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Abstract. The TLS 1.3 session resumption handshakes enables a client
and a server to resume a previous connection via a shared secret, which
was established during a previous session. In practice, this is often done
via session tickets, where the server provides a “self-encrypted” ticket
containing the shared secret to its clients. A client may resume its session
by sending the ticket to the server, which allows the server to retrieve
the shared secret stored within the ticket.
Usually, a ticket is only accepted by the server that issued the ticket.
However, in practice, servers that share the same hostname, often share
the same key material for ticket encryption. The concept of a server
accepting a ticket, which was issued by a different server, is known as
session resumption across hostnames (SRAH). In 2020, Sy et al. showed
in an empirical analysis that, by using SRAH, the time to load a web-
page can be reduced by up to 31% when visiting the page for the very
first time. Despite its performance advantages, the TLS 1.3 specification
currently discourages the use of SRAH.
In this work, we formally investigate which security guarantees can be
achieved when using SRAH. To this end, we provide the first formaliza-
tion of SRAH and analyze its security in the multi-stage key exchange
model (Dowling et al.; JoC 2021), which proved useful in previous analy-
ses of TLS handshakes. We find that an adversary can break authentica-
tion if clients do not specify the intended receiver of their first protocol
message. However, if the intended receiver is specified by the client, we
prove that SRAH is secure in the multi-stage key exchange model.

1 Introduction

If two parties want to securely establish a common key over an insecure channel,
they typically execute a key exchange protocol. The most used key exchange
protocol is the Transport Layer Security (TLS) protocol, whose most recent
version, TLS 1.3, was standardized in 2018 [17]. The TLS 1.3 protocol provides
two variants of key establishment: (i) the full handshake where two users can
establish a fresh key, and (ii) the resumption handshake (also called pre-shared
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key handshake) where two users may derive a new key from preexisting key
material (e.g., key material from an earlier session, or key material that was
established out-of-band).

One of the main motivations to use the resumption handshake instead of the
full handshake, is a reduction of computational complexity. That is, the resump-
tion handshake does not require the expensive verification of signatures to au-
thenticate the server. Instead authentication is provided implicitly by knowledge
of the pre-shared key (PSK). In fact, according to Cloudflare in 20171, 40% of
handshakes are users resuming a previous connection, which further illustrates
the resumption handshakes form one of the cornerstones of secure connection
establishments over the Internet.

Session Resumption Across Hostnames. In practice, a client rarely only estab-
lishes one connection to a server, but rather has to open multiple connections
in order to retrieve additional data distributed across multiple servers, requiring
several full handshakes. These additional handshakes often slow down the TLS
connection establishment and are desirable to avoid.

An interesting observation is that not all of the additional handshakes re-
quest data from external services but some request data from the same content
provider, only under a different hostname. For example, a user could request
the web page www.webpage.com and could be required to load additional con-
tent from subdomains such as assets.webpage.com. Even though the subdomain
may share the certificate of the original domain, a full handshake would need
to be executed. Naturally, it would be interesting to investigate whether con-
nection establishment could be accelerated if such handshakes could rely on
a resumption-based handshake rather than a full handshake. This approach is
called session resumption across hostnames (SRAH).

In 2020, Sy et al. [18] conducted a study investigating the potential perfor-
mance improvement when using SRAH. They found that 59% of the (on average)
20 full TLS handshakes required to retrieve a website can be converted into hand-
shakes based on resumption across hostnames. According to them, this would
reduce 44% of the computational complexity and accelerate the connection es-
tablishment by 31%.

SRAH in TLS 1.3. The typical session resumption can be described as follows:
After a client and a server have completed a full TLS 1.3 handshake, both parties
derive a PSK which can be used in future resumption handshakes. Typically,
the server does not want to keep track of each of those PSKs for each user
and encrypts the PSK under a symmetric key only known to the server. This
ciphertext is called ticket and sent to the client at the end of the original full
handshake. Note that this enables the server to delete the PSK as it can always
retrieve it from the issued ticket. That is, when the client sends back the ticket
to the server, both parties can take the PSK as basis to derive a new session key.

The above approach can be extended to capture the conceptual approach
of SRAH as well. To this end, the client would not only send the ticket back

1 See https://blog.cloudflare.com/introducing-0-rtt/.
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to the server, but the client would also indicate which hostname it wants to
establish a connection with. This indication can be given in form of a Server
Name Indication (SNI) value chosen by the client, providing leverage to choose
for which server (sharing the same symmetric ticket encryption key) a ticket
should be used. The TLS 1.3 standard specifies in Section 4.2.11:

“In TLS 1.3, the SNI value is always explicitly specified in the resumption
handshake, and there is no need for the server to associate an SNI value
with the ticket. Clients, however, SHOULD store the SNI with the PSK
to fulfill the requirements of Section 4.6.1.”

We remark that we find the first part of this quote worrying, as the standard does
not indicate that the SNI value must be set in the resumption handshake. While
we agree that the SNI value is not necessary if connections are only resumed with
the server that issued a ticket, this formulation also opens room for interpretation
how the SNI value should be used when considering SRAH. We are concerned
that this ambiguity might lead to wrong conclusions when implementing TLS 1.3.

Furthermore, the standard states in Section 4.6.1:

“Clients MUST only resume if the new SNI value is valid for the server
certificate presented in the original session and SHOULD only resume if
the SNI value matches the one used in the original session. [...] Normally,
there is no reason to expect that different servers covered by a single
certificate would be able to accept each other’s tickets; [...] If such an
indication is provided (externally or by any other means)2, clients MAY
resume with a different SNI value.”

We can observe that the latter half of the above excerpt allows to use SRAH
without need to change the standard. However, the standard does not yet elabo-
rate what consequence a resumption across hostnames could have and how those
consequences should be dealt with. A potential reason for this might be that the
security of SRAH has never been formally analyzed and we currently do not
understand its advantages and disadvantages well enough.

Our Contributions. In this work, we formally investigate the security of SRAH.
We summarized our contributions as follows:

– We give the first formal definition of secure SRAH, as an abstraction of
the construction that can be used in TLS 1.3. This approach enables us
to carefully investigate what security for SRAH means and how we can
achieve it, without being overwhelmed by the complexity of protocols such
as TLS 1.3.

2 We remark that this indication can either be provided by the server via the
subjectAltName field in a server’s certificate, or via an extension providing this
information within the ClientHello message of the original full handshake as rec-
ommended by Sy et al. [18].
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– We show security in the most recent version of multi-stage key exchange
model [7], which has been proven useful in many analyses of TLS hand-
shakes [3, 6, 8, 11]. Specifically, we show that a misinterpretation of the TLS
1.3 standard leads to an attack on authentication when two servers share
the same certificate and symmetric ticket key. Furthermore, we provide an
SRAH protocol which constitutes an abstraction of the TLS 1.3 resumption
protocol and prove its security.

Related Work. The security of the TLS 1.3 resumption handshake has been ana-
lyzed in many previous works. Most notably are the works by Dowling et al. [7],
and Drucker and Gueron [10] who analyzed the security of the standardized
handshake, and Arfaoui et al. [1] who analyzed privacy aspects of the resump-
tion handshake. Furthermore, Aviram et al. [2, 3] proposed an improvement of
the resumption handshake, which achieves forward security for the 0-RTT vari-
ant of the handshake. Note, however, that none of the related works consider
the case of SRAH.

2 Preliminaries

Notation. We denote the security parameter as λ. For some n ∈ N we write
[n] = {1, . . . , n}, respectively [n]0 = {0, . . . , n}, for the set of integers ranging
from 1, respectively 0, to n. For two bit strings s, t let s ‖ t be the concatenation
of s and t. By x $←− S we indicate sampling x uniformly at random from the set S.
We write y ← A(x) or A(x)→ y, respectively y $←− A(x) or A(x) $−→ y, for some
algorithm A that on the input x deterministically, respectively probabilistically,
outputs y.

Building Blocks. In this work, we use standard definitions for hash functions and
their collision resistance, MACs and their strong unforgeability. We recap the
definitions and security of these building blocks in the following.

Definition 1. A hash function H : {0, 1}∗ → {0, 1}λ maps an input x ∈ {0, 1}∗
of arbitrary length to an output y ∈ {0, 1}λ of fixed length λ ∈ N. A hash func-
tion H provides collision resistance if we cannot efficiently construct an efficient
adversary A for which the advantage

AdvcollisionH,A := Pr[(x, x′) $←− A(1λ) : x 6= x′ and H(x) = H(x′)]

is not a negligible function in λ.

Definition 2. A message authentication code MAC is a tuple of three PPT al-
gorithms MAC = (MAC.Gen,MAC.Tag,MAC.Vrfy) with the following properties:

MAC.Gen(1λ). On input of a security parameter λ the algorithm outputs a key
k ∈ {0, 1}λ.

MAC.Tag(k,m). On input of a key k ∈ {0, 1}λ and a message m ∈ {0, 1}∗ the
algorithm outputs a tag τ ∈ {0, 1}∗.
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MAC.Vrfy(k,m, τ). On input of a key k ∈ {0, 1}λ, a message m ∈ {0, 1}∗, and
a tag τ ∈ {0, 1}∗ the algorithm outputs 1 if the given tag is valid, or 0
otherwise.

We say MAC = (MAC.Gen,MAC.Tag,MAC.Vrfy) is correct if for all λ ∈ N, all
k $←− MAC.Gen(1λ), all m ∈ {0, 1}∗ it holds that MAC.Vrfy(k,m,MAC.Tag(k,m)) =
1.

We define the security of a MAC with the notion of strong existential un-
forgeability under chosen message attacks (sEUF-CMA). Consider the following
game GsEUF-CMA

MAC,A (λ) played between a challenger C and an adversary A:

1. C draws a key k $←− {0, 1}λ uniformly at random and sets Q = ∅.
2. A is given oracle access to MAC.Tag(k, ·). For each oracle query m by A set
Q = Q∪ {(m, τ)} where τ is the corresponding oracle response.

3. At some point A outputs a pair (m, τ).

Definition 3. We say that A wins the game, denoted by GsEUF-CMA
MAC,A (λ) = 1, if

and only if (m, τ) /∈ Q and MAC.Vrfy(k,m, τ) = 1. A message authentication
code MAC is strongly existentially unforgeable under adaptive chosen message
attacks if for all PPT adversaries A the advantage

AdvsEUF-CMA
MAC,A (λ) := Pr[GsEUF-CMA

MAC,A (λ) = 1]

is a negligible function in the security parameter λ.

Definition 4. Let f : {0, 1}∗ × {0, 1}i(λ) → {0, 1}o(λ) be an efficient function.
We call f pseudorandom if for all PPT adversaries A the advantage

AdvPRF-secf,A (λ) :=
∣∣∣Pr[Af(k,·)(1λ) = 1]− Pr[Ag(·)

(
1λ
)

= 1]
∣∣∣

is negligible in λ, where k $←− {0, 1}λ, and g is chosen randomly from the set
of all functions mapping {0, 1}i(λ) → {0, 1}o(λ). Additionally we say f achieves
dual PRF security if the advantage

Advdual-PRF-secf,A (λ) := AdvPRF-secf swap,A (λ)

is a negligible function in the security parameter λ, where f swap(k, l) := f(l, k).

HMAC-based Key Derivation. The HMAC-based key derivation function (HKDF)
[14,15] is a key derivation scheme and is used, e.g., in TLS 1.3 [17]. The HKDF
scheme is based on the HMAC construction [4,16] and follows the extract-then-
expand paradigm, i.e., from some given source key material first a pseudoran-
dom key of fixed length is extracted, which is then expanded to a pseudorandom
key of the desired length. Formally, HKDF.Extract(salt, src) given a (potentially
fixed) salt salt and a source key material src outputs a pseudorandom key prk.
HKDF.Expand(prk, ctxt) given a pseudorandom key prk and a (potentially empty)
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context info ctxt outputs a new pseudorandom key.3 In our security analysis we
rely on the assumption that both HKDF.Extract and HKDF.Expand are pseudo-
random functions [15].

PRF-ODH Assumption. An important security assumption in the analysis of
TLS 1.2 and 1.3 is the PRF-ODH assumption first introduced by Jager et al. [13].
Brendel et al. [5] analyzed and generalized the PRF-ODH assumption into several
variants. In this work we will need the dual-snPRF-ODH assumption.

Definition 5. Let λ ∈ N, G be a cyclic group of prime order q with generator
g and PRF : {0, 1}∗ × G → {0, 1}λ be a pseudorandom function keyed with the
second input. Consider the following game Gdual-snPRF-ODH

PRF,G,A (λ) played between a
challenger C and an adversary A:

1. C samples b $←− {0, 1}, u, v $←− Zq and outputs G, g, gu, gv to A. A then outputs
a challenge label x?.

2. C computes y?0 = PRF(x?, guv) and samples y?1
$←− {0, 1}λ uniformly at ran-

dom and outputs y?b to A.
3. A may query a pair (x, S). If S /∈ G or (x, S) = (x?, gv), C returns ⊥.

Otherwise C returns y ← PRF(x, Su).
4. At some point A outputs a guess b′ ∈ {0, 1}.

We say that A wins the game Gdual-snPRF-ODH
PRF,G,A (λ) = 1 if b = b′. A pseudoran-

dom function PRF is secure under the dual-snPRF-ODH assumption if for PPT
adversaries A the advantage

Advdual-snPRF-ODH
PRF,G,A (λ) := Pr[Gdual-snPRF-ODH

PRF,G,A (λ) = 1]− 1

2

is a negligible function in the security parameter λ.

2.1 Multi-Stage Key Exchange

We briefly recap the multi-stage key exchange (MSKE) model in its pre-shared
secret variant from [7], which has been used in previous analyses of resumption
handshakes in TLS 1.3 [3, 7–9,12].

The following description of the model is taken verbatim from [7], except for
the following minor changes. We modified the NewSecret query such that a pre-
shared secret can be shared between more than two users with the restriction that
only a single user uses the pre-shared secret in the initiator role. As a consequence
we modified the maps storing all pre-shared secrets as well as the input to the
NewSession and Corrupt query to properly identify the pre-shared secret to be
used in the session, resp. the pre-shared secret to corrupt.

3 Formally, HKDF.Expand is given an additional input L. This third parameter de-
termines the length of the output pseudorandom key. For simplicity we omit this
parameter and assume that L = λ unless stated otherwise.
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Preliminaries. In the MSKE model, properties are separated into protocol-
specific and session-specific properties. The protocol-specific properties are de-
fined by a vector (M,AUTH,USE,FS,REPLAY) denoting the following:

– M ∈ N: the number of stages (i.e., the number of keys derived).

– AUTH ⊆ {((u1,m1, ) . . . , (uM,mM))|uj ,mj ∈ {1, . . . ,M,∞}}: a set of vectors
of pairs, where each vector encodes a supported scheme for authentication
and authentication upgrades. The i-th entry (ui,mi) of a vector indicates
that the session key of stage i initially is unauthenticated, then becomes
unilaterally authenticated at stage ui, and finally reaches mutual authenti-
cation at stage mi. Entries in each pair must be non-decreasing, and ui =∞
or mi = ∞ denotes that unilateral, respectively mutual, authentication is
never reached for stage i.

– USE ∈ {internal, external}M: the usage indicator for each stage. We denote
with USEi the usage of the key of stage i. An internal key is used within the
key exchange protocol (but possibly also outside of it), while an external key
must not be used within the protocol.

– FS ∈ {1, . . . ,M,∞}: the stage j = FS from which on keys are forward secure
(or ∞ in case of no forward security).

– REPLAY ∈ {replayable, nonreplayable}M: the replayability indicator for each
stage. We denote with REPLAYi whether the stage i is replayable meaning
that an adversary is able to force identical session identifiers and keys in this
stage.

We denote the set of users by U , where each user is uniquely identified by some
U ∈ U . Protocol sessions are uniquely identified by a label label ∈ LABELS =
(U ×U×N), where label = (U, V, k) indicates the k-th local session of the session
owner U with V as the intended communication partner. Each session holds an
identifier pssid ∈ {0, 1}∗ for the pre-shared secret pss ∈ P (for some pre-shared
secret space P) used in the session. All pre-shared secrets are stored in maps
pssU,V : {0, 1}∗ → P mapping pre-shared secret identifiers to the corresponding
pre-shared secrets pss. A pre-shared secret pss stored in a map pssU,V is shared
between the participants U and all V ∈ V ⊆ U where U uses pss only in the
initiator role and all V ∈ V use pss only in the responder role.

All sessions are stored in the session list ListS with each entry holding the
following information:

– label ∈ LABELS: the unique session label.

– id ∈ U : the session owner.

– pid ∈ U : the intended communication partner.

– role ∈ {initiator, responder}: the role of the session owner.

– auth ∈ AUTH: the intended authentication type vector, where authi indicates
the authentication level pair for stage i, and authi,j its j-th entry.

– pssid ∈ ({0, 1}∗ ∪ {⊥}): the identifier of the pre-shared secret to be used in
this session.
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– stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution,
where RUNNING = {runningi | i ∈ N0}, ACCEPTED = {acceptedi | i ∈ N},
REJECTED = {rejectedi | i ∈ N}. stexec is initialized to running0. It is set to
acceptedi when the i-th key is accepted, set to runningi when the protocol
continues after accepting the i-th key, and set to rejectedi if the session re-
jects the i-th key (we assume a session does not continue after rejecting a
key in any stage).

– stage ∈ [M]0: the current stage. stage is initialized to 0 and set to i when
stexec is set to acceptedi or rejectedi.

– sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi indicates the session identifier of stage i, that is
set once when stexec is set to acceptedi. sid is initialized to (⊥, . . . ,⊥).

– cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi indicates the contributive identifier of stage i,
that may be set multiple times until stexec is set to acceptedi. cid is initialized
to (⊥, . . . ,⊥).

– key ∈ ({0, 1}∗ ∪ {⊥})M: keyi indicates the established session key of stage i.
key is initialized to (⊥, . . . ,⊥).

– stkey ∈ {fresh, revealed}M: stkey,i indicates the state of the session key in stage
i. stkey is initialized to (fresh, . . . , fresh).

– tested ∈ {true, false}M: testedi indicates whether the session key of stage i
has been tested. tested is initialized to (false, . . . , false).

– corrupted ∈ {0, . . . ,M,∞}: indicates the stage the session was in when
a Corrupt query for the pre-shared secret used in the session was issued.
corrupted may be set to 0, indicating that the pre-shared secret was cor-
rupted before the session started, and to ∞, indicating that the pre-shared
secret is not corrupted. corrupted is initialized to ∞.

Whenever an incomplete tuple (label, id, pid, role, auth, k, pss, pssid) is added
to ListS the missing entries are initialized as described above. As a shorthand
notation we use label.sid for the entry sid of the tuple with the unique label in
ListS. Two distinct sessions label and label′ are defined to be partnered in stage i
if label.sidi = label′.sidi 6= ⊥. For correctness two sessions having a non-tampered
joint execution are required to be partnered in all stages upon acceptance.

Upgradeable Authentication. The model captures that the authentication level
of some stage may increase when some later stage is accepted. However, the
authentication level of some stage i can only be increased in some later stage j
if the pre-shared secret is not corrupted when stage j accepts. Otherwise, the
adversary may be able to impersonate one participant of the session while it
is unauthenticated and post-authenticate after corrupting the participant. To
exclude this trivial attack the model introduces a rectified authentication level.

The rectified authentication level rect authi of some stage i in a session cur-
rently in stage stage with the intended authentication vector authi and the cor-
ruption indicator corrupted is defined as follows:

rect authi :=


mutual if stage ≥ authi,2 and corrupted ≥ authi,2

unilateral if stage ≥ authi,1 and corrupted ≥ authi,1

unauth otherwise
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Intuitively, this captures that the authentication level of stage i is upgraded when
stage authi,1, respectively authi,2, is reached only if the session is not corrupted
before reaching these stages.

Adversary Model. We consider a probabilistic polynomial-time adversary A that
controls the communication between all participants and can intercept, inject,
and drop messages. We use a flag lost to capture actions by A where it trivially
loses, e.g., revealing and testing the session key in partnered sessions. The flag
lost is initialized to false. The adversary is given access to the following queries:

– NewSecret(U,V, pssid): Generates a pre-shared secret pss with identifier pssid.
pss is shared between the user U and all users V ∈ V ⊆ U with V 6= ∅. U uses
pss in the initiator role and all V ∈ V use pss in the responder role. If the value
pssU,V(pssid) is already defined, return ⊥. Otherwise, sample pss uniformly
at random from the pre-shared secret space P and define pssU,V(pssid) := pss.

– NewSession(U, V,V, role, auth, pssid): Creates a new session with a unique new
label label with U as the session owner in the role role, V as the intended
communication partner, and aiming at authentication type auth. pssid indi-
cates the pre-shared secret to be used in the session. If role = initiator, it must
hold that V ∈ V and the session then uses pssU,V(pssid). If role = responder,
it must hold that U ∈ V and the session then uses pssV,V(pssid). Add
(label, U, V, role, auth, pssid) to ListS. If label is corrupted, set corrupted to
0. Return label.

– Send(label,m): Sends a message m to the session with label label. If no session
with label label exists in ListS, return ⊥. Otherwise, run the protocol on
behalf of the session owner U on input of the message m and return the
response as well as the updated state of execution label.stexec. If label.role =
initiator and m = init the protocol is initiated without any input message.

If, during the protocol execution, label.stexec is changed to acceptedi for some
stage i ∈ [M], the protocol execution is suspended and acceptedi is returned
to the adversary. In order to let the protocol execution resume and receive
the next protocol message and execution state, the adversary may send a
special message m = continue to the session.

If, during the protocol execution, label.stexec is changed to acceptedi for some
i ∈ [M] and there exists a session label′ 6= label partnered in stage i, i.e.,
label.sidi = label′.sidi, in ListS with label′.testedi = true, then label.testedi is
set to true as well. Moreover, if USEi = internal, label.keyi is set to label′.keyi.
This ensures that, if the partnered session has been tested before, subsequent
Test queries for the session are answered accordingly.

If, during protocol execution, label.stexec is changed to acceptedi for some
i ∈ [M] and the session label is corrupted, set label.stkey,i to revealed.

– Reveal(label, i): Reveals the session key label.keyi of the session with label
label in stage i. If no session with label label exists in ListS or label.stage < i,
return ⊥. Otherwise, set label.stkey,i to revealed and return label.keyi to the
adversary.
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– Corrupt(U,V, pssid): Provides the pre-shared secret pssU,V(pssid) to the ad-
versary. Add the global pre-shared secret identifier (U,V, pssid) to the set
of corrupted entities C. For all sessions label with label.(role, id, pid, pssid) ∈
{(initiator, U, V, pssid), (responder, V, U, pssid)} and label.corrupted 6= ∞ for
some V ∈ V, set label.corrupted := label.stage. For stage-j forward secrecy, in
any such session label, set stkey,i to revealed for all i < j and all i > label.stage.
For the non-forward secure case, in any such session label set stkey,i to revealed
for all i ∈ [M].

– Test(label, i): Tests the session key of stage i of the session with label label.
The Test oracle stores a bit btest, which is fixed throughout the game.
If no session with label label exists in ListS or if label.stexec 6= acceptedi or if
label.testedi = true, return ⊥. If USEi = internal and there exists a session
label′ 6= label partnered in stage i, i.e., label.sidi = label′.sidi, in ListS with
label′.stexec 6= accepted, set lost to true. If label.rect authi = unilateral and
label.role = responder or if label.rect authi = unauth, but there exists no
session label′ 6= label in ListS with label.cidi = label′.cidi, then the flag lost is
set to true. Otherwise, set label.testedi to true. This ensures that unilaterally
authenticated stages in the responder’s session and unauthenticated stages
can only be tested if an honest contributive partner exists.
If btest = 0, a key K $←− S is drawn uniformly at random from the session key
space S. If btest = 1, setK to the real session key label.keyi. If USEi = internal,
label.keyi is set to K.
If there exists a partnered session label′ 6= label in stage i, i.e., label.sidi =
label′.sidi, in ListS with label.stexec = label′.stexec = acceptedi, then label.testedi
is set to true, and if USEi = internal, label′.keyi is set to label.keyi as well.
Return K.

The security of an MSKE protocol is modeled via two games played between
a challenger and an adversary. The first game modeling Match security ensures
the soundness of session identifiers, while the second game modeling Multi-Stage
security ensures the classical key indistinguishability as well as further security
properties like forward security and replay protection.

Match Security. The notion of Match security ensures that session identifiers
properly identify partnered sessions. The Match security game GMatch

MSKE,A(λ) is
defined as follows.

Definition 6 (Match security). Let MSKE be a multi-stage key exchange pro-
tocol with properties (M,AUTH,USE,FS,REPLAY) and A a PPT adversary in-
teracting with MSKE in the following game GMatch

MSKE,A(λ):

1. The adversary A is given access to the queries NewSecret, NewSession, Send,
Reveal, Corrupt, Test.

2. At some point A stops without any output.

We say that A wins the game, denoted by GMatch
MSKE,A(λ) = 1, if at least one of

the following conditions holds:
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1. There exist two distinct labels label, label′ ∈ ListS with label.sidi = label′.sidi 6=
⊥ for some stage i ∈ [M], but label.keyi 6= label′.keyi. (Different session keys
in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ ∈ ListS with label.sidi = label′.sidi 6=
⊥ for some stage i ∈ [M], but label.role = label′.role and REPLAYi = nonreplayable
or label.role = label′.role = initiator and REPLAYi = replayable. (Non-opposite
roles of partnered sessions in non-replayable stage.)

3. There exist two distinct labels label, label′ ∈ ListS with label.sidi = label′.sidi 6=
⊥ for some stage i ∈ [M], but label.authi 6= label′.authi. (Different authenti-
cation types in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ ∈ ListS with label.sidi = label′.sidi 6=
⊥ for some stage i ∈ [M], but label.cidi 6= label′.cidi or label.cidi = label′.cidi =
⊥. (Different or unset contributive identifiers in some stage of partnered ses-
sions.)

5. There exist two distinct labels label, label′ ∈ ListS with label.sidi = label′.sidi 6=
⊥ and label.sidj = label′.sidj 6= ⊥ for some stages i, j ∈ [M] with j ≤ i, with
label.role = initiator, and label′.role = responder such that

– label.authj,1 ≤ i (unilateral authentication), but label.pid 6= label′.id, or

– label.authj,2 ≤ i (mutual authentication), but label.id 6= label′.pid.

(Different authenticated partner or different key identifiers in mutual au-
thentication)

6. There exist two (not necessarily distinct) labels label, label′ ∈ ListS with
label.sidi = label′.sidj 6= ⊥ for some stages i, j ∈ [M] with i 6= j. (Differ-
ent stages share the same session identifier.)

7. There exist three pairwise distinct labels label, label′, label′′ ∈ ListS with label.sidi =
label′.sidi = label′′.sidi 6= ⊥ for some stage i ∈ [M] with REPLAYi = nonreplayable.
(More than two sessions share the same session identifier in a non-replayable
stage.)

We say MSKE is Match-secure if for all PPT adversaries A the advantage

AdvMatch
MSKE,A(λ) := Pr[GMatch

MSKE,A(λ) = 1]

is a negligible function in the security parameter λ.

Multi-Stage Security. The notion of Multi-Stage security ensures that established
session keys are indistinguishable from randomly sampled keys.

Definition 7 (Multi-Stage security). Let MSKE be a multi-stage key exchange
protocol with key space S and properties (M,AUTH,USE,FS,REPLAY) and A a

PPT adversary interacting with MSKE in the following game GMulti-Stage
MSKE,A (λ):

1. The challenger samples the bit btest
$←− {0, 1} and sets the flag lost to false.

2. The adversary A is given access the the queries NewSecret, NewSession, Send,
Reveal, Corrupt, Test. Note that such queries may set lost to true.
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3. At some point A stops and ouputs a guess b. The challenger sets the flag lost
to true if there exist two (not necessarily distinct) labels label, label′ ∈ ListS
and some stage i ∈ [M] with label.sidi = label′.sidi, label.stkey,i = revealed,
and label′.testedi = true, i.e., the adversary has tested and revealed the key
of some stage in a single session or in two partnered sessions.

We say that A wins the game, denoted by GMulti-Stage
MSKE,A (λ) = 1, if b = btest

and lost = false. We say MSKE with properties (M,AUTH,USE,FS,REPLAY) is
Multi-Stage-secure if MSKE is Match-secure and for all PPT adversaries A the
advantage

AdvMulti-Stage
MSKE,A (λ) := Pr[GMulti-Stage

MSKE,A (λ) = 1]− 1

2

is a negligible function in the security parameter λ.

3 Breaking the Security of Session Resumption Across
Hostnames in TLS 1.3

In this section we show that session resumption across hostnames in TLS 1.3 is
not a secure MSKE protocol if clients do not include the SNI value of the intended
receiver in the ClientHello. As mentioned before, the TLS 1.3 specification [17]
does not precisely state that resumption handshakes require an SNI value to be
sent by the client. We therefore assume that in practice this may not always be
seen as an absolute requirement for implementations and it may happen that
clients do not specify an SNI value in their ClientHello.

We will exploit this lack of an SNI value to break the authentication of
TLS 1.3 if two servers share the same certificate and symmetric ticket encryption
key. Our attack targets a client C that wants to perform SRAH with some server
SA. The core idea of the attack is for the adversary to reroute any messages from
C to a different server SB that is able to execute the session resumption. This
results in SB implicitly authenticating itself by its ability to accept the session
ticket while from the view of C it was SA that implicitly authenticated itself.

3.1 Modeling TLS 1.3 Session Resumption as an MSKE Protocol

We begin by formally modeling the TLS 1.3 session resumption as an MSKE
protocol. We consider both the PSK-only as well as the PSK-(EC)DHE hand-
shake variants of TLS 1.3. We illustrate both variants in Figure 1. The TLS
1.3 session resumption protocol proceeds as follows. The client’s first message
ClientHello contains the protocol version, a random nonce, and a list of supported
cryptographic algorithms. Moreover, it contains a pre shared key extension
that indicates the identity of the PSK used in this handshake. In the PSK-
(EC)DHE handshake it additionally contains the client’s Diffie–Hellman share
in the key share extension. Additionally, the client may use the server name

extension to specify the SNI value of the intended receiver.
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Furthermore, from the PSK the client derives the early secret ES. The early
secret ES is then expanded into the binder key bk and the early traffic secret
ets. The binder key bk is used to derive fk0, which is used to compute the Fin0
message. The Fin0 message constitutes a MAC tag over the ClientHello and thus
ensures its integrity and authenticity. As the last step in stage 1, the early traffic
key tkets is derived from the early traffic secret ets and set as the stage’s session
key. The client may use tkets to encrypt early application data and send them to
the server. However, note that this is not part of the handshake protocol itself.

Stage 2 only consists of deriving the early exporter master secret EEMS from
the early secret ES. In stage 3 the server sends a ServerHello in response to the
ClientHello. It contains the protocol version, a random nonce, the selected crypto-
graphic algorithms, and the pre shared key extension confirming the identity of
the PSK. In the PSK-(EC)DHE handshake, it additionally contains the server’s
Diffie–Hellman share in the key share extension. Other optional extensions are
sent separately in an EncryptedExtensions message, although we omit that mes-
sage for simplicity.

Moreover, the early secret ES is expanded into the derived early secret dES.
Next, the handshake secret HS is computed: in the PSK-only handshake it is
derived only from dES, while in the PSK-(EC)DHE handshake it is derived from
dES and the shared Diffie–Hellman secret. The handshake secret HS is expanded
into the client handshake traffic secret chts, respectively server handshake traffic
secret shts. The handshake traffic secrets are then used to compute the stage’s
session keys tkchts and tkshts from chts, respectively shts.

In stage 4 the server sends the FinS message, which constitutes a MAC over
all previously exchanged messages. It is computed with the server finished key
fkS derived from the server handshake traffic secret shts and encrypted with
the server handshake traffic key tkshts. Moreover, the handshake secret HS is ex-
panded into the derived handshake secret dHS, from which the master secret MS
is computed. The master secret MS is then used to derive the client, respectively
server, application traffic secret cats, respectively sats. As the last step in stage
4, the client, respectively server, application traffic key tkcats, respectively tksats,
are computed from cats, respectively sats. The stage’s session keys tkcats and
tksats are used to encrypt any exchanged application data. Again, note that this
is not actually a part of the handshake protocol itself.

Stage 5 only consists of deriving the exporter master secret EMS from the
master secret MS. In stage 6 the client sends the FinC message, which again
constitutes a MAC over all previously exchanged messages. It is computed with
the client finished key fkC derived from the client handshake traffic secret chts
and encrypted with the client handshake traffic key tkchts. The last step of the
protocol consists of deriving the resumption master secret RMS from the master
secret MS.

For completeness we provide an exact listing of the messages over which the
MACs are computed in Table 1. In Figure 1 for readability we separated the Fin0
message from the ClientHello, although according to the standard it is contained
in the ClientHello as the PSK binder (cf. [17, § 4.2.11.2]). Moreover, note that
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both participants possess a pre-shared key PSK. The value PSK is derived from
the RMS computed in the previous handshake and a random nonce, which is
provided by the server via the NewSessionTicket message. The NewSessionTicket
message is encrypted under tksats and additionally contains an opaque label
ticket, which is used as the PSK identifier in the pre shared key extension.

Similar to previous security analyses of TLS 1.3 [7, 9, 12], we capture nei-
ther the NewSessionTicket message nor the derivation of PSK. In order to sim-
plify the analysis the previous works treat tksats as an external key that can
be used in an arbitrary symmetric protocol. To capture the transmission of the
NewSessionTicket message, tksats would have to be treated as an internal key.
Instead it is assumed that some out-of-band mechanism is used to establish
a mapping between PSK identifiers and the PSK values. We follow the same
approach and assume the same out-of-band mapping.

Table 1: List of the hash values and the transcript messages used to compute them in
the TLS 1.3 session resumption handshake.

Hash value Messages

H1 ClientHello
H2 ClientHello, Fin0
H3 ClientHello, Fin0, ServerHello
H4 ClientHello, Fin0, ServerHello, EncryptedExtensions
H5 ClientHello, Fin0, ServerHello, EncryptedExtensions, FinS
H6 ClientHello, Fin0, ServerHello, EncryptedExtensions, FinS , FinC

Protocol properties. The protocol properties of the TLS 1.3 PSK-only and PSK-
(EC)DHE handshakes in the MSKE model are as follows:

– M = 6. Both handshake variants comprise 6 stages deriving the keys tkets,
EEMS, tkchts/tkshts, tkcats/tksats, EMS, and RMS.

– The authentication properties AUTH are different for each handshake vari-
ant. We explain the reasoning for the difference in detail in Remark 8.

• for PSK-only AUTH = {((1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6))}: all keys
are immediately mutually authenticated.

• for PSK-(EC)DHE AUTH = {((1, 1), (2, 2), (4, 4), (4, 4), (5, 5), (6, 6))}:
the keys tkchts and tkshts are at first unauthenticated and reach mutual
authentication in stage 4, while all other keys are immediately mutually
authenticated.

– The forward security is different for the two handshake variants:

• for PSK-only FS = ∞. The PSK-only variant does not provide forward
security.

• for PSK-(EC)DHE FS = 3. The PSK-(EC)DHE variant provides forward
security for all stages i ≥ 3.
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Client: PSK Server: PSK

ES := HKDF.Extract(0,PSK) ClientHello ES := HKDF.Extract(0,PSK)

bk := HKDF.Expand(ES, `1) bk := HKDF.Expand(ES, `1)

fk0 := HKDF.Expand(bk, `2) fk0 := HKDF.Expand(bk, `2)

Fin0 := HMAC(fk0, H1) Fin0 Fin′0 := HMAC(fk0, H1)

verify Fin0

ets := HKDF.Expand(ES, `3 ‖H2) ets := HKDF.Expand(ES, `3 ‖H2)

tkets := HKDF.Expand(ets, `4) tkets := HKDF.Expand(ets, `4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EEMS := HKDF.Expand(ES, `5 ‖H2) EEMS := HKDF.Expand(ES, `5 ‖H2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dES := HKDF.Expand(ES, `6) ServerHello dES := HKDF.Expand(ES, `6)

HS := HKDF.Extract(dES,DHE) HS := HKDF.Extract(dES,DHE)

chts/shts := HKDF.Expand(HS, `7/`8 ‖H3) chts/shts := HKDF.Expand(HS, `7/`8 ‖H3)

tkchts/tkshts := HKDF.Expand(chts/shts, `4) tkchts/tkshts := HKDF.Expand(chts/shts, `4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fkC/fkS := HKDF.Expand(chts/shts, `2) fkC/fkS := HKDF.Expand(chts/shts, `2)

Fin′S := HMAC(fkS , H4) {FinS}tkshts FinS := HMAC(fkS , H4)

verify FinS

dHS := HKDF.Expand(HS, `6) dHS := HKDF.Expand(HS, `6)

MS := HKDF.Extract(dHS, 0) MS := HKDF.Extract(dHS, 0)

cats/sats := HKDF.Expand(MS, `9/`10 ‖H5) cats/sats := HKDF.Expand(MS, `9/`10 ‖H5)

tkcats/tksats := HKDF.Expand(cats/sats, `4) tkcats/tksats := HKDF.Expand(cats/sats, `4)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMS := HKDF.Expand(MS, `11 ‖H5) EMS := HKDF.Expand(MS, `11 ‖H5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FinC := HMAC(fkC , H5) {FinC}tkchts Fin′C := HMAC(fkC , H5)

verify FinC

RMS := HKDF.Expand(MS, `12 ‖H6) RMS := HKDF.Expand(MS, `12 ‖H6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stage 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1: The TLS 1.3 session resumption protocol. The client and server possess
a pre-shared secret PSK. A dotted line indicates the key of the stage noted
at that line being accepted. The values `1, . . . , `11 are publicly known string
labels.The values H1, . . . ,H6 are hash values computed from the transcript of
the communication. We provide the exact listing of messages for each hash value
in Table 1. In the PSK-only variant DHE is set to 0 and in the PSK-(EC)DHE
variant DHE is the shared (elliptic curve) Diffie–Hellman key. {m}k denotes a
message m being encrypted with key k.
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– USE = (external, external, internal, external, external, external). The handshake
traffic keys tkchts and tkshts are used internally to encrypt some handshake
messages. All other keys are used externally.

– REPLAY = (replayable, replayable, nonreplayable, nonreplayable, nonreplayable,
nonreplayable). The stages 1 and 2 with the keys tkets and EEMS are re-
playable. All other stages are non-replayable.

Remark 8. In the PSK-EC(DHE) handshake the keys tkchts and tkshts of stage 3
only reach mutual authentication in stage 4 due to the following attack. An ad-
versary can intercept the ServerHello, replace the server’s Diffie–Hellman share
with its own share, and then send the modified ServerHello to the client. Af-
ter corrupting the pre-shared secret the adversary can then compute tkchts and
tkshts from the pre-shared secret, the client’s Diffie–Hellman share and its own
Diffie–Hellman share. Note that the adversary cannot execute a similar attack
by replacing the client’s Diffie–Hellman share instead of the server’s share since
in contrast to the FinS message, which is sent separately from the ServerHello,
the Fin0 message is included in the ClientHello.

To prevent this attack we at first treat tkchts and tkshts as unauthenticated and
as mutually authenticated once the server authenticated its Diffie–Hellman share
in stage 4. An alternative approach is to prohibit the adversary from corrupting
the pre-shared secret during stage 3 by treating stage 3 as non-forward secure.
However, this would be a counterintuitive solution as both parties contributed
ephemeral key material to the key of stage 3. Thus, the straightforward choice
is to treat tkchts and tkshts as unauthenticated in stage 3.

Session and Contributive Identifiers. We define the session identifiers of each
stage to comprise all handshake messages sent up to that stage. In order to have
different session identifiers for each stage, we add a label string if in some stage
no handshake message is sent. Formally, the session identifiers are defined as
follows:

sid1 = (ClientHello,Fin0) sid2 = (sid1, “EEMS”) sid3 = (sid2,ServerHello)

sid4 = (sid3,FinS) sid5 = (sid4, “EMS”) sid6 = (sid5,FinC)

For all stages i ∈ {1, 2, 4, 5, 6} we set cidi = sidi when sidi is set. For stage 3
on sending (resp. receiving), the ClientHello, the client (resp. server) sets cid3 =
(ClientHello,Fin0). Similarly, on sending (resp. receiving) the ServerHello, the
server (resp. client) extends cid3 to (ClientHello,Fin0, “EEMS”, ServerHello).

3.2 The Attack

We now proceed to describe the attack breaking the security of SRAH in TLS 1.3
in the MSKE model. To this end, we give a sequence of query calls that allows us
to win the Match security game GMatch

TLS-1.3-SRAH,A with a probability of 1, proving
that SRAH in TLS 1.3 is not a Match-secure protocol. The attack is applicable
to both the PSK-only handshake as well as the PSK-(EC)DHE handshake.
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Theorem 9. If the client does not include the SNI value of the intended com-
munication partner in the ClientHello, the TLS 1.3 PSK-only and the TLS 1.3
PSK-(EC)DHE handshakes with SRAH are not Match-secure and we can con-
struct an adversary A with the advantage

AdvMatch
TLS-1.3-SRAH,A(λ) = 1.

Proof. We construct A as follows. Let pssid ∈ {0, 1}∗ be a pre-shared key
identifier, C, S, S′ ∈ U be participant identities, and auth ∈ {((1, 1), (2, 2),
(3, 3), (4, 4), (5, 5), (6, 6)), ((1, 1), (2, 2), (4, 4), (4, 4), (5, 5), (6, 6))} depending on the
handshake variant. We proceed as follows:

1. NewSecret(C, {S, S′}, pssid). We begin by generating a new pre-shared secret
with the identifier pssid shared between C, S, and S′.

2. NewSession(C, S, {S, S′}, initiator, auth, pssid). We create a new session with
the label label = (C, S, 1) for the client C with the server S as the in-
tended communication partner, where the session is resumed based on the
pre-shared secret we created in step 1.

3. NewSession(S′, C, {S, S′}, responder, auth, pssid). We then create a new ses-
sion with the label label′ = (S′, C, 1) for the server S′ with the client C as
the intended communication partner, where the session is resumed based on
the pre-shared secret we created in step 1.

4. Send((C, S, 1), init). We send the special message init to the client C, which
initiates the protocol. After C accepts the key of stage 1, it sets sid1 =
(ClientHello,Fin0) and suspends the execution we send the special message
continue to C to obtain the messages ClientHello and Fin0.

5. Send((S′, C, 1), (ClientHello,Fin0)). We send the messages ClientHello and
Fin0 to the server S′. Since we did not modify either of the messages, the
Fin0 message will successfully be verified. Therefore, S′ accepts the key of
stage 1, sets sid1 = (ClientHello,Fin0) and suspends the protocol execution.

The above sequence of query calls results in the game GMatch
TLS-1.3-SRAH,A being won

with probability 1. The session label is partnered with the session label′ and we
have label.auth1,1 = 1 but label.pid 6= label′.id. Observe that this fulfills condition
5 in GMatch

TLS-1.3-SRAH,A and we therefore have

AdvMatch
TLS-1.3-SRAH,A(λ) = 1.

4 Secure SRAH Protocols

In this section we formally define secure SRAH protocols, which will resemble
an abstraction of the TLS 1.3 session resumption. While in TLS 1.3 multiple
keys are derived for many different purposes (e.g., partial encryption of the
handshake, or multiple keys for application-based encryption), we start with a
reduced approach to SRAH, which generates two keys only: one “temporary” key
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to send (optional) data within the first protocol message4 and one potentially
stronger “main” key as result of the handshake. Reducing the complexity of
the protocol in comparison to TLS 1.3 will later allow us to achieve a simpler
security proof compared to the security proofs of the full TLS 1.3 protocol by
Dowling et al. [7].

Definition 10. A session resumption across hostnames protocol with key space
S is a tuple of five PPT algorithms SRAH = (KeyGen,TicketGen,SessionResclientinit ,
SessionResserverrefresh,SessionRes

client
refresh).

KeyGen(1λ)→ k . On input of a security parameter λ the algorithm outputs a
long–term key k.

TicketGen(s)→ t. On input of a secret s the algorithm outputs a session ticket t.
SessionResclientinit (s, t , j)→ (stmp,mC). On input of a secret s ∈ S, a ticket t ∈
{0, 1}∗ and a server identifier j the algorithm outputs a temporary secret
stmp and a message mC.

SessionResserverrefresh(k ,mC)→ (stmp, smain,mS). On input of a long-term key k and
a message mC the algorithm outputs a temporary secret stmp, a secret smain,
and a message mS.

SessionResclientrefresh(mS)→ smain. On input of a message mS the algorithm outputs
a secret smain.

We say a session resumption across hostnames protocol is correct if for all
k $←− KeyGen(1λ), all s $←− S, and all t $←− TicketGen(k , s) it holds that stmp = s ′tmp

and smain = s ′main, where (stmp,mC) $←− SessionResclientinit (s, t , j), (s ′tmp, s
′
main,mS) $←−

SessionResserverrefresh(k ,mC), and smain
$←− SessionResclientrefresh(mS).

We use the modified version of the MSKE security model described in section
2.1 to define the security of SRAH protocols.

Definition 11. We say a SRAH protocol is secure if it is Multi-Stage-secure.

Using an SRAH protocol. The flow of an SRAH protocol is shown in Figure 2.

4.1 Constructing Secure SRAH Protocols

In this section we show a construction of a secure SRAH protocol. Our con-
struction essentially resembles an abstraction of the TLS 1.3 session resumption
protocol with the addition of a mandatory server identifier in the client’s first
message, which identifies the intended recipient of the message. By adding the
server identifier we prevent an adversary from applying the attack described in
Section 3.2.

4 This captures the optional zero round-trip time feature of TLS 1.3 resumption hand-
shakes, where a client may send encrypted early data with its first flight of messages.
Note that due to the lack of interaction, this often comes at the cost of forward se-
curity for this message.
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Client C Server Sj

(stmp,mC) $←− SessionResclientinit (s, t , j) mC (stmp, smain,mS) $←− SessionResserverrefresh(k ,mC)

smain = SessionResclientrefresh(mS) mS

Fig. 2: Execution of an SRAH protocol between a client Ci and a server Sj where
t = TicketGen(k , s), computed by a server S` 6= Sj .

Recall that the main idea of the attack in Section 3.2 is to reroute the mes-
sages sent by the client to a different server than the intended receiver. This
is unnoticed by both the client and the server receiving the message since the
client’s messages do not include any information on the intended recipient. How-
ever, if the message mC contains the identifier of the intended receiver and an
adversary reroutes it to a different server, that server recognizes that it is not
the intended recipient of the message and aborts the handshake. Moreover, we
use a MAC to prevent the adversary from modifying the server identifier.

With the server name extension TLS 1.3 already provides a mechanism
to indicate the intended receiver of a ClientHello. We recommend to make the
server name extension mandatory in session resumption handshakes to prevent
the attack as described intuitively above. In the following we formally prove
that this change prevents the attack by showing that our construction, which
abstracts TLS 1.3 session resumption with a mandatory server name extension,
is a secure MSKE protocol.

Definition 12. Let Π = (Π.KeyGen, Π.Enc, Π.Dec) be a symmetric encryption
scheme, HMAC be the HMAC construction, HKDF the HKDF scheme, G a cyclic
group of prime order p, and g a generator of G. We construct a SRAH protocol
SRAH = (KeyGen,TicketGen,SessionResclientinit ,SessionResserverrefresh,SessionRes

client
refresh) as

follows.

KeyGen(1λ). Returns k $←− Π.KeyGen(1λ).
TicketGen(k , s). Returns t $←− Π.Enc(k , s).
SessionResclientinit (s, t , ID). Samples x $←− Z∗p, rC $←− {0, 1}λ, computes

stmp := HKDF.Extract(“tmp”, s),

sMAC := HKDF.Extract(“MAC”, s),

τC := HMAC(sMAC, g
x ‖ rC ‖ j ‖ t),

and returns (stmp,mC), where mC := (gx, rC , j, τC , t).
SessionResserverrefresh(k ,mC). Parses mC as (gx, rC , j

′, τC , t). If j′ is not the identifier
of the executing server, returns ⊥. Otherwise computes

s = Π.Dec(k , t),

sMAC = HKDF.Extract(“MAC”, s).
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If HMAC(sMAC, g
x ‖ rC ‖ j′ ‖ t) 6= τC , returns ⊥. Otherwise samples y $←−

Z∗p, rS $←− {0, 1}λ, computes

stmp := HKDF.Extract(“tmp”, s),

smain := HKDF.Extract(s, gxy),

τS := HMAC(sMAC,mC ‖ gy ‖ rS)

and returns (stmp, smain,mS), where mS := (gy, rS , τS).

SessionResclientrefresh(mS). Parses mS as (gy, rS , τS). If HMAC(sMAC,mC ‖ gy ‖ rS) 6=
τS, returns ⊥. Otherwise computes

smain := HKDF.Extract(s, gxy)

and returns smain.

We set the following protocol-specific properties for the MSKE model:

– M = 2: The number of stages is equal to two, where stmp is the key of stage
1, and smain the key of stage 2.

– AUTH = {((1, 1), (2, 2))}: All keys are mutually authenticated.
– USE = (external, external): Both keys are used only externally.
– FS = 2: The main key is forward secure, while the temporary key is not

forward secure.
– REPLAY = (replayable, nonreplayable): stage 1 is replayable while stage 2 is

non-replayable.

Moreover, we define the session identifiers of both stages to comprise all
messages sent up to that stage. Formally, the session identifiers are defined as
sid1 = (mC) and sid2 = (mC,mS). For stage 1 we set the contributive identifier
cid1 = sid1 when sidi is set. On sending (resp. receiving) the message mC, the
client (resp. server) sets cid2 = (mC). Similarly, on sending (resp. receiving) the
message mS, the server (resp. client) sets cid2 = (mC,mS).

Theorem 13. The above construction SRAH is Match-secure with properties
(M,AUTH,USE,FS,REPLAY) given above. For each PPT adversary A, there ex-
ists an algorithm B such that

AdvMatch
SRAH,A(λ) ≤ AdvcollisionHMAC,B(λ) +

n2p
|P|

+ n2s ·
1

p
+ 2−λ.

Proof. We need to show that the seven conditions for Match-security hold:

1. Sessions with the same session identifier for some stage hold the same key at
that stage. All keys derived in the protocol SRAH are uniquely determined by
the messages the pre-shared secret and the Diffie–Hellman secret. Further-
more, all session identifiers contain all messages exchanged up to that stage.
The message mC contains the pre-shared secret identifier and the client’s
Diffie–Hellman share. The message mS contains the server’s Diffie–Hellman
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share. Therefore, two sessions with the same session identifier agree on the
pre-shared secret as well as the Diffie-Hellman secret used to derive all ses-
sion keys. Thus, sessions with the same session identifier in some stage hold
the same key in that stage.

2. Sessions with the same session identifier for some stage have opposite roles,
except for potential multiple responders in replayable stages. Since stage 1
is replayable we only consider stage 2. As shown in condition 7 in a nonre-
playable stage there are at most two sessions with the same session identifier.
As a session does not accept a message intended for the opposite role, the
two session having the same session identifier must have opposite roles.

3. Sessions with the same session identifier for some stage agree on that stage’s
authentication level. This trivially holds since the authentication vector is
fixed to ((1, 1), (2, 2)).

4. Sessions with the same session identifier for some stage share the same con-
tributive identifier at that stage. This trivially holds for stage 1 as cid1 = sid1.
Once cid2 is final, i.e., when stage 2 is accepted and sid2 is set, cid2 = sid2
holds as well.

5. Sessions are partnered with the intended (authenticated) participant and, for
mutual authentication, share the same key identifier. The message mC, which
contains pssid, τC and the intended communication partner, is part of the ses-
sion identifier in both stages. This first ensures that the initiator is partnered
with its intended partner since any other participant aborts the handshake
if it receives mC. Additionally, this ensures that two partnered session al-
ways agree on pssid. As τC is computed from pss through a series of HKDF
and HMAC invocations, two sessions agreeing on τC implies that the session
also agree on pss if we consider HMAC as an unkeyed collision resistant hash
function. Since pss is chosen uniformly at random in the NewSecret query, we
can bound the probability of pre-shared secrets colliding with the negligible
birthday bound n2p/|P| where P is the pre-shared secret space and np is the
number of pre-shared secrets. Thus, from the client’s and the server’s per-
spective pss must originate from the same call to the NewSecret query, which
to the server uniquely identifies its communication partner as its intended
partner.

6. Session identifiers do not match across different stages. This trivially holds
due to the session identifiers being unique for each stage.

7. At most two sessions have the same session identifier at any nonreplayable
stage. As the first stage is replayable, we only consider the second stage. The
session identifier of stage 2 contains the messages mC and mS, which both
contain a Diffie–Hellman share and a nonce. In order for three session to
have the same session identifier, two sessions would need to draw the same
Diffie–Hellman share and nonce and then both be partnered with some third
session. The probability of this can be upper-bounded with the birthday
bound by n2s · 1/p · 2−λ, where ns is the maximum number of sessions, p is
the group order, and λ the length of the nonce.

Theorem 14. The above construction SRAH is Multi-Stage-secure with the prop-
erties (M,AUTH,USE,FS,REPLAY) given above. For each efficient adversary A,
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there exist efficient algorithms B1, . . . ,B8 such that

AdvMulti-Stage
A,SRAH (λ) ≤ 2ns ·

(
np ·

(
AdvCPAΠ,B1

+ Advdual-PRF-secHKDF.Extract,B2
(λ)+

AdvsEUF-CMA
HMAC,B3

(λ)
)

+ np · ns ·
(
AdvCPAΠ,B4

(λ) + Advdual-PRF-secHKDF.Extract,B5
(λ)+

AdvsEUF-CMA
HMAC,B6

(λ) + Advdual-PRF-secHKDF.Extract,B7
(λ)
)

+ ns · Advdual-snPRF-ODH
HKDF.Extract,B8

(λ)

)
where ns is the maximum number of sessions and np is the maximum number
of pre-shared secrets.

Proof. We conduct the proof as a sequence of games played between a challenger
C and an adversary A. We start with the original security game GMulti-Stage

A,SRAH and
transform it over a sequence of hybrid arguments to a game where the adverary’s
advantage is at most 0. Let Advi denote the adversary’s advantage in the i-th
game.

Game 0. We start with Game 0, which is the original security game GMulti-Stage
A,SRAH .

By definition we have

Adv0(λ) = AdvMulti-Stage
A,SRAH (λ).

Game 1. This game is identical to Game 0 except we only allow A to issue a
single Test query. As shown by Dowling et al. [7, Lemma A.1] the adversary’s
advantage is reduced by a factor of at most M · ns where ns is the number of
sessions and we can implicitly guess which session label = (U, V, k) is tested by
A. Thus, we have

Adv1(λ) ≥ 1

2ns
· Adv0(λ).

In the following we will distinguish between three cases:

A. the adversary A tests a non-forward secure stage, i.e., A issues Test(label, 1)
B. the adversary A tests a forward secure stage, i.e., A issues Test(label, 2), and

the tested session label has no honest contributive partner in stage 2, i.e.,
there exists no session label′ 6= label with label′.cid2 = label.cid2

C. the adversary A tests a forward secure stage, i.e., A issues Test(label, 2), and
the tested session label has an honest contributive partner in stage 2, i.e.,
there exists a session label′ 6= label with label′.cid2 = label.cid2

Hence, we have

Adv1(λ) ≤ AdvNFS
1 (λ) + AdvFS-without-partner

1 (λ) + AdvFS-with-partner
1 (λ).

Case A: Test in non-forward secure stage. We begin with the case where the
adversary A tests a non-forward secure stage, i.e., A issues Test(label, 1).
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Game A.0. This game is identical to Game 1 except the adversary is restricted
to testing in stage 1. Therefore, we have

AdvNFS
1 (λ) = AdvA.0(λ).

Game A.1. This game is identical to Game A.0 except we guess the pre-shared
secret pss used in the tested session and abort the game if our guess was wrong.
This reduces the adversary’s advantage by a factor of at most np, where np is
the number pre-shared secrets:

AdvA.1(λ) ≥ 1

np
· AdvA.0(λ).

Game A.2. This game is identical to Game A.1 except we guess the contributive
partner session of the session label and abort the game if our guess was wrong.
This reduces the adversary’s advantage by a factor of at most ns, where ns is
the number pre-shared secrets:

AdvA.2(λ) ≥ 1

ns
· AdvA.1(λ).

Game A.3. This game is identical to Game A.2 except in any session using the
pre-shared secret guessed in Game A.2 we replace the pre-shared secret with
a uniformly random value p̃ss $←− P. We will now show that we can use any
adversary A that is able to distinguish Game A.2 from Game A.3 to construct
an adversary B1 against the CPA security of Π. The adversary B1 behaves ex-
actly like the challenger in Game A.2 except for generating the pre-shared secret
used in the session label. When the adversary A calls the NewSecret query to
create the pre-shared secret used in the session label B1 first draws uniformly
at random pss $←− P and sets it as the freshly generated pre-shared secret. It
then additionally draws p̃ss $←− P, outputs pss and p̃ss to its challenger, and out-
puts the received challenge ciphertext as the pre-shared secret identifier pssid.
Note that B1 is able to simulate all queries by the adversary A independent of
the challenge chiphertext. Moreover, if the challenger encrypts pss as the chal-
lenge, we then perfectly simulate Game A.2. If the challenger encrypts p̃ss, the
pre-shared secret used in the session label is a uniformly random value that is
independent from the pre-shared secret identifier sent resp. received by the ses-
sion label. Thus, in that case we perfectly simulate Game A.3. Therefore, if A
is able to distinguish between Game A.2 and Game A.3, B1 is able to break the
CPA security of Π and we have

|AdvA.3(λ)− AdvA.2(λ)| ≤ AdvΠ,B1

CPA (λ).

Game A.4. This game is identical to Game A.3 except we replace the derivation
of sMAC in any session using the pre-shared secret p̃ss with a uniformly random
value s̃MAC

$←− {0, 1}∗. We will now show that we can use any adversary A that
is able to distinguish Game A.3 from Game A.4 to construct an adversary B2
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against the PRF-sec security of HKDF.Extract. The adversary B2 behaves exactly
like the challenger in Game A.3 except that it uses its PRF oracle to derive sMAC.
B2 perfectly simulates Game A.3 if its PRF oracle computes HKDF.Extract and
perfectly simulates Game A.4 if its PRF oracle is a random function and we
have

|AdvA.4(λ)− AdvA.3(λ)| ≤ AdvHKDF.Extract,B2

PRF-sec (λ).

Game A.5. In this game we want to ensure that although the pre-shared secret
used in the session label may be shared with multiple participants, none of these
participants can accept in stage 1 if they are not the intended partner of the
session label. To this end, we abort the game and raise an event abortA.5 if
a session label′ 6= label with label.pssid = label′.pssid and label.pid 6= label′.id
accepts in stage 1. Clearly, we have

AdvA.5(λ) = AdvA.4(λ)− Pr[abortA.5].

We will now show that we can construct an adversary B3 that breaks the
sEUF-CMA security of MAC with probability at least Pr[abortA.5]. The adversary
B3 behaves exactly like the challenger in Game A.4 except that it uses its MAC
oracle to compute the MAC value for the session label and the corresponding
session of the intended partner.

If label.role = responder, there exists only a single participant that uses
the same pre-shared key as label in the initiator role, which is then the in-
tended partner of the session label. Therefore, the event abortA.5 cannot occur
if label.role = responder. If label.role = initiator and the event abortA.5 occurs,
this implies that some session label′ 6= label with label.pid 6= label′.id that uses
the pre-shared key p̃ss received a message containing a valid MAC value. Since
Match security guarantees that label can only be partnered with its intended
partner, label′ cannot be partnered with label. Since all messages output resp.
received by a session are contained in the session’s session identifier, the mes-
sage received by label′ must be different from the message output by label and
thus it constitutes a valid MAC forgery. The adversary B3 hence outputs the
message received by label′ and the MAC value contained in it as a forgery to its
challenger. This proves our claim and we have

AdvA.5(λ) ≥ AdvA.4(λ)− AdvMAC,B3

sEUF-CMA(λ).

Game A.6. This game is identical to Game A.5 except we replace the derivation
of stmp in any session using the pre-shared secret p̃ss with a uniformly random
value s̃tmp

$←− S. We will now show that we can use any adversary A that is able
to distinguish Game A.5 from Game A.6 to construct an adversary B4 against
the PRF-sec security of HKDF.Extract. The adversary B4 behaves exactly like the
challenger in Game 0 except that it uses its PRF oracle to derive stmp. Hence,
B4 perfectly simulates Game A.5 if its PRF oracle computes HKDF.Extract and
perfectly simulates Game A.6 if its PRF oracle is a random function and we
have

|AdvA.6(λ)− AdvA.5(λ)| ≤ AdvHKDF.Extract,B4

PRF-sec (λ).
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In Game A.6 the value s̃tmp of the tested session label is chosen uniformly at
random. Hence, from the view of A, Game A.6 is independent of the bit btest,
which results in

AdvA.6(λ) = 0.

Case B: Test without contributive partner. Next we consider the case where the
adversary A tests a session label that has no honest contributive partner. In
particular, we consider the case that label is an initiator session that has no
contributive partner in stage 2, or that label is a responder session that has no
contributive partner in stage 1.

Game B.0. This game is identical to Game 1 except that the adversary is re-
stricted to issuing a query Test(label, i) where no session label′ 6= label exists with
label′.cidi = label.cidi and where either i = 1 and label.role = responder or i = 2
and label.role = initiator Thus, we have

AdvFS-without-partner
1 (λ) = AdvB.0(λ).

Game B.1. This game is identical to Game B.0 except we guess the pre-shared
secret pss used in the tested session and abort the game if our guess was wrong.
This reduces the adversary’s advantage by a factor of at most np, where np is
the number pre-shared secrets:

AdvB.1(λ) ≥ 1

np
· AdvB.0(λ).

Game B.2. This game is identical to Game B.1 except we abort the game and
raise an event abortB.2 if label.role = responder and label accepts in stage 1
without a contributive partner or label.role = initiator and label accepts in stage
2 without a contributive partner. Therefore, we have

|AdvB.2(λ)− AdvB.1(λ)| ≤ Pr[abortB.2].

Since the game aborts if the session label accepts in stage i and A is restricted
to issuing a query Test(label, i) we have AdvB.2(λ) = 0. In the following we will
now proceed to bound Pr[abortB.2].

Note that in Game B.2 the adversary A cannot issue a Corrupt query for the
pre-shared secret pss used by the tested session label. This is implied from the
following facts. First, if A tests a responder session, it cannot issue a Corrupt
query since stage 1 is not forward secure. Second, if A tests an initiator sessions
and corrupts pss before label accepts stage 2, label.rect auth2 will be set to unauth
and A then loses the game when it issues Test(label, 2). Third, the game is
aborted when label accepts in stage i. Thus, A can neither issue the Corrupt
query prior to label accepting in stage i nor after label accepted in stage i. Since
A cannot corrupt pss it is guaranteed that pss remains an unknown random
value for A.
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Game B.3. This game is identical to Game B.2 except in any session using the
pre-shared secret guessed in Game B.1 we replace the pre-shared secret with
a uniformly random value p̃ss $←− P. As shown before, we can construct an
adversary B5 that breaks the CPA security of Π using an adversary A that is
able to distinguish Game B.3 and Game B.2 and we have

|AdvB.3(λ)− AdvB.2(λ)| ≤ AdvΠ,B5

CPA (λ).

Game B.4. This game is identical to Game B.3 except we replace the derivation
of sMAC in any session using the pre-shared secret p̃ss with a uniformly random
value s̃MAC

$←− {0, 1}∗. As shown before, any adversary that is able to distinguish
Game B.3 from Game B.4 can be used to construct an adversary B6 against the
PRF-sec security of HKDF.Extract and we have

Pr[abortB.3] ≤ Pr[abortB.4] + AdvHKDF.Extract,B6

PRF-sec (λ).

As the final step we will now show that we can use any adversary A that
triggers the event abortB.4 to construct an attacker B7 against the sEUF-CMA
security of MAC. B7 behaves exactly like the challenger in Game B.4 except
that it uses its MAC oracle to compute the MAC value for the session label
and the corresponding session of the intended partner. Note that since s̃MAC

is a uniformly random value this is a sound simulation of Game B.4 for A.
When the event abortB.4 is triggered the session label must have received some
message mC or mS containing a valid MAC. holds some contributive identifier
cidi, which consists of either mC or mC and mS depending on the role of label.
Since there exists no session label′ holding the same contributive identifier as
label, at least one message contained in cidi cannot be the output of an honest
session. However, the session label only accepts in stage 2 if it received a message
containing a valid MAC value. Thus, B7 outputs the MAC value received by the
session label as a forgery to its sEUF-CMA challenger and we have

Pr[abortB.4] ≤ AdvMAC,B7

sEUF-CMA(λ).

Case C: Test in forward secure stage with contributive partner. In the last case
the adversary A tests a forward secure stage, i.e., A issues Test(label, 2), and
the tested session label has an honest contributive partner in stage 2, i.e., there
exists a session label′ 6= label with label′.cid2 = label.cid2.

Game C.0. This game is identical to Game 1 except that the adversary is re-
stricted to testing a session in stage 2 with a contributive partner. Thus, we
have

AdvFS-with-partner
1 (λ) = AdvC.0(λ).

Game C.1. This game is identical to Game C.0 except we guess as session
label′ uniformly at random and abort the game if the guessed session is not the
contributive partner of the session label in stage 2 and we have

AdvC.1(λ) ≥ 1

ns
· AdvC.0(λ).
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Game C.2. In this game we want to replace the derived main secret in the
session label with a uniformly random value. First, note that if the tested session
label is a client session, we have label.cid2 = label′.cid2 = (mC,mS) when label
accepts in stage 2. Thus, we are guaranteed that label and label′ use the same
Diffie–Hellman shares gx and gy to derive smain. However, if the tested session
label is a server session, we only have label.cid2 = label′.cid2 = (mC) when label
accepts in stage 2. The adversary may then replace the Diffie–Hellman share
gy of the session label with some other Diffie–Hellman share gy

′
in the message

mS. Note that the MAC value in mS cannot prevent this modification since the
adversary A may corrupt pss and is therefore able to compute a valid MAC value
over the modified Diffie–Hellman share. Hence, we must be able to compute the
Diffie–Hellman value gxy

′
for an arbitrary gy

′ 6= gy and for this reason we model
the security of HKDF.Extract using the PRF-ODH assumption.

Formally, this game is identical to Game C.1 except we replace the value
smain with a uniformly random value s̃main

$←− S. We will now show that we can
use any adversary A that is able to distinguish Game C.1 from Game C.2 to
construct an adversary B8 against the PRF-ODH security of HKDF.Extract. The
adversary B8 behaves exactly like the challenger in Game 0 except that at the
start of the game it outputs pss to its PRF-ODH challenger and then uses the
obtained Diffie–Hellman shares gx and gy as the Diffie–Hellman shares for the
sessions label and label′. Moreover, B8 uses the obtained PRF challenge as the
main secret for the session label and for label′ if label′ becomes partnered with
label. If the session label′ receives a Diffie–Hellman share gy

′ 6= gy, B8 uses its
ODHu query to derive the main secret from gxy

′
. This results in B8 perfectly

simulating Game C.1 if its oracle ODHu computes HKDF.Extract and perfectly
simulates Game C.2 if ODHu is a random function and we have

|AdvC.2(λ)− AdvC.1(λ)| ≤ AdvHKDF.Extract,B8

PRF-ODH (λ).

In Game C.2 the value s̃main of the tested session label is chosen uniformly
at random. Therefore, from the view of A, Game C.2 is independent of the bit
btest, which results in

AdvC.2(λ) = 0.
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