) is released. Such a signature is developed by
Chen et al., but it restricts signers to using the same public parameters.
We describe and analyse a new concurrent signature that allows users
to sign documents even if they use different underlying hard problems
when generating their public parameters.

1 Introduction

The fair exchange of signatures between two mutually distrustful parties is a
fundamental and well-studied problem in cryptography. Ideally, we would like
the exchange of signatures to be done in fair way, i.e. each participant receives
the other’s signature, or neither does. We would also like to have some sort of
guarantee that is impossible for one party to terminate the protocol and to leave
the other participant committed when they are not.

To achieve a form of the properties mentioned above, several authors have
put forth three main categories:

– Gradual release schemes: Using the idea of time release, the output is gradu-
ally revealed (e.g. bit per bit). Usually, this solution is highly interactive and
may not work if the adversary is more computationally powerful [8, 10,16].

– Optimistic schemes: Using a trusted third party, this approach can restore
fairness if a dispute rises. In some cases, the infrastructure requirements and
trusting a third party are not appropriate [2, 5, 14].

– Concurrent or legally fair schemes: The exchanged signatures become binding
only when an extra piece of information (the keystone) is revealed. To enforce
a signed contract, a participant has to present it in a court of law. Note that
the keystone offers enough information to restore fairness. This approach
does not require a trusted arbitrator or a high degree of interaction between
parties [6, 7, 12].

Chen et al. [6] constructed their concurrent signature protocol based on a 1-
out-of-n signature scheme proposed by Abe et al. [1]. An 1-out-of-n signature is
constructed so that once a signature is computed, then any verifier is convinced

https://orcid.org/0000-0003-3953-2744

2

that the signature was generated by one of n signers. Hence, using a slight
modification of Abe et al. signature, Chen et al. are able to guarantee ambiguity
before revealing the keystone.

In their paper, Abe et al. presented both a non-separable scheme where all n
key pairs correspond to the same scheme, and a separable scheme where each key
pair can be generated by a different scheme, under a different hardness assump-
tion. For the discrete logarithm assumption, the authors of [1] also propose an
non-separable schemes that is more efficient than the generic one. The concur-
rent signature proposed by Chen et al. was based on the efficient non-separable
variant. Hence, it is based on the discrete logarithm assumption. Furthermore,
the security of this protocol can be proven in the random oracle model, assuming
the hardness of computing discrete logarithms in a cyclic group of prime order.
Using a variation of Abe et al.’s 1-out-of-n signature with key separation, we
introduce a concurrent signature in the separable model.

The efficient 1-out-of-n signature without key separation proposed in [1] is an
adaptation of the Schnorr signature [17]. Maurer [13] introduced a construction
that unifies the Schnorr zero-knowledge protocol [17] and the Guillou-Quisquater
protocol [11]. A consequence of Maurer’s construction is the introduction of other
novel protocols whose security is based on other hardness assumptions3. Based
on Maurer’s approach, we describe a generic 1-out-of-n signature that can be
seen as an adaptation of the signature described in [12]. Based on this signature
we also generalize Chen et al.’s signature.

Note that in [1] the authors also describe a 1-out-of-n signature with key
separation based on the full domain RSA signature scheme [4]. We chose to use
only the zero-knowledge version, since working in a general framework4 may re-
duce implementation errors, and save application development and maintenance
time.

Remark that concurrent signatures are not abuse-free in the sense of [3, 9],
since the party Bob who holds the keystone can always determine whether to
complete the protocol or not. But, there are situations where it is not in Bobs
interest to try and cheat Alice. One interesting scenario is that of fair tendering
of contracts. Suppose Alice has a building contract that she wishes to put out to
tender. Also, suppose that Bob and Charlie are two competing companies that
put forward signed proposals to win the contract. If Alice whats to accept Bob’s
offer, she returns a signed payment instruction to Bob and he in turn releases
the keystone. A common form of abuse is to show Charlie Bob’s proposal and
thus enabling Charlie to make a better offer. But, in the case of concurrent
signatures, Charlie sees an ambiguous signature that might have been crafted
by Alice. Hence, Alice gains no advantage in revealing Bob’s proposal.

Our Contributions. In their paper, Chen et al. [6] claim that their scheme can
be extended to other ring signatures as long as the scheme is compatible to the
keystone idea. Hence, different hard problems could be used to construct such
3 different from the discrete logarithm and eth-root assumptions
4 Guillou-Quisquater’s signature is also included in this framework.

3

schemes. Also, they claim that concurrent signatures that work in the separable
model can be build using the techniques developed in [1]. Unfortunately, they
do not provide such examples. Our aim is to fill this gap. Hence, the main
contributions of our paper are the following:

– Adjusting the construction of Chen et al. to support signatures with sepa-
rable keys. To achieve this, we first introduce a modification to Abe et al.’s
separable 1-out-of-n signature.

– Generalizing the non-separable 1-out-of-n signature of Abe et al. to other
hardness assumptions. We also implicitly prove the security of Abe et al.’s
signature5.

– Generalizing Chen et al.’s original concurrent signature to support additional
hardness assumptions.

Structure of the paper. We introduce notations, definitions, schemes and pro-
tocols used throughout the paper in Section 2. We present a variation of Abe
et al.’s signature scheme in Section 3. In Section 4 we present our main result,
namely a concurrent signature in the separable model. We conclude in Section 5.
In Appendices A and B we generalize the non-separable signature from [1] and
the concurrent signature from [6].

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinality of
a set S. The action of selecting a random element x from a sample space X is
denoted by x

$←− X, while x← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s− 1} ∈ N is denoted by [0, s). Note we further consider that all of N ’s
subsets are of the form [0, s) and have more than one element. A vector v of
length n is denoted either v = (v0, . . . , vn−1) or v = {vi}i∈[0,n). Also, we use the
notations Cn

k to denote binomial coefficients and exp to denote Euler’s constant.

2.1 Groups

Let (G, ⋆) and (H,⊗) be two groups. We assume that the group operations ⋆
and ⊗ are efficiently computable.

Let f : G → H be a function (not necessarily one-to-one). We say that f is
a homomorphism if f(x ⋆ y) = f(x) ⊗ f(y). Throughout the paper we consider
f to be a one-way function, i.e. it is infeasible to compute x from f(x). To be
consistent with [13], we denote by [x] the value f(x). Note that given [x] and
[y] we can efficiently compute [x ⋆ y] = [x] ⊗ [y], due to the fact that f is a
homomorphism.
5 The original authors give an idea of how to prove that their signature is secure, but

do not provide a concrete proof.

4

2.2 1-out-of-n Signatures
Definition 1 (1-out-of-n Signature). An 1-out-of-n signature scheme is a
digital signature comprised of the following algorithms
Setup(λ): On input a security parameter λ, this algorithm outputs the private

and public keys (ski, pki) of all the participants and the public parameters
pp = (M,S), where M is the message space and S is the signature space.

Sign(m, skk, L): A PPT algorithm that on input a message m ∈M, the private
key skk and a list of public keys L such that pkk ∈ L, outputs a signature σ.

Verify(m, σ, L) An algorithm that on input a message m, a signature σ and a
list of public keys L outputs either true or false.

We further present the security models presented in [1] for 1-out-of-n signa-
ture schemes.
Definition 2 (Signer Ambiguity). Let L = {pki}i∈[0,n), where pki are gen-
erated by the Setup algorithm. An 1-out-of-n signature is perfectly signer am-
biguous if for any message m, any L ⊆ L, any skk ∈ L and any signature σ
generated by the Sign(m, skk, L), any unbound adversary A outputs an sk such
that sk = skk with probability exactly 1/|L|.
Definition 3 (Existential Unforgeability against Adaptive Chosen Mes-
sage and Chosen Public Key Attacks - euf-cmcpa). The notion of un-
forgeability for signatures is defined in terms of the following security game be-
tween the adversary A and a challenger:
1. The Setup algorithm is run and all the public parameters are provided to A.
2. For any message and any subset of L = {pki}i∈[0,n), A can perform signature

queries to the challenger.
3. Finally, A outputs a signature (m, σ, L), where L ⊆ L.
A wins the game if Verify(m, σ, L) = true, L ⊆ L and A did not query the
challenger on (m, L). We say that a signature scheme is unforgeable when the
success probability of A in this game is negligible.

Note that when n = 1 Definitions 1 and 3 are equivalent with the classi-
cal signature definition and, respectively, the existential unforgeability against
adaptive chosen message attack.

We further introduce the notions of a Boolean matrix and of a heavy row
in such a matrix [15]. These definitions are then used in stating the heavy row
lemma [15].
Definition 4 (Boolean Matrix of Random Tapes). Let us consider a ma-
trix M whose rows consist of all possible random choices of an adversary and
the columns consist of all possible random choices of a challenger. Its entries are
0 if the adversary fails the game and 1 otherwise.
Definition 5 (Heavy Row). A row of M is heavy if the fraction of 1’s along
the row is at least ε/2, where ε is the adversary’s success probability.
Lemma 1 (Heavy Row Lemma). The 1’s in M are located in heavy rows
with a probability of at least 1/2.

5

2.3 Concurrent Signatures

Definition 6 (Concurrent Signature). A concurrent signature scheme is a
digital signature comprised of the following algorithms

Setup(λ): On input a security parameter λ, this algorithm outputs the private
and public keys (xi, yi) of all participants and the public parameters pp =
(M,S,K,F , KeyGen), where M is the message space, S is the signature
space, K is the keystone space, F the keystone fix space and KeyGen : K → F
is a function.

aSign(yi, yj , xi, f, m): On input the public keys yi ̸= yj, the private key xi

corresponding to yi, an element f ∈ F and a message m ∈M, this algorithm
outputs an ambiguous signature σ = ⟨s, e, f⟩, where s ∈ S and e ∈ F .

aVerify(σ, yi, yj , m) On input an ambiguous signature σ = ⟨s, e, f⟩, public keys
yi, yj and a message m this algorithm outputs a boolean value.

Verify(k, σ, yi, yj , m) On input k ∈ K , σ = ⟨s, e, f⟩, public keys yi, yj and
message m, this algorithm checks whether KeyGen(k) = f and outputs false
if not; otherwise it outputs the result of aVerify(σ, yi, yj , m).

Concurrent signatures are used by two parties Alice and Bob as depicted in
Figure 1. At the end of the protocol, both ⟨k, σA⟩ and ⟨k, σB⟩ are binding, and
accepted by the Verify algorithm.

Alice Bob

k
$←− K

f ← KeyGen(k)
σB ← aSign(yB , yA, xB , f, mB)

σB←−−−−−−−−−−−
TA ← aVerify(σB , yB , yA, mB)
if TA = false then abort
σA ← aSign(yA, yB , xA, f, mA)

σA−−−−−−−−−−−→
TB ← aVerify(σA, yA, yB , mA)
if TB = false then abort

k←−−−−−−−−−−−

Fig. 1. The concurrent signature of messages mA and mB .

According to the security notions presented in [6], a PPT adversary A for a
concurrent signature can perform the following queries

– KeyGen queries: A can request the value f ← KeyGen(k), where k is selected
by the challenger T . If A whants to choose his own k, he can compute
KeyGen(k) by himself.

6

– KeyReveal queries: A can requests T to reveal the keystone k associated
to f . If f was not previously computed by the challenger, then T outputs
invalid, otherwise he returns k.

– aSign queries: A can request a valid aSign signature σ for two public keys
yi ̸= yj , an element f ∈ F and a message m of his choosing. Note that using
aSign queries in conjunction with KeyGen queries, the adversary can obtain
concurrent signatures for messages and pairs of users of his choice.

– SKExtract queries: A can request the private key corresponding to a public
key.

– Directory queries: A can request the public key of any user.

The following definition captures the notion of unforgeability in the concur-
rent context.

Definition 7 (Concurrent Signature Unforgeability - euf-cs). The no-
tion of unforgeability for concurrent signatures is defined in terms of the following
security game between the adversary A and a challenger T :

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. Finally, A outputs a tuple (m, yC , yD, s, e, f).

A wins the game if aVerify(s, e, f, yC , yD, m) = true and either of the following
holds

– A did not query SKExtract on yC nor on yD, and did not query aSign on
either (yC , yD, f, m) or (yD, yC , f, m).

– A did not query SKExtract on yD, and did not query aSign on (yD, yi, f, m)
for any yi ̸= yD and A produces a keystone k such that KeyGen(k) = f .

– A did not query SKExtract on yC , and did not query aSign on (yC , yi, f, m)
for any yi ̸= yC and f was a previous output from a KeyGen query.

We say that a concurrent signature scheme is existentially unforgeable when the
success probability of A in this game is negligible.

Note that in Definition 7 the first output condition corresponds to an outside
attacker that tries to create a forgery without knowing the secret keys of the
participants. Hence, in this case Alice is convinced that the signature originates
from Bob. The second and third conditions correspond to the case where the
attacker and one of the participants are one and the same.

The next definition captures the notion of ambiguity for concurrent signa-
tures. Note that the security notion is slightly weaker than Definition 2 due
to the fact f is generated by KeyGen that in practice approximates as best as
possible a random oracle.

Definition 8 (Concurrent Signature Ambiguity). The notion of ambigu-
ity for concurrent signatures is defined in terms of the following security game
between the adversary A and a challenger T :

7

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. A selects a message m and two public keys yC and yD.
4. In response, the challenger randomly computes σ ← aSign(yC , yD, xC , f, m)

or σ ← aSign(yD, yC , xD, f, m), where k
$←− K and f ← KeyGen(k), and

sends σ to A.
5. Finally, A guesses T ’s choice.

A concurrent signature is signer ambiguous if A cannot guess T ’s choice with a
probability non-negligible greater than 1/2.

The following definition captures the intuitive notion of fairness. More pre-
cisely, that the person that generated the keystone is the only one that can use it
to create a binding signature and that any ambiguous signature produced using
the same keystone fix f will all become binding. Note that the definition does
not guarantee that Alice will receive the necessary keystone k.

Definition 9 (Fairness). The notion of fairness for concurrent signatures is
defined in terms of the following security game between the adversary A and a
challenger T :

1. The Setup algorithm is run and all the public parameters are provided to A.
2. A can perform any number of queries to the challenger, as described above.
3. A chooses two public keys yC and yD and outputs a tuple (m, yC , yD, σ, k),

where σ = ⟨s, e, f⟩ and f = KeyGen(k).

The adversary wins the game if aVerify(s, e, f, yC , yD, m) = true and either of
the following holds

– f was a previous output from a KeyGen query, A did not query KeyReveal
on f and (k, σ) is accepted by the Verify algorithm.

– A also outputs a tuple (m, yD, yC , σ′), where σ′ = ⟨s′, e′, f⟩, such that aVerify
accepts σ′ and Verify accepts (k, σ), but (k, σ′) is not accepted by Verify.

We say that a concurrent signature scheme is fair when the success probability
of A in this game is negligible.

3 1-out-of-n Signatures with Key Separation

3.1 Description

We present a variation of the 1-out-of-n signature scheme presented in [1]. This
variation will be used later to develop a concurrent signature protocol that allows
users with different flavors of public keys (i.e. discrete logarithm based, eth root
problem based) to produce two binding and ambiguous signatures. In practice,
each user can generate their own public parameters and key pair. To simplify
description we present the Setup algorithm as a centralized algorithm. We will
denote the following signature with 1n-KSS.

8

Setup(λ): Let i ∈ [0, n). Choose for each user two groups Gi, Hi, a homomor-
phism [·]i : Gi → Hi and a hash function Hi : {0, 1}∗ → C ⊆ N. Note that
we require that |Gi| ≥ 2λ. Choose xi

$←− Gi and compute yi ← [xi]i. Output
the public key pki = yi. The secret key is ski = xi.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n) and output L.

Sign(m, skk,L): To sign a message m ∈ {0, 1}∗, first generate two random
elements α

$←− Gk, β
$←− C and compute ck+1 ← Hk+1(L, m, [α]k) and c′

k+1 ←
ck+1 − β mod c, where |C| = c. For j ∈ [k + 1, n) ∪ [0, k), select sj

$←−
Gj and then compute cj+1 ← Hj+1(L, m, [sj]j ⊗j y

c′
j

j) and c′
j+1 ← cj+1 −

β mod c. Compute sk ← α ⋆k x
−c′

k

k . Output the signature (c0, β,S), where
S = {sj}j∈[0,n).

Verify(m, c0, β,S,L): For j ∈ [0, n), compute ej ← [sj]j ⊗j y
cj−β
j and then

cj+1 ← Hj+1(L, m, ej) if j ̸= n − 1. Output true if and only if c0 =
H0(L, m, en−1). Otherwise, output false.

Correctness. If the pair (c0, β,S) is generated according to the scheme, it is easy
to see that the cj values from the Sign and Verification coincide when when
j ̸= k. When j = k we observe that

ek = [sk]k ⊗k yck−β
k = [α ⋆k x−ck+β

k]k ⊗k yck−β
k

= [α]k ⊗k [xk]−ck+β
k ⊗k yck−β

k = [α]k

and thus we obtain the same ck as in the signing phase.

Remark 1. In practice hash functions have C = {0, 1}κ, where κ is for exam-
ple 256, 384 or 512. So, if the users from L have hash functions with different
output sizes the simplest method for obtaining a common challenge space C is
to lengthen the function’s output by running it several times6 until we obtain
c bits. If efficiency is desired, another method for obtaining a common C is to
truncate all the outputs to the smallest size. Note this method decreases security
for some users.

3.2 Security Analysis

Theorem 1. The 1n-KSS scheme is perfectly signer ambiguous.

Proof. Note that all sj are taken randomly from Gj , except for sk. Since α is a
random element from Gk, then sk is also randomly distributed in Gk. Also, β
is a random element from C. Hence, for a fixed (m,L) the probability of (β,S)
is always 1/(|C| ·

∏
|Gi|), regardless of the closing point sk. The remaining c0 is

uniquely determined from (m,L) and (β,S). ⊓⊔
6 e.g. for each run we can add a different prefix to the message

9

Theorem 2. If the following statements are true

– an euf-cmcpa attack on the 1n-KSS has non-negligible probability of success
in the ROM,

– an ℓ ∈ Z is known such that gcd(c0−c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1,
– for all i values, ui ∈ Gi are known such that [ui]i = yℓ

i ,

then at least a homomorphism [·]i can be inverted in polynomial time.

Proof. Let A be an efficient euf-cmcpa attacker for 1n-KSS that requests at
most qs and qh signing and, respectively, random oracle queries. Also, let ε be
its success probability and τ its running time.

In order to make A work properly we simulate the random oracles that
correspond to each hash function (see Algorithm 1) and the signing oracle (see
Algorithm 2). For simplicity we treat all the random oracles as one big random
oracle OH that takes as input the j-th query (i, Lj , mj , rj) and returns a random
value corresponding to Hi(Lj , mj , rj). Also, to avoid complicated suffixes y0, for
example, refers to the first public key from the current Lj .

Algorithm 1: Hashing oracle OH simulation for all Hi.
Input: A hashing query (i, Lj , mj , rj) from A

1 if ∃hj such that {Lj , mj , rj , hj} ∈ Ti then
2 e← hj

3 else
4 e

$←− C
5 Append {Lj , mj , rj , e} to Ti

6 end if
7 return e

The signing oracle OS fails and returns ⊥ only if we cannot assign c0 to
(Lj , mj , e|Lj |−1) without causing an inconsistency in T0. This event happens with
probability at most qh/q, where q = 2λ. Thus, OS is successful with probability
at least (1− qh/q)qs ≥ 1− qhqs/q.

Let Θ and Ω be the random tapes given toOS andA. The adversary’s success
probability is taken over the space defined by Θ, Ω and OH . Let Σ be the set of
(Θ, Ω,OH) with which A successfully creates a forgery, while having access to a
real signing oracle. Let (m, c0, β, {si}i∈[0,n′), L) be A’s forgery, where |L| = n′.
Then Ti+1 contains a query for (L, m, ei) for all i ∈ [0, n′) with probability
at least 1 − 1/c, due to the ideal randomness of OH . Let Σ′ ⊆ Σ be the set
of (Θ, Ω,OH) with which A successfully creates a forgery, while having access
only to the simulated oracle OS . Then, Pr[(Θ, Ω,OH) ∈ Σ′] ≥ ε′, where ε′ =
(1− qhqs/q)(1− 1/c)ε.

Since the queries form a ring, there exists at least an index k ∈ [0, n′) such
that the u query Qu = (k + 1, L, m, ek) and the v query Qv = (k, L, m, ek−1)

10

Algorithm 2: Signing oracle OS simulation.
Input: A signature query (mj , Lj) from A

1 c0, β
$←− C

2 for i ∈ [0, |Lj |) do
3 si

$←− Gi

4 ei ← [si]i ⊗i yci−β
i

5 if i ̸= |Lj | − 1 then
6 ci+1 ← Hi+1(Lj , mj , ei)
7 end if
8 end for
9 if ∄h such that {Lj , mj , e|Lj |−1, h} ∈ T0 then

10 Append {Lj , mj , e|Lj |−1, c0} to T0

11 return (c0, β, {si}i∈[0,|Lj |))
12 else
13 return ⊥
14 end if

satisfy u ≤ v. Such a pair (u, v) is called a gap index. Remark that u = v only
when n′ = 1. If there are two or more gap indices with regard to a signature, we
only consider the smallest one.

We denote by Σ′
u,v the set of (Θ, Ω,OH) that yield the gap index (u, v).

There are at most Cqh

2 + Cqh

1 = qh(qh + 1)/2 such sets. If we invoke A with
randomly chosen (Θ, Ω,OH) at most 1/ε′ times, then we will find at least one
(Θ, Ω,OH) ∈ Σ′

u,v for some gap index (u, v) with probability 1− (1− ε′)1/ε′
>

1− exp(−1) > 3/5.

We define the sets GI = {(u, v) | |Σ′
u,v|/|Σ′| ≥ 1/(qh(qh + 1))} and B =

{(Θ, Ω,OH) ∈ Σ′
u,v | (u, v) ∈ GI}. Then, we have Pr[B|Σ′] ≥ 1/2. Using the

heavy row lemma we obtain that a triplet (Θ, Ω,OH) that yields a successful
run of A is in B with probability at least 1/2.

Let OH′ be the identical to OH except for the Qv query to which OH′ re-
sponds with a random element c′

k ̸= ck. Then according to the heavy row lemma,
with probability 1/2, (Θ, Ω,OH′) satisfies Pr[(Θ, Ω,OH′) ∈ Σ′

u,v] = ε′′/2, where
ε′′ = ε′/(2qh(qh + 1)). Hence, if we run A at most 2/ε′′ times, then with proba-
bility 1/2 · [1− (1− ε′′/2)2/ε′′] > 1/2 · (1− exp(−1)) > 3/10 we will find at least
one c′

k such that (Θ, Ω,OH′) ∈ Σ′
u,v. Since Qu is queried before Qv, ek remains

unchanged. Therefore we can compute

x̃k = ua
k ⋆k (s′

k
−1

⋆k sk)b,

11

where a and b are computed using Euclid’s algorithm such that ℓa+(c′
k−ck)b = 1.

Note that

[s′
k

−1
⋆k sk]k = [s′

k
−1]k ⊗k [sk]k

= y
c′

k−β
k ⊗k ([α]k)−1 ⊗k [α]k ⊗k y−ck+β

k

= y
c′

k−ck

k

and thus

[x̃k]k = [ua
k ⋆k (s′

k
−1

⋆k sk)b]k
= ([uk]k)a ⊗k ([s′

k
−1

⋆k sk]k)b

= (yℓ
k)a ⊗k (yc′

k−ck

k)b

= yk.

The overall success probability is 9/100 = 3/5 · 1/2 · 3/10 and A is invoked
at most 1/ε′ + 2/ε′′ times. ⊓⊔

3.3 Concrete Examples

All Discrete Logarithm Case. Let p = 2q + 1 be a prime number such that q is
also prime. Select an element h ∈ Hp of order q in some multiplicative group of
order p− 1. The discrete logarithm of an element z ∈ Hp is an exponent x such
that z = hx. We further describe the parameters of the all discrete logarithm
signature.

Define (Gi, ⋆i) = (Zqi , +) and Hi = ⟨hi⟩. The one-way group homomorphism
is defined by [xi]i = hxi

i and the challenge space C can be any arbitrary subset
of [0, q), where q is the smallest qi from L. Let 1i be the neutral element of Hi.
Then the conditions of Theorem 2 are satisfied for

– ℓ =
∏n−1

i=0 qi, since for all c ∈ C we have c < q ≤ qi and qi are primes,
– for u = 0 we have [u]i = [0]i = 1i = yℓ

i = (yℓ/qi

i)qi since every element of Hi

raised to the group order qi is the neutral element 1i.

All eth-root Case. Let p and q be two safe prime numbers such that (p − 1)/2
and (q − 1)/2 are also prime. Compute N = pq and choose a prime e such that
gcd(e, φ(N)) = 1. An eth-root of an element z ∈ Z∗

N is a base x such that z = xe.
Note that the eth-root is not unique. We further describe the parameters of the
all eth-root signature.

Define (Gi, ⋆i) = (Hi,⊗i) = (Z∗
Ni

, ·), where Ni = piqi and gcd(Ni, Nj) = 1
for i ̸= j. The one-way group homomorphism is defined by [xi]i = xei

i and the
challenge space C can be any arbitrary subset of [0, e), where e is the smallest ei

in L. The conditions of Theorem 2 are satisfied for

– ℓ =
∏n−1

i=0 ei, since for all c ∈ C we have c < e ≤ ei and ei are primes,
– for ui = y

ℓ/ei

i we have [ui]i = [yℓ/ei

i]i = yℓ
i .

12

Mixture of Discrete Logarithm and eth-root. For simplicity, we consider the case
n = 2. Let (G0, ⋆0) = (Zq, +), H0 = ⟨h⟩ and (G1, ⋆1) = (H1,⊗1) = (Z∗

N , ·). The
one-way group homomorphisms are defined by [x0]0 = hx0 and [x1]1 = xe

1. The
challenge space C can be any arbitrary subset of [0, s), where s is the smallest
of q and e. The conditions of Theorem 2 are satisfied for

– ℓ = eq, since for all c ∈ C we have c < s ≤ e, c < s ≤ q and e, q are primes,
– for u0 = 0 we have [0]0 = 1 = (ye

0)q,
– for u1 = yq

1 we have [yq
1]1 = yℓ

1.

All Discrete Logarithm Representation Case. Consider again a group of prime
order Hp and select t elements h1, . . . , ht ∈ Hp of order q. A discrete logarithm
representation of an element z ∈ ⟨h1, . . . , ht⟩ is a list of exponents (x1, . . . , xt)
such that z = hx1

1 . . . hxt
t . Note that discrete logarithm representations are not

unique. We further describe the parameters of the all discrete logarithm repre-
sentation signature.

We define Gi = Zti
qi

with ⋆ defined as addition applied component-wise and
Hi = ⟨hi1, . . . , hit⟩. Let xi = (xi1, . . . , xit). The one-way group homomorphism
is defined by [xi]i = hxi1

i1 . . . hxit
it and the challenge space C can be any arbitrary

subset of [0, q], where q is the smallest qi from L. Let 1i be the neutral element
of Hi. Then the conditions of Theorem 2 are satisfied for ℓ =

∏n−1
i=0 qi and for

u = (0, . . . , 0).
Remark that if some tis are one, we obtain a signature based on mixture of

discrete logarithm and discrete logarithm representation problems.

All eth-root Representation Case. Let again N = pq and choose primes e1, . . . , et

such that gcd(ei, φ(N)) = 1, for 1 ≤ i ≤ t. An eth-root representation of an
element z ∈ Z∗

N is a list of bases (x1, . . . , xt) such that z = xe1
1 . . . xet

t . Note that
eth-root representations are not unique. We further describe the parameters of
the all eth-root representation signature.

Let Ni = piqi and gcd(Ni, Nj) = 1 for i ̸= j. We define Gi = (Z∗
Ni

)ti with ⋆i

defined as multiplication applied component-wise and (Hi,⊗i) = (Z∗
Ni

, ·). The
one-way group homomorphism is defined by [(xi1, . . . , xit)] = xei1

i1 . . . xeit
it and the

challenge space C can be any arbitrary subset of [0, e), where e is a prime such
that gcd(e, ϕ(Ni)) = 1. Since all exponents are coprime then we can compute
integers such that αi1ei1 + . . . + αiteit = 1. The conditions of Theorem 2 are
satisfied for

– ℓ = 1,
– for ui = (yαi1

i , . . . , yαim
i) we have [ui]i = yαi1ei1+...+αiteit

i = yi.

4 Concurrent Signatures with Key Separation

4.1 Description

Concurrent signatures allow Alice and Bob to produce two signatures such that
both signatures are ambiguous from the eyes of a third party, but once Alice

13

releases a secret keystone, both signatures become binding to their true signer.
Such signatures are useful for contract signing and fair exchange protocols. Based
on 1n-KSS we introduce such a concurrent signature scheme denoted with 1n-
KSCS. Note that when both users use the same group for defining their under-
lying homomorphisms a more efficient construction is presented in Appendix B.

As before, C denotes the challenge space and c its cardinality. The 1n-KSCS
scheme uses three cryptographic hash functions Hk, HA, HB : {0, 1}∗ → C. The
detailed protocol is presented in Figure 2

Correctness. If the signature ⟨sA, eA, f⟩ is generated according to the scheme, it
is easy to see that

[vA]A ⊗A yhA

B = [u]A ⊗A [xA]−gA+f
A ⊗ ygA−f

A = [u]A.

Similarly, we can show correctness for Bob’s side.

4.2 Security Analysis

The following theorem is a direct consequence of Theorem 1.

Theorem 3. The 1n-KSCS scheme satisfies the concurrent signature ambiguity
property in the ROM.

Theorem 4. If the following statements are true

– an euf-cs attack on the 1n-KSCS has non-negligible probability of success
in the ROM,

– an ℓ ∈ Z is known such that gcd(c0−c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1,
– for i ∈ {A, B}, ui ∈ Gi are known such that [ui]i = yℓ

i ,

then either [·]A or [·]B can be inverted in polynomial time.

Proof. Let A be an efficient euf-cs attacker for 1n-KSCS and let ε be its success
probability. We split the proof into three cases: A does not have access to the
participants’ secret keys, A = Bob and A = Alice.

First case. The challenger generates a set of participants U , where |U | = ρ
and ρ is the result of a polynomial function in λ. Then the challenger chooses
γA ̸= γB

$←− [0, ρ). For each participant Pi, i ̸= γa, γB , T selects the associated
public parameters (in accordance to the security parameter λ) and generates
their secret and public keys (xi, yi). For C = PγA

the challenger sets the public
parameters to (GA, [·]A, HA) and the public key yγA

= yA. Similarly for we set
D = PγB

’s parameters.
To make A work properly we must simulate all the oracles which A can query.

Hence, the random oracles HA and HB can be simulated using Algorithm 1,
where we set L = ∅, i = 0 for A and i = 1 for B. We change the list notations
from T0 and T1 to TA and TB . In the case of Hk, the simulation is similar to
Algorithm 1. Thus, instead of querying (i, Lj , mj , rj), the adversary can query

14

Alice Bob

k
$←− {0, 1}∗

%KeyGen
f ← Hk(k)
%aSign
t

$←− GB , sA
$←− GA

fA ← HB (mB , [t]B)
eA ← fA − f mod c
fB ← HA (mB , [sA]A ⊗A yeA

A)
eB ← fB − f mod c

sB ← t ⋆B x−eB
B

σB ← ⟨sA, sB , eA, f⟩
σB←−−−−−−−−−−−

%aVerify
TA ← HA (mB , [sA]A ⊗A yeA

A)
S ← TA − f mod c

TB ← HB

(
mB , [sB]B ⊗B yS

B

)
if TB ̸= eA + f mod c then abort
%aSign
u

$←− GA, vB
$←− GB

gB ← HA (mA, [u]A)
hB ← gB − f mod c

gA ← HB

(
mA, [vB]B ⊗B y

hb
B

)
hA ← gA − f mod c

vA ← u ⋆A x−hA
A

σA ← ⟨vA, vB , hA, f⟩
σA−−−−−−−−−−−→

%aVerify
WA ← HA

(
mA, [vA]A ⊗A yhA

A

)
Z ←WA − f mod c

WB ← HB

(
mB , [vB]B ⊗B yZ

B

)
if WB ̸= hA + f mod c then abort

k←−−−−−−−−−−−

Fig. 2. Key separation concurrent signature.

any message M and the algorithm will store its answers in list denoted Tk. When
A makes a KeyGen query, T randomly generates a k and return f ← Hk(k).
Note that the KeyGen oracle is actually a sublist of Tk, but the challenger is
required to answer KeyReveal queries. Hence, when A requests the keystone
associated to an f ∈ C, we search Tk for a pair {k, f} and if it exists we return
k, otherwise we return invalid. The simulation of aSign queries can be achieved
using Algorithm 2 where β is not chosen randomly, but is set to f . Finally, when

15

an SKExtract query for a public key is made, T respond with the associated
secret key, except in the case yC , yD, when he aborts.

There are two possible situations where our simulation fails. When OS causes
inconsistencies in OH or A asks the secret keys for user C or user D. The
first event does not happen with probability 1 − qhqs/q, where q = 2λ, and
qs and qh are the number of signing queries and random oracle queries to HA

and HB . The probability for the second event not happening is 1 − 2/ρ. Let
ε′ = 2/ρ(1 − qhqs/q)(1 − 2/ρ)(1 − 1/c)ε. Then, if we run A at most 1/ε′ with
probability 3/5 A will output a forgery σ = ⟨sC , sD, e, f⟩, for a message m.

Note that in this case A did not make SKExtract queries for C and D, and
the signature is not produced by an aSign query. In other words A breaks the
unforgeability of the 1n-KSS scheme. Hence, according to Theorem 1 A inverted
either [·]A or [·]B .

Second case. Now, let us see what happens when A plays the role of Alice. In
contrast with the first case, the challenger only chooses γB

$←− [0, ρ) and then
sets D’s public parameters to (GB , [·]B , HB) and the public key yγB

= yB .
The probability of A not asking the secret key for user D is 1 − 1/ρ. Let

ε′′ = 1/ρ(1 − qhqs/q)(1 − 1/ρ)(1 − 1/c)ε. Then, if we run A at most 1/ε′′ with
probability 3/5 A will output a forgery σ = ⟨sA, sD, eA, f⟩, for a message m.
According to the heavy row lemma with probability 1/2 we are on situated on
a heavy row H.

Let TA ← HA(m, [sA]A ⊗A yeA

A). Define OH′ as a random oracle identical
to OH except for the (0, m, [sA]A ⊗A yeA

A) query to which OH′ responds with a
random element T ′

A ̸= TA. We restart A at most 2/ε′ and with a probability of
1/2 · (1 − (1 − ε′/2)2/ε′) > 3/10 we will be situated on H. Hence, we obtain a
new forgery σ′ = ⟨s′

A, s′
D, e′

A, f ′⟩.
Note that TA = eA+f ̸= e′

A+f ′ = T ′
A. If eA = e′

A then f ̸= f ′, so these values
must have been computed before the relevant H queries and satisfy f = TA−eA

and f ′ = T ′
A − e′

A. However, f is also an output of HK and the probability that
an output from some HK query and some H query matches is at most qhqk/q,
where qk is the number of random oracle queries to HK . Hence, with probability
1 − qhqk/q we have f = f ′ and eA ̸= e′

A. In this case, using techniques similar
to Theorem 2’s proof we manage to find a preimage of [·]B .

Third case. The proof is similar to the second case and thus is omitted. ⊓⊔

Theorem 5. The 1n-KSCS scheme is fair in the ROM.

Proof. The challenger generates a set of participants U , where |U | = ρ and ρ is
a polynomial function in λ. For each participant T selects the associated public
parameters (in accordance to the security parameter λ) and generates their secret
and public keys (xi, yi). We simulate the adversary’s random oracles, and the
KeyGen and KeyReveal algorithms as in Theorem 4’s proof. Also, the challenger
responds to aSign and SKExtract queries using its knowledge of the private keys.
In the final stage of the fairness game, A outputs a signature σ = ⟨s, e, f⟩.

16

In the first case f was obtained by a KeyGen query, but no KeyReveal query
was made for f . Since HK is a random oracle, this event happens with probability
qk/q. Thus, is negligible.

In the second case (k, σ) is accepted by the Verify algorithm and A manages
to produce a second signature σ′ = ⟨s′, e′, f⟩ that is accepted by the aVerify
algorithm, but (k, σ′) is rejected by the Verify algorithm. Since, (k, σ) is accepted
by Verify, we have f = KeyGen(k). Since σ and σ′ share the value f , we must
have that (k, σ′) is also accepted by the Verify algorithm. This is a contradiction.

⊓⊔

5 Conclusion

Our concurrent signature protocol is the abstraction of a large class of protocols
that allow users with independently selected underlying problems to commonly
produce an ambiguous signature. We have managed to relate the presented pro-
tocol’s security to the hardness of inverting one-way homomorphisms. Note that
the presented list of homomorphisms examples is by no means exhaustive.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys.
In: ASIACRYPT 2002. Lecture Notes in Computer Science, vol. 2501, pp. 415–432.
Springer (2002)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange.
In: CCS 1997. pp. 7–17. ACM (1997)

3. Baum-Waidner, B., Waidner, M.: Round-Optimal and Abuse Free Optimistic
Multi-party Contract Signing. In: ICALP 2000. Lecture Notes in Computer Sci-
ence, vol. 1853, pp. 524–535. Springer (2000)

4. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: CCS 1993. pp. 62–73. ACM (1993)

5. Cachin, C., Camenisch, J.: Optimistic Fair Secure Computation. In: CRYPTO
2000. Lecture Notes in Computer Science, vol. 1880, pp. 93–111. Springer (2000)

6. Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: EUROCRYPT
2004. Lecture Notes in Computer Science, vol. 3027, pp. 287–305. Springer (2004)

7. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., Pointcheval, D.: Legally Fair
Contract Signing Without Keystones. In: ACNS 2016. Lecture Notes in Computer
Science, vol. 9696, pp. 175–190. Springer (2016)

8. Garay, J., MacKenzie, P., Prabhakaran, M., Yang, K.: Resource Fairness and Com-
posability of Cryptographic Protocols. In: TCC 2006. Lecture Notes in Computer
Science, vol. 3876, pp. 404–428. Springer (2006)

9. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-Free Optimistic Contract Sign-
ing. In: CRYPTO 1999. Lecture Notes in Computer Science, vol. 1666, pp. 449–466.
Springer (1999)

10. Goldwasser, S., Levin, L., Vanstone, S.A.: Fair Computation of General Functions
in Presence of Immoral Majority. In: CRYPT0 1990. Lecture Notes in Computer
Science, vol. 537, pp. 77–93. Springer (1991)

17

11. Guillou, L.C., Quisquater, J.J.: A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory. In: EURO-
CRYPT 1988. Lecture Notes in Computer Science, vol. 330, pp. 123–128. Springer
(1988)

12. Maimuţ, D., Teşeleanu, G.: A Unified Security Perspective on Legally Fair Contract
Signing Protocols. In: SECITC 2018. Lecture Notes in Computer Science, vol.
11359, pp. 477–491. Springer (2018)

13. Maurer, U.: Unifying Zero-Knowledge Proofs of Knowledge. In: AFRICACRYPT
2009. Lecture Notes in Computer Science, vol. 5580, pp. 272–286. Springer (2009)

14. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In:
PODC 2003. pp. 12–19. ACM (2003)

15. Ohta, K., Okamoto, T.: On Concrete Security Treatment of Signatures Derived
from Identification. In: CRYPTO 1998. Lecture Notes in Computer Science,
vol. 1462, pp. 354–369. Springer (1998)

16. Pinkas, B.: Fair Secure Two-Party Computation. In: EUROCRYPT 2003. Lecture
Notes in Computer Science, vol. 2656, pp. 87–105. Springer (2003)

17. Schnorr, C.P.: Efficient Identification and Signatures For Smart Cards. In:
CRYPTO 1989. Lecture Notes in Computer Science, vol. 435, pp. 239–252. Springer
(1989)

A 1-out-of-n Signatures Without Key Separation

A.1 Description

In this section we present a more efficient 1-out-of-n signature. This signature
only works when all the participants use the same underlying commutative
group. We will denote the following signature with 1n-NKSS.

Setup(λ): Choose two commutative groups G, H, a homomorphism [·] : G→ H
and a hash function H : {0, 1}∗ → C ⊆ N. Note that we require that |G| ≥ 2λ.
For each user, choose xi

$←− G and compute yi ← [xi]. Output the public key
pki = yi. The secret key is ski = xi.

Listing(): Collect the public keys and randomly shuffle them. Store the result
into a list L = {yj}j∈[0,n) and output L.

Sign(m, skk,L): To sign a message m ∈ {0, 1}∗, first generate the random
elements α

$←− G and cj
$←− C, where j ∈ [0, n) \ {k}. Then compute

z ← [α]⊗ yc0
0 ⊗ . . .⊗ y

ck−1
k−1 ⊗ y

ck+1
k+1 ⊗ . . .⊗ y

cn−1
n−1

c← H(L, m, z)
ck ← c− c0 − . . .− ck−1 − ck+1 − . . .− cn−1 mod c

s← α ⋆ x−ck

k .

Output the signature (s,W), where W = {cj}j∈[0,n).
Verify(m, s,W,L): Compute the values u ←

∑n−1
j=0 cj mod c and v ← [s] ⊗

(⊗n−1
j=0 y

cj

j). Output true if and only if u ≡ H(L, m, v) mod c. Otherwise,
output false.

18

Correctness. If the pair (s,W) is generated according to the scheme, it is easy
to see that

v = [s]⊗ (⊗n−1
j=0 y

cj

j) = [α]⊗ [xk]−ck ⊗ (⊗n−1
j=0 y

cj

j) = z

and

u ≡
n−1∑
j=0

cj ≡ c ≡ H(L, m, z) ≡ H(L, m, v) mod c.

A.2 Security Analysis
Theorem 6’s proof is similar to Theorem 1’s proof and thus is omitted.
Theorem 6. The 1n-NKSS scheme is perfectly signer ambiguous.
Theorem 7. If the following statements are true

– an euf-cmcpa attack on the 1n-NKSS has non-negligible probability of suc-
cess in the ROM,

– an ℓ ∈ Z is known such that gcd(c0−c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1,
– for all i values, ui ∈ G are known such that [ui] = yℓ

i ,
then the homomorphism [·] can be inverted in polynomial time.
Proof (sketch). In order to make A work properly we simulate the random oracle
that correspond to the hash function (see Algorithm 1 with i always set to 0)
and the signing oracle (see Algorithm 3). Note that A requests at most qs and
qh signing and, respectively, random oracle queries.

The signing oracle OS fails and returns ⊥ only if we cannot assign c to
(Lj , mj , e) without causing an inconsistency in T0. Thus, OS is successful with
probability at least (1 − qh/q)qs ≥ 1 − qhqs/q. The success probability of A in
the simulated environment is (1− qhqs/q)ε, where ε is A’s success probability.

Let (m, s, {ci}i∈[0,n′), L) be A’s forgery, where |L| = n′. Define z ← [s] ⊗
(⊗n′−1

i=0 yci
i). Due to the ideal randomness of OH , A queries OH on (L, m, z) with

probability 1− 1/c. Let k ∈ [0, n′) be the index of the user associated with the
forgery. Then, according to Theorem 6, A will guess k with a probability of
1/n′. If we invoke A at most 1/ε′ times, where ε′ = n′(1 − qhqs/q)(1 − 1/c)ϵ,
then we will find at least one (Θ, Ω,OH) for which A knows k with probability
3/5. According to the heavy row lemma we are situated on a heavy row H with
probability 1/2.

Define OH′ as a random oracle identical to OH except for the (L, m, z) query
to which OH′ responds with a random element c′ ̸= c. We rewind the simulation
and run A at most 2/ε′ times, but with access to OH′ instead of OH . We will
be situated on H with a probability of 3/10. Now we can compute

x̃k = ua ⋆ (s′−1
⋆ s)b,

where a and b are computed using Euclid’s algorithm such that ℓa+(c′−c)b = 1.
As in Theorem 2’s proof, we obtain [x̃k] = yk.

The overall success probability is 9/200 = 3/5 · 3/10 and A is invoked at
most 3/ε′ times. ⊓⊔

19

Algorithm 3: Signing oracle OS simulation.
Input: A signature query (mj , Lj) from A

1 for i ∈ [0, |Lj |) do
2 si

$←− G

3 ci
$←− C

4 ei ← [si]⊗ yci
i

5 end for
6 s← s0 ⋆ . . . ⋆ s|Lj |−1

7 c← c0 + . . . + c|Lj |−1

8 e← e0 ⊗ . . .⊗ e|Lj |−1

9 if ∄h such that {Lj , mj , e, h} ∈ T0 then
10 Append {Lj , mj , e, c} to T0
11 return (s, {ci}i∈[0,|Lj |))
12 else
13 return ⊥
14 end if

B Same Group 1-out-of-n Concurent Signature
B.1 Description
Based on the 1n-NKSS signature we introduce a more efficient concurrent sig-
nature (1n-NKSCS) in the non-separable model. In this case, the scheme only
uses two cryptographic hash functions H1, H2 : {0, 1}∗ → C.

Correctness. If the signature ⟨sA, eA, f⟩ is generated according to the scheme, it
is easy to see that

[sA]⊗ yeA

A ⊗ yf
B = [tA]⊗ [xA]−eA ⊗ yeA

A ⊗ yf
B = [tA]⊗ yf

B .

Similarly, we can show correctness for Bob’s side.

B.2 Security Analysis
Theorem 8 is a direct consequence of Theorem 6 and Theorems 9 and 10’s proofs
are omitted due to their similarity to Theorems 4 and 5’s proofs.
Theorem 8. The 1n-NKSCS scheme satisfies the concurrent signature ambi-
guity property in the ROM.
Theorem 9. Let i ∈ {A, B}. If the following statements are true

– an euf-cs attack on the 1n-NKSCS has non-negligible probability of success
in the ROM,

– an ℓ ∈ Z is known such that gcd(c0−c1, ℓ) = 1 for all c0, c1 ∈ C with c0 ̸= c1,
– for all i values, ui ∈ G are known such that [ui] = yℓ

i ,
then the homomorphism [·] can be inverted in polynomial time.
Theorem 10. The 1n-NKSCS scheme is fair in the ROM.

20

Alice Bob

k
$←− {0, 1}∗

f ← H1(k)
%aSign
tB

$←− G
fB ← H2

(
mb, [tB]⊗ yf

A

)
eB ← fB − f mod c

sB ← tB ⋆ x−eB
B

σB ← ⟨sB , eB , f⟩
σB←−−−−−−−−−−−

%aVerify
TA ← H2

(
mB , [sB]⊗ yeB

B ⊗ yf
A

)
if TA ̸≡ eB + f mod c then abort
%aSign
tA

$←− G
fA ← H2

(
mA, [tA]⊗ yf

B

)
eA ← fA − f mod c

sA ← tA ⋆ x−eA
A

σA ← ⟨sA, eA, f⟩
σA−−−−−−−−−−−→

%aVerify
TB ← H2

(
mA, [sA]⊗ yeA

A ⊗ yf
B

)
if TB ̸≡ eA + f mod c then abort

k←−−−−−−−−−−−

Fig. 3. Same group concurrent signature.

	Concurrent Signatures from a Variety of Keys

